X-Git-Url: http://de.git.xonotic.org/?p=xonotic%2Fdarkplaces.git;a=blobdiff_plain;f=mathlib.h;h=ba362ce32b4262c9b27d3ed19b791e83b19db278;hp=19d9a808eb5305bcf23db4037e674db4502fe24c;hb=2861288617172d7be2fc45c92b3bc1adb04f8a2a;hpb=8dcce44300385b12c46d494c06aadcfa35a8bc14 diff --git a/mathlib.h b/mathlib.h index 19d9a808..ba362ce3 100644 --- a/mathlib.h +++ b/mathlib.h @@ -8,7 +8,7 @@ of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. @@ -19,84 +19,211 @@ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // mathlib.h -typedef float vec_t; -typedef vec_t vec3_t[3]; -typedef vec_t vec5_t[5]; +#ifndef MATHLIB_H +#define MATHLIB_H -typedef int fixed4_t; -typedef int fixed8_t; -typedef int fixed16_t; +#include "qtypes.h" #ifndef M_PI #define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h #endif +typedef float vec_t; +typedef vec_t vec2_t[2]; +typedef vec_t vec3_t[3]; +typedef vec_t vec4_t[4]; +typedef vec_t vec5_t[5]; +typedef vec_t vec6_t[6]; +typedef vec_t vec7_t[7]; +typedef vec_t vec8_t[8]; struct mplane_s; - extern vec3_t vec3_origin; -extern int nanmask; +#define nanmask (255<<23) #define IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask) -#define bound(min,num,max) (num >= min ? (num < max ? num : max) : min) +#define bound(min,num,max) ((num) >= (min) ? ((num) < (max) ? (num) : (max)) : (min)) -#define DotProduct(x,y) (x[0]*y[0]+x[1]*y[1]+x[2]*y[2]) -#define VectorSubtract(a,b,c) {c[0]=a[0]-b[0];c[1]=a[1]-b[1];c[2]=a[2]-b[2];} -#define VectorAdd(a,b,c) {c[0]=a[0]+b[0];c[1]=a[1]+b[1];c[2]=a[2]+b[2];} -#define VectorCopy(a,b) {b[0]=a[0];b[1]=a[1];b[2]=a[2];} -#define CrossProduct(v1,v2,cross) {cross[0] = v1[1]*v2[2] - v1[2]*v2[1];cross[1] = v1[2]*v2[0] - v1[0]*v2[2];cross[2] = v1[0]*v2[1] - v1[1]*v2[0];} -#define VectorNormalize(v) {float ilength;if (ilength = sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2])) {ilength = 1/ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;}} -#define VectorNormalize2(v,dest) {float ilength;if (ilength = sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2])) {ilength = 1/ilength;dest[0] = v[0] * ilength;dest[1] = v[1] * ilength;dest[2] = v[2] * ilength;}} +#ifndef min +#define min(A,B) ((A) < (B) ? (A) : (B)) +#define max(A,B) ((A) > (B) ? (A) : (B)) +#endif +#define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN)) + +#define invpow(base,number) (log(number) / log(base)) + +#define DEG2RAD(a) ((a) * ((float) M_PI / 180.0f)) +#define RAD2DEG(a) ((a) * (180.0f / (float) M_PI)) +#define ANGLEMOD(a) (((int) ((a) * (65536.0f / 360.0f)) & 65535) * (360.0f / 65536.0f)) + +#define VectorNegate(a,b) ((b)[0]=-((a)[0]),(b)[1]=-((a)[1]),(b)[2]=-((a)[2])) +#define VectorSet(a,b,c,d) ((a)[0]=(b),(a)[1]=(c),(a)[2]=(d)) +#define VectorClear(a) ((a)[0]=(a)[1]=(a)[2]=0) +#define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2]) +#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2]) +#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2]) +#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2]) +#define VectorMultiply(a,b,c) ((c)[0]=(a)[0]*(b)[0],(c)[1]=(a)[1]*(b)[1],(c)[2]=(a)[2]*(b)[2]) +#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0]) +#define VectorNormalize(v) {float ilength = (float) sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} +#define VectorNormalize2(v,dest) {float ilength = (float) sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;dest[0] = v[0] * ilength;dest[1] = v[1] * ilength;dest[2] = v[2] * ilength;} +#define VectorNormalizeDouble(v) {double ilength = sqrt(DotProduct(v,v));if (ilength) ilength = 1.0 / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} +#define VectorDistance2(a, b) (((a)[0] - (b)[0]) * ((a)[0] - (b)[0]) + ((a)[1] - (b)[1]) * ((a)[1] - (b)[1]) + ((a)[2] - (b)[2]) * ((a)[2] - (b)[2])) +#define VectorDistance(a, b) (sqrt(VectorDistance2(a,b))) +#define VectorLength(a) sqrt(DotProduct(a, a)) +#define VectorScale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale),(out)[2] = (in)[2] * (scale)) +#define VectorCompare(a,b) (((a)[0]==(b)[0])&&((a)[1]==(b)[1])&&((a)[2]==(b)[2])) +#define VectorMA(a, scale, b, c) ((c)[0] = (a)[0] + (scale) * (b)[0],(c)[1] = (a)[1] + (scale) * (b)[1],(c)[2] = (a)[2] + (scale) * (b)[2]) +#define VectorM(scale1, b1, c) ((c)[0] = (scale1) * (b1)[0],(c)[1] = (scale1) * (b1)[1],(c)[2] = (scale1) * (b1)[2]) +#define VectorMAM(scale1, b1, scale2, b2, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2]) +#define VectorMAMAM(scale1, b1, scale2, b2, scale3, b3, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2]) +#define VectorMAMAMAM(scale1, b1, scale2, b2, scale3, b3, scale4, b4, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0] + (scale4) * (b4)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1] + (scale4) * (b4)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2] + (scale4) * (b4)[2]) +#define VectorNormalizeFast(_v)\ +{\ + float _y, _number;\ + _number = DotProduct(_v, _v);\ + if (_number != 0.0)\ + {\ + *((long *)&_y) = 0x5f3759df - ((* (long *) &_number) >> 1);\ + _y = _y * (1.5f - (_number * 0.5f * _y * _y));\ + VectorScale(_v, _y, _v);\ + }\ +} +#define VectorRandom(v) do{(v)[0] = lhrandom(-1, 1);(v)[1] = lhrandom(-1, 1);(v)[2] = lhrandom(-1, 1);}while(DotProduct(v, v) > 1) +#define VectorBlend(b1, b2, blend, c) do{float iblend = 1 - (blend);VectorMAM(iblend, b1, blend, b2, c);}while(0) +#define BoxesOverlap(a,b,c,d) ((a)[0] <= (d)[0] && (b)[0] >= (c)[0] && (a)[1] <= (d)[1] && (b)[1] >= (c)[1] && (a)[2] <= (d)[2] && (b)[2] >= (c)[2]) + +// fast PointInfrontOfTriangle +// subtracts v1 from v0 and v2, combined into a crossproduct, combined with a +// dotproduct of the light location relative to the first point of the +// triangle (any point works, since any triangle is obviously flat), and +// finally a comparison to determine if the light is infront of the triangle +// (the goal of this statement) we do not need to normalize the surface +// normal because both sides of the comparison use it, therefore they are +// both multiplied the same amount... furthermore the subtract can be done +// on the vectors, saving a little bit of math in the dotproducts +#define PointInfrontOfTriangle(p,a,b,c) (((p)[0] - (a)[0]) * (((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1])) + ((p)[1] - (a)[1]) * (((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2])) + ((p)[2] - (a)[2]) * (((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0])) > 0) +#if 0 +// readable version, kept only for explanatory reasons +int PointInfrontOfTriangle(const float *p, const float *a, const float *b, const float *c) +{ + float dir0[3], dir1[3], normal[3]; + + // calculate two mostly perpendicular edge directions + VectorSubtract(a, b, dir0); + VectorSubtract(c, b, dir1); + + // we have two edge directions, we can calculate a third vector from + // them, which is the direction of the surface normal (it's magnitude + // is not 1 however) + CrossProduct(dir0, dir1, normal); + + // compare distance of light along normal, with distance of any point + // of the triangle along the same normal (the triangle is planar, + // I.E. flat, so all points give the same answer) + return DotProduct(p, normal) > DotProduct(a, normal); +} +#endif -void VectorMA (vec3_t veca, float scale, vec3_t vecb, vec3_t vecc); +/* +// LordHavoc: quaternion math, untested, don't know if these are correct, +// need to add conversion to/from matrices +// LordHavoc: later note: the matrix faq is useful: http://skal.planet-d.net/demo/matrixfaq.htm +// LordHavoc: these are probably very wrong and I'm not sure I care, not used by anything + +// returns length of quaternion +#define qlen(a) ((float) sqrt((a)[0]*(a)[0]+(a)[1]*(a)[1]+(a)[2]*(a)[2]+(a)[3]*(a)[3])) +// returns squared length of quaternion +#define qlen2(a) ((a)[0]*(a)[0]+(a)[1]*(a)[1]+(a)[2]*(a)[2]+(a)[3]*(a)[3]) +// makes a quaternion from x, y, z, and a rotation angle (in degrees) +#define QuatMake(x,y,z,r,c)\ +{\ +if (r == 0)\ +{\ +(c)[0]=(float) ((x) * (1.0f / 0.0f));\ +(c)[1]=(float) ((y) * (1.0f / 0.0f));\ +(c)[2]=(float) ((z) * (1.0f / 0.0f));\ +(c)[3]=(float) 1.0f;\ +}\ +else\ +{\ +float r2 = (r) * 0.5 * (M_PI / 180);\ +float r2is = 1.0f / sin(r2);\ +(c)[0]=(float) ((x)/r2is);\ +(c)[1]=(float) ((y)/r2is);\ +(c)[2]=(float) ((z)/r2is);\ +(c)[3]=(float) (cos(r2));\ +}\ +} +// makes a quaternion from a vector and a rotation angle (in degrees) +#define QuatFromVec(a,r,c) QuatMake((a)[0],(a)[1],(a)[2],(r)) +// copies a quaternion +#define QuatCopy(a,c) {(c)[0]=(a)[0];(c)[1]=(a)[1];(c)[2]=(a)[2];(c)[3]=(a)[3];} +#define QuatSubtract(a,b,c) {(c)[0]=(a)[0]-(b)[0];(c)[1]=(a)[1]-(b)[1];(c)[2]=(a)[2]-(b)[2];(c)[3]=(a)[3]-(b)[3];} +#define QuatAdd(a,b,c) {(c)[0]=(a)[0]+(b)[0];(c)[1]=(a)[1]+(b)[1];(c)[2]=(a)[2]+(b)[2];(c)[3]=(a)[3]+(b)[3];} +#define QuatScale(a,b,c) {(c)[0]=(a)[0]*b;(c)[1]=(a)[1]*b;(c)[2]=(a)[2]*b;(c)[3]=(a)[3]*b;} +// FIXME: this is wrong, do some more research on quaternions +//#define QuatMultiply(a,b,c) {(c)[0]=(a)[0]*(b)[0];(c)[1]=(a)[1]*(b)[1];(c)[2]=(a)[2]*(b)[2];(c)[3]=(a)[3]*(b)[3];} +// FIXME: this is wrong, do some more research on quaternions +//#define QuatMultiplyAdd(a,b,d,c) {(c)[0]=(a)[0]*(b)[0]+d[0];(c)[1]=(a)[1]*(b)[1]+d[1];(c)[2]=(a)[2]*(b)[2]+d[2];(c)[3]=(a)[3]*(b)[3]+d[3];} +#define qdist(a,b) ((float) sqrt(((b)[0]-(a)[0])*((b)[0]-(a)[0])+((b)[1]-(a)[1])*((b)[1]-(a)[1])+((b)[2]-(a)[2])*((b)[2]-(a)[2])+((b)[3]-(a)[3])*((b)[3]-(a)[3]))) +#define qdist2(a,b) (((b)[0]-(a)[0])*((b)[0]-(a)[0])+((b)[1]-(a)[1])*((b)[1]-(a)[1])+((b)[2]-(a)[2])*((b)[2]-(a)[2])+((b)[3]-(a)[3])*((b)[3]-(a)[3])) +*/ -vec_t _DotProduct (vec3_t v1, vec3_t v2); -void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out); -void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out); -void _VectorCopy (vec3_t in, vec3_t out); +#define VectorCopy4(a,b) {(b)[0]=(a)[0];(b)[1]=(a)[1];(b)[2]=(a)[2];(b)[3]=(a)[3];} -int VectorCompare (vec3_t v1, vec3_t v2); vec_t Length (vec3_t v); -//void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross); float VectorNormalizeLength (vec3_t v); // returns vector length float VectorNormalizeLength2 (vec3_t v, vec3_t dest); // returns vector length -void VectorInverse (vec3_t v); -void VectorScale (vec3_t in, vec_t scale, vec3_t out); -int Q_log2(int val); - -void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]); -void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]); - -void FloorDivMod (double numer, double denom, int *quotient, - int *rem); -fixed16_t Invert24To16(fixed16_t val); -int GreatestCommonDivisor (int i1, int i2); - -void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up); -//int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct mplane_s *plane); -float anglemod(float a); - - -void BoxOnPlaneSideClassify(struct mplane_s *p); - -#define BOX_ON_PLANE_SIDE(emins, emaxs, p) \ - (((p)->type < 3)? \ - ( \ - ((p)->dist <= (emins)[(p)->type])? \ - 1 \ - : \ - ( \ - ((p)->dist >= (emaxs)[(p)->type])?\ - 2 \ - : \ - 3 \ - ) \ - ) \ - : \ - (p)->BoxOnPlaneSideFunc( (emins), (emaxs), (p))) - -// BoxOnPlaneSide( (emins), (emaxs), (p))) - -#define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) -#define PlaneDiff(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] - (plane)->dist : DotProduct((point), (plane)->normal) - (plane)->dist) \ No newline at end of file + +#define NUMVERTEXNORMALS 162 +extern float m_bytenormals[NUMVERTEXNORMALS][3]; + +qbyte NormalToByte(const vec3_t n); +void ByteToNormal(qbyte num, vec3_t n); + +void R_ConcatRotations (const float in1[3*3], const float in2[3*3], float out[3*3]); +void R_ConcatTransforms (const float in1[3*4], const float in2[3*4], float out[3*4]); + +void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up); +// LordHavoc: proper matrix version of AngleVectors +void AngleVectorsFLU (const vec3_t angles, vec3_t forward, vec3_t left, vec3_t up); +// LordHavoc: builds a [3][4] matrix +void AngleMatrix (const vec3_t angles, const vec3_t translate, vec_t matrix[][4]); + +// LordHavoc: like AngleVectors, but taking a forward vector instead of angles, useful! +void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up); +void VectorVectorsDouble(const double *forward, double *right, double *up); + +void PlaneClassify(struct mplane_s *p); +int BoxOnPlaneSide (const vec3_t emins, const vec3_t emaxs, const struct mplane_s *p); + +#define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) +#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist) + +// LordHavoc: minimal plane structure +typedef struct +{ + float normal[3], dist; +} +tinyplane_t; + +typedef struct +{ + double normal[3], dist; +} +tinydoubleplane_t; + +void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees); + +float RadiusFromBounds (const vec3_t mins, const vec3_t maxs); +float RadiusFromBoundsAndOrigin (const vec3_t mins, const vec3_t maxs, const vec3_t origin); + +// print a matrix to the console +struct matrix4x4_s; +void Matrix4x4_Print(const struct matrix4x4_s *in); +int Math_atov(const char *s, vec3_t out); + +#endif +