X-Git-Url: http://de.git.xonotic.org/?p=xonotic%2Fdarkplaces.git;a=blobdiff_plain;f=mathlib.h;h=44114aee3043613c153a2ce5952fdf312743b23b;hp=b40e6f33739271ea23938b779b841c63f917da33;hb=0052176c31d28b057c6f0d32042fc924ee7b8107;hpb=6824d8ddc8a43cae0609be5bbe8bee01fa1a4225 diff --git a/mathlib.h b/mathlib.h index b40e6f33..44114aee 100644 --- a/mathlib.h +++ b/mathlib.h @@ -49,16 +49,33 @@ extern vec3_t vec3_origin; #define max(A,B) ((A) > (B) ? (A) : (B)) #endif -//#define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN)) -#define lhrandom(MIN,MAX) (((double)rand() / RAND_MAX) * ((MAX)-(MIN)) + (MIN)) +//#define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32768.0f)) + (MIN)) +#define lhrandom(MIN,MAX) (((double)rand() / ((double)RAND_MAX + 1)) * ((MAX)-(MIN)) + (MIN)) #define invpow(base,number) (log(number) / log(base)) + +// returns log base 2 of "n" (WARNING: "n" MUST be a power of 2!) #define log2i(n) ((((n) & 0xAAAAAAAA) != 0 ? 1 : 0) | (((n) & 0xCCCCCCCC) != 0 ? 2 : 0) | (((n) & 0xF0F0F0F0) != 0 ? 4 : 0) | (((n) & 0xFF00FF00) != 0 ? 8 : 0) | (((n) & 0xFFFF0000) != 0 ? 16 : 0)) + +// TOCHECK: what is this function supposed to do? #define bit2i(n) log2i((n) << 1) +// boolean XOR (why doesn't C have the ^^ operator for this purpose?) +#define boolxor(a,b) (!(a) != !(b)) + +// returns the smallest integer greater than or equal to "value", or 0 if "value" is too big +unsigned int CeilPowerOf2(unsigned int value); + #define DEG2RAD(a) ((a) * ((float) M_PI / 180.0f)) #define RAD2DEG(a) ((a) * (180.0f / (float) M_PI)) -#define ANGLEMOD(a) (((int) ((a) * (65536.0f / 360.0f)) & 65535) * (360.0f / 65536.0f)) +#define ANGLEMOD(a) ((a) - 360.0 * floor((a) / 360.0)) + +#define DotProduct4(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2]+(a)[3]*(b)[3]) +#define Vector4Clear(a) ((a)[0]=(a)[1]=(a)[2]=(a)[3]=0) +#define Vector4Compare(a,b) (((a)[0]==(b)[0])&&((a)[1]==(b)[1])&&((a)[2]==(b)[2])&&((a)[3]==(b)[3])) +#define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3]) +#define Vector4Negate(a,b) ((b)[0]=-((a)[0]),(b)[1]=-((a)[1]),(b)[2]=-((a)[2]),(b)[3]=-((a)[3])) +#define Vector4Set(a,b,c,d,e) ((a)[0]=(b),(a)[1]=(c),(a)[2]=(d),(a)[3]=(e)) #define VectorNegate(a,b) ((b)[0]=-((a)[0]),(b)[1]=-((a)[1]),(b)[2]=-((a)[2])) #define VectorSet(a,b,c,d) ((a)[0]=(b),(a)[1]=(c),(a)[2]=(d)) @@ -69,9 +86,9 @@ extern vec3_t vec3_origin; #define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2]) #define VectorMultiply(a,b,c) ((c)[0]=(a)[0]*(b)[0],(c)[1]=(a)[1]*(b)[1],(c)[2]=(a)[2]*(b)[2]) #define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0]) -#define VectorNormalize(v) {float ilength = (float) sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} -#define VectorNormalize2(v,dest) {float ilength = (float) sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;dest[0] = v[0] * ilength;dest[1] = v[1] * ilength;dest[2] = v[2] * ilength;} -#define VectorNormalizeDouble(v) {double ilength = sqrt(DotProduct(v,v));if (ilength) ilength = 1.0 / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} +#define VectorNormalize(v) {float ilength = (float) sqrt(DotProduct((v),(v)));if (ilength) ilength = 1.0f / ilength;(v)[0] *= ilength;(v)[1] *= ilength;(v)[2] *= ilength;} +#define VectorNormalize2(v,dest) {float ilength = (float) sqrt(DotProduct((v),(v)));if (ilength) ilength = 1.0f / ilength;dest[0] = (v)[0] * ilength;dest[1] = (v)[1] * ilength;dest[2] = (v)[2] * ilength;} +#define VectorNormalizeDouble(v) {double ilength = sqrt(DotProduct((v),(v)));if (ilength) ilength = 1.0 / ilength;(v)[0] *= ilength;(v)[1] *= ilength;(v)[2] *= ilength;} #define VectorDistance2(a, b) (((a)[0] - (b)[0]) * ((a)[0] - (b)[0]) + ((a)[1] - (b)[1]) * ((a)[1] - (b)[1]) + ((a)[2] - (b)[2]) * ((a)[2] - (b)[2])) #define VectorDistance(a, b) (sqrt(VectorDistance2(a,b))) #define VectorLength(a) (sqrt(DotProduct(a, a))) @@ -87,6 +104,8 @@ extern vec3_t vec3_origin; #define VectorLerp(v1,lerp,v2,c) ((c)[0] = (v1)[0] + (lerp) * ((v2)[0] - (v1)[0]), (c)[1] = (v1)[1] + (lerp) * ((v2)[1] - (v1)[1]), (c)[2] = (v1)[2] + (lerp) * ((v2)[2] - (v1)[2])) #define VectorReflect(a,r,b,c) do{double d;d = DotProduct((a), (b)) * -(1.0 + (r));VectorMA((a), (d), (b), (c));}while(0) #define BoxesOverlap(a,b,c,d) ((a)[0] <= (d)[0] && (b)[0] >= (c)[0] && (a)[1] <= (d)[1] && (b)[1] >= (c)[1] && (a)[2] <= (d)[2] && (b)[2] >= (c)[2]) +#define BoxInsideBox(a,b,c,d) ((a)[0] >= (c)[0] && (b)[0] <= (d)[0] && (a)[1] >= (c)[1] && (b)[1] <= (d)[1] && (a)[2] >= (c)[2] && (b)[2] <= (d)[2]) +#define TriangleOverlapsBox(a,b,c,d,e) (min((a)[0], min((b)[0], (c)[0])) < (e)[0] && max((a)[0], max((b)[0], (c)[0])) > (d)[0] && min((a)[1], min((b)[1], (c)[1])) < (e)[1] && max((a)[1], max((b)[1], (c)[1])) > (d)[1] && min((a)[2], min((b)[2], (c)[2])) < (e)[2] && max((a)[2], max((b)[2], (c)[2])) > (d)[2]) #define TriangleNormal(a,b,c,n) ( \ (n)[0] = ((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1]), \ @@ -101,9 +120,14 @@ extern vec3_t vec3_origin; // finally a comparison to determine if the light is infront of the triangle // (the goal of this statement) we do not need to normalize the surface // normal because both sides of the comparison use it, therefore they are -// both multiplied the same amount... furthermore the subtract can be done -// on the vectors, saving a little bit of math in the dotproducts -#define PointInfrontOfTriangle(p,a,b,c) (((p)[0] - (a)[0]) * (((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1])) + ((p)[1] - (a)[1]) * (((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2])) + ((p)[2] - (a)[2]) * (((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0])) > 0) +// both multiplied the same amount... furthermore a subtract can be done on +// the point to eliminate one dotproduct +// this is ((p - a) * cross(a-b,c-b)) +#define PointInfrontOfTriangle(p,a,b,c) \ +( ((p)[0] - (a)[0]) * (((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1])) \ ++ ((p)[1] - (a)[1]) * (((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2])) \ ++ ((p)[2] - (a)[2]) * (((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0])) > 0) + #if 0 // readable version, kept only for explanatory reasons int PointInfrontOfTriangle(const float *p, const float *a, const float *b, const float *c) @@ -115,7 +139,7 @@ int PointInfrontOfTriangle(const float *p, const float *a, const float *b, const VectorSubtract(c, b, dir1); // we have two edge directions, we can calculate a third vector from - // them, which is the direction of the surface normal (it's magnitude + // them, which is the direction of the surface normal (its magnitude // is not 1 however) CrossProduct(dir0, dir1, normal); @@ -191,6 +215,8 @@ void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) void AngleVectorsFLU (const vec3_t angles, vec3_t forward, vec3_t left, vec3_t up); // LordHavoc: builds a [3][4] matrix void AngleMatrix (const vec3_t angles, const vec3_t translate, vec_t matrix[][4]); +// LordHavoc: calculates pitch/yaw/roll angles from forward and up vectors +void AnglesFromVectors (vec3_t angles, const vec3_t forward, const vec3_t up, qboolean flippitch); // LordHavoc: like AngleVectors, but taking a forward vector instead of angles, useful! void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up);