X-Git-Url: http://de.git.xonotic.org/?p=xonotic%2Fdarkplaces.git;a=blobdiff_plain;f=mathlib.h;h=678f4e220c0d14434b97a2f1489f8c2686d15d8f;hp=c4d82865532b6bdffbccdbb9845c8fa452664b15;hb=97cb39635544fc0a29036daacb31f6778f312f0d;hpb=86a799933460c0c03cad9a7d3b7a7e5f7624af6b diff --git a/mathlib.h b/mathlib.h index c4d82865..678f4e22 100644 --- a/mathlib.h +++ b/mathlib.h @@ -49,7 +49,12 @@ extern vec3_t vec3_origin; #define max(A,B) ((A) > (B) ? (A) : (B)) #endif -#define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN)) +//#define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN)) +#define lhrandom(MIN,MAX) (((double)rand() / RAND_MAX) * ((MAX)-(MIN)) + (MIN)) + +#define invpow(base,number) (log(number) / log(base)) +#define log2i(n) ((((n) & 0xAAAAAAAA) != 0 ? 1 : 0) | (((n) & 0xCCCCCCCC) != 0 ? 2 : 0) | (((n) & 0xF0F0F0F0) != 0 ? 4 : 0) | (((n) & 0xFF00FF00) != 0 ? 8 : 0) | (((n) & 0xFFFF0000) != 0 ? 16 : 0)) +#define bit2i(n) log2i((n) << 1) #define DEG2RAD(a) ((a) * ((float) M_PI / 180.0f)) #define RAD2DEG(a) ((a) * (180.0f / (float) M_PI)) @@ -62,13 +67,15 @@ extern vec3_t vec3_origin; #define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2]) #define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2]) #define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2]) +#define VectorMultiply(a,b,c) ((c)[0]=(a)[0]*(b)[0],(c)[1]=(a)[1]*(b)[1],(c)[2]=(a)[2]*(b)[2]) #define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0]) #define VectorNormalize(v) {float ilength = (float) sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} #define VectorNormalize2(v,dest) {float ilength = (float) sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;dest[0] = v[0] * ilength;dest[1] = v[1] * ilength;dest[2] = v[2] * ilength;} #define VectorNormalizeDouble(v) {double ilength = sqrt(DotProduct(v,v));if (ilength) ilength = 1.0 / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} #define VectorDistance2(a, b) (((a)[0] - (b)[0]) * ((a)[0] - (b)[0]) + ((a)[1] - (b)[1]) * ((a)[1] - (b)[1]) + ((a)[2] - (b)[2]) * ((a)[2] - (b)[2])) #define VectorDistance(a, b) (sqrt(VectorDistance2(a,b))) -#define VectorLength(a) sqrt(DotProduct(a, a)) +#define VectorLength(a) (sqrt(DotProduct(a, a))) +#define VectorLength2(a) (DotProduct(a, a)) #define VectorScale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale),(out)[2] = (in)[2] * (scale)) #define VectorCompare(a,b) (((a)[0]==(b)[0])&&((a)[1]==(b)[1])&&((a)[2]==(b)[2])) #define VectorMA(a, scale, b, c) ((c)[0] = (a)[0] + (scale) * (b)[0],(c)[1] = (a)[1] + (scale) * (b)[1],(c)[2] = (a)[2] + (scale) * (b)[2]) @@ -76,19 +83,48 @@ extern vec3_t vec3_origin; #define VectorMAM(scale1, b1, scale2, b2, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2]) #define VectorMAMAM(scale1, b1, scale2, b2, scale3, b3, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2]) #define VectorMAMAMAM(scale1, b1, scale2, b2, scale3, b3, scale4, b4, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0] + (scale4) * (b4)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1] + (scale4) * (b4)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2] + (scale4) * (b4)[2]) -#define VectorNormalizeFast(_v)\ -{\ - float _y, _number;\ - _number = DotProduct(_v, _v);\ - if (_number != 0.0)\ - {\ - *((long *)&_y) = 0x5f3759df - ((* (long *) &_number) >> 1);\ - _y = _y * (1.5f - (_number * 0.5f * _y * _y));\ - VectorScale(_v, _y, _v);\ - }\ -} #define VectorRandom(v) do{(v)[0] = lhrandom(-1, 1);(v)[1] = lhrandom(-1, 1);(v)[2] = lhrandom(-1, 1);}while(DotProduct(v, v) > 1) -#define VectorBlend(b1, b2, blend, c) do{float iblend = 1 - (blend);VectorMAM(iblend, b1, blend, b2, c);}while(0) +#define VectorLerp(v1,lerp,v2,c) ((c)[0] = (v1)[0] + (lerp) * ((v2)[0] - (v1)[0]), (c)[1] = (v1)[1] + (lerp) * ((v2)[1] - (v1)[1]), (c)[2] = (v1)[2] + (lerp) * ((v2)[2] - (v1)[2])) +#define VectorReflect(a,r,b,c) do{double d;d = DotProduct((a), (b)) * -(1.0 + (r));VectorMA((a), (d), (b), (c));}while(0) +#define BoxesOverlap(a,b,c,d) ((a)[0] <= (d)[0] && (b)[0] >= (c)[0] && (a)[1] <= (d)[1] && (b)[1] >= (c)[1] && (a)[2] <= (d)[2] && (b)[2] >= (c)[2]) + +#define TriangleNormal(a,b,c,n) ( \ + (n)[0] = ((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1]), \ + (n)[1] = ((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2]), \ + (n)[2] = ((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0]) \ + ) + +// fast PointInfrontOfTriangle +// subtracts v1 from v0 and v2, combined into a crossproduct, combined with a +// dotproduct of the light location relative to the first point of the +// triangle (any point works, since any triangle is obviously flat), and +// finally a comparison to determine if the light is infront of the triangle +// (the goal of this statement) we do not need to normalize the surface +// normal because both sides of the comparison use it, therefore they are +// both multiplied the same amount... furthermore the subtract can be done +// on the vectors, saving a little bit of math in the dotproducts +#define PointInfrontOfTriangle(p,a,b,c) (((p)[0] - (a)[0]) * (((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1])) + ((p)[1] - (a)[1]) * (((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2])) + ((p)[2] - (a)[2]) * (((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0])) > 0) +#if 0 +// readable version, kept only for explanatory reasons +int PointInfrontOfTriangle(const float *p, const float *a, const float *b, const float *c) +{ + float dir0[3], dir1[3], normal[3]; + + // calculate two mostly perpendicular edge directions + VectorSubtract(a, b, dir0); + VectorSubtract(c, b, dir1); + + // we have two edge directions, we can calculate a third vector from + // them, which is the direction of the surface normal (it's magnitude + // is not 1 however) + CrossProduct(dir0, dir1, normal); + + // compare distance of light along normal, with distance of any point + // of the triangle along the same normal (the triangle is planar, + // I.E. flat, so all points give the same answer) + return DotProduct(p, normal) > DotProduct(a, normal); +} +#endif /* // LordHavoc: quaternion math, untested, don't know if these are correct, @@ -161,7 +197,12 @@ void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up); void VectorVectorsDouble(const double *forward, double *right, double *up); void PlaneClassify(struct mplane_s *p); -int BoxOnPlaneSide (const vec3_t emins, const vec3_t emaxs, const struct mplane_s *p); +int BoxOnPlaneSide(const vec3_t emins, const vec3_t emaxs, const struct mplane_s *p); +int BoxOnPlaneSide_Separate(const vec3_t emins, const vec3_t emaxs, const vec3_t normal, const vec_t dist); +void BoxPlaneCorners(const vec3_t emins, const vec3_t emaxs, const struct mplane_s *p, vec3_t outnear, vec3_t outfar); +void BoxPlaneCorners_Separate(const vec3_t emins, const vec3_t emaxs, const vec3_t normal, vec3_t outnear, vec3_t outfar); +void BoxPlaneCornerDistances(const vec3_t emins, const vec3_t emaxs, const struct mplane_s *p, vec_t *outnear, vec_t *outfar); +void BoxPlaneCornerDistances_Separate(const vec3_t emins, const vec3_t emaxs, const vec3_t normal, vec_t *outnear, vec_t *outfar); #define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) #define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist) @@ -181,9 +222,15 @@ tinydoubleplane_t; void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees); +float RadiusFromBounds (const vec3_t mins, const vec3_t maxs); +float RadiusFromBoundsAndOrigin (const vec3_t mins, const vec3_t maxs, const vec3_t origin); + // print a matrix to the console struct matrix4x4_s; void Matrix4x4_Print(const struct matrix4x4_s *in); +int Math_atov(const char *s, vec3_t out); + +void BoxFromPoints(vec3_t mins, vec3_t maxs, int numpoints, vec_t *point3f); #endif