now using all-new Q3 patch tesselation code, matching Quake3 pretty well
authorhavoc <havoc@d7cf8633-e32d-0410-b094-e92efae38249>
Sun, 17 Oct 2004 11:40:40 +0000 (11:40 +0000)
committerhavoc <havoc@d7cf8633-e32d-0410-b094-e92efae38249>
Sun, 17 Oct 2004 11:40:40 +0000 (11:40 +0000)
git-svn-id: svn://svn.icculus.org/twilight/trunk/darkplaces@4660 d7cf8633-e32d-0410-b094-e92efae38249

curves.c
curves.h
model_brush.c

index 3fdb26c..66b7273 100644 (file)
--- a/curves.c
+++ b/curves.c
 
-// this code written by Forest Hale, on 2003-08-23, and placed into public domain
-// this code deals with quadratic splines (minimum of 3 points), the same kind used in Quake3 maps.
-
-// LordHavoc's rant on misuse of the name 'bezier': many people seem to think that bezier is a generic term for splines, but it is not, it is a term for a specific type of bspline (4 control points, cubic bspline), bsplines are the generalization of the bezier spline to support dimensions other than just cubic.
-// this implements Quadratic BSpline surfaces
-
-#include <math.h>
-#include "curves.h"
-#include "zone.h"
-
-#if 0
-void QuadraticBSplineSubdivideFloat(int inpoints, int components, const float *in, int instride, float *out, int outstride)
+/*
+this code written by Forest Hale, on 2004-10-17, and placed into public domain
+this implements Quadratic BSpline surfaces as seen in Quake3 by id Software
+
+a small rant on misuse of the name 'bezier': many people seem to think that
+bezier is a generic term for splines, but it is not, it is a term for a
+specific type of bspline (4 control points, cubic bspline), bsplines are the
+generalization of the bezier spline to support dimensions other than cubic.
+
+example equations for 1-5 control point bsplines being sampled as t=0...1
+1: flat (0th dimension)
+o = a
+2: linear (1st dimension)
+o = a * (1 - t) + b * t
+3: quadratic bspline (2nd dimension)
+o = a * (1 - t) * (1 - t) + 2 * b * (1 - t) * t + c * t * t
+4: cubic (bezier) bspline (3rd dimension)
+o = a * (1 - t) * (1 - t) * (1 - t) + 3 * b * (1 - t) * (1 - t) * t + 3 * c * (1 - t) * t * t + d * t * t * t
+5: quartic bspline (4th dimension)
+o = a * (1 - t) * (1 - t) * (1 - t) * (1 - t) + 4 * b * (1 - t) * (1 - t) * (1 - t) * t + 6 * c * (1 - t) * (1 - t) * t * t + 4 * d * (1 - t) * t * t * t + e * t * t * t * t
+
+arbitrary dimension bspline
+double factorial(int n)
 {
-       int s;
-       // the input (control points) is read as a stream of points, and buffered
-       // by the cpprev, cpcurr, and cpnext variables (to allow subdivision in
-       // overlapping memory buffers, even subdivision in-place with pre-spaced
-       // control points in the buffer)
-       // the output (resulting curve) is written as a stream of points
-       // this subdivision is meant to be repeated until the desired flatness
-       // level is reached
-       if (components == 1 && instride == (int)sizeof(float) && outstride == instride)
-       {
-               // simple case, single component and no special stride
-               float cpprev0 = 0, cpcurr0 = 0, cpnext0;
-               cpnext0 = *in++;
-               for (s = 0;s < inpoints - 1;s++)
-               {
-                       cpprev0 = cpcurr0;
-                       cpcurr0 = cpnext0;
-                       if (s < inpoints - 1)
-                               cpnext0 = *in++;
-                       if (s > 0)
-                       {
-                               // 50% flattened control point
-                               // cp1 = average(cp1, average(cp0, cp2));
-                               *out++ = (cpcurr0 + (cpprev0 + cpnext0) * 0.5f) * 0.5f;
-                       }
-                       else
-                       {
-                               // copy the control point directly
-                               *out++ = cpcurr0;
-                       }
-                       // midpoint
-                       // mid = average(cp0, cp1);
-                       *out++ = (cpcurr0 + cpnext0) * 0.5f;
-               }
-               // copy the final control point
-               *out++ = cpnext0;
-       }
-       else
-       {
-               // multiple components or stride is used (complex case)
-               int c;
-               float cpprev[4], cpcurr[4], cpnext[4];
-               // check if there are too many components for the buffers
-               if (components > 1)
-               {
-                       // more components can be handled, but slowly, by calling self multiple times...
-                       for (c = 0;c < components;c++, in++, out++)
-                               QuadraticBSplineSubdivideFloat(inpoints, 1, in, instride, out, outstride);
-                       return;
-               }
-               for (c = 0;c < components;c++)
-                       cpnext[c] = in[c];
-               (unsigned char *)in += instride;
-               for (s = 0;s < inpoints - 1;s++)
-               {
-                       for (c = 0;c < components;c++)
-                               cpprev[c] = cpcurr[c];
-                       for (c = 0;c < components;c++)
-                               cpcurr[c] = cpnext[c];
-                       for (c = 0;c < components;c++)
-                               cpnext[c] = in[c];
-                       (unsigned char *)in += instride;
-                       // the end points are copied as-is
-                       if (s > 0)
-                       {
-                               // 50% flattened control point
-                               // cp1 = average(cp1, average(cp0, cp2));
-                               for (c = 0;c < components;c++)
-                                       out[c] = (cpcurr[c] + (cpprev[c] + cpnext[c]) * 0.5f) * 0.5f;
-                       }
-                       else
-                       {
-                               // copy the control point directly
-                               for (c = 0;c < components;c++)
-                                       out[c] = cpcurr[c];
-                       }
-                       (unsigned char *)out += outstride;
-                       // midpoint
-                       // mid = average(cp0, cp1);
-                       for (c = 0;c < components;c++)
-                               out[c] = (cpcurr[c] + cpnext[c]) * 0.5f;
-                       (unsigned char *)out += outstride;
-               }
-               // copy the final control point
-               for (c = 0;c < components;c++)
-                       out[c] = cpnext[c];
-               //(unsigned char *)out += outstride;
-       }
+       int i;
+       double f;
+       f = 1;
+       for (i = 1;i < n;i++)
+               f = f * i;
+       return f;
 }
-
-// note: out must have enough room!
-// (see finalwidth/finalheight calcs below)
-void QuadraticBSplinePatchSubdivideFloatBuffer(int cpwidth, int cpheight, int xlevel, int ylevel, int components, const float *in, float *out)
+double bsplinesample(int dimensions, double t, double *param)
 {
-       int finalwidth, finalheight, xstep, ystep, x, y, c;
-       float *o;
-
-       // error out on various bogus conditions
-       if (xlevel < 0 || ylevel < 0 || xlevel > 16 || ylevel > 16 || cpwidth < 3 || cpheight < 3)
-               return;
-
-       xstep = 1 << xlevel;
-       ystep = 1 << ylevel;
-       finalwidth = (cpwidth - 1) * xstep + 1;
-       finalheight = (cpheight - 1) * ystep + 1;
-
-       for (y = 0;y < finalheight;y++)
-               for (x = 0;x < finalwidth;x++)
-                       for (c = 0, o = out + (y * finalwidth + x) * components;c < components;c++)
-                               o[c] = 0;
-
-       if (xlevel == 1 && ylevel == 0)
-       {
-               for (y = 0;y < finalheight;y++)
-                       QuadraticBSplineSubdivideFloat(cpwidth, components, in + y * cpwidth * components, sizeof(float) * components, out + y * finalwidth * components, sizeof(float) * components);
-               return;
-       }
-       if (xlevel == 0 && ylevel == 1)
-       {
-               for (x = 0;x < finalwidth;x++)
-                       QuadraticBSplineSubdivideFloat(cpheight, components, in + x * components, sizeof(float) * cpwidth * components, out + x * components, sizeof(float) * finalwidth * components);
-               return;
-       }
+       double o = 0;
+       for (i = 0;i < dimensions + 1;i++)
+               o += param[i] * factorial(dimensions)/(factorial(i)*factorial(dimensions-i)) * pow(t, i) * pow(1 - t, dimensions - i);
+}
+*/
 
-       // copy control points into correct positions in destination buffer
-       for (y = 0;y < finalheight;y += ystep)
-               for (x = 0;x < finalwidth;x += xstep)
-                       for (c = 0, o = out + (y * finalwidth + x) * components;c < components;c++)
-                               o[c] = *in++;
+#include <math.h>
+#include "curves.h"
 
-       // subdivide in place in the destination buffer
-       while (xstep > 1 || ystep > 1)
-       {
-               if (xstep > 1)
-               {
-                       xstep >>= 1;
-                       for (y = 0;y < finalheight;y += ystep)
-                               QuadraticBSplineSubdivideFloat(cpwidth, components, out + y * finalwidth * components, sizeof(float) * xstep * 2 * components, out + y * finalwidth * components, sizeof(float) * xstep * components);
-                       cpwidth = (cpwidth - 1) * 2 + 1;
-               }
-               if (ystep > 1)
-               {
-                       ystep >>= 1;
-                       for (x = 0;x < finalwidth;x += xstep)
-                               QuadraticBSplineSubdivideFloat(cpheight, components, out + x * components, sizeof(float) * ystep * 2 * finalwidth * components, out + x * components, sizeof(float) * ystep * finalwidth * components);
-                       cpheight = (cpheight - 1) * 2 + 1;
-               }
-       }
-}
-#elif 1
-void QuadraticBSplinePatchSubdivideFloatBuffer(int cpwidth, int cpheight, int xlevel, int ylevel, int components, const float *in, float *out)
+// usage:
+// to expand a 5x5 patch to 21x21 vertices (4x4 tesselation), one might use this call:
+// Q3PatchSubdivideFloat(3, sizeof(float[3]), outvertices, 5, 5, sizeof(float[3]), patchvertices, 4, 4);
+void Q3PatchTesselateFloat(int numcomponents, int outputstride, float *outputvertices, int patchwidth, int patchheight, int inputstride, float *patchvertices, int tesselationwidth, int tesselationheight)
 {
-       int c, x, y, outwidth, outheight, halfstep, xstep, ystep;
-       float prev, curr, next;
-       xstep = 1 << xlevel;
-       ystep = 1 << ylevel;
-       outwidth = ((cpwidth - 1) * xstep) + 1;
-       outheight = ((cpheight - 1) * ystep) + 1;
-       for (y = 0;y < cpheight;y++)
-               for (x = 0;x < cpwidth;x++)
-                       for (c = 0;c < components;c++)
-                               out[(y * ystep * outwidth + x * xstep) * components + c] = in[(y * cpwidth + x) * components + c];
-       while (xstep > 1 || ystep > 1)
+       int k, l, x, y, component, outputwidth = (patchwidth-1)*tesselationwidth+1;
+       float px, py, *v0, *v1, a, b, c, *cp[3][3], temp[3][64];
+       // iterate over the individual 3x3 quadratic spline surfaces one at a time
+       // expanding them to fill the output array (with some overlap to ensure
+       // the edges are filled)
+       for (k = 0;k < patchheight-1;k += 2)
        {
-               if (xstep >= ystep)
+               for (l = 0;l < patchwidth-1;l += 2)
                {
-                       // subdivide on X
-                       halfstep = xstep >> 1;
-                       for (y = 0;y < outheight;y += ystep)
+                       // set up control point pointers for quicker lookup later
+                       for (y = 0;y < 3;y++)
+                               for (x = 0;x < 3;x++)
+                                       cp[y][x] = (float *)((unsigned char *)patchvertices + ((k+y)*patchwidth+(l+x)) * inputstride);
+                       // for each row...
+                       for (y = 0;y <= tesselationheight*2;y++)
                        {
-                               for (c = 0;c < components;c++)
+                               // calculate control points for this row by collapsing the 3
+                               // rows of control points to one row using py
+                               py = (float)y / (float)(tesselationheight*2);
+                               // calculate quadratic spline weights for py
+                               a = ((1.0f - py) * (1.0f - py));
+                               b = ((1.0f - py) * (2.0f * py));
+                               c = ((       py) * (       py));
+                               for (component = 0;component < numcomponents;component++)
                                {
-                                       x = xstep;
-                                       // fetch first two control points 
-                                       prev = out[(y * outwidth + (x - xstep)) * components + c];
-                                       curr = out[(y * outwidth + x) * components + c];
-                                       // create first midpoint
-                                       out[(y * outwidth + (x - halfstep)) * components + c] = (curr + prev) * 0.5f;
-                                       for (;x < outwidth - xstep;x += xstep, prev = curr, curr = next)
-                                       {
-                                               // fetch next control point
-                                               next = out[(y * outwidth + (x + xstep)) * components + c];
-                                               // flatten central control point 
-                                               out[(y * outwidth + x) * components + c] = (curr + (prev + next) * 0.5f) * 0.5f;
-                                               // create following midpoint
-                                               out[(y * outwidth + (x + halfstep)) * components + c] = (curr + next) * 0.5f;
-                                       }
+                                       temp[0][component] = cp[0][0][component] * a + cp[1][0][component] * b + cp[2][0][component] * c;
+                                       temp[1][component] = cp[0][1][component] * a + cp[1][1][component] * b + cp[2][1][component] * c;
+                                       temp[2][component] = cp[0][2][component] * a + cp[1][2][component] * b + cp[2][2][component] * c;
                                }
-                       }
-                       xstep >>= 1;
-               }
-               else
-               {
-                       // subdivide on Y
-                       halfstep = ystep >> 1;
-                       for (x = 0;x < outwidth;x += xstep)
-                       {
-                               for (c = 0;c < components;c++)
+                               // fetch a pointer to the beginning of the output vertex row
+                               v = (float *)((unsigned char *)outputvertices + ((k * tesselationheight + y) * outputwidth + l * tesselationwidth) * outputstride);
+                               // for each column of the row...
+                               for (x = 0;x <= (tesselationwidth*2);x++)
                                {
-                                       y = ystep;
-                                       // fetch first two control points 
-                                       prev = out[((y - ystep) * outwidth + x) * components + c];
-                                       curr = out[(y * outwidth + x) * components + c];
-                                       // create first midpoint
-                                       out[((y - halfstep) * outwidth + x) * components + c] = (curr + prev) * 0.5f;
-                                       for (;y < outheight - ystep;y += ystep, prev = curr, curr = next)
-                                       {
-                                               // fetch next control point
-                                               next = out[((y + ystep) * outwidth + x) * components + c];
-                                               // flatten central control point 
-                                               out[(y * outwidth + x) * components + c] = (curr + (prev + next) * 0.5f) * 0.5f;
-                                               // create following midpoint
-                                               out[((y + halfstep) * outwidth + x) * components + c] = (curr + next) * 0.5f;
-                                       }
+                                       // calculate point based on the row control points
+                                       px = (float)x / (float)(tesselationwidth*2);
+                                       // calculate quadratic spline weights for px
+                                       // (could be precalculated)
+                                       a = ((1.0f - px) * (1.0f - px));
+                                       b = ((1.0f - px) * (2.0f * px));
+                                       c = ((       px) * (       px));
+                                       for (component = 0;component < numcomponents;component++)
+                                               v[component] = temp[0][component] * a + temp[1][component] * b + temp[2][component] * c;
+                                       // advance to next output vertex using outputstride
+                                       // (the next vertex may not be directly following this
+                                       // one, as this may be part of a larger structure)
+                                       v = (float *)((unsigned char *)v + outputstride);
                                }
                        }
-                       ystep >>= 1;
                }
        }
-       // flatten control points on X
-       for (y = 0;y < outheight;y += ystep)
-       {
-               for (c = 0;c < components;c++)
-               {
-                       x = xstep;
-                       // fetch first two control points 
-                       prev = out[(y * outwidth + (x - xstep)) * components + c];
-                       curr = out[(y * outwidth + x) * components + c];
-                       for (;x < outwidth - xstep;x += xstep, prev = curr, curr = next)
-                       {
-                               // fetch next control point 
-                               next = out[(y * outwidth + (x + xstep)) * components + c];
-                               // flatten central control point 
-                               out[(y * outwidth + x) * components + c] = (curr + (prev + next) * 0.5f) * 0.5f;
-                       }
-               }
-       }
-       // flatten control points on Y
-       for (x = 0;x < outwidth;x += xstep)
-       {
-               for (c = 0;c < components;c++)
-               {
-                       y = ystep;
-                       // fetch first two control points 
-                       prev = out[((y - ystep) * outwidth + x) * components + c];
-                       curr = out[(y * outwidth + x) * components + c];
-                       for (;y < outheight - ystep;y += ystep, prev = curr, curr = next)
-                       {
-                               // fetch next control point 
-                               next = out[((y + ystep) * outwidth + x) * components + c];
-                               // flatten central control point 
-                               out[(y * outwidth + x) * components + c] = (curr + (prev + next) * 0.5f) * 0.5f;
-                       }
-               }
-       }
-
-       /*
-       for (y = ystep;y < outheight - ystep;y += ystep)
-       {
-               for (c = 0;c < components;c++)
-               {
-                       for (x = xstep, outp = out + (y * outwidth + x) * components + c, prev = outp[-xstep * components], curr = outp[0], next = outp[xstep * components];x < outwidth;x += xstep, outp += ystep * outwidth * components, prev = curr, curr = next, next = outp[xstep * components])
-                       {
-                               // midpoint
-                               outp[-halfstep * components] = (prev + curr) * 0.5f;
-                               // flatten control point
-                               outp[0] = (curr + (prev + next) * 0.5f) * 0.5f;
-                               // next midpoint (only needed for end segment)
-                               outp[halfstep * components] = (next + curr) * 0.5f;
-                       }
-               }
-       }
-       */
-}
-#else
-// unfinished code
-void QuadraticBSplinePatchSubdivideFloatBuffer(int cpwidth, int cpheight, int xlevel, int ylevel, int components, const float *in, float *out)
-{
-       int outwidth, outheight;
-       outwidth = ((cpwidth - 1) << xlevel) + 1;
-       outheight = ((cpheight - 1) << ylevel) + 1;
-       for (y = 0;y < cpheight;y++)
+#if 0
+       // enable this if you want results printed out
+       printf("vertices[%i][%i] =\n{\n", (patchheight-1)*tesselationheight+1, (patchwidth-1)*tesselationwidth+1);
+       for (y = 0;y < (patchheight-1)*tesselationheight+1;y++)
        {
-               for (x = 0;x < cpwidth;x++)
+               for (x = 0;x < (patchwidth-1)*tesselationwidth+1;x++)
                {
-                       for (c = 0;c < components;c++)
-                       {
-                               inp = in + (y * cpwidth + x) * components + c;
-                               outp = out + ((y<<ylevel) * outwidth + (x<<xlevel)) * components + c;
-                               for (sy = 0;sy < expandy;sy++)
-                               {
-                                       for (sx = 0;sx < expandx;sx++)
-                                       {
-                                               d = a + (b - a) * 2 * t + (a - b + c - b) * t * t;
-                                       }
-                               }
-                       }
+                       printf("(");
+                       for (component = 0;component < numcomponents;component++)
+                               printf("%f ", outputvertices[(y*((patchwidth-1)*tesselationwidth+1)+x)*numcomponents+component]);
+                       printf(") ");
                }
+               printf("\n");
        }
-}
+       printf("}\n");
 #endif
+}
 
-/*
-0.00000 ?.????? ?.????? ?.????? ?.????? ?.????? ?.????? ?.????? 1.00000 ?.????? ?.????? ?.????? ?.????? ?.????? ?.????? ?.????? 0.00000 deviation: 0.5
-0.00000 ?.????? ?.????? ?.????? 0.50000 ?.????? ?.????? ?.????? 0.50000 ?.????? ?.????? ?.????? 0.50000 ?.????? ?.????? ?.????? 0.00000 deviation: 0.125
-0.00000 ?.????? 0.25000 ?.????? 0.37500 ?.????? 0.50000 ?.????? 0.50000 ?.????? 0.50000 ?.????? 0.37500 ?.????? 0.25000 ?.????? 0.00000 deviation: 0.03125
-0.00000 0.12500 0.21875 0.31250 0.37500 0.43750 0.46875 0.50000 0.50000 0.50000 0.46875 0.43750 0.37500 0.31250 0.21875 0.12500 0.00000 deviation: not available
-*/
-
-float QuadraticBSplinePatchLargestDeviationOnX(int cpwidth, int cpheight, int components, const float *in)
+// returns how much tesselation of each segment is needed to remain under tolerance
+int Q3PatchTesselationOnX(int patchwidth, int patchheight, int components, const float *in, float tolerance)
 {
        int c, x, y;
-       const float *cp;
+       const float *patch;
        float deviation, squareddeviation, bestsquareddeviation;
        bestsquareddeviation = 0;
-       for (y = 0;y < cpheight;y++)
+       for (y = 0;y < patchheight;y++)
        {
-               for (x = 1;x < cpwidth-1;x++)
+               for (x = 0;x < patchwidth-1;x += 2)
                {
                        squareddeviation = 0;
-                       for (c = 0, cp = in + ((y * cpwidth) + x) * components;c < components;c++, cp++)
+                       for (c = 0, patch = in + ((y * patchwidth) + x) * components;c < components;c++, patch++)
                        {
-                               deviation = cp[0] * 0.5f - cp[-components] * 0.25f - cp[components] * 0.25f;
+                               deviation = patch[components] * 0.5f - patch[0] * 0.25f - patch[2*components] * 0.25f;
                                squareddeviation += deviation*deviation;
                        }
                        if (bestsquareddeviation < squareddeviation)
                                bestsquareddeviation = squareddeviation;
                }
        }
-       return (float)sqrt(bestsquareddeviation);
+       return (int)floor(log(sqrt(bestsquareddeviation) / tolerance) / log(2)) + 1;
 }
 
-float QuadraticBSplinePatchLargestDeviationOnY(int cpwidth, int cpheight, int components, const float *in)
+// returns how much tesselation of each segment is needed to remain under tolerance
+int Q3PatchTesselationOnY(int patchwidth, int patchheight, int components, const float *in, float tolerance)
 {
        int c, x, y;
-       const float *cp;
+       const float *patch;
        float deviation, squareddeviation, bestsquareddeviation;
        bestsquareddeviation = 0;
-       for (y = 1;y < cpheight-1;y++)
+       for (y = 0;y < patchheight-1;y += 2)
        {
-               for (x = 0;x < cpwidth;x++)
+               for (x = 0;x < patchwidth;x++)
                {
                        squareddeviation = 0;
-                       for (c = 0, cp = in + ((y * cpwidth) + x) * components;c < components;c++, cp++)
+                       for (c = 0, patch = in + ((y * patchwidth) + x) * components;c < components;c++, patch++)
                        {
-                               deviation = cp[0] * 0.5f - cp[-cpwidth * components] * 0.25f - cp[cpwidth * components] * 0.25f;
+                               deviation = patch[patchwidth*components] * 0.5f - patch[0] * 0.25f - patch[2*patchwidth*components] * 0.25f;
                                squareddeviation += deviation*deviation;
                        }
                        if (bestsquareddeviation < squareddeviation)
                                bestsquareddeviation = squareddeviation;
                }
        }
-       return (float)sqrt(bestsquareddeviation);
-}
-
-int QuadraticBSplinePatchSubdivisionLevelForDeviation(float deviation, float level1tolerance, int levellimit)
-{
-       int level;
-       // count the automatic flatten step which reduces deviation by 50%
-       deviation *= 0.5f;
-       // count the levels to subdivide to come under the tolerance
-       for (level = 0;level < levellimit && deviation > level1tolerance;level++)
-               deviation *= 0.25f;
-       return level;
+       return (int)floor(log(sqrt(bestsquareddeviation) / tolerance) / log(2)) + 1;
 }
 
-int QuadraticBSplinePatchSubdivisionLevelOnX(int cpwidth, int cpheight, int components, const float *in, float level1tolerance, int levellimit)
-{
-       return QuadraticBSplinePatchSubdivisionLevelForDeviation(QuadraticBSplinePatchLargestDeviationOnX(cpwidth, cpheight, components, in), level1tolerance, levellimit);
-}
-
-int QuadraticBSplinePatchSubdivisionLevelOnY(int cpwidth, int cpheight, int components, const float *in, float level1tolerance, int levellimit)
-{
-       return QuadraticBSplinePatchSubdivisionLevelForDeviation(QuadraticBSplinePatchLargestDeviationOnY(cpwidth, cpheight, components, in), level1tolerance, levellimit);
-}
-
-/*
-       // 1: flat (0th dimension)
-       o = a
-       // 2: linear (1st dimension)
-       o = a * (1 - t) + b * t
-       // 3: quadratic bspline (2nd dimension)
-       o = a * (1 - t) * (1 - t) + 2 * b * (1 - t) * t + c * t * t
-       // 4: cubic (bezier) bspline (3rd dimension)
-       o = a * (1 - t) * (1 - t) * (1 - t) + 3 * b * (1 - t) * (1 - t) * t + 3 * c * (1 - t) * t * t + d * t * t * t
-       // 5: quartic bspline (4th dimension)
-       o = a * (1 - t) * (1 - t) * (1 - t) * (1 - t) + 4 * b * (1 - t) * (1 - t) * (1 - t) * t + 6 * c * (1 - t) * (1 - t) * t * t + 4 * d * (1 - t) * t * t * t + e * t * t * t * t
-
-       // n: arbitrary dimension bspline
-double factorial(int n)
-{
-       int i;
-       double f;
-       f = 1;
-       for (i = 1;i < n;i++)
-               f = f * i;
-       return f;
-}
-double bsplinesample(int dimensions, double t, double *param)
+// calculates elements for a grid of vertices
+// (such as those produced by Q3PatchTesselate)
+// (note: width and height are the actual vertex size, this produces
+//  (width-1)*(height-1)*2 triangles, 3 elements each)
+void Q3PatchTriangleElements(int *elements, int width, int height)
 {
-       double o = 0;
-       for (i = 0;i < dimensions + 1;i++)
-               o += param[i] * factorial(dimensions)/(factorial(i)*factorial(dimensions-i)) * pow(t, i) * pow(1 - t, dimensions - i);
+       int x, y, row0, row1;
+       for (y = 0;y < height - 1;y++)
+       {
+               row0 = (y + 0) * width;
+               row1 = (y + 1) * width;
+               for (x = 0;x < width - 1;x++)
+               {
+                       *elements++ = row0;
+                       *elements++ = row1;
+                       *elements++ = row0 + 1;
+                       *elements++ = row1;
+                       *elements++ = row1 + 1;
+                       *elements++ = row0 + 1;
+                       row0++;
+                       row1++;
+               }
+       }
 }
-*/
 
index 8924c4a..48d0121 100644 (file)
--- a/curves.h
+++ b/curves.h
@@ -2,13 +2,19 @@
 #ifndef CURVES_H
 #define CURVES_H
 
-void QuadraticBSplineSubdivideFloat(int inpoints, int components, const float *in, int instride, float *out, int outstride);
-void QuadraticBSplinePatchSubdivideFloatBuffer(int cpwidth, int cpheight, int xlevel, int ylevel, int components, const float *in, float *out);
-float QuadraticBSplinePatchLargestDeviationOnX(int cpwidth, int cpheight, int components, const float *in);
-float QuadraticBSplinePatchLargestDeviationOnY(int cpwidth, int cpheight, int components, const float *in);
-int QuadraticBSplinePatchSubdivisionLevelForDeviation(float deviation, float level1tolerance, int levellimit);
-int QuadraticBSplinePatchSubdivisionLevelOnX(int cpwidth, int cpheight, int components, const float *in, float level1tolerance, int levellimit);
-int QuadraticBSplinePatchSubdivisionLevelOnY(int cpwidth, int cpheight, int components, const float *in, float level1tolerance, int levellimit);
+// usage:
+// to expand a 5x5 patch to 21x21 vertices (4x4 tesselation), one might use this call:
+// Q3PatchSubdivideFloat(3, sizeof(float[3]), outvertices, 5, 5, sizeof(float[3]), patchvertices, 4, 4);
+void Q3PatchTesselateFloat(int numcomponents, int outputstride, float *outputvertices, int patchwidth, int patchheight, int inputstride, float *patchvertices, int tesselationwidth, int tesselationheight);
+// returns how much tesselation of each segment is needed to remain under tolerance
+int Q3PatchTesselationOnX(int patchwidth, int patchheight, int components, const float *in, float tolerance);
+// returns how much tesselation of each segment is needed to remain under tolerance
+int Q3PatchTesselationOnY(int patchwidth, int patchheight, int components, const float *in, float tolerance);
+// calculates elements for a grid of vertices
+// (such as those produced by Q3PatchTesselate)
+// (note: width and height are the actual vertex size, this produces
+//  (width-1)*(height-1)*2 triangles, 3 elements each)
+void Q3PatchTriangleElements(int *elements, int width, int height);
 
 #endif
 
index 847abf3..86d65ea 100644 (file)
@@ -35,12 +35,12 @@ cvar_t r_miplightmaps = {CVAR_SAVE, "r_miplightmaps", "0"};
 cvar_t r_lightmaprgba = {0, "r_lightmaprgba", "1"};
 cvar_t r_nosurftextures = {0, "r_nosurftextures", "0"};
 cvar_t r_subdivisions_tolerance = {0, "r_subdivisions_tolerance", "4"};
-cvar_t r_subdivisions_minlevel = {0, "r_subdivisions_minlevel", "0"};
-cvar_t r_subdivisions_maxlevel = {0, "r_subdivisions_maxlevel", "10"};
+cvar_t r_subdivisions_mintess = {0, "r_subdivisions_mintess", "1"};
+cvar_t r_subdivisions_maxtess = {0, "r_subdivisions_maxtess", "1024"};
 cvar_t r_subdivisions_maxvertices = {0, "r_subdivisions_maxvertices", "65536"};
 cvar_t r_subdivisions_collision_tolerance = {0, "r_subdivisions_collision_tolerance", "15"};
-cvar_t r_subdivisions_collision_minlevel = {0, "r_subdivisions_collision_minlevel", "0"};
-cvar_t r_subdivisions_collision_maxlevel = {0, "r_subdivisions_collision_maxlevel", "10"};
+cvar_t r_subdivisions_collision_mintess = {0, "r_subdivisions_collision_mintess", "1"};
+cvar_t r_subdivisions_collision_maxtess = {0, "r_subdivisions_collision_maxtess", "1024"};
 cvar_t r_subdivisions_collision_maxvertices = {0, "r_subdivisions_collision_maxvertices", "4225"};
 cvar_t mod_q3bsp_curves_collisions = {0, "mod_q3bsp_curves_collisions", "1"};
 cvar_t mod_q3bsp_optimizedtraceline = {0, "mod_q3bsp_optimizedtraceline", "1"};
@@ -56,12 +56,12 @@ void Mod_BrushInit(void)
        Cvar_RegisterVariable(&r_lightmaprgba);
        Cvar_RegisterVariable(&r_nosurftextures);
        Cvar_RegisterVariable(&r_subdivisions_tolerance);
-       Cvar_RegisterVariable(&r_subdivisions_minlevel);
-       Cvar_RegisterVariable(&r_subdivisions_maxlevel);
+       Cvar_RegisterVariable(&r_subdivisions_mintess);
+       Cvar_RegisterVariable(&r_subdivisions_maxtess);
        Cvar_RegisterVariable(&r_subdivisions_maxvertices);
        Cvar_RegisterVariable(&r_subdivisions_collision_tolerance);
-       Cvar_RegisterVariable(&r_subdivisions_collision_minlevel);
-       Cvar_RegisterVariable(&r_subdivisions_collision_maxlevel);
+       Cvar_RegisterVariable(&r_subdivisions_collision_mintess);
+       Cvar_RegisterVariable(&r_subdivisions_collision_maxtess);
        Cvar_RegisterVariable(&r_subdivisions_collision_maxvertices);
        Cvar_RegisterVariable(&mod_q3bsp_curves_collisions);
        Cvar_RegisterVariable(&mod_q3bsp_optimizedtraceline);
@@ -3674,7 +3674,6 @@ static void Mod_Q3BSP_LoadTextures(lump_t *l)
                                                                        {
                                                                                if (!strcasecmp(parameter[0], "blendfunc"))
                                                                                {
-                                                                                       Con_Printf("!\n");
                                                                                        if (numparameters == 2 && !strcasecmp(parameter[1], "add"))
                                                                                                flags2 |= Q3TEXTUREFLAG_ADDITIVE;
                                                                                        else if (numparameters == 3 && !strcasecmp(parameter[1], "gl_one") && !strcasecmp(parameter[2], "gl_one"))
@@ -4080,7 +4079,7 @@ static void Mod_Q3BSP_LoadFaces(lump_t *l)
 {
        q3dface_t *in;
        q3msurface_t *out;
-       int i, j, n, count, invalidelements, patchsize[2], finalwidth, finalheight, xlevel, ylevel, row0, row1, x, y, *e, finalvertices, finaltriangles, firstvertex, firstelement, type;
+       int i, j, n, count, invalidelements, patchsize[2], finalwidth, finalheight, xtess, ytess, finalvertices, finaltriangles, firstvertex, firstelement, type, oldnumtriangles, oldnumtriangles2;
        //int *originalelement3i;
        //int *originalneighbor3i;
        float *originalvertex3f;
@@ -4131,7 +4130,8 @@ static void Mod_Q3BSP_LoadFaces(lump_t *l)
                n = LittleLong(in->effectindex);
                if (n < -1 || n >= loadmodel->brushq3.num_effects)
                {
-                       Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid effectindex %i (%i effects)\n", i, out->texture->name, n, loadmodel->brushq3.num_effects);
+                       if (developer.integer >= 2)
+                               Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid effectindex %i (%i effects)\n", i, out->texture->name, n, loadmodel->brushq3.num_effects);
                        n = -1;
                }
                if (n == -1)
@@ -4195,7 +4195,7 @@ static void Mod_Q3BSP_LoadFaces(lump_t *l)
                case Q3FACETYPE_PATCH:
                        patchsize[0] = LittleLong(in->specific.patch.patchsize[0]);
                        patchsize[1] = LittleLong(in->specific.patch.patchsize[1]);
-                       if (patchsize[0] < 1 || patchsize[1] < 1)
+                       if (patchsize[0] < 3 || patchsize[1] < 3 || !(patchsize[0] & 1) || !(patchsize[1] & 1) || patchsize[0] * patchsize[1] >= min(r_subdivisions_maxvertices.integer, r_subdivisions_collision_maxvertices.integer))
                        {
                                Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid patchsize %ix%i\n", i, out->texture->name, patchsize[0], patchsize[1]);
                                out->num_vertices = 0;
@@ -4224,24 +4224,24 @@ static void Mod_Q3BSP_LoadFaces(lump_t *l)
                        //originalneighbor3i = out->data_neighbor3i;
                        */
                        // convert patch to Q3FACETYPE_MESH
-                       xlevel = QuadraticBSplinePatchSubdivisionLevelOnX(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_tolerance.value, 10);
-                       ylevel = QuadraticBSplinePatchSubdivisionLevelOnY(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_tolerance.value, 10);
+                       xtess = Q3PatchTesselationOnX(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_tolerance.value);
+                       ytess = Q3PatchTesselationOnY(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_tolerance.value);
                        // bound to user settings
-                       xlevel = bound(r_subdivisions_minlevel.integer, xlevel, r_subdivisions_maxlevel.integer);
-                       ylevel = bound(r_subdivisions_minlevel.integer, ylevel, r_subdivisions_maxlevel.integer);
+                       xtess = bound(r_subdivisions_mintess.integer, xtess, r_subdivisions_maxtess.integer);
+                       ytess = bound(r_subdivisions_mintess.integer, ytess, r_subdivisions_maxtess.integer);
                        // bound to sanity settings
-                       xlevel = bound(0, xlevel, 10);
-                       ylevel = bound(0, ylevel, 10);
+                       xtess = bound(1, xtess, 1024);
+                       ytess = bound(1, ytess, 1024);
                        // bound to user limit on vertices
-                       while ((xlevel > 0 || ylevel > 0) && (((patchsize[0] - 1) << xlevel) + 1) * (((patchsize[1] - 1) << ylevel) + 1) > min(r_subdivisions_maxvertices.integer, 262144))
+                       while ((xtess > 1 || ytess > 1) && (((patchsize[0] - 1) * xtess) + 1) * (((patchsize[1] - 1) * ytess) + 1) > min(r_subdivisions_maxvertices.integer, 262144))
                        {
-                               if (xlevel > ylevel)
-                                       xlevel--;
+                               if (xtess > ytess)
+                                       xtess--;
                                else
-                                       ylevel--;
+                                       ytess--;
                        }
-                       finalwidth = ((patchsize[0] - 1) << xlevel) + 1;
-                       finalheight = ((patchsize[1] - 1) << ylevel) + 1;
+                       finalwidth = ((patchsize[0] - 1) * xtess) + 1;
+                       finalheight = ((patchsize[1] - 1) * ytess) + 1;
                        finalvertices = finalwidth * finalheight;
                        finaltriangles = (finalwidth - 1) * (finalheight - 1) * 2;
                        out->data_vertex3f = Mem_Alloc(loadmodel->mempool, sizeof(float[20]) * finalvertices);
@@ -4260,30 +4260,12 @@ static void Mod_Q3BSP_LoadFaces(lump_t *l)
                        out->num_triangles = finaltriangles;
                        // generate geometry
                        // (note: normals are skipped because they get recalculated)
-                       QuadraticBSplinePatchSubdivideFloatBuffer(patchsize[0], patchsize[1], xlevel, ylevel, 3, originalvertex3f, out->data_vertex3f);
-                       QuadraticBSplinePatchSubdivideFloatBuffer(patchsize[0], patchsize[1], xlevel, ylevel, 2, originaltexcoordtexture2f, out->data_texcoordtexture2f);
-                       QuadraticBSplinePatchSubdivideFloatBuffer(patchsize[0], patchsize[1], xlevel, ylevel, 2, originaltexcoordlightmap2f, out->data_texcoordlightmap2f);
-                       QuadraticBSplinePatchSubdivideFloatBuffer(patchsize[0], patchsize[1], xlevel, ylevel, 4, originalcolor4f, out->data_color4f);
-                       // generate elements
-                       e = out->data_element3i;
-                       for (y = 0;y < finalheight - 1;y++)
-                       {
-                               row0 = (y + 0) * finalwidth;
-                               row1 = (y + 1) * finalwidth;
-                               for (x = 0;x < finalwidth - 1;x++)
-                               {
-                                       *e++ = row0;
-                                       *e++ = row1;
-                                       *e++ = row0 + 1;
-                                       *e++ = row1;
-                                       *e++ = row1 + 1;
-                                       *e++ = row0 + 1;
-                                       row0++;
-                                       row1++;
-                               }
-                       }
-                       out->num_triangles = Mod_RemoveDegenerateTriangles(out->num_triangles, out->data_element3i, out->data_element3i, out->data_vertex3f);
-                       if (developer.integer)
+                       Q3PatchTesselateFloat(3, sizeof(float[3]), out->data_vertex3f, patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, xtess, ytess);
+                       Q3PatchTesselateFloat(2, sizeof(float[2]), out->data_texcoordtexture2f, patchsize[0], patchsize[1], sizeof(float[2]), originaltexcoordtexture2f, xtess, ytess);
+                       Q3PatchTesselateFloat(2, sizeof(float[2]), out->data_texcoordlightmap2f, patchsize[0], patchsize[1], sizeof(float[2]), originaltexcoordlightmap2f, xtess, ytess);
+                       Q3PatchTesselateFloat(4, sizeof(float[4]), out->data_color4f, patchsize[0], patchsize[1], sizeof(float[4]), originalcolor4f, xtess, ytess);
+                       Q3PatchTriangleElements(out->data_element3i, finalwidth, finalheight);
+                       if (developer.integer >= 2)
                        {
                                if (out->num_triangles < finaltriangles)
                                        Con_Printf("Mod_Q3BSP_LoadFaces: %ix%i curve subdivided to %i vertices / %i triangles, %i degenerate triangles removed (leaving %i)\n", patchsize[0], patchsize[1], out->num_vertices, finaltriangles, finaltriangles - out->num_triangles, out->num_triangles);
@@ -4292,60 +4274,44 @@ static void Mod_Q3BSP_LoadFaces(lump_t *l)
                        }
                        // q3map does not put in collision brushes for curves... ugh
                        // build the lower quality collision geometry
-                       xlevel = QuadraticBSplinePatchSubdivisionLevelOnX(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_collision_tolerance.value, 10);
-                       ylevel = QuadraticBSplinePatchSubdivisionLevelOnY(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_collision_tolerance.value, 10);
+                       xtess = Q3PatchTesselationOnX(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_collision_tolerance.value);
+                       ytess = Q3PatchTesselationOnY(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_collision_tolerance.value);
                        // bound to user settings
-                       xlevel = bound(r_subdivisions_collision_minlevel.integer, xlevel, r_subdivisions_collision_maxlevel.integer);
-                       ylevel = bound(r_subdivisions_collision_minlevel.integer, ylevel, r_subdivisions_collision_maxlevel.integer);
+                       xtess = bound(r_subdivisions_collision_mintess.integer, xtess, r_subdivisions_collision_maxtess.integer);
+                       ytess = bound(r_subdivisions_collision_mintess.integer, ytess, r_subdivisions_collision_maxtess.integer);
                        // bound to sanity settings
-                       xlevel = bound(0, xlevel, 10);
-                       ylevel = bound(0, ylevel, 10);
+                       xtess = bound(1, xtess, 1024);
+                       ytess = bound(1, ytess, 1024);
                        // bound to user limit on vertices
-                       while ((xlevel > 0 || ylevel > 0) && (((patchsize[0] - 1) << xlevel) + 1) * (((patchsize[1] - 1) << ylevel) + 1) > min(r_subdivisions_collision_maxvertices.integer, 262144))
+                       while ((xtess > 1 || ytess > 1) && (((patchsize[0] - 1) * xtess) + 1) * (((patchsize[1] - 1) * ytess) + 1) > min(r_subdivisions_collision_maxvertices.integer, 262144))
                        {
-                               if (xlevel > ylevel)
-                                       xlevel--;
+                               if (xtess > ytess)
+                                       xtess--;
                                else
-                                       ylevel--;
+                                       ytess--;
                        }
-                       finalwidth = ((patchsize[0] - 1) << xlevel) + 1;
-                       finalheight = ((patchsize[1] - 1) << ylevel) + 1;
+                       finalwidth = ((patchsize[0] - 1) * xtess) + 1;
+                       finalheight = ((patchsize[1] - 1) * ytess) + 1;
                        finalvertices = finalwidth * finalheight;
                        finaltriangles = (finalwidth - 1) * (finalheight - 1) * 2;
+
                        out->data_collisionvertex3f = Mem_Alloc(loadmodel->mempool, sizeof(float[3]) * finalvertices);
                        out->data_collisionelement3i = Mem_Alloc(loadmodel->mempool, sizeof(int[3]) * finaltriangles);
                        out->num_collisionvertices = finalvertices;
                        out->num_collisiontriangles = finaltriangles;
-                       QuadraticBSplinePatchSubdivideFloatBuffer(patchsize[0], patchsize[1], xlevel, ylevel, 3, originalvertex3f, out->data_collisionvertex3f);
-                       // generate elements
-                       e = out->data_collisionelement3i;
-                       for (y = 0;y < finalheight - 1;y++)
-                       {
-                               row0 = (y + 0) * finalwidth;
-                               row1 = (y + 1) * finalwidth;
-                               for (x = 0;x < finalwidth - 1;x++)
-                               {
-                                       *e++ = row0;
-                                       *e++ = row1;
-                                       *e++ = row0 + 1;
-                                       *e++ = row1;
-                                       *e++ = row1 + 1;
-                                       *e++ = row0 + 1;
-                                       row0++;
-                                       row1++;
-                               }
-                       }
+                       Q3PatchTesselateFloat(3, sizeof(float[3]), out->data_collisionvertex3f, patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, xtess, ytess);
+                       Q3PatchTriangleElements(out->data_collisionelement3i, finalwidth, finalheight);
+
+                       oldnumtriangles = out->num_triangles;
+                       oldnumtriangles2 = out->num_collisiontriangles;
+                       out->num_triangles = Mod_RemoveDegenerateTriangles(out->num_triangles, out->data_element3i, out->data_element3i, out->data_vertex3f);
                        out->num_collisiontriangles = Mod_RemoveDegenerateTriangles(out->num_collisiontriangles, out->data_collisionelement3i, out->data_collisionelement3i, out->data_collisionvertex3f);
                        if (developer.integer)
-                       {
-                               if (out->num_collisiontriangles < finaltriangles)
-                                       Con_Printf("Mod_Q3BSP_LoadFaces: %ix%i curve subdivided for collisions to %i vertices / %i triangles, %i degenerate triangles removed (leaving %i)\n", patchsize[0], patchsize[1], out->num_collisionvertices, finaltriangles, finaltriangles - out->num_collisiontriangles, out->num_collisiontriangles);
-                               else
-                                       Con_Printf("Mod_Q3BSP_LoadFaces: %ix%i curve subdivided for collisions to %i vertices / %i triangles\n", patchsize[0], patchsize[1], out->num_collisionvertices, out->num_collisiontriangles);
-                       }
+                               Con_Printf("Mod_Q3BSP_LoadFaces: %ix%i curve became %i:%i vertices / %i:%i triangles (%i:%i degenerate)\n", patchsize[0], patchsize[1], out->num_vertices, out->num_collisionvertices, oldnumtriangles, oldnumtriangles2, oldnumtriangles - out->num_triangles, oldnumtriangles2 - out->num_collisiontriangles);
                        break;
                case Q3FACETYPE_FLARE:
-                       Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): Q3FACETYPE_FLARE not supported (yet)\n", i, out->texture->name);
+                       if (developer.integer >= 2)
+                               Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): Q3FACETYPE_FLARE not supported (yet)\n", i, out->texture->name);
                        // don't render it
                        out->num_vertices = 0;
                        out->num_triangles = 0;