/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // Z_zone.c #include "quakedef.h" #include "thread.h" #ifdef WIN32 #include #include #else #include #endif #ifdef _MSC_VER #include #else #include #endif #define MEMHEADER_SENTINEL_FOR_ADDRESS(p) ((sentinel_seed ^ (unsigned int) (uintptr_t) (p)) + sentinel_seed) unsigned int sentinel_seed; qboolean mem_bigendian = false; void *mem_mutex = NULL; // divVerent: enables file backed malloc using mmap to conserve swap space (instead of malloc) #ifndef FILE_BACKED_MALLOC # define FILE_BACKED_MALLOC 0 #endif // LordHavoc: enables our own low-level allocator (instead of malloc) #ifndef MEMCLUMPING # define MEMCLUMPING 0 #endif #ifndef MEMCLUMPING_FREECLUMPS # define MEMCLUMPING_FREECLUMPS 0 #endif #if MEMCLUMPING // smallest unit we care about is this many bytes #define MEMUNIT 128 // try to do 32MB clumps, but overhead eats into this #ifndef MEMWANTCLUMPSIZE # define MEMWANTCLUMPSIZE (1<<27) #endif // give malloc padding so we can't waste most of a page at the end #define MEMCLUMPSIZE (MEMWANTCLUMPSIZE - MEMWANTCLUMPSIZE/MEMUNIT/32 - 128) #define MEMBITS (MEMCLUMPSIZE / MEMUNIT) #define MEMBITINTS (MEMBITS / 32) typedef struct memclump_s { // contents of the clump unsigned char block[MEMCLUMPSIZE]; // should always be MEMCLUMP_SENTINEL unsigned int sentinel1; // if a bit is on, it means that the MEMUNIT bytes it represents are // allocated, otherwise free unsigned int bits[MEMBITINTS]; // should always be MEMCLUMP_SENTINEL unsigned int sentinel2; // if this drops to 0, the clump is freed size_t blocksinuse; // largest block of memory available (this is reset to an optimistic // number when anything is freed, and updated when alloc fails the clump) size_t largestavailable; // next clump in the chain struct memclump_s *chain; } memclump_t; #if MEMCLUMPING == 2 static memclump_t masterclump; #endif static memclump_t *clumpchain = NULL; #endif cvar_t developer_memory = {0, "developer_memory", "0", "prints debugging information about memory allocations"}; cvar_t developer_memorydebug = {0, "developer_memorydebug", "0", "enables memory corruption checks (very slow)"}; cvar_t sys_memsize_physical = {CVAR_READONLY, "sys_memsize_physical", "", "physical memory size in MB (or empty if unknown)"}; cvar_t sys_memsize_virtual = {CVAR_READONLY, "sys_memsize_virtual", "", "virtual memory size in MB (or empty if unknown)"}; static mempool_t *poolchain = NULL; void Mem_PrintStats(void); void Mem_PrintList(size_t minallocationsize); #if FILE_BACKED_MALLOC #include #include typedef struct mmap_data_s { size_t len; } mmap_data_t; static void *mmap_malloc(size_t size) { char vabuf[MAX_OSPATH + 1]; char *tmpdir = getenv("TEMP"); mmap_data_t *data; int fd; size += sizeof(mmap_data_t); // waste block dpsnprintf(vabuf, sizeof(vabuf), "%s/darkplaces.XXXXXX", tmpdir ? tmpdir : "/tmp"); fd = mkstemp(vabuf); if(fd < 0) return NULL; ftruncate(fd, size); data = (unsigned char *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_NORESERVE, fd, 0); close(fd); unlink(vabuf); if(!data) return NULL; data->len = size; return (void *) (data + 1); } static void mmap_free(void *mem) { mmap_data_t *data; if(!mem) return; data = ((mmap_data_t *) mem) - 1; munmap(data, data->len); } #define malloc mmap_malloc #define free mmap_free #endif #if MEMCLUMPING != 2 // some platforms have a malloc that returns NULL but succeeds later // (Windows growing its swapfile for example) static void *attempt_malloc(size_t size) { void *base; // try for half a second or so unsigned int attempts = 500; while (attempts--) { base = (void *)malloc(size); if (base) return base; Sys_Sleep(1000); } return NULL; } #endif #if MEMCLUMPING static memclump_t *Clump_NewClump(void) { memclump_t **clumpchainpointer; memclump_t *clump; #if MEMCLUMPING == 2 if (clumpchain) return NULL; clump = &masterclump; #else clump = (memclump_t*)attempt_malloc(sizeof(memclump_t)); if (!clump) return NULL; #endif // initialize clump if (developer_memorydebug.integer) memset(clump, 0xEF, sizeof(*clump)); clump->sentinel1 = MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel1); memset(clump->bits, 0, sizeof(clump->bits)); clump->sentinel2 = MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel2); clump->blocksinuse = 0; clump->largestavailable = 0; clump->chain = NULL; // link clump into chain for (clumpchainpointer = &clumpchain;*clumpchainpointer;clumpchainpointer = &(*clumpchainpointer)->chain) ; *clumpchainpointer = clump; return clump; } #endif // low level clumping functions, all other memory functions use these static void *Clump_AllocBlock(size_t size) { unsigned char *base; #if MEMCLUMPING if (size <= MEMCLUMPSIZE) { int index; unsigned int bit; unsigned int needbits; unsigned int startbit; unsigned int endbit; unsigned int needints; int startindex; int endindex; unsigned int value; unsigned int mask; unsigned int *array; memclump_t **clumpchainpointer; memclump_t *clump; needbits = (size + MEMUNIT - 1) / MEMUNIT; needints = (needbits+31)>>5; for (clumpchainpointer = &clumpchain;;clumpchainpointer = &(*clumpchainpointer)->chain) { clump = *clumpchainpointer; if (!clump) { clump = Clump_NewClump(); if (!clump) return NULL; } if (clump->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel1)) Sys_Error("Clump_AllocBlock: trashed sentinel1\n"); if (clump->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel2)) Sys_Error("Clump_AllocBlock: trashed sentinel2\n"); startbit = 0; endbit = startbit + needbits; array = clump->bits; // do as fast a search as possible, even if it means crude alignment if (needbits >= 32) { // large allocations are aligned to large boundaries // furthermore, they are allocated downward from the top... endindex = MEMBITINTS; startindex = endindex - needints; index = endindex; while (--index >= startindex) { if (array[index]) { endindex = index; startindex = endindex - needints; if (startindex < 0) goto nofreeblock; } } startbit = startindex*32; goto foundblock; } else { // search for a multi-bit gap in a single int // (not dealing with the cases that cross two ints) mask = (1<bits[bit>>5] & (1<<(bit & 31))) Sys_Error("Clump_AllocBlock: internal error (%i needbits)\n", needbits); for (bit = startbit;bit < endbit;bit++) clump->bits[bit>>5] |= (1<<(bit & 31)); clump->blocksinuse += needbits; base = clump->block + startbit * MEMUNIT; if (developer_memorydebug.integer) memset(base, 0xBF, needbits * MEMUNIT); return base; nofreeblock: ; } // never reached return NULL; } // too big, allocate it directly #endif #if MEMCLUMPING == 2 return NULL; #else base = (unsigned char *)attempt_malloc(size); if (base && developer_memorydebug.integer) memset(base, 0xAF, size); return base; #endif } static void Clump_FreeBlock(void *base, size_t size) { #if MEMCLUMPING unsigned int needbits; unsigned int startbit; unsigned int endbit; unsigned int bit; memclump_t **clumpchainpointer; memclump_t *clump; unsigned char *start = (unsigned char *)base; for (clumpchainpointer = &clumpchain;(clump = *clumpchainpointer);clumpchainpointer = &(*clumpchainpointer)->chain) { if (start >= clump->block && start < clump->block + MEMCLUMPSIZE) { if (clump->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel1)) Sys_Error("Clump_FreeBlock: trashed sentinel1\n"); if (clump->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel2)) Sys_Error("Clump_FreeBlock: trashed sentinel2\n"); if (start + size > clump->block + MEMCLUMPSIZE) Sys_Error("Clump_FreeBlock: block overrun\n"); // the block belongs to this clump, clear the range needbits = (size + MEMUNIT - 1) / MEMUNIT; startbit = (start - clump->block) / MEMUNIT; endbit = startbit + needbits; // first verify all bits are set, otherwise this may be misaligned or a double free for (bit = startbit;bit < endbit;bit++) if ((clump->bits[bit>>5] & (1<<(bit & 31))) == 0) Sys_Error("Clump_FreeBlock: double free\n"); for (bit = startbit;bit < endbit;bit++) clump->bits[bit>>5] &= ~(1<<(bit & 31)); clump->blocksinuse -= needbits; memset(base, 0xFF, needbits * MEMUNIT); // if all has been freed, free the clump itself if (clump->blocksinuse == 0) { *clumpchainpointer = clump->chain; if (developer_memorydebug.integer) memset(clump, 0xFF, sizeof(*clump)); #if MEMCLUMPING != 2 free(clump); #endif } return; } } // does not belong to any known chunk... assume it was a direct allocation #endif #if MEMCLUMPING != 2 memset(base, 0xFF, size); free(base); #endif } void *_Mem_Alloc(mempool_t *pool, void *olddata, size_t size, size_t alignment, const char *filename, int fileline) { unsigned int sentinel1; unsigned int sentinel2; size_t realsize; size_t sharedsize; size_t remainsize; memheader_t *mem; memheader_t *oldmem; unsigned char *base; if (size <= 0) { if (olddata) _Mem_Free(olddata, filename, fileline); return NULL; } if (pool == NULL) { if(olddata) pool = ((memheader_t *)((unsigned char *) olddata - sizeof(memheader_t)))->pool; else Sys_Error("Mem_Alloc: pool == NULL (alloc at %s:%i)", filename, fileline); } if (mem_mutex) Thread_LockMutex(mem_mutex); if (developer_memory.integer) Con_DPrintf("Mem_Alloc: pool %s, file %s:%i, size %i bytes\n", pool->name, filename, fileline, (int)size); //if (developer.integer > 0 && developer_memorydebug.integer) // _Mem_CheckSentinelsGlobal(filename, fileline); pool->totalsize += size; realsize = alignment + sizeof(memheader_t) + size + sizeof(sentinel2); pool->realsize += realsize; base = (unsigned char *)Clump_AllocBlock(realsize); if (base== NULL) { Mem_PrintList(0); Mem_PrintStats(); Mem_PrintList(1<<30); Mem_PrintStats(); Sys_Error("Mem_Alloc: out of memory (alloc at %s:%i)", filename, fileline); } // calculate address that aligns the end of the memheader_t to the specified alignment mem = (memheader_t*)((((size_t)base + sizeof(memheader_t) + (alignment-1)) & ~(alignment-1)) - sizeof(memheader_t)); mem->baseaddress = (void*)base; mem->filename = filename; mem->fileline = fileline; mem->size = size; mem->pool = pool; // calculate sentinels (detects buffer overruns, in a way that is hard to exploit) sentinel1 = MEMHEADER_SENTINEL_FOR_ADDRESS(&mem->sentinel); sentinel2 = MEMHEADER_SENTINEL_FOR_ADDRESS((unsigned char *) mem + sizeof(memheader_t) + mem->size); mem->sentinel = sentinel1; memcpy((unsigned char *) mem + sizeof(memheader_t) + mem->size, &sentinel2, sizeof(sentinel2)); // append to head of list mem->next = pool->chain; mem->prev = NULL; pool->chain = mem; if (mem->next) mem->next->prev = mem; if (mem_mutex) Thread_UnlockMutex(mem_mutex); // copy the shared portion in the case of a realloc, then memset the rest sharedsize = 0; remainsize = size; if (olddata) { oldmem = (memheader_t*)olddata - 1; sharedsize = min(oldmem->size, size); memcpy((void *)((unsigned char *) mem + sizeof(memheader_t)), olddata, sharedsize); remainsize -= sharedsize; _Mem_Free(olddata, filename, fileline); } memset((void *)((unsigned char *) mem + sizeof(memheader_t) + sharedsize), 0, remainsize); return (void *)((unsigned char *) mem + sizeof(memheader_t)); } // only used by _Mem_Free and _Mem_FreePool static void _Mem_FreeBlock(memheader_t *mem, const char *filename, int fileline) { mempool_t *pool; size_t size; size_t realsize; unsigned int sentinel1; unsigned int sentinel2; // check sentinels (detects buffer overruns, in a way that is hard to exploit) sentinel1 = MEMHEADER_SENTINEL_FOR_ADDRESS(&mem->sentinel); sentinel2 = MEMHEADER_SENTINEL_FOR_ADDRESS((unsigned char *) mem + sizeof(memheader_t) + mem->size); if (mem->sentinel != sentinel1) Sys_Error("Mem_Free: trashed head sentinel (alloc at %s:%i, free at %s:%i)", mem->filename, mem->fileline, filename, fileline); if (memcmp((unsigned char *) mem + sizeof(memheader_t) + mem->size, &sentinel2, sizeof(sentinel2))) Sys_Error("Mem_Free: trashed tail sentinel (alloc at %s:%i, free at %s:%i)", mem->filename, mem->fileline, filename, fileline); pool = mem->pool; if (developer_memory.integer) Con_DPrintf("Mem_Free: pool %s, alloc %s:%i, free %s:%i, size %i bytes\n", pool->name, mem->filename, mem->fileline, filename, fileline, (int)(mem->size)); // unlink memheader from doubly linked list if ((mem->prev ? mem->prev->next != mem : pool->chain != mem) || (mem->next && mem->next->prev != mem)) Sys_Error("Mem_Free: not allocated or double freed (free at %s:%i)", filename, fileline); if (mem_mutex) Thread_LockMutex(mem_mutex); if (mem->prev) mem->prev->next = mem->next; else pool->chain = mem->next; if (mem->next) mem->next->prev = mem->prev; // memheader has been unlinked, do the actual free now size = mem->size; realsize = sizeof(memheader_t) + size + sizeof(sentinel2); pool->totalsize -= size; pool->realsize -= realsize; Clump_FreeBlock(mem->baseaddress, realsize); if (mem_mutex) Thread_UnlockMutex(mem_mutex); } void _Mem_Free(void *data, const char *filename, int fileline) { if (data == NULL) { Con_DPrintf("Mem_Free: data == NULL (called at %s:%i)\n", filename, fileline); return; } if (developer_memorydebug.integer) { //_Mem_CheckSentinelsGlobal(filename, fileline); if (!Mem_IsAllocated(NULL, data)) Sys_Error("Mem_Free: data is not allocated (called at %s:%i)", filename, fileline); } _Mem_FreeBlock((memheader_t *)((unsigned char *) data - sizeof(memheader_t)), filename, fileline); } mempool_t *_Mem_AllocPool(const char *name, int flags, mempool_t *parent, const char *filename, int fileline) { mempool_t *pool; if (developer_memorydebug.integer) _Mem_CheckSentinelsGlobal(filename, fileline); pool = (mempool_t *)Clump_AllocBlock(sizeof(mempool_t)); if (pool == NULL) { Mem_PrintList(0); Mem_PrintStats(); Mem_PrintList(1<<30); Mem_PrintStats(); Sys_Error("Mem_AllocPool: out of memory (allocpool at %s:%i)", filename, fileline); } memset(pool, 0, sizeof(mempool_t)); pool->sentinel1 = MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel1); pool->sentinel2 = MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel2); pool->filename = filename; pool->fileline = fileline; pool->flags = flags; pool->chain = NULL; pool->totalsize = 0; pool->realsize = sizeof(mempool_t); strlcpy (pool->name, name, sizeof (pool->name)); pool->parent = parent; pool->next = poolchain; poolchain = pool; return pool; } void _Mem_FreePool(mempool_t **poolpointer, const char *filename, int fileline) { mempool_t *pool = *poolpointer; mempool_t **chainaddress, *iter, *temp; if (developer_memorydebug.integer) _Mem_CheckSentinelsGlobal(filename, fileline); if (pool) { // unlink pool from chain for (chainaddress = &poolchain;*chainaddress && *chainaddress != pool;chainaddress = &((*chainaddress)->next)); if (*chainaddress != pool) Sys_Error("Mem_FreePool: pool already free (freepool at %s:%i)", filename, fileline); if (pool->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel1)) Sys_Error("Mem_FreePool: trashed pool sentinel 1 (allocpool at %s:%i, freepool at %s:%i)", pool->filename, pool->fileline, filename, fileline); if (pool->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel2)) Sys_Error("Mem_FreePool: trashed pool sentinel 2 (allocpool at %s:%i, freepool at %s:%i)", pool->filename, pool->fileline, filename, fileline); *chainaddress = pool->next; // free memory owned by the pool while (pool->chain) _Mem_FreeBlock(pool->chain, filename, fileline); // free child pools, too for(iter = poolchain; iter; iter = temp) { temp = iter->next; if(iter->parent == pool) _Mem_FreePool(&temp, filename, fileline); } // free the pool itself Clump_FreeBlock(pool, sizeof(*pool)); *poolpointer = NULL; } } void _Mem_EmptyPool(mempool_t *pool, const char *filename, int fileline) { mempool_t *chainaddress; if (developer_memorydebug.integer) { //_Mem_CheckSentinelsGlobal(filename, fileline); // check if this pool is in the poolchain for (chainaddress = poolchain;chainaddress;chainaddress = chainaddress->next) if (chainaddress == pool) break; if (!chainaddress) Sys_Error("Mem_EmptyPool: pool is already free (emptypool at %s:%i)", filename, fileline); } if (pool == NULL) Sys_Error("Mem_EmptyPool: pool == NULL (emptypool at %s:%i)", filename, fileline); if (pool->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel1)) Sys_Error("Mem_EmptyPool: trashed pool sentinel 1 (allocpool at %s:%i, emptypool at %s:%i)", pool->filename, pool->fileline, filename, fileline); if (pool->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel2)) Sys_Error("Mem_EmptyPool: trashed pool sentinel 2 (allocpool at %s:%i, emptypool at %s:%i)", pool->filename, pool->fileline, filename, fileline); // free memory owned by the pool while (pool->chain) _Mem_FreeBlock(pool->chain, filename, fileline); // empty child pools, too for(chainaddress = poolchain; chainaddress; chainaddress = chainaddress->next) if(chainaddress->parent == pool) _Mem_EmptyPool(chainaddress, filename, fileline); } void _Mem_CheckSentinels(void *data, const char *filename, int fileline) { memheader_t *mem; unsigned int sentinel1; unsigned int sentinel2; if (data == NULL) Sys_Error("Mem_CheckSentinels: data == NULL (sentinel check at %s:%i)", filename, fileline); mem = (memheader_t *)((unsigned char *) data - sizeof(memheader_t)); sentinel1 = MEMHEADER_SENTINEL_FOR_ADDRESS(&mem->sentinel); sentinel2 = MEMHEADER_SENTINEL_FOR_ADDRESS((unsigned char *) mem + sizeof(memheader_t) + mem->size); if (mem->sentinel != sentinel1) Sys_Error("Mem_Free: trashed head sentinel (alloc at %s:%i, sentinel check at %s:%i)", mem->filename, mem->fileline, filename, fileline); if (memcmp((unsigned char *) mem + sizeof(memheader_t) + mem->size, &sentinel2, sizeof(sentinel2))) Sys_Error("Mem_Free: trashed tail sentinel (alloc at %s:%i, sentinel check at %s:%i)", mem->filename, mem->fileline, filename, fileline); } #if MEMCLUMPING static void _Mem_CheckClumpSentinels(memclump_t *clump, const char *filename, int fileline) { // this isn't really very useful if (clump->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel1)) Sys_Error("Mem_CheckClumpSentinels: trashed sentinel 1 (sentinel check at %s:%i)", filename, fileline); if (clump->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel2)) Sys_Error("Mem_CheckClumpSentinels: trashed sentinel 2 (sentinel check at %s:%i)", filename, fileline); } #endif void _Mem_CheckSentinelsGlobal(const char *filename, int fileline) { memheader_t *mem; #if MEMCLUMPING memclump_t *clump; #endif mempool_t *pool; for (pool = poolchain;pool;pool = pool->next) { if (pool->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel1)) Sys_Error("Mem_CheckSentinelsGlobal: trashed pool sentinel 1 (allocpool at %s:%i, sentinel check at %s:%i)", pool->filename, pool->fileline, filename, fileline); if (pool->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel2)) Sys_Error("Mem_CheckSentinelsGlobal: trashed pool sentinel 2 (allocpool at %s:%i, sentinel check at %s:%i)", pool->filename, pool->fileline, filename, fileline); } for (pool = poolchain;pool;pool = pool->next) for (mem = pool->chain;mem;mem = mem->next) _Mem_CheckSentinels((void *)((unsigned char *) mem + sizeof(memheader_t)), filename, fileline); #if MEMCLUMPING for (pool = poolchain;pool;pool = pool->next) for (clump = clumpchain;clump;clump = clump->chain) _Mem_CheckClumpSentinels(clump, filename, fileline); #endif } qboolean Mem_IsAllocated(mempool_t *pool, void *data) { memheader_t *header; memheader_t *target; if (pool) { // search only one pool target = (memheader_t *)((unsigned char *) data - sizeof(memheader_t)); for( header = pool->chain ; header ; header = header->next ) if( header == target ) return true; } else { // search all pools for (pool = poolchain;pool;pool = pool->next) if (Mem_IsAllocated(pool, data)) return true; } return false; } void Mem_ExpandableArray_NewArray(memexpandablearray_t *l, mempool_t *mempool, size_t recordsize, int numrecordsperarray) { memset(l, 0, sizeof(*l)); l->mempool = mempool; l->recordsize = recordsize; l->numrecordsperarray = numrecordsperarray; } void Mem_ExpandableArray_FreeArray(memexpandablearray_t *l) { size_t i; if (l->maxarrays) { for (i = 0;i != l->numarrays;i++) Mem_Free(l->arrays[i].data); Mem_Free(l->arrays); } memset(l, 0, sizeof(*l)); } void *Mem_ExpandableArray_AllocRecord(memexpandablearray_t *l) { size_t i, j; for (i = 0;;i++) { if (i == l->numarrays) { if (l->numarrays == l->maxarrays) { memexpandablearray_array_t *oldarrays = l->arrays; l->maxarrays = max(l->maxarrays * 2, 128); l->arrays = (memexpandablearray_array_t*) Mem_Alloc(l->mempool, l->maxarrays * sizeof(*l->arrays)); if (oldarrays) { memcpy(l->arrays, oldarrays, l->numarrays * sizeof(*l->arrays)); Mem_Free(oldarrays); } } l->arrays[i].numflaggedrecords = 0; l->arrays[i].data = (unsigned char *) Mem_Alloc(l->mempool, (l->recordsize + 1) * l->numrecordsperarray); l->arrays[i].allocflags = l->arrays[i].data + l->recordsize * l->numrecordsperarray; l->numarrays++; } if (l->arrays[i].numflaggedrecords < l->numrecordsperarray) { for (j = 0;j < l->numrecordsperarray;j++) { if (!l->arrays[i].allocflags[j]) { l->arrays[i].allocflags[j] = true; l->arrays[i].numflaggedrecords++; memset(l->arrays[i].data + l->recordsize * j, 0, l->recordsize); return (void *)(l->arrays[i].data + l->recordsize * j); } } } } } /***************************************************************************** * IF YOU EDIT THIS: * If this function was to change the size of the "expandable" array, you have * to update r_shadow.c * Just do a search for "range =", R_ShadowClearWorldLights would be the first * function to look at. (And also seems like the only one?) You might have to * move the call to Mem_ExpandableArray_IndexRange back into for(...) loop's * condition */ void Mem_ExpandableArray_FreeRecord(memexpandablearray_t *l, void *record) // const! { size_t i, j; unsigned char *p = (unsigned char *)record; for (i = 0;i != l->numarrays;i++) { if (p >= l->arrays[i].data && p < (l->arrays[i].data + l->recordsize * l->numrecordsperarray)) { j = (p - l->arrays[i].data) / l->recordsize; if (p != l->arrays[i].data + j * l->recordsize) Sys_Error("Mem_ExpandableArray_FreeRecord: no such record %p\n", p); if (!l->arrays[i].allocflags[j]) Sys_Error("Mem_ExpandableArray_FreeRecord: record %p is already free!\n", p); l->arrays[i].allocflags[j] = false; l->arrays[i].numflaggedrecords--; return; } } } size_t Mem_ExpandableArray_IndexRange(const memexpandablearray_t *l) { size_t i, j, k, end = 0; for (i = 0;i < l->numarrays;i++) { for (j = 0, k = 0;k < l->arrays[i].numflaggedrecords;j++) { if (l->arrays[i].allocflags[j]) { end = l->numrecordsperarray * i + j + 1; k++; } } } return end; } void *Mem_ExpandableArray_RecordAtIndex(const memexpandablearray_t *l, size_t index) { size_t i, j; i = index / l->numrecordsperarray; j = index % l->numrecordsperarray; if (i >= l->numarrays || !l->arrays[i].allocflags[j]) return NULL; return (void *)(l->arrays[i].data + j * l->recordsize); } // used for temporary memory allocations around the engine, not for longterm // storage, if anything in this pool stays allocated during gameplay, it is // considered a leak mempool_t *tempmempool; // only for zone mempool_t *zonemempool; void Mem_PrintStats(void) { size_t count = 0, size = 0, realsize = 0; mempool_t *pool; memheader_t *mem; Mem_CheckSentinelsGlobal(); for (pool = poolchain;pool;pool = pool->next) { count++; size += pool->totalsize; realsize += pool->realsize; } Con_Printf("%lu memory pools, totalling %lu bytes (%.3fMB)\n", (unsigned long)count, (unsigned long)size, size / 1048576.0); Con_Printf("total allocated size: %lu bytes (%.3fMB)\n", (unsigned long)realsize, realsize / 1048576.0); for (pool = poolchain;pool;pool = pool->next) { if ((pool->flags & POOLFLAG_TEMP) && pool->chain) { Con_Printf("Memory pool %p has sprung a leak totalling %lu bytes (%.3fMB)! Listing contents...\n", (void *)pool, (unsigned long)pool->totalsize, pool->totalsize / 1048576.0); for (mem = pool->chain;mem;mem = mem->next) Con_Printf("%10lu bytes allocated at %s:%i\n", (unsigned long)mem->size, mem->filename, mem->fileline); } } } void Mem_PrintList(size_t minallocationsize) { mempool_t *pool; memheader_t *mem; Mem_CheckSentinelsGlobal(); Con_Print("memory pool list:\n" "size name\n"); for (pool = poolchain;pool;pool = pool->next) { Con_Printf("%10luk (%10luk actual) %s (%+li byte change) %s\n", (unsigned long) ((pool->totalsize + 1023) / 1024), (unsigned long)((pool->realsize + 1023) / 1024), pool->name, (long)(pool->totalsize - pool->lastchecksize), (pool->flags & POOLFLAG_TEMP) ? "TEMP" : ""); pool->lastchecksize = pool->totalsize; for (mem = pool->chain;mem;mem = mem->next) if (mem->size >= minallocationsize) Con_Printf("%10lu bytes allocated at %s:%i\n", (unsigned long)mem->size, mem->filename, mem->fileline); } } static void MemList_f(void) { switch(Cmd_Argc()) { case 1: Mem_PrintList(1<<30); Mem_PrintStats(); break; case 2: Mem_PrintList(atoi(Cmd_Argv(1)) * 1024); Mem_PrintStats(); break; default: Con_Print("MemList_f: unrecognized options\nusage: memlist [all]\n"); break; } } static void MemStats_f(void) { Mem_CheckSentinelsGlobal(); R_TextureStats_Print(false, false, true); GL_Mesh_ListVBOs(false); Mem_PrintStats(); } char* Mem_strdup (mempool_t *pool, const char* s) { char* p; size_t sz; if (s == NULL) return NULL; sz = strlen (s) + 1; p = (char*)Mem_Alloc (pool, sz); strlcpy (p, s, sz); return p; } /* ======================== Memory_Init ======================== */ void Memory_Init (void) { static union {unsigned short s;unsigned char b[2];} u; u.s = 0x100; mem_bigendian = u.b[0] != 0; sentinel_seed = rand(); poolchain = NULL; tempmempool = Mem_AllocPool("Temporary Memory", POOLFLAG_TEMP, NULL); zonemempool = Mem_AllocPool("Zone", 0, NULL); if (Thread_HasThreads()) mem_mutex = Thread_CreateMutex(); } void Memory_Shutdown (void) { // Mem_FreePool (&zonemempool); // Mem_FreePool (&tempmempool); if (mem_mutex) Thread_DestroyMutex(mem_mutex); mem_mutex = NULL; } void Memory_Init_Commands (void) { Cmd_AddCommand ("memstats", MemStats_f, "prints memory system statistics"); Cmd_AddCommand ("memlist", MemList_f, "prints memory pool information (or if used as memlist 5 lists individual allocations of 5K or larger, 0 lists all allocations)"); Cvar_RegisterVariable (&developer_memory); Cvar_RegisterVariable (&developer_memorydebug); Cvar_RegisterVariable (&sys_memsize_physical); Cvar_RegisterVariable (&sys_memsize_virtual); #if defined(WIN32) #ifdef _WIN64 { MEMORYSTATUSEX status; // first guess Cvar_SetValueQuick(&sys_memsize_virtual, 8388608); // then improve status.dwLength = sizeof(status); if(GlobalMemoryStatusEx(&status)) { Cvar_SetValueQuick(&sys_memsize_physical, status.ullTotalPhys / 1048576.0); Cvar_SetValueQuick(&sys_memsize_virtual, min(sys_memsize_virtual.value, status.ullTotalVirtual / 1048576.0)); } } #else { MEMORYSTATUS status; // first guess Cvar_SetValueQuick(&sys_memsize_virtual, 2048); // then improve status.dwLength = sizeof(status); GlobalMemoryStatus(&status); Cvar_SetValueQuick(&sys_memsize_physical, status.dwTotalPhys / 1048576.0); Cvar_SetValueQuick(&sys_memsize_virtual, min(sys_memsize_virtual.value, status.dwTotalVirtual / 1048576.0)); } #endif #else { // first guess Cvar_SetValueQuick(&sys_memsize_virtual, (sizeof(void*) == 4) ? 2048 : 268435456); // then improve { // Linux, and BSD with linprocfs mounted FILE *f = fopen("/proc/meminfo", "r"); if(f) { static char buf[1024]; while(fgets(buf, sizeof(buf), f)) { const char *p = buf; if(!COM_ParseToken_Console(&p)) continue; if(!strcmp(com_token, "MemTotal:")) { if(!COM_ParseToken_Console(&p)) continue; Cvar_SetValueQuick(&sys_memsize_physical, atof(com_token) / 1024.0); } if(!strcmp(com_token, "SwapTotal:")) { if(!COM_ParseToken_Console(&p)) continue; Cvar_SetValueQuick(&sys_memsize_virtual, min(sys_memsize_virtual.value , atof(com_token) / 1024.0 + sys_memsize_physical.value)); } } fclose(f); } } } #endif }