]> de.git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Another one
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012, 2013
3  *     Wolfgang Bumiller
4  *     Dale Weiler
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy of
7  * this software and associated documentation files (the "Software"), to deal in
8  * the Software without restriction, including without limitation the rights to
9  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
10  * of the Software, and to permit persons to whom the Software is furnished to do
11  * so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29 #include "parser.h"
30
31 #define ast_instantiate(T, ctx, destroyfn)                          \
32     T* self = (T*)mem_a(sizeof(T));                                 \
33     if (!self) {                                                    \
34         return NULL;                                                \
35     }                                                               \
36     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
37     ( (ast_node*)self )->destroy = (ast_node_delete*)destroyfn
38
39 /*
40  * forward declarations, these need not be in ast.h for obvious
41  * static reasons.
42  */
43 static bool ast_member_codegen(ast_member*, ast_function*, bool lvalue, ir_value**);
44 static void ast_array_index_delete(ast_array_index*);
45 static bool ast_array_index_codegen(ast_array_index*, ast_function*, bool lvalue, ir_value**);
46 static void ast_argpipe_delete(ast_argpipe*);
47 static bool ast_argpipe_codegen(ast_argpipe*, ast_function*, bool lvalue, ir_value**);
48 static void ast_store_delete(ast_store*);
49 static bool ast_store_codegen(ast_store*, ast_function*, bool lvalue, ir_value**);
50 static void ast_ifthen_delete(ast_ifthen*);
51 static bool ast_ifthen_codegen(ast_ifthen*, ast_function*, bool lvalue, ir_value**);
52 static void ast_ternary_delete(ast_ternary*);
53 static bool ast_ternary_codegen(ast_ternary*, ast_function*, bool lvalue, ir_value**);
54 static void ast_loop_delete(ast_loop*);
55 static bool ast_loop_codegen(ast_loop*, ast_function*, bool lvalue, ir_value**);
56 static void ast_breakcont_delete(ast_breakcont*);
57 static bool ast_breakcont_codegen(ast_breakcont*, ast_function*, bool lvalue, ir_value**);
58 static void ast_switch_delete(ast_switch*);
59 static bool ast_switch_codegen(ast_switch*, ast_function*, bool lvalue, ir_value**);
60 static void ast_label_delete(ast_label*);
61 static void ast_label_register_goto(ast_label*, ast_goto*);
62 static bool ast_label_codegen(ast_label*, ast_function*, bool lvalue, ir_value**);
63 static bool ast_goto_codegen(ast_goto*, ast_function*, bool lvalue, ir_value**);
64 static void ast_goto_delete(ast_goto*);
65 static void ast_call_delete(ast_call*);
66 static bool ast_call_codegen(ast_call*, ast_function*, bool lvalue, ir_value**);
67 static bool ast_block_codegen(ast_block*, ast_function*, bool lvalue, ir_value**);
68 static void ast_unary_delete(ast_unary*);
69 static bool ast_unary_codegen(ast_unary*, ast_function*, bool lvalue, ir_value**);
70 static void ast_entfield_delete(ast_entfield*);
71 static bool ast_entfield_codegen(ast_entfield*, ast_function*, bool lvalue, ir_value**);
72 static void ast_return_delete(ast_return*);
73 static bool ast_return_codegen(ast_return*, ast_function*, bool lvalue, ir_value**);
74 static void ast_binstore_delete(ast_binstore*);
75 static bool ast_binstore_codegen(ast_binstore*, ast_function*, bool lvalue, ir_value**);
76 static void ast_binary_delete(ast_binary*);
77 static bool ast_binary_codegen(ast_binary*, ast_function*, bool lvalue, ir_value**);
78
79 /* It must not be possible to get here. */
80 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
81 {
82     (void)self;
83     con_err("ast node missing destroy()\n");
84     exit(EXIT_FAILURE);
85 }
86
87 /* Initialize main ast node aprts */
88 static void ast_node_init(ast_node *self, lex_ctx_t ctx, int nodetype)
89 {
90     self->context = ctx;
91     self->destroy = &_ast_node_destroy;
92     self->keep    = false;
93     self->nodetype = nodetype;
94     self->side_effects = false;
95 }
96
97 /* weight and side effects */
98 static void _ast_propagate_effects(ast_node *self, ast_node *other)
99 {
100     if (ast_side_effects(other))
101         ast_side_effects(self) = true;
102 }
103 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
104
105 /* General expression initialization */
106 static void ast_expression_init(ast_expression *self,
107                                 ast_expression_codegen *codegen)
108 {
109     self->codegen  = codegen;
110     self->vtype    = TYPE_VOID;
111     self->next     = NULL;
112     self->outl     = NULL;
113     self->outr     = NULL;
114     self->params   = NULL;
115     self->count    = 0;
116     self->flags    = 0;
117     self->varparam = NULL;
118 }
119
120 static void ast_expression_delete(ast_expression *self)
121 {
122     size_t i;
123     if (self->next)
124         ast_delete(self->next);
125     for (i = 0; i < vec_size(self->params); ++i) {
126         ast_delete(self->params[i]);
127     }
128     vec_free(self->params);
129     if (self->varparam)
130         ast_delete(self->varparam);
131 }
132
133 static void ast_expression_delete_full(ast_expression *self)
134 {
135     ast_expression_delete(self);
136     mem_d(self);
137 }
138
139 ast_value* ast_value_copy(const ast_value *self)
140 {
141     size_t i;
142     const ast_expression *fromex;
143     ast_expression       *selfex;
144     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
145     if (self->expression.next) {
146         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
147     }
148     fromex   = &self->expression;
149     selfex = &cp->expression;
150     selfex->count    = fromex->count;
151     selfex->flags    = fromex->flags;
152     for (i = 0; i < vec_size(fromex->params); ++i) {
153         ast_value *v = ast_value_copy(fromex->params[i]);
154         vec_push(selfex->params, v);
155     }
156     return cp;
157 }
158
159 void ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
160 {
161     size_t i;
162     const ast_expression *fromex;
163     ast_expression       *selfex;
164     self->vtype = other->vtype;
165     if (other->next) {
166         self->next = (ast_expression*)ast_type_copy(ast_ctx(self), other->next);
167     }
168     fromex = other;
169     selfex = self;
170     selfex->count    = fromex->count;
171     selfex->flags    = fromex->flags;
172     for (i = 0; i < vec_size(fromex->params); ++i) {
173         ast_value *v = ast_value_copy(fromex->params[i]);
174         vec_push(selfex->params, v);
175     }
176 }
177
178 static ast_expression* ast_shallow_type(lex_ctx_t ctx, int vtype)
179 {
180     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
181     ast_expression_init(self, NULL);
182     self->codegen = NULL;
183     self->next    = NULL;
184     self->vtype   = vtype;
185     return self;
186 }
187
188 ast_expression* ast_type_copy(lex_ctx_t ctx, const ast_expression *ex)
189 {
190     size_t i;
191     const ast_expression *fromex;
192     ast_expression       *selfex;
193
194     if (!ex)
195         return NULL;
196     else
197     {
198         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
199         ast_expression_init(self, NULL);
200
201         fromex = ex;
202         selfex = self;
203
204         /* This may never be codegen()d */
205         selfex->codegen = NULL;
206
207         selfex->vtype = fromex->vtype;
208         if (fromex->next)
209             selfex->next = ast_type_copy(ctx, fromex->next);
210         else
211             selfex->next = NULL;
212
213         selfex->count    = fromex->count;
214         selfex->flags    = fromex->flags;
215         for (i = 0; i < vec_size(fromex->params); ++i) {
216             ast_value *v = ast_value_copy(fromex->params[i]);
217             vec_push(selfex->params, v);
218         }
219
220         return self;
221     }
222 }
223
224 bool ast_compare_type(ast_expression *a, ast_expression *b)
225 {
226     if (a->vtype == TYPE_NIL ||
227         b->vtype == TYPE_NIL)
228         return true;
229     if (a->vtype != b->vtype)
230         return false;
231     if (!a->next != !b->next)
232         return false;
233     if (vec_size(a->params) != vec_size(b->params))
234         return false;
235     if ((a->flags & AST_FLAG_TYPE_MASK) !=
236         (b->flags & AST_FLAG_TYPE_MASK) )
237     {
238         return false;
239     }
240     if (vec_size(a->params)) {
241         size_t i;
242         for (i = 0; i < vec_size(a->params); ++i) {
243             if (!ast_compare_type((ast_expression*)a->params[i],
244                                   (ast_expression*)b->params[i]))
245                 return false;
246         }
247     }
248     if (a->next)
249         return ast_compare_type(a->next, b->next);
250     return true;
251 }
252
253 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
254 {
255     const char *typestr;
256     size_t typelen;
257     size_t i;
258
259     if (!e) {
260         if (pos + 6 >= bufsize)
261             goto full;
262         util_strncpy(buf + pos, "(null)", 6);
263         return pos + 6;
264     }
265
266     if (pos + 1 >= bufsize)
267         goto full;
268
269     switch (e->vtype) {
270         case TYPE_VARIANT:
271             util_strncpy(buf + pos, "(variant)", 9);
272             return pos + 9;
273
274         case TYPE_FIELD:
275             buf[pos++] = '.';
276             return ast_type_to_string_impl(e->next, buf, bufsize, pos);
277
278         case TYPE_POINTER:
279             if (pos + 3 >= bufsize)
280                 goto full;
281             buf[pos++] = '*';
282             buf[pos++] = '(';
283             pos = ast_type_to_string_impl(e->next, buf, bufsize, pos);
284             if (pos + 1 >= bufsize)
285                 goto full;
286             buf[pos++] = ')';
287             return pos;
288
289         case TYPE_FUNCTION:
290             pos = ast_type_to_string_impl(e->next, buf, bufsize, pos);
291             if (pos + 2 >= bufsize)
292                 goto full;
293             if (!vec_size(e->params)) {
294                 buf[pos++] = '(';
295                 buf[pos++] = ')';
296                 return pos;
297             }
298             buf[pos++] = '(';
299             pos = ast_type_to_string_impl((ast_expression*)(e->params[0]), buf, bufsize, pos);
300             for (i = 1; i < vec_size(e->params); ++i) {
301                 if (pos + 2 >= bufsize)
302                     goto full;
303                 buf[pos++] = ',';
304                 buf[pos++] = ' ';
305                 pos = ast_type_to_string_impl((ast_expression*)(e->params[i]), buf, bufsize, pos);
306             }
307             if (pos + 1 >= bufsize)
308                 goto full;
309             buf[pos++] = ')';
310             return pos;
311
312         case TYPE_ARRAY:
313             pos = ast_type_to_string_impl(e->next, buf, bufsize, pos);
314             if (pos + 1 >= bufsize)
315                 goto full;
316             buf[pos++] = '[';
317             pos += util_snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->count);
318             if (pos + 1 >= bufsize)
319                 goto full;
320             buf[pos++] = ']';
321             return pos;
322
323         default:
324             typestr = type_name[e->vtype];
325             typelen = strlen(typestr);
326             if (pos + typelen >= bufsize)
327                 goto full;
328             util_strncpy(buf + pos, typestr, typelen);
329             return pos + typelen;
330     }
331
332 full:
333     buf[bufsize-3] = '.';
334     buf[bufsize-2] = '.';
335     buf[bufsize-1] = '.';
336     return bufsize;
337 }
338
339 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
340 {
341     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
342     buf[pos] = 0;
343 }
344
345 static bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out);
346 ast_value* ast_value_new(lex_ctx_t ctx, const char *name, int t)
347 {
348     ast_instantiate(ast_value, ctx, ast_value_delete);
349     ast_expression_init((ast_expression*)self,
350                         (ast_expression_codegen*)&ast_value_codegen);
351     self->expression.node.keep = true; /* keep */
352
353     self->name = name ? util_strdup(name) : NULL;
354     self->expression.vtype = t;
355     self->expression.next  = NULL;
356     self->isfield  = false;
357     self->cvq      = CV_NONE;
358     self->hasvalue = false;
359     self->isimm    = false;
360     self->uses     = 0;
361     memset(&self->constval, 0, sizeof(self->constval));
362     self->initlist = NULL;
363
364     self->ir_v           = NULL;
365     self->ir_values      = NULL;
366     self->ir_value_count = 0;
367
368     self->setter = NULL;
369     self->getter = NULL;
370     self->desc   = NULL;
371
372     self->argcounter = NULL;
373     self->intrinsic = false;
374
375     return self;
376 }
377
378 void ast_value_delete(ast_value* self)
379 {
380     if (self->name)
381         mem_d((void*)self->name);
382     if (self->argcounter)
383         mem_d((void*)self->argcounter);
384     if (self->hasvalue) {
385         switch (self->expression.vtype)
386         {
387         case TYPE_STRING:
388             mem_d((void*)self->constval.vstring);
389             break;
390         case TYPE_FUNCTION:
391             /* unlink us from the function node */
392             self->constval.vfunc->vtype = NULL;
393             break;
394         /* NOTE: delete function? currently collected in
395          * the parser structure
396          */
397         default:
398             break;
399         }
400     }
401     if (self->ir_values)
402         mem_d(self->ir_values);
403
404     if (self->desc)
405         mem_d(self->desc);
406
407     if (self->initlist) {
408         if (self->expression.next->vtype == TYPE_STRING) {
409             /* strings are allocated, free them */
410             size_t i, len = vec_size(self->initlist);
411             /* in theory, len should be expression.count
412              * but let's not take any chances */
413             for (i = 0; i < len; ++i) {
414                 if (self->initlist[i].vstring)
415                     mem_d(self->initlist[i].vstring);
416             }
417         }
418         vec_free(self->initlist);
419     }
420
421     ast_expression_delete((ast_expression*)self);
422     mem_d(self);
423 }
424
425 void ast_value_params_add(ast_value *self, ast_value *p)
426 {
427     vec_push(self->expression.params, p);
428 }
429
430 bool ast_value_set_name(ast_value *self, const char *name)
431 {
432     if (self->name)
433         mem_d((void*)self->name);
434     self->name = util_strdup(name);
435     return !!self->name;
436 }
437
438 ast_binary* ast_binary_new(lex_ctx_t ctx, int op,
439                            ast_expression* left, ast_expression* right)
440 {
441     ast_binary *fold;
442     ast_instantiate(ast_binary, ctx, ast_binary_delete);
443     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
444
445     self->op = op;
446     self->left = left;
447     self->right = right;
448     self->right_first = false;
449
450     ast_propagate_effects(self, left);
451     ast_propagate_effects(self, right);
452
453     if (OPTS_OPTIMIZATION(OPTIM_PEEPHOLE) && (fold = (ast_binary*)fold_superfluous(left, right, op))) {
454         ast_binary_delete(self);
455         return fold;
456     }
457
458     if (op >= INSTR_EQ_F && op <= INSTR_GT)
459         self->expression.vtype = TYPE_FLOAT;
460     else if (op == INSTR_AND || op == INSTR_OR) {
461         if (OPTS_FLAG(PERL_LOGIC))
462             ast_type_adopt(self, right);
463         else
464             self->expression.vtype = TYPE_FLOAT;
465     }
466     else if (op == INSTR_BITAND || op == INSTR_BITOR)
467         self->expression.vtype = TYPE_FLOAT;
468     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
469         self->expression.vtype = TYPE_VECTOR;
470     else if (op == INSTR_MUL_V)
471         self->expression.vtype = TYPE_FLOAT;
472     else
473         self->expression.vtype = left->vtype;
474
475     /* references all */
476     self->refs = AST_REF_ALL;
477
478     return self;
479 }
480
481 void ast_binary_delete(ast_binary *self)
482 {
483     if (self->refs & AST_REF_LEFT)  ast_unref(self->left);
484     if (self->refs & AST_REF_RIGHT) ast_unref(self->right);
485
486     ast_expression_delete((ast_expression*)self);
487     mem_d(self);
488 }
489
490 ast_binstore* ast_binstore_new(lex_ctx_t ctx, int storop, int op,
491                                ast_expression* left, ast_expression* right)
492 {
493     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
494     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
495
496     ast_side_effects(self) = true;
497
498     self->opstore = storop;
499     self->opbin   = op;
500     self->dest    = left;
501     self->source  = right;
502
503     self->keep_dest = false;
504
505     ast_type_adopt(self, left);
506     return self;
507 }
508
509 void ast_binstore_delete(ast_binstore *self)
510 {
511     if (!self->keep_dest)
512         ast_unref(self->dest);
513     ast_unref(self->source);
514     ast_expression_delete((ast_expression*)self);
515     mem_d(self);
516 }
517
518 ast_unary* ast_unary_new(lex_ctx_t ctx, int op,
519                          ast_expression *expr)
520 {
521     ast_instantiate(ast_unary, ctx, ast_unary_delete);
522     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
523
524     self->op      = op;
525     self->operand = expr;
526
527
528     if (ast_istype(expr, ast_unary) && OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
529         ast_unary *prev = (ast_unary*)((ast_unary*)expr)->operand;
530
531         /* Handle for double negation */
532         if (((ast_unary*)expr)->op == op)
533             prev = (ast_unary*)((ast_unary*)expr)->operand;
534
535         if (ast_istype(prev, ast_unary)) {
536             ast_expression_delete((ast_expression*)self);
537             mem_d(self);
538             ++opts_optimizationcount[OPTIM_PEEPHOLE];
539             return prev;
540         }
541     }
542
543     ast_propagate_effects(self, expr);
544
545     if ((op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) || op == VINSTR_NEG_F) {
546         self->expression.vtype = TYPE_FLOAT;
547     } else if (op == VINSTR_NEG_V) {
548         self->expression.vtype = TYPE_VECTOR;
549     } else {
550         compile_error(ctx, "cannot determine type of unary operation %s", util_instr_str[op]);
551     }
552
553     return self;
554 }
555
556 void ast_unary_delete(ast_unary *self)
557 {
558     if (self->operand) ast_unref(self->operand);
559     ast_expression_delete((ast_expression*)self);
560     mem_d(self);
561 }
562
563 ast_return* ast_return_new(lex_ctx_t ctx, ast_expression *expr)
564 {
565     ast_instantiate(ast_return, ctx, ast_return_delete);
566     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
567
568     self->operand = expr;
569
570     if (expr)
571         ast_propagate_effects(self, expr);
572
573     return self;
574 }
575
576 void ast_return_delete(ast_return *self)
577 {
578     if (self->operand)
579         ast_unref(self->operand);
580     ast_expression_delete((ast_expression*)self);
581     mem_d(self);
582 }
583
584 ast_entfield* ast_entfield_new(lex_ctx_t ctx, ast_expression *entity, ast_expression *field)
585 {
586     if (field->vtype != TYPE_FIELD) {
587         compile_error(ctx, "ast_entfield_new with expression not of type field");
588         return NULL;
589     }
590     return ast_entfield_new_force(ctx, entity, field, field->next);
591 }
592
593 ast_entfield* ast_entfield_new_force(lex_ctx_t ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
594 {
595     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
596
597     if (!outtype) {
598         mem_d(self);
599         /* Error: field has no type... */
600         return NULL;
601     }
602
603     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
604
605     self->entity = entity;
606     self->field  = field;
607     ast_propagate_effects(self, entity);
608     ast_propagate_effects(self, field);
609
610     ast_type_adopt(self, outtype);
611     return self;
612 }
613
614 void ast_entfield_delete(ast_entfield *self)
615 {
616     ast_unref(self->entity);
617     ast_unref(self->field);
618     ast_expression_delete((ast_expression*)self);
619     mem_d(self);
620 }
621
622 ast_member* ast_member_new(lex_ctx_t ctx, ast_expression *owner, unsigned int field, const char *name)
623 {
624     ast_instantiate(ast_member, ctx, ast_member_delete);
625     if (field >= 3) {
626         mem_d(self);
627         return NULL;
628     }
629
630     if (owner->vtype != TYPE_VECTOR &&
631         owner->vtype != TYPE_FIELD) {
632         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->vtype]);
633         mem_d(self);
634         return NULL;
635     }
636
637     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
638     self->expression.node.keep = true; /* keep */
639
640     if (owner->vtype == TYPE_VECTOR) {
641         self->expression.vtype = TYPE_FLOAT;
642         self->expression.next  = NULL;
643     } else {
644         self->expression.vtype = TYPE_FIELD;
645         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
646     }
647
648     self->rvalue = false;
649     self->owner  = owner;
650     ast_propagate_effects(self, owner);
651
652     self->field = field;
653     if (name)
654         self->name = util_strdup(name);
655     else
656         self->name = NULL;
657
658     return self;
659 }
660
661 void ast_member_delete(ast_member *self)
662 {
663     /* The owner is always an ast_value, which has .keep=true,
664      * also: ast_members are usually deleted after the owner, thus
665      * this will cause invalid access
666     ast_unref(self->owner);
667      * once we allow (expression).x to access a vector-member, we need
668      * to change this: preferably by creating an alternate ast node for this
669      * purpose that is not garbage-collected.
670     */
671     ast_expression_delete((ast_expression*)self);
672     mem_d(self->name);
673     mem_d(self);
674 }
675
676 bool ast_member_set_name(ast_member *self, const char *name)
677 {
678     if (self->name)
679         mem_d((void*)self->name);
680     self->name = util_strdup(name);
681     return !!self->name;
682 }
683
684 ast_array_index* ast_array_index_new(lex_ctx_t ctx, ast_expression *array, ast_expression *index)
685 {
686     ast_expression *outtype;
687     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
688
689     outtype = array->next;
690     if (!outtype) {
691         mem_d(self);
692         /* Error: field has no type... */
693         return NULL;
694     }
695
696     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
697
698     self->array = array;
699     self->index = index;
700     ast_propagate_effects(self, array);
701     ast_propagate_effects(self, index);
702
703     ast_type_adopt(self, outtype);
704     if (array->vtype == TYPE_FIELD && outtype->vtype == TYPE_ARRAY) {
705         if (self->expression.vtype != TYPE_ARRAY) {
706             compile_error(ast_ctx(self), "array_index node on type");
707             ast_array_index_delete(self);
708             return NULL;
709         }
710         self->array = outtype;
711         self->expression.vtype = TYPE_FIELD;
712     }
713
714     return self;
715 }
716
717 void ast_array_index_delete(ast_array_index *self)
718 {
719     if (self->array)
720         ast_unref(self->array);
721     if (self->index)
722         ast_unref(self->index);
723     ast_expression_delete((ast_expression*)self);
724     mem_d(self);
725 }
726
727 ast_argpipe* ast_argpipe_new(lex_ctx_t ctx, ast_expression *index)
728 {
729     ast_instantiate(ast_argpipe, ctx, ast_argpipe_delete);
730     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_argpipe_codegen);
731     self->index = index;
732     self->expression.vtype = TYPE_NOEXPR;
733     return self;
734 }
735
736 void ast_argpipe_delete(ast_argpipe *self)
737 {
738     if (self->index)
739         ast_unref(self->index);
740     ast_expression_delete((ast_expression*)self);
741     mem_d(self);
742 }
743
744 ast_ifthen* ast_ifthen_new(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
745 {
746     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
747     if (!ontrue && !onfalse) {
748         /* because it is invalid */
749         mem_d(self);
750         return NULL;
751     }
752     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
753
754     self->cond     = cond;
755     self->on_true  = ontrue;
756     self->on_false = onfalse;
757     ast_propagate_effects(self, cond);
758     if (ontrue)
759         ast_propagate_effects(self, ontrue);
760     if (onfalse)
761         ast_propagate_effects(self, onfalse);
762
763     return self;
764 }
765
766 void ast_ifthen_delete(ast_ifthen *self)
767 {
768     ast_unref(self->cond);
769     if (self->on_true)
770         ast_unref(self->on_true);
771     if (self->on_false)
772         ast_unref(self->on_false);
773     ast_expression_delete((ast_expression*)self);
774     mem_d(self);
775 }
776
777 ast_ternary* ast_ternary_new(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
778 {
779     ast_expression *exprtype = ontrue;
780     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
781     /* This time NEITHER must be NULL */
782     if (!ontrue || !onfalse) {
783         mem_d(self);
784         return NULL;
785     }
786     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
787
788     self->cond     = cond;
789     self->on_true  = ontrue;
790     self->on_false = onfalse;
791     ast_propagate_effects(self, cond);
792     ast_propagate_effects(self, ontrue);
793     ast_propagate_effects(self, onfalse);
794
795     if (ontrue->vtype == TYPE_NIL)
796         exprtype = onfalse;
797     ast_type_adopt(self, exprtype);
798
799     return self;
800 }
801
802 void ast_ternary_delete(ast_ternary *self)
803 {
804     /* the if()s are only there because computed-gotos can set them
805      * to NULL
806      */
807     if (self->cond)     ast_unref(self->cond);
808     if (self->on_true)  ast_unref(self->on_true);
809     if (self->on_false) ast_unref(self->on_false);
810     ast_expression_delete((ast_expression*)self);
811     mem_d(self);
812 }
813
814 ast_loop* ast_loop_new(lex_ctx_t ctx,
815                        ast_expression *initexpr,
816                        ast_expression *precond, bool pre_not,
817                        ast_expression *postcond, bool post_not,
818                        ast_expression *increment,
819                        ast_expression *body)
820 {
821     ast_instantiate(ast_loop, ctx, ast_loop_delete);
822     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
823
824     self->initexpr  = initexpr;
825     self->precond   = precond;
826     self->postcond  = postcond;
827     self->increment = increment;
828     self->body      = body;
829
830     self->pre_not   = pre_not;
831     self->post_not  = post_not;
832
833     if (initexpr)
834         ast_propagate_effects(self, initexpr);
835     if (precond)
836         ast_propagate_effects(self, precond);
837     if (postcond)
838         ast_propagate_effects(self, postcond);
839     if (increment)
840         ast_propagate_effects(self, increment);
841     if (body)
842         ast_propagate_effects(self, body);
843
844     return self;
845 }
846
847 void ast_loop_delete(ast_loop *self)
848 {
849     if (self->initexpr)
850         ast_unref(self->initexpr);
851     if (self->precond)
852         ast_unref(self->precond);
853     if (self->postcond)
854         ast_unref(self->postcond);
855     if (self->increment)
856         ast_unref(self->increment);
857     if (self->body)
858         ast_unref(self->body);
859     ast_expression_delete((ast_expression*)self);
860     mem_d(self);
861 }
862
863 ast_breakcont* ast_breakcont_new(lex_ctx_t ctx, bool iscont, unsigned int levels)
864 {
865     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
866     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
867
868     self->is_continue = iscont;
869     self->levels      = levels;
870
871     return self;
872 }
873
874 void ast_breakcont_delete(ast_breakcont *self)
875 {
876     ast_expression_delete((ast_expression*)self);
877     mem_d(self);
878 }
879
880 ast_switch* ast_switch_new(lex_ctx_t ctx, ast_expression *op)
881 {
882     ast_instantiate(ast_switch, ctx, ast_switch_delete);
883     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
884
885     self->operand = op;
886     self->cases   = NULL;
887
888     ast_propagate_effects(self, op);
889
890     return self;
891 }
892
893 void ast_switch_delete(ast_switch *self)
894 {
895     size_t i;
896     ast_unref(self->operand);
897
898     for (i = 0; i < vec_size(self->cases); ++i) {
899         if (self->cases[i].value)
900             ast_unref(self->cases[i].value);
901         ast_unref(self->cases[i].code);
902     }
903     vec_free(self->cases);
904
905     ast_expression_delete((ast_expression*)self);
906     mem_d(self);
907 }
908
909 ast_label* ast_label_new(lex_ctx_t ctx, const char *name, bool undefined)
910 {
911     ast_instantiate(ast_label, ctx, ast_label_delete);
912     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
913
914     self->expression.vtype = TYPE_NOEXPR;
915
916     self->name      = util_strdup(name);
917     self->irblock   = NULL;
918     self->gotos     = NULL;
919     self->undefined = undefined;
920
921     return self;
922 }
923
924 void ast_label_delete(ast_label *self)
925 {
926     mem_d((void*)self->name);
927     vec_free(self->gotos);
928     ast_expression_delete((ast_expression*)self);
929     mem_d(self);
930 }
931
932 static void ast_label_register_goto(ast_label *self, ast_goto *g)
933 {
934     vec_push(self->gotos, g);
935 }
936
937 ast_goto* ast_goto_new(lex_ctx_t ctx, const char *name)
938 {
939     ast_instantiate(ast_goto, ctx, ast_goto_delete);
940     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
941
942     self->name    = util_strdup(name);
943     self->target  = NULL;
944     self->irblock_from = NULL;
945
946     return self;
947 }
948
949 void ast_goto_delete(ast_goto *self)
950 {
951     mem_d((void*)self->name);
952     ast_expression_delete((ast_expression*)self);
953     mem_d(self);
954 }
955
956 void ast_goto_set_label(ast_goto *self, ast_label *label)
957 {
958     self->target = label;
959 }
960
961 ast_call* ast_call_new(lex_ctx_t ctx,
962                        ast_expression *funcexpr)
963 {
964     ast_instantiate(ast_call, ctx, ast_call_delete);
965     if (!funcexpr->next) {
966         compile_error(ctx, "not a function");
967         mem_d(self);
968         return NULL;
969     }
970     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
971
972     ast_side_effects(self) = true;
973
974     self->params   = NULL;
975     self->func     = funcexpr;
976     self->va_count = NULL;
977
978     ast_type_adopt(self, funcexpr->next);
979
980     return self;
981 }
982
983 void ast_call_delete(ast_call *self)
984 {
985     size_t i;
986     for (i = 0; i < vec_size(self->params); ++i)
987         ast_unref(self->params[i]);
988     vec_free(self->params);
989
990     if (self->func)
991         ast_unref(self->func);
992
993     if (self->va_count)
994         ast_unref(self->va_count);
995
996     ast_expression_delete((ast_expression*)self);
997     mem_d(self);
998 }
999
1000 static bool ast_call_check_vararg(ast_call *self, ast_expression *va_type, ast_expression *exp_type)
1001 {
1002     char texp[1024];
1003     char tgot[1024];
1004     if (!exp_type)
1005         return true;
1006     if (!va_type || !ast_compare_type(va_type, exp_type))
1007     {
1008         if (va_type && exp_type)
1009         {
1010             ast_type_to_string(va_type,  tgot, sizeof(tgot));
1011             ast_type_to_string(exp_type, texp, sizeof(texp));
1012             if (OPTS_FLAG(UNSAFE_VARARGS)) {
1013                 if (compile_warning(ast_ctx(self), WARN_UNSAFE_TYPES,
1014                                     "piped variadic argument differs in type: constrained to type %s, expected type %s",
1015                                     tgot, texp))
1016                     return false;
1017             } else {
1018                 compile_error(ast_ctx(self),
1019                               "piped variadic argument differs in type: constrained to type %s, expected type %s",
1020                               tgot, texp);
1021                 return false;
1022             }
1023         }
1024         else
1025         {
1026             ast_type_to_string(exp_type, texp, sizeof(texp));
1027             if (OPTS_FLAG(UNSAFE_VARARGS)) {
1028                 if (compile_warning(ast_ctx(self), WARN_UNSAFE_TYPES,
1029                                     "piped variadic argument may differ in type: expected type %s",
1030                                     texp))
1031                     return false;
1032             } else {
1033                 compile_error(ast_ctx(self),
1034                               "piped variadic argument may differ in type: expected type %s",
1035                               texp);
1036                 return false;
1037             }
1038         }
1039     }
1040     return true;
1041 }
1042
1043 bool ast_call_check_types(ast_call *self, ast_expression *va_type)
1044 {
1045     char texp[1024];
1046     char tgot[1024];
1047     size_t i;
1048     bool   retval = true;
1049     const  ast_expression *func = self->func;
1050     size_t count = vec_size(self->params);
1051     if (count > vec_size(func->params))
1052         count = vec_size(func->params);
1053
1054     for (i = 0; i < count; ++i) {
1055         if (ast_istype(self->params[i], ast_argpipe)) {
1056             /* warn about type safety instead */
1057             if (i+1 != count) {
1058                 compile_error(ast_ctx(self), "argpipe must be the last parameter to a function call");
1059                 return false;
1060             }
1061             if (!ast_call_check_vararg(self, va_type, (ast_expression*)func->params[i]))
1062                 retval = false;
1063         }
1064         else if (!ast_compare_type(self->params[i], (ast_expression*)(func->params[i])))
1065         {
1066             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
1067             ast_type_to_string((ast_expression*)func->params[i], texp, sizeof(texp));
1068             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
1069                      (unsigned int)(i+1), texp, tgot);
1070             /* we don't immediately return */
1071             retval = false;
1072         }
1073     }
1074     count = vec_size(self->params);
1075     if (count > vec_size(func->params) && func->varparam) {
1076         for (; i < count; ++i) {
1077             if (ast_istype(self->params[i], ast_argpipe)) {
1078                 /* warn about type safety instead */
1079                 if (i+1 != count) {
1080                     compile_error(ast_ctx(self), "argpipe must be the last parameter to a function call");
1081                     return false;
1082                 }
1083                 if (!ast_call_check_vararg(self, va_type, func->varparam))
1084                     retval = false;
1085             }
1086             else if (!ast_compare_type(self->params[i], func->varparam))
1087             {
1088                 ast_type_to_string(self->params[i], tgot, sizeof(tgot));
1089                 ast_type_to_string(func->varparam, texp, sizeof(texp));
1090                 compile_error(ast_ctx(self), "invalid type for variadic parameter %u in function call: expected %s, got %s",
1091                          (unsigned int)(i+1), texp, tgot);
1092                 /* we don't immediately return */
1093                 retval = false;
1094             }
1095         }
1096     }
1097     return retval;
1098 }
1099
1100 ast_store* ast_store_new(lex_ctx_t ctx, int op,
1101                          ast_expression *dest, ast_expression *source)
1102 {
1103     ast_instantiate(ast_store, ctx, ast_store_delete);
1104     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
1105
1106     ast_side_effects(self) = true;
1107
1108     self->op = op;
1109     self->dest = dest;
1110     self->source = source;
1111
1112     ast_type_adopt(self, dest);
1113
1114     return self;
1115 }
1116
1117 void ast_store_delete(ast_store *self)
1118 {
1119     ast_unref(self->dest);
1120     ast_unref(self->source);
1121     ast_expression_delete((ast_expression*)self);
1122     mem_d(self);
1123 }
1124
1125 ast_block* ast_block_new(lex_ctx_t ctx)
1126 {
1127     ast_instantiate(ast_block, ctx, ast_block_delete);
1128     ast_expression_init((ast_expression*)self,
1129                         (ast_expression_codegen*)&ast_block_codegen);
1130
1131     self->locals  = NULL;
1132     self->exprs   = NULL;
1133     self->collect = NULL;
1134
1135     return self;
1136 }
1137
1138 bool ast_block_add_expr(ast_block *self, ast_expression *e)
1139 {
1140     ast_propagate_effects(self, e);
1141     vec_push(self->exprs, e);
1142     if (self->expression.next) {
1143         ast_delete(self->expression.next);
1144         self->expression.next = NULL;
1145     }
1146     ast_type_adopt(self, e);
1147     return true;
1148 }
1149
1150 void ast_block_collect(ast_block *self, ast_expression *expr)
1151 {
1152     vec_push(self->collect, expr);
1153     expr->node.keep = true;
1154 }
1155
1156 void ast_block_delete(ast_block *self)
1157 {
1158     size_t i;
1159     for (i = 0; i < vec_size(self->exprs); ++i)
1160         ast_unref(self->exprs[i]);
1161     vec_free(self->exprs);
1162     for (i = 0; i < vec_size(self->locals); ++i)
1163         ast_delete(self->locals[i]);
1164     vec_free(self->locals);
1165     for (i = 0; i < vec_size(self->collect); ++i)
1166         ast_delete(self->collect[i]);
1167     vec_free(self->collect);
1168     ast_expression_delete((ast_expression*)self);
1169     mem_d(self);
1170 }
1171
1172 void ast_block_set_type(ast_block *self, ast_expression *from)
1173 {
1174     if (self->expression.next)
1175         ast_delete(self->expression.next);
1176     ast_type_adopt(self, from);
1177 }
1178
1179 ast_function* ast_function_new(lex_ctx_t ctx, const char *name, ast_value *vtype)
1180 {
1181     ast_instantiate(ast_function, ctx, ast_function_delete);
1182
1183     if (!vtype) {
1184         compile_error(ast_ctx(self), "internal error: ast_function_new condition 0");
1185         goto cleanup;
1186     } else if (vtype->hasvalue || vtype->expression.vtype != TYPE_FUNCTION) {
1187         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1188                  (int)!vtype,
1189                  (int)vtype->hasvalue,
1190                  vtype->expression.vtype);
1191         goto cleanup;
1192     }
1193
1194     self->vtype  = vtype;
1195     self->name   = name ? util_strdup(name) : NULL;
1196     self->blocks = NULL;
1197
1198     self->labelcount = 0;
1199     self->builtin = 0;
1200
1201     self->ir_func = NULL;
1202     self->curblock = NULL;
1203
1204     self->breakblocks    = NULL;
1205     self->continueblocks = NULL;
1206
1207     vtype->hasvalue = true;
1208     vtype->constval.vfunc = self;
1209
1210     self->varargs          = NULL;
1211     self->argc             = NULL;
1212     self->fixedparams      = NULL;
1213     self->return_value     = NULL;
1214
1215     return self;
1216
1217 cleanup:
1218     mem_d(self);
1219     return NULL;
1220 }
1221
1222 void ast_function_delete(ast_function *self)
1223 {
1224     size_t i;
1225     if (self->name)
1226         mem_d((void*)self->name);
1227     if (self->vtype) {
1228         /* ast_value_delete(self->vtype); */
1229         self->vtype->hasvalue = false;
1230         self->vtype->constval.vfunc = NULL;
1231         /* We use unref - if it was stored in a global table it is supposed
1232          * to be deleted from *there*
1233          */
1234         ast_unref(self->vtype);
1235     }
1236     for (i = 0; i < vec_size(self->blocks); ++i)
1237         ast_delete(self->blocks[i]);
1238     vec_free(self->blocks);
1239     vec_free(self->breakblocks);
1240     vec_free(self->continueblocks);
1241     if (self->varargs)
1242         ast_delete(self->varargs);
1243     if (self->argc)
1244         ast_delete(self->argc);
1245     if (self->fixedparams)
1246         ast_unref(self->fixedparams);
1247     if (self->return_value)
1248         ast_unref(self->return_value);
1249     mem_d(self);
1250 }
1251
1252 const char* ast_function_label(ast_function *self, const char *prefix)
1253 {
1254     size_t id;
1255     size_t len;
1256     char  *from;
1257
1258     if (!OPTS_OPTION_BOOL(OPTION_DUMP)    &&
1259         !OPTS_OPTION_BOOL(OPTION_DUMPFIN) &&
1260         !OPTS_OPTION_BOOL(OPTION_DEBUG))
1261     {
1262         return NULL;
1263     }
1264
1265     id  = (self->labelcount++);
1266     len = strlen(prefix);
1267
1268     from = self->labelbuf + sizeof(self->labelbuf)-1;
1269     *from-- = 0;
1270     do {
1271         *from-- = (id%10) + '0';
1272         id /= 10;
1273     } while (id);
1274     ++from;
1275     memcpy(from - len, prefix, len);
1276     return from - len;
1277 }
1278
1279 /*********************************************************************/
1280 /* AST codegen part
1281  * by convention you must never pass NULL to the 'ir_value **out'
1282  * parameter. If you really don't care about the output, pass a dummy.
1283  * But I can't imagine a pituation where the output is truly unnecessary.
1284  */
1285
1286 static void _ast_codegen_output_type(ast_expression *self, ir_value *out)
1287 {
1288     if (out->vtype == TYPE_FIELD)
1289         out->fieldtype = self->next->vtype;
1290     if (out->vtype == TYPE_FUNCTION)
1291         out->outtype = self->next->vtype;
1292 }
1293
1294 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1295
1296 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1297 {
1298     (void)func;
1299     (void)lvalue;
1300     if (self->expression.vtype == TYPE_NIL) {
1301         *out = func->ir_func->owner->nil;
1302         return true;
1303     }
1304     /* NOTE: This is the codegen for a variable used in an expression.
1305      * It is not the codegen to generate the value. For this purpose,
1306      * ast_local_codegen and ast_global_codegen are to be used before this
1307      * is executed. ast_function_codegen should take care of its locals,
1308      * and the ast-user should take care of ast_global_codegen to be used
1309      * on all the globals.
1310      */
1311     if (!self->ir_v) {
1312         char tname[1024]; /* typename is reserved in C++ */
1313         ast_type_to_string((ast_expression*)self, tname, sizeof(tname));
1314         compile_error(ast_ctx(self), "ast_value used before generated %s %s", tname, self->name);
1315         return false;
1316     }
1317     *out = self->ir_v;
1318     return true;
1319 }
1320
1321 static bool ast_global_array_set(ast_value *self)
1322 {
1323     size_t count = vec_size(self->initlist);
1324     size_t i;
1325
1326     if (count > self->expression.count) {
1327         compile_error(ast_ctx(self), "too many elements in initializer");
1328         count = self->expression.count;
1329     }
1330     else if (count < self->expression.count) {
1331         /* add this?
1332         compile_warning(ast_ctx(self), "not all elements are initialized");
1333         */
1334     }
1335
1336     for (i = 0; i != count; ++i) {
1337         switch (self->expression.next->vtype) {
1338             case TYPE_FLOAT:
1339                 if (!ir_value_set_float(self->ir_values[i], self->initlist[i].vfloat))
1340                     return false;
1341                 break;
1342             case TYPE_VECTOR:
1343                 if (!ir_value_set_vector(self->ir_values[i], self->initlist[i].vvec))
1344                     return false;
1345                 break;
1346             case TYPE_STRING:
1347                 if (!ir_value_set_string(self->ir_values[i], self->initlist[i].vstring))
1348                     return false;
1349                 break;
1350             case TYPE_ARRAY:
1351                 /* we don't support them in any other place yet either */
1352                 compile_error(ast_ctx(self), "TODO: nested arrays");
1353                 return false;
1354             case TYPE_FUNCTION:
1355                 /* this requiers a bit more work - similar to the fields I suppose */
1356                 compile_error(ast_ctx(self), "global of type function not properly generated");
1357                 return false;
1358             case TYPE_FIELD:
1359                 if (!self->initlist[i].vfield) {
1360                     compile_error(ast_ctx(self), "field constant without vfield set");
1361                     return false;
1362                 }
1363                 if (!self->initlist[i].vfield->ir_v) {
1364                     compile_error(ast_ctx(self), "field constant generated before its field");
1365                     return false;
1366                 }
1367                 if (!ir_value_set_field(self->ir_values[i], self->initlist[i].vfield->ir_v))
1368                     return false;
1369                 break;
1370             default:
1371                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1372                 break;
1373         }
1374     }
1375     return true;
1376 }
1377
1378 static bool check_array(ast_value *self, ast_value *array)
1379 {
1380     if (array->expression.flags & AST_FLAG_ARRAY_INIT && !array->initlist) {
1381         compile_error(ast_ctx(self), "array without size: %s", self->name);
1382         return false;
1383     }
1384     /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1385     if (!array->expression.count || array->expression.count > OPTS_OPTION_U32(OPTION_MAX_ARRAY_SIZE)) {
1386         compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1387         return false;
1388     }
1389     return true;
1390 }
1391
1392 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1393 {
1394     ir_value *v = NULL;
1395
1396     if (self->expression.vtype == TYPE_NIL) {
1397         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1398         return false;
1399     }
1400
1401     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1402     {
1403         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->vtype);
1404         if (!func)
1405             return false;
1406         func->context = ast_ctx(self);
1407         func->value->context = ast_ctx(self);
1408
1409         self->constval.vfunc->ir_func = func;
1410         self->ir_v = func->value;
1411         if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1412             self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1413         if (self->expression.flags & AST_FLAG_ERASEABLE)
1414             self->ir_v->flags |= IR_FLAG_ERASEABLE;
1415         /* The function is filled later on ast_function_codegen... */
1416         return true;
1417     }
1418
1419     if (isfield && self->expression.vtype == TYPE_FIELD) {
1420         ast_expression *fieldtype = self->expression.next;
1421
1422         if (self->hasvalue) {
1423             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1424             goto error;
1425         }
1426
1427         if (fieldtype->vtype == TYPE_ARRAY) {
1428             size_t ai;
1429             char   *name;
1430             size_t  namelen;
1431
1432             ast_expression *elemtype;
1433             int             vtype;
1434             ast_value      *array = (ast_value*)fieldtype;
1435
1436             if (!ast_istype(fieldtype, ast_value)) {
1437                 compile_error(ast_ctx(self), "internal error: ast_value required");
1438                 return false;
1439             }
1440
1441             if (!check_array(self, array))
1442                 return false;
1443
1444             elemtype = array->expression.next;
1445             vtype = elemtype->vtype;
1446
1447             v = ir_builder_create_field(ir, self->name, vtype);
1448             if (!v) {
1449                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1450                 return false;
1451             }
1452             v->context = ast_ctx(self);
1453             v->unique_life = true;
1454             v->locked      = true;
1455             array->ir_v = self->ir_v = v;
1456
1457             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1458                 self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1459             if (self->expression.flags & AST_FLAG_ERASEABLE)
1460                 self->ir_v->flags |= IR_FLAG_ERASEABLE;
1461
1462             namelen = strlen(self->name);
1463             name    = (char*)mem_a(namelen + 16);
1464             util_strncpy(name, self->name, namelen);
1465
1466             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1467             array->ir_values[0] = v;
1468             for (ai = 1; ai < array->expression.count; ++ai) {
1469                 util_snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1470                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1471                 if (!array->ir_values[ai]) {
1472                     mem_d(name);
1473                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1474                     return false;
1475                 }
1476                 array->ir_values[ai]->context = ast_ctx(self);
1477                 array->ir_values[ai]->unique_life = true;
1478                 array->ir_values[ai]->locked      = true;
1479                 if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1480                     self->ir_values[ai]->flags |= IR_FLAG_INCLUDE_DEF;
1481             }
1482             mem_d(name);
1483         }
1484         else
1485         {
1486             v = ir_builder_create_field(ir, self->name, self->expression.next->vtype);
1487             if (!v)
1488                 return false;
1489             v->context = ast_ctx(self);
1490             self->ir_v = v;
1491             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1492                 self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1493
1494             if (self->expression.flags & AST_FLAG_ERASEABLE)
1495                 self->ir_v->flags |= IR_FLAG_ERASEABLE;
1496         }
1497         return true;
1498     }
1499
1500     if (self->expression.vtype == TYPE_ARRAY) {
1501         size_t ai;
1502         char   *name;
1503         size_t  namelen;
1504
1505         ast_expression *elemtype = self->expression.next;
1506         int vtype = elemtype->vtype;
1507
1508         if (self->expression.flags & AST_FLAG_ARRAY_INIT && !self->expression.count) {
1509             compile_error(ast_ctx(self), "array `%s' has no size", self->name);
1510             return false;
1511         }
1512
1513         /* same as with field arrays */
1514         if (!check_array(self, self))
1515             return false;
1516
1517         v = ir_builder_create_global(ir, self->name, vtype);
1518         if (!v) {
1519             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1520             return false;
1521         }
1522         v->context = ast_ctx(self);
1523         v->unique_life = true;
1524         v->locked      = true;
1525
1526         if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1527             v->flags |= IR_FLAG_INCLUDE_DEF;
1528         if (self->expression.flags & AST_FLAG_ERASEABLE)
1529             self->ir_v->flags |= IR_FLAG_ERASEABLE;
1530
1531         namelen = strlen(self->name);
1532         name    = (char*)mem_a(namelen + 16);
1533         util_strncpy(name, self->name, namelen);
1534
1535         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1536         self->ir_values[0] = v;
1537         for (ai = 1; ai < self->expression.count; ++ai) {
1538             util_snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1539             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1540             if (!self->ir_values[ai]) {
1541                 mem_d(name);
1542                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1543                 return false;
1544             }
1545             self->ir_values[ai]->context = ast_ctx(self);
1546             self->ir_values[ai]->unique_life = true;
1547             self->ir_values[ai]->locked      = true;
1548             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1549                 self->ir_values[ai]->flags |= IR_FLAG_INCLUDE_DEF;
1550         }
1551         mem_d(name);
1552     }
1553     else
1554     {
1555         /* Arrays don't do this since there's no "array" value which spans across the
1556          * whole thing.
1557          */
1558         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1559         if (!v) {
1560             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1561             return false;
1562         }
1563         codegen_output_type(self, v);
1564         v->context = ast_ctx(self);
1565     }
1566
1567     /* link us to the ir_value */
1568     v->cvq = self->cvq;
1569     self->ir_v = v;
1570
1571     if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1572         self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1573     if (self->expression.flags & AST_FLAG_ERASEABLE)
1574         self->ir_v->flags |= IR_FLAG_ERASEABLE;
1575
1576     /* initialize */
1577     if (self->hasvalue) {
1578         switch (self->expression.vtype)
1579         {
1580             case TYPE_FLOAT:
1581                 if (!ir_value_set_float(v, self->constval.vfloat))
1582                     goto error;
1583                 break;
1584             case TYPE_VECTOR:
1585                 if (!ir_value_set_vector(v, self->constval.vvec))
1586                     goto error;
1587                 break;
1588             case TYPE_STRING:
1589                 if (!ir_value_set_string(v, self->constval.vstring))
1590                     goto error;
1591                 break;
1592             case TYPE_ARRAY:
1593                 ast_global_array_set(self);
1594                 break;
1595             case TYPE_FUNCTION:
1596                 compile_error(ast_ctx(self), "global of type function not properly generated");
1597                 goto error;
1598                 /* Cannot generate an IR value for a function,
1599                  * need a pointer pointing to a function rather.
1600                  */
1601             case TYPE_FIELD:
1602                 if (!self->constval.vfield) {
1603                     compile_error(ast_ctx(self), "field constant without vfield set");
1604                     goto error;
1605                 }
1606                 if (!self->constval.vfield->ir_v) {
1607                     compile_error(ast_ctx(self), "field constant generated before its field");
1608                     goto error;
1609                 }
1610                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1611                     goto error;
1612                 break;
1613             default:
1614                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1615                 break;
1616         }
1617     }
1618     return true;
1619
1620 error: /* clean up */
1621     if(v) ir_value_delete(v);
1622     return false;
1623 }
1624
1625 static bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1626 {
1627     ir_value *v = NULL;
1628
1629     if (self->expression.vtype == TYPE_NIL) {
1630         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1631         return false;
1632     }
1633
1634     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1635     {
1636         /* Do we allow local functions? I think not...
1637          * this is NOT a function pointer atm.
1638          */
1639         return false;
1640     }
1641
1642     if (self->expression.vtype == TYPE_ARRAY) {
1643         size_t ai;
1644         char   *name;
1645         size_t  namelen;
1646
1647         ast_expression *elemtype = self->expression.next;
1648         int vtype = elemtype->vtype;
1649
1650         func->flags |= IR_FLAG_HAS_ARRAYS;
1651
1652         if (param && !(self->expression.flags & AST_FLAG_IS_VARARG)) {
1653             compile_error(ast_ctx(self), "array-parameters are not supported");
1654             return false;
1655         }
1656
1657         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1658         if (!check_array(self, self))
1659             return false;
1660
1661         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1662         if (!self->ir_values) {
1663             compile_error(ast_ctx(self), "failed to allocate array values");
1664             return false;
1665         }
1666
1667         v = ir_function_create_local(func, self->name, vtype, param);
1668         if (!v) {
1669             compile_error(ast_ctx(self), "internal error: ir_function_create_local failed");
1670             return false;
1671         }
1672         v->context = ast_ctx(self);
1673         v->unique_life = true;
1674         v->locked      = true;
1675
1676         namelen = strlen(self->name);
1677         name    = (char*)mem_a(namelen + 16);
1678         util_strncpy(name, self->name, namelen);
1679
1680         self->ir_values[0] = v;
1681         for (ai = 1; ai < self->expression.count; ++ai) {
1682             util_snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1683             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1684             if (!self->ir_values[ai]) {
1685                 compile_error(ast_ctx(self), "internal_error: ir_builder_create_global failed on `%s`", name);
1686                 return false;
1687             }
1688             self->ir_values[ai]->context = ast_ctx(self);
1689             self->ir_values[ai]->unique_life = true;
1690             self->ir_values[ai]->locked      = true;
1691         }
1692         mem_d(name);
1693     }
1694     else
1695     {
1696         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1697         if (!v)
1698             return false;
1699         codegen_output_type(self, v);
1700         v->context = ast_ctx(self);
1701     }
1702
1703     /* A constant local... hmmm...
1704      * I suppose the IR will have to deal with this
1705      */
1706     if (self->hasvalue) {
1707         switch (self->expression.vtype)
1708         {
1709             case TYPE_FLOAT:
1710                 if (!ir_value_set_float(v, self->constval.vfloat))
1711                     goto error;
1712                 break;
1713             case TYPE_VECTOR:
1714                 if (!ir_value_set_vector(v, self->constval.vvec))
1715                     goto error;
1716                 break;
1717             case TYPE_STRING:
1718                 if (!ir_value_set_string(v, self->constval.vstring))
1719                     goto error;
1720                 break;
1721             default:
1722                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1723                 break;
1724         }
1725     }
1726
1727     /* link us to the ir_value */
1728     v->cvq = self->cvq;
1729     self->ir_v = v;
1730
1731     if (!ast_generate_accessors(self, func->owner))
1732         return false;
1733     return true;
1734
1735 error: /* clean up */
1736     ir_value_delete(v);
1737     return false;
1738 }
1739
1740 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1741 {
1742     size_t i;
1743     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1744     if (!self->setter || !self->getter)
1745         return true;
1746     for (i = 0; i < self->expression.count; ++i) {
1747         if (!self->ir_values) {
1748             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1749             return false;
1750         }
1751         if (!self->ir_values[i]) {
1752             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1753             return false;
1754         }
1755         if (self->ir_values[i]->life) {
1756             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1757             return false;
1758         }
1759     }
1760
1761     opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
1762     if (self->setter) {
1763         if (!ast_global_codegen  (self->setter, ir, false) ||
1764             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1765             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1766         {
1767             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1768             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1769             return false;
1770         }
1771     }
1772     if (self->getter) {
1773         if (!ast_global_codegen  (self->getter, ir, false) ||
1774             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1775             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1776         {
1777             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1778             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1779             return false;
1780         }
1781     }
1782     for (i = 0; i < self->expression.count; ++i) {
1783         vec_free(self->ir_values[i]->life);
1784     }
1785     opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1786     return true;
1787 }
1788
1789 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1790 {
1791     ir_function *irf;
1792     ir_value    *dummy;
1793     ast_expression         *ec;
1794     ast_expression_codegen *cgen;
1795     size_t    i;
1796
1797     (void)ir;
1798
1799     irf = self->ir_func;
1800     if (!irf) {
1801         compile_error(ast_ctx(self), "internal error: ast_function's related ast_value was not generated yet");
1802         return false;
1803     }
1804
1805     /* fill the parameter list */
1806     ec = &self->vtype->expression;
1807     for (i = 0; i < vec_size(ec->params); ++i)
1808     {
1809         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1810             vec_push(irf->params, ec->params[i]->expression.next->vtype);
1811         else
1812             vec_push(irf->params, ec->params[i]->expression.vtype);
1813         if (!self->builtin) {
1814             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1815                 return false;
1816         }
1817     }
1818
1819     if (self->varargs) {
1820         if (!ast_local_codegen(self->varargs, self->ir_func, true))
1821             return false;
1822         irf->max_varargs = self->varargs->expression.count;
1823     }
1824
1825     if (self->builtin) {
1826         irf->builtin = self->builtin;
1827         return true;
1828     }
1829
1830     /* have a local return value variable? */
1831     if (self->return_value) {
1832         if (!ast_local_codegen(self->return_value, self->ir_func, false))
1833             return false;
1834     }
1835
1836     if (!vec_size(self->blocks)) {
1837         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1838         return false;
1839     }
1840
1841     irf->first = self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1842     if (!self->curblock) {
1843         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1844         return false;
1845     }
1846
1847     if (self->argc) {
1848         ir_value *va_count;
1849         ir_value *fixed;
1850         ir_value *sub;
1851         if (!ast_local_codegen(self->argc, self->ir_func, true))
1852             return false;
1853         cgen = self->argc->expression.codegen;
1854         if (!(*cgen)((ast_expression*)(self->argc), self, false, &va_count))
1855             return false;
1856         cgen = self->fixedparams->expression.codegen;
1857         if (!(*cgen)((ast_expression*)(self->fixedparams), self, false, &fixed))
1858             return false;
1859         sub = ir_block_create_binop(self->curblock, ast_ctx(self),
1860                                     ast_function_label(self, "va_count"), INSTR_SUB_F,
1861                                     ir_builder_get_va_count(ir), fixed);
1862         if (!sub)
1863             return false;
1864         if (!ir_block_create_store_op(self->curblock, ast_ctx(self), INSTR_STORE_F,
1865                                       va_count, sub))
1866         {
1867             return false;
1868         }
1869     }
1870
1871     for (i = 0; i < vec_size(self->blocks); ++i) {
1872         cgen = self->blocks[i]->expression.codegen;
1873         if (!(*cgen)((ast_expression*)self->blocks[i], self, false, &dummy))
1874             return false;
1875     }
1876
1877     /* TODO: check return types */
1878     if (!self->curblock->final)
1879     {
1880         if (!self->vtype->expression.next ||
1881             self->vtype->expression.next->vtype == TYPE_VOID)
1882         {
1883             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1884         }
1885         else if (vec_size(self->curblock->entries) || self->curblock == irf->first)
1886         {
1887             if (self->return_value) {
1888                 cgen = self->return_value->expression.codegen;
1889                 if (!(*cgen)((ast_expression*)(self->return_value), self, false, &dummy))
1890                     return false;
1891                 return ir_block_create_return(self->curblock, ast_ctx(self), dummy);
1892             }
1893             else if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1894                                 "control reaches end of non-void function (`%s`) via %s",
1895                                 self->name, self->curblock->label))
1896             {
1897                 return false;
1898             }
1899             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1900         }
1901     }
1902     return true;
1903 }
1904
1905 static bool starts_a_label(ast_expression *ex)
1906 {
1907     while (ex && ast_istype(ex, ast_block)) {
1908         ast_block *b = (ast_block*)ex;
1909         ex = b->exprs[0];
1910     }
1911     if (!ex)
1912         return false;
1913     return ast_istype(ex, ast_label);
1914 }
1915
1916 /* Note, you will not see ast_block_codegen generate ir_blocks.
1917  * To the AST and the IR, blocks are 2 different things.
1918  * In the AST it represents a block of code, usually enclosed in
1919  * curly braces {...}.
1920  * While in the IR it represents a block in terms of control-flow.
1921  */
1922 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1923 {
1924     size_t i;
1925
1926     /* We don't use this
1927      * Note: an ast-representation using the comma-operator
1928      * of the form: (a, b, c) = x should not assign to c...
1929      */
1930     if (lvalue) {
1931         compile_error(ast_ctx(self), "not an l-value (code-block)");
1932         return false;
1933     }
1934
1935     if (self->expression.outr) {
1936         *out = self->expression.outr;
1937         return true;
1938     }
1939
1940     /* output is NULL at first, we'll have each expression
1941      * assign to out output, thus, a comma-operator represention
1942      * using an ast_block will return the last generated value,
1943      * so: (b, c) + a  executed both b and c, and returns c,
1944      * which is then added to a.
1945      */
1946     *out = NULL;
1947
1948     /* generate locals */
1949     for (i = 0; i < vec_size(self->locals); ++i)
1950     {
1951         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1952             if (OPTS_OPTION_BOOL(OPTION_DEBUG))
1953                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1954             return false;
1955         }
1956     }
1957
1958     for (i = 0; i < vec_size(self->exprs); ++i)
1959     {
1960         ast_expression_codegen *gen;
1961         if (func->curblock->final && !starts_a_label(self->exprs[i])) {
1962             if (compile_warning(ast_ctx(self->exprs[i]), WARN_UNREACHABLE_CODE, "unreachable statement"))
1963                 return false;
1964             continue;
1965         }
1966         gen = self->exprs[i]->codegen;
1967         if (!(*gen)(self->exprs[i], func, false, out))
1968             return false;
1969     }
1970
1971     self->expression.outr = *out;
1972
1973     return true;
1974 }
1975
1976 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1977 {
1978     ast_expression_codegen *cgen;
1979     ir_value *left  = NULL;
1980     ir_value *right = NULL;
1981
1982     ast_value       *arr;
1983     ast_value       *idx = 0;
1984     ast_array_index *ai = NULL;
1985
1986     if (lvalue && self->expression.outl) {
1987         *out = self->expression.outl;
1988         return true;
1989     }
1990
1991     if (!lvalue && self->expression.outr) {
1992         *out = self->expression.outr;
1993         return true;
1994     }
1995
1996     if (ast_istype(self->dest, ast_array_index))
1997     {
1998
1999         ai = (ast_array_index*)self->dest;
2000         idx = (ast_value*)ai->index;
2001
2002         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
2003             ai = NULL;
2004     }
2005
2006     if (ai) {
2007         /* we need to call the setter */
2008         ir_value  *iridx, *funval;
2009         ir_instr  *call;
2010
2011         if (lvalue) {
2012             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
2013             return false;
2014         }
2015
2016         arr = (ast_value*)ai->array;
2017         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
2018             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
2019             return false;
2020         }
2021
2022         cgen = idx->expression.codegen;
2023         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
2024             return false;
2025
2026         cgen = arr->setter->expression.codegen;
2027         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
2028             return false;
2029
2030         cgen = self->source->codegen;
2031         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
2032             return false;
2033
2034         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
2035         if (!call)
2036             return false;
2037         ir_call_param(call, iridx);
2038         ir_call_param(call, right);
2039         self->expression.outr = right;
2040     }
2041     else
2042     {
2043         /* regular code */
2044
2045         cgen = self->dest->codegen;
2046         /* lvalue! */
2047         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
2048             return false;
2049         self->expression.outl = left;
2050
2051         cgen = self->source->codegen;
2052         /* rvalue! */
2053         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
2054             return false;
2055
2056         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
2057             return false;
2058         self->expression.outr = right;
2059     }
2060
2061     /* Theoretically, an assinment returns its left side as an
2062      * lvalue, if we don't need an lvalue though, we return
2063      * the right side as an rvalue, otherwise we have to
2064      * somehow know whether or not we need to dereference the pointer
2065      * on the left side - that is: OP_LOAD if it was an address.
2066      * Also: in original QC we cannot OP_LOADP *anyway*.
2067      */
2068     *out = (lvalue ? left : right);
2069
2070     return true;
2071 }
2072
2073 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
2074 {
2075     ast_expression_codegen *cgen;
2076     ir_value *left, *right;
2077
2078     /* A binary operation cannot yield an l-value */
2079     if (lvalue) {
2080         compile_error(ast_ctx(self), "not an l-value (binop)");
2081         return false;
2082     }
2083
2084     if (self->expression.outr) {
2085         *out = self->expression.outr;
2086         return true;
2087     }
2088
2089     if ((OPTS_FLAG(SHORT_LOGIC) || OPTS_FLAG(PERL_LOGIC)) &&
2090         (self->op == INSTR_AND || self->op == INSTR_OR))
2091     {
2092         /* NOTE: The short-logic path will ignore right_first */
2093
2094         /* short circuit evaluation */
2095         ir_block *other, *merge;
2096         ir_block *from_left, *from_right;
2097         ir_instr *phi;
2098         size_t    merge_id;
2099
2100         /* prepare end-block */
2101         merge_id = vec_size(func->ir_func->blocks);
2102         merge    = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
2103
2104         /* generate the left expression */
2105         cgen = self->left->codegen;
2106         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
2107             return false;
2108         /* remember the block */
2109         from_left = func->curblock;
2110
2111         /* create a new block for the right expression */
2112         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
2113         if (self->op == INSTR_AND) {
2114             /* on AND: left==true -> other */
2115             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
2116                 return false;
2117         } else {
2118             /* on OR: left==false -> other */
2119             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
2120                 return false;
2121         }
2122         /* use the likely flag */
2123         vec_last(func->curblock->instr)->likely = true;
2124
2125         /* enter the right-expression's block */
2126         func->curblock = other;
2127         /* generate */
2128         cgen = self->right->codegen;
2129         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
2130             return false;
2131         /* remember block */
2132         from_right = func->curblock;
2133
2134         /* jump to the merge block */
2135         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
2136             return false;
2137
2138         vec_remove(func->ir_func->blocks, merge_id, 1);
2139         vec_push(func->ir_func->blocks, merge);
2140
2141         func->curblock = merge;
2142         phi = ir_block_create_phi(func->curblock, ast_ctx(self),
2143                                   ast_function_label(func, "sce_value"),
2144                                   self->expression.vtype);
2145         ir_phi_add(phi, from_left, left);
2146         ir_phi_add(phi, from_right, right);
2147         *out = ir_phi_value(phi);
2148         if (!*out)
2149             return false;
2150
2151         if (!OPTS_FLAG(PERL_LOGIC)) {
2152             /* cast-to-bool */
2153             if (OPTS_FLAG(CORRECT_LOGIC) && (*out)->vtype == TYPE_VECTOR) {
2154                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
2155                                              ast_function_label(func, "sce_bool_v"),
2156                                              INSTR_NOT_V, *out);
2157                 if (!*out)
2158                     return false;
2159                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
2160                                              ast_function_label(func, "sce_bool"),
2161                                              INSTR_NOT_F, *out);
2162                 if (!*out)
2163                     return false;
2164             }
2165             else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && (*out)->vtype == TYPE_STRING) {
2166                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
2167                                              ast_function_label(func, "sce_bool_s"),
2168                                              INSTR_NOT_S, *out);
2169                 if (!*out)
2170                     return false;
2171                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
2172                                              ast_function_label(func, "sce_bool"),
2173                                              INSTR_NOT_F, *out);
2174                 if (!*out)
2175                     return false;
2176             }
2177             else {
2178                 *out = ir_block_create_binop(func->curblock, ast_ctx(self),
2179                                              ast_function_label(func, "sce_bool"),
2180                                              INSTR_AND, *out, *out);
2181                 if (!*out)
2182                     return false;
2183             }
2184         }
2185
2186         self->expression.outr = *out;
2187         codegen_output_type(self, *out);
2188         return true;
2189     }
2190
2191     if (self->right_first) {
2192         cgen = self->right->codegen;
2193         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
2194             return false;
2195         cgen = self->left->codegen;
2196         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
2197             return false;
2198     } else {
2199         cgen = self->left->codegen;
2200         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
2201             return false;
2202         cgen = self->right->codegen;
2203         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
2204             return false;
2205     }
2206
2207     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
2208                                  self->op, left, right);
2209     if (!*out)
2210         return false;
2211     self->expression.outr = *out;
2212     codegen_output_type(self, *out);
2213
2214     return true;
2215 }
2216
2217 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
2218 {
2219     ast_expression_codegen *cgen;
2220     ir_value *leftl = NULL, *leftr, *right, *bin;
2221
2222     ast_value       *arr;
2223     ast_value       *idx = 0;
2224     ast_array_index *ai = NULL;
2225     ir_value        *iridx = NULL;
2226
2227     if (lvalue && self->expression.outl) {
2228         *out = self->expression.outl;
2229         return true;
2230     }
2231
2232     if (!lvalue && self->expression.outr) {
2233         *out = self->expression.outr;
2234         return true;
2235     }
2236
2237     if (ast_istype(self->dest, ast_array_index))
2238     {
2239
2240         ai = (ast_array_index*)self->dest;
2241         idx = (ast_value*)ai->index;
2242
2243         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
2244             ai = NULL;
2245     }
2246
2247     /* for a binstore we need both an lvalue and an rvalue for the left side */
2248     /* rvalue of destination! */
2249     if (ai) {
2250         cgen = idx->expression.codegen;
2251         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
2252             return false;
2253     }
2254     cgen = self->dest->codegen;
2255     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
2256         return false;
2257
2258     /* source as rvalue only */
2259     cgen = self->source->codegen;
2260     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
2261         return false;
2262
2263     /* now the binary */
2264     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
2265                                 self->opbin, leftr, right);
2266     self->expression.outr = bin;
2267
2268
2269     if (ai) {
2270         /* we need to call the setter */
2271         ir_value  *funval;
2272         ir_instr  *call;
2273
2274         if (lvalue) {
2275             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
2276             return false;
2277         }
2278
2279         arr = (ast_value*)ai->array;
2280         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
2281             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
2282             return false;
2283         }
2284
2285         cgen = arr->setter->expression.codegen;
2286         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
2287             return false;
2288
2289         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
2290         if (!call)
2291             return false;
2292         ir_call_param(call, iridx);
2293         ir_call_param(call, bin);
2294         self->expression.outr = bin;
2295     } else {
2296         /* now store them */
2297         cgen = self->dest->codegen;
2298         /* lvalue of destination */
2299         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
2300             return false;
2301         self->expression.outl = leftl;
2302
2303         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
2304             return false;
2305         self->expression.outr = bin;
2306     }
2307
2308     /* Theoretically, an assinment returns its left side as an
2309      * lvalue, if we don't need an lvalue though, we return
2310      * the right side as an rvalue, otherwise we have to
2311      * somehow know whether or not we need to dereference the pointer
2312      * on the left side - that is: OP_LOAD if it was an address.
2313      * Also: in original QC we cannot OP_LOADP *anyway*.
2314      */
2315     *out = (lvalue ? leftl : bin);
2316
2317     return true;
2318 }
2319
2320 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
2321 {
2322     ast_expression_codegen *cgen;
2323     ir_value *operand;
2324
2325     /* An unary operation cannot yield an l-value */
2326     if (lvalue) {
2327         compile_error(ast_ctx(self), "not an l-value (binop)");
2328         return false;
2329     }
2330
2331     if (self->expression.outr) {
2332         *out = self->expression.outr;
2333         return true;
2334     }
2335
2336     cgen = self->operand->codegen;
2337     /* lvalue! */
2338     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2339         return false;
2340
2341     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
2342                                  self->op, operand);
2343     if (!*out)
2344         return false;
2345     self->expression.outr = *out;
2346
2347     return true;
2348 }
2349
2350 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
2351 {
2352     ast_expression_codegen *cgen;
2353     ir_value *operand;
2354
2355     *out = NULL;
2356
2357     /* In the context of a return operation, we don't actually return
2358      * anything...
2359      */
2360     if (lvalue) {
2361         compile_error(ast_ctx(self), "return-expression is not an l-value");
2362         return false;
2363     }
2364
2365     if (self->expression.outr) {
2366         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
2367         return false;
2368     }
2369     self->expression.outr = (ir_value*)1;
2370
2371     if (self->operand) {
2372         cgen = self->operand->codegen;
2373         /* lvalue! */
2374         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2375             return false;
2376
2377         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
2378             return false;
2379     } else {
2380         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
2381             return false;
2382     }
2383
2384     return true;
2385 }
2386
2387 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
2388 {
2389     ast_expression_codegen *cgen;
2390     ir_value *ent, *field;
2391
2392     /* This function needs to take the 'lvalue' flag into account!
2393      * As lvalue we provide a field-pointer, as rvalue we provide the
2394      * value in a temp.
2395      */
2396
2397     if (lvalue && self->expression.outl) {
2398         *out = self->expression.outl;
2399         return true;
2400     }
2401
2402     if (!lvalue && self->expression.outr) {
2403         *out = self->expression.outr;
2404         return true;
2405     }
2406
2407     cgen = self->entity->codegen;
2408     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
2409         return false;
2410
2411     cgen = self->field->codegen;
2412     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
2413         return false;
2414
2415     if (lvalue) {
2416         /* address! */
2417         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
2418                                             ent, field);
2419     } else {
2420         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
2421                                              ent, field, self->expression.vtype);
2422         /* Done AFTER error checking:
2423         codegen_output_type(self, *out);
2424         */
2425     }
2426     if (!*out) {
2427         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2428                  (lvalue ? "ADDRESS" : "FIELD"),
2429                  type_name[self->expression.vtype]);
2430         return false;
2431     }
2432     if (!lvalue)
2433         codegen_output_type(self, *out);
2434
2435     if (lvalue)
2436         self->expression.outl = *out;
2437     else
2438         self->expression.outr = *out;
2439
2440     /* Hm that should be it... */
2441     return true;
2442 }
2443
2444 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2445 {
2446     ast_expression_codegen *cgen;
2447     ir_value *vec;
2448
2449     /* in QC this is always an lvalue */
2450     if (lvalue && self->rvalue) {
2451         compile_error(ast_ctx(self), "not an l-value (member access)");
2452         return false;
2453     }
2454     if (self->expression.outl) {
2455         *out = self->expression.outl;
2456         return true;
2457     }
2458
2459     cgen = self->owner->codegen;
2460     if (!(*cgen)((ast_expression*)(self->owner), func, false, &vec))
2461         return false;
2462
2463     if (vec->vtype != TYPE_VECTOR &&
2464         !(vec->vtype == TYPE_FIELD && self->owner->next->vtype == TYPE_VECTOR))
2465     {
2466         return false;
2467     }
2468
2469     *out = ir_value_vector_member(vec, self->field);
2470     self->expression.outl = *out;
2471
2472     return (*out != NULL);
2473 }
2474
2475 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2476 {
2477     ast_value *arr;
2478     ast_value *idx;
2479
2480     if (!lvalue && self->expression.outr) {
2481         *out = self->expression.outr;
2482         return true;
2483     }
2484     if (lvalue && self->expression.outl) {
2485         *out = self->expression.outl;
2486         return true;
2487     }
2488
2489     if (!ast_istype(self->array, ast_value)) {
2490         compile_error(ast_ctx(self), "array indexing this way is not supported");
2491         /* note this would actually be pointer indexing because the left side is
2492          * not an actual array but (hopefully) an indexable expression.
2493          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2494          * support this path will be filled.
2495          */
2496         return false;
2497     }
2498
2499     arr = (ast_value*)self->array;
2500     idx = (ast_value*)self->index;
2501
2502     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2503         /* Time to use accessor functions */
2504         ast_expression_codegen *cgen;
2505         ir_value               *iridx, *funval;
2506         ir_instr               *call;
2507
2508         if (lvalue) {
2509             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2510             return false;
2511         }
2512
2513         if (!arr->getter) {
2514             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2515             return false;
2516         }
2517
2518         cgen = self->index->codegen;
2519         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2520             return false;
2521
2522         cgen = arr->getter->expression.codegen;
2523         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2524             return false;
2525
2526         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
2527         if (!call)
2528             return false;
2529         ir_call_param(call, iridx);
2530
2531         *out = ir_call_value(call);
2532         self->expression.outr = *out;
2533         (*out)->vtype = self->expression.vtype;
2534         codegen_output_type(self, *out);
2535         return true;
2536     }
2537
2538     if (idx->expression.vtype == TYPE_FLOAT) {
2539         unsigned int arridx = idx->constval.vfloat;
2540         if (arridx >= self->array->count)
2541         {
2542             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2543             return false;
2544         }
2545         *out = arr->ir_values[arridx];
2546     }
2547     else if (idx->expression.vtype == TYPE_INTEGER) {
2548         unsigned int arridx = idx->constval.vint;
2549         if (arridx >= self->array->count)
2550         {
2551             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2552             return false;
2553         }
2554         *out = arr->ir_values[arridx];
2555     }
2556     else {
2557         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2558         return false;
2559     }
2560     (*out)->vtype = self->expression.vtype;
2561     codegen_output_type(self, *out);
2562     return true;
2563 }
2564
2565 bool ast_argpipe_codegen(ast_argpipe *self, ast_function *func, bool lvalue, ir_value **out)
2566 {
2567     *out = NULL;
2568     if (lvalue) {
2569         compile_error(ast_ctx(self), "argpipe node: not an lvalue");
2570         return false;
2571     }
2572     (void)func;
2573     (void)out;
2574     compile_error(ast_ctx(self), "TODO: argpipe codegen not implemented");
2575     return false;
2576 }
2577
2578 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2579 {
2580     ast_expression_codegen *cgen;
2581
2582     ir_value *condval;
2583     ir_value *dummy;
2584
2585     ir_block *cond;
2586     ir_block *ontrue;
2587     ir_block *onfalse;
2588     ir_block *ontrue_endblock = NULL;
2589     ir_block *onfalse_endblock = NULL;
2590     ir_block *merge = NULL;
2591     int       fold  = 0;
2592
2593     /* We don't output any value, thus also don't care about r/lvalue */
2594     (void)out;
2595     (void)lvalue;
2596
2597     if (self->expression.outr) {
2598         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2599         return false;
2600     }
2601     self->expression.outr = (ir_value*)1;
2602
2603     /* generate the condition */
2604     cgen = self->cond->codegen;
2605     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2606         return false;
2607     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2608     cond = func->curblock;
2609
2610     /* try constant folding away the condition */
2611     if ((fold = fold_cond_ifthen(condval, func, self)) != -1)
2612         return fold;
2613
2614     if (self->on_true) {
2615         /* create on-true block */
2616         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2617         if (!ontrue)
2618             return false;
2619
2620         /* enter the block */
2621         func->curblock = ontrue;
2622
2623         /* generate */
2624         cgen = self->on_true->codegen;
2625         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2626             return false;
2627
2628         /* we now need to work from the current endpoint */
2629         ontrue_endblock = func->curblock;
2630     } else
2631         ontrue = NULL;
2632
2633     /* on-false path */
2634     if (self->on_false) {
2635         /* create on-false block */
2636         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2637         if (!onfalse)
2638             return false;
2639
2640         /* enter the block */
2641         func->curblock = onfalse;
2642
2643         /* generate */
2644         cgen = self->on_false->codegen;
2645         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2646             return false;
2647
2648         /* we now need to work from the current endpoint */
2649         onfalse_endblock = func->curblock;
2650     } else
2651         onfalse = NULL;
2652
2653     /* Merge block were they all merge in to */
2654     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2655     {
2656         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2657         if (!merge)
2658             return false;
2659         /* add jumps ot the merge block */
2660         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2661             return false;
2662         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2663             return false;
2664
2665         /* Now enter the merge block */
2666         func->curblock = merge;
2667     }
2668
2669     /* we create the if here, that way all blocks are ordered :)
2670      */
2671     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2672                             (ontrue  ? ontrue  : merge),
2673                             (onfalse ? onfalse : merge)))
2674     {
2675         return false;
2676     }
2677
2678     return true;
2679 }
2680
2681 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2682 {
2683     ast_expression_codegen *cgen;
2684
2685     ir_value *condval;
2686     ir_value *trueval, *falseval;
2687     ir_instr *phi;
2688
2689     ir_block *cond = func->curblock;
2690     ir_block *cond_out = NULL;
2691     ir_block *ontrue, *ontrue_out = NULL;
2692     ir_block *onfalse, *onfalse_out = NULL;
2693     ir_block *merge;
2694     int       fold  = 0;
2695
2696     /* Ternary can never create an lvalue... */
2697     if (lvalue)
2698         return false;
2699
2700     /* In theory it shouldn't be possible to pass through a node twice, but
2701      * in case we add any kind of optimization pass for the AST itself, it
2702      * may still happen, thus we remember a created ir_value and simply return one
2703      * if it already exists.
2704      */
2705     if (self->expression.outr) {
2706         *out = self->expression.outr;
2707         return true;
2708     }
2709
2710     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2711
2712     /* generate the condition */
2713     func->curblock = cond;
2714     cgen = self->cond->codegen;
2715     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2716         return false;
2717     cond_out = func->curblock;
2718
2719     /* try constant folding away the condition */
2720     if ((fold = fold_cond_ternary(condval, func, self)) != -1)
2721         return fold;
2722
2723     /* create on-true block */
2724     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2725     if (!ontrue)
2726         return false;
2727     else
2728     {
2729         /* enter the block */
2730         func->curblock = ontrue;
2731
2732         /* generate */
2733         cgen = self->on_true->codegen;
2734         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2735             return false;
2736
2737         ontrue_out = func->curblock;
2738     }
2739
2740     /* create on-false block */
2741     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2742     if (!onfalse)
2743         return false;
2744     else
2745     {
2746         /* enter the block */
2747         func->curblock = onfalse;
2748
2749         /* generate */
2750         cgen = self->on_false->codegen;
2751         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2752             return false;
2753
2754         onfalse_out = func->curblock;
2755     }
2756
2757     /* create merge block */
2758     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2759     if (!merge)
2760         return false;
2761     /* jump to merge block */
2762     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2763         return false;
2764     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2765         return false;
2766
2767     /* create if instruction */
2768     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2769         return false;
2770
2771     /* Now enter the merge block */
2772     func->curblock = merge;
2773
2774     /* Here, now, we need a PHI node
2775      * but first some sanity checking...
2776      */
2777     if (trueval->vtype != falseval->vtype && trueval->vtype != TYPE_NIL && falseval->vtype != TYPE_NIL) {
2778         /* error("ternary with different types on the two sides"); */
2779         compile_error(ast_ctx(self), "internal error: ternary operand types invalid");
2780         return false;
2781     }
2782
2783     /* create PHI */
2784     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), self->expression.vtype);
2785     if (!phi) {
2786         compile_error(ast_ctx(self), "internal error: failed to generate phi node");
2787         return false;
2788     }
2789     ir_phi_add(phi, ontrue_out,  trueval);
2790     ir_phi_add(phi, onfalse_out, falseval);
2791
2792     self->expression.outr = ir_phi_value(phi);
2793     *out = self->expression.outr;
2794
2795     codegen_output_type(self, *out);
2796
2797     return true;
2798 }
2799
2800 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2801 {
2802     ast_expression_codegen *cgen;
2803
2804     ir_value *dummy      = NULL;
2805     ir_value *precond    = NULL;
2806     ir_value *postcond   = NULL;
2807
2808     /* Since we insert some jumps "late" so we have blocks
2809      * ordered "nicely", we need to keep track of the actual end-blocks
2810      * of expressions to add the jumps to.
2811      */
2812     ir_block *bbody      = NULL, *end_bbody      = NULL;
2813     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2814     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2815     ir_block *bincrement = NULL, *end_bincrement = NULL;
2816     ir_block *bout       = NULL, *bin            = NULL;
2817
2818     /* let's at least move the outgoing block to the end */
2819     size_t    bout_id;
2820
2821     /* 'break' and 'continue' need to be able to find the right blocks */
2822     ir_block *bcontinue     = NULL;
2823     ir_block *bbreak        = NULL;
2824
2825     ir_block *tmpblock      = NULL;
2826
2827     (void)lvalue;
2828     (void)out;
2829
2830     if (self->expression.outr) {
2831         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2832         return false;
2833     }
2834     self->expression.outr = (ir_value*)1;
2835
2836     /* NOTE:
2837      * Should we ever need some kind of block ordering, better make this function
2838      * move blocks around than write a block ordering algorithm later... after all
2839      * the ast and ir should work together, not against each other.
2840      */
2841
2842     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2843      * anyway if for example it contains a ternary.
2844      */
2845     if (self->initexpr)
2846     {
2847         cgen = self->initexpr->codegen;
2848         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2849             return false;
2850     }
2851
2852     /* Store the block from which we enter this chaos */
2853     bin = func->curblock;
2854
2855     /* The pre-loop condition needs its own block since we
2856      * need to be able to jump to the start of that expression.
2857      */
2858     if (self->precond)
2859     {
2860         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2861         if (!bprecond)
2862             return false;
2863
2864         /* the pre-loop-condition the least important place to 'continue' at */
2865         bcontinue = bprecond;
2866
2867         /* enter */
2868         func->curblock = bprecond;
2869
2870         /* generate */
2871         cgen = self->precond->codegen;
2872         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2873             return false;
2874
2875         end_bprecond = func->curblock;
2876     } else {
2877         bprecond = end_bprecond = NULL;
2878     }
2879
2880     /* Now the next blocks won't be ordered nicely, but we need to
2881      * generate them this early for 'break' and 'continue'.
2882      */
2883     if (self->increment) {
2884         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2885         if (!bincrement)
2886             return false;
2887         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2888     } else {
2889         bincrement = end_bincrement = NULL;
2890     }
2891
2892     if (self->postcond) {
2893         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2894         if (!bpostcond)
2895             return false;
2896         bcontinue = bpostcond; /* postcond comes before the increment */
2897     } else {
2898         bpostcond = end_bpostcond = NULL;
2899     }
2900
2901     bout_id = vec_size(func->ir_func->blocks);
2902     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2903     if (!bout)
2904         return false;
2905     bbreak = bout;
2906
2907     /* The loop body... */
2908     /* if (self->body) */
2909     {
2910         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2911         if (!bbody)
2912             return false;
2913
2914         /* enter */
2915         func->curblock = bbody;
2916
2917         vec_push(func->breakblocks,    bbreak);
2918         if (bcontinue)
2919             vec_push(func->continueblocks, bcontinue);
2920         else
2921             vec_push(func->continueblocks, bbody);
2922
2923         /* generate */
2924         if (self->body) {
2925             cgen = self->body->codegen;
2926             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2927                 return false;
2928         }
2929
2930         end_bbody = func->curblock;
2931         vec_pop(func->breakblocks);
2932         vec_pop(func->continueblocks);
2933     }
2934
2935     /* post-loop-condition */
2936     if (self->postcond)
2937     {
2938         /* enter */
2939         func->curblock = bpostcond;
2940
2941         /* generate */
2942         cgen = self->postcond->codegen;
2943         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2944             return false;
2945
2946         end_bpostcond = func->curblock;
2947     }
2948
2949     /* The incrementor */
2950     if (self->increment)
2951     {
2952         /* enter */
2953         func->curblock = bincrement;
2954
2955         /* generate */
2956         cgen = self->increment->codegen;
2957         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2958             return false;
2959
2960         end_bincrement = func->curblock;
2961     }
2962
2963     /* In any case now, we continue from the outgoing block */
2964     func->curblock = bout;
2965
2966     /* Now all blocks are in place */
2967     /* From 'bin' we jump to whatever comes first */
2968     if      (bprecond)   tmpblock = bprecond;
2969     else                 tmpblock = bbody;    /* can never be null */
2970
2971     /* DEAD CODE
2972     else if (bpostcond)  tmpblock = bpostcond;
2973     else                 tmpblock = bout;
2974     */
2975
2976     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2977         return false;
2978
2979     /* From precond */
2980     if (bprecond)
2981     {
2982         ir_block *ontrue, *onfalse;
2983         ontrue = bbody; /* can never be null */
2984
2985         /* all of this is dead code
2986         else if (bincrement) ontrue = bincrement;
2987         else                 ontrue = bpostcond;
2988         */
2989
2990         onfalse = bout;
2991         if (self->pre_not) {
2992             tmpblock = ontrue;
2993             ontrue   = onfalse;
2994             onfalse  = tmpblock;
2995         }
2996         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2997             return false;
2998     }
2999
3000     /* from body */
3001     if (bbody)
3002     {
3003         if      (bincrement) tmpblock = bincrement;
3004         else if (bpostcond)  tmpblock = bpostcond;
3005         else if (bprecond)   tmpblock = bprecond;
3006         else                 tmpblock = bbody;
3007         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
3008             return false;
3009     }
3010
3011     /* from increment */
3012     if (bincrement)
3013     {
3014         if      (bpostcond)  tmpblock = bpostcond;
3015         else if (bprecond)   tmpblock = bprecond;
3016         else if (bbody)      tmpblock = bbody;
3017         else                 tmpblock = bout;
3018         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
3019             return false;
3020     }
3021
3022     /* from postcond */
3023     if (bpostcond)
3024     {
3025         ir_block *ontrue, *onfalse;
3026         if      (bprecond)   ontrue = bprecond;
3027         else                 ontrue = bbody; /* can never be null */
3028
3029         /* all of this is dead code
3030         else if (bincrement) ontrue = bincrement;
3031         else                 ontrue = bpostcond;
3032         */
3033
3034         onfalse = bout;
3035         if (self->post_not) {
3036             tmpblock = ontrue;
3037             ontrue   = onfalse;
3038             onfalse  = tmpblock;
3039         }
3040         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
3041             return false;
3042     }
3043
3044     /* Move 'bout' to the end */
3045     vec_remove(func->ir_func->blocks, bout_id, 1);
3046     vec_push(func->ir_func->blocks, bout);
3047
3048     return true;
3049 }
3050
3051 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
3052 {
3053     ir_block *target;
3054
3055     *out = NULL;
3056
3057     if (lvalue) {
3058         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
3059         return false;
3060     }
3061
3062     if (self->expression.outr) {
3063         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
3064         return false;
3065     }
3066     self->expression.outr = (ir_value*)1;
3067
3068     if (self->is_continue)
3069         target = func->continueblocks[vec_size(func->continueblocks)-1-self->levels];
3070     else
3071         target = func->breakblocks[vec_size(func->breakblocks)-1-self->levels];
3072
3073     if (!target) {
3074         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
3075         return false;
3076     }
3077
3078     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
3079         return false;
3080     return true;
3081 }
3082
3083 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
3084 {
3085     ast_expression_codegen *cgen;
3086
3087     ast_switch_case *def_case     = NULL;
3088     ir_block        *def_bfall    = NULL;
3089     ir_block        *def_bfall_to = NULL;
3090     bool set_def_bfall_to = false;
3091
3092     ir_value *dummy     = NULL;
3093     ir_value *irop      = NULL;
3094     ir_block *bout      = NULL;
3095     ir_block *bfall     = NULL;
3096     size_t    bout_id;
3097     size_t    c;
3098
3099     char      typestr[1024];
3100     uint16_t  cmpinstr;
3101
3102     if (lvalue) {
3103         compile_error(ast_ctx(self), "switch expression is not an l-value");
3104         return false;
3105     }
3106
3107     if (self->expression.outr) {
3108         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
3109         return false;
3110     }
3111     self->expression.outr = (ir_value*)1;
3112
3113     (void)lvalue;
3114     (void)out;
3115
3116     cgen = self->operand->codegen;
3117     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
3118         return false;
3119
3120     if (!vec_size(self->cases))
3121         return true;
3122
3123     cmpinstr = type_eq_instr[irop->vtype];
3124     if (cmpinstr >= VINSTR_END) {
3125         ast_type_to_string(self->operand, typestr, sizeof(typestr));
3126         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
3127         return false;
3128     }
3129
3130     bout_id = vec_size(func->ir_func->blocks);
3131     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
3132     if (!bout)
3133         return false;
3134
3135     /* setup the break block */
3136     vec_push(func->breakblocks, bout);
3137
3138     /* Now create all cases */
3139     for (c = 0; c < vec_size(self->cases); ++c) {
3140         ir_value *cond, *val;
3141         ir_block *bcase, *bnot;
3142         size_t bnot_id;
3143
3144         ast_switch_case *swcase = &self->cases[c];
3145
3146         if (swcase->value) {
3147             /* A regular case */
3148             /* generate the condition operand */
3149             cgen = swcase->value->codegen;
3150             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
3151                 return false;
3152             /* generate the condition */
3153             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
3154             if (!cond)
3155                 return false;
3156
3157             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
3158             bnot_id = vec_size(func->ir_func->blocks);
3159             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
3160             if (!bcase || !bnot)
3161                 return false;
3162             if (set_def_bfall_to) {
3163                 set_def_bfall_to = false;
3164                 def_bfall_to = bcase;
3165             }
3166             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
3167                 return false;
3168
3169             /* Make the previous case-end fall through */
3170             if (bfall && !bfall->final) {
3171                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
3172                     return false;
3173             }
3174
3175             /* enter the case */
3176             func->curblock = bcase;
3177             cgen = swcase->code->codegen;
3178             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
3179                 return false;
3180
3181             /* remember this block to fall through from */
3182             bfall = func->curblock;
3183
3184             /* enter the else and move it down */
3185             func->curblock = bnot;
3186             vec_remove(func->ir_func->blocks, bnot_id, 1);
3187             vec_push(func->ir_func->blocks, bnot);
3188         } else {
3189             /* The default case */
3190             /* Remember where to fall through from: */
3191             def_bfall = bfall;
3192             bfall     = NULL;
3193             /* remember which case it was */
3194             def_case  = swcase;
3195             /* And the next case will be remembered */
3196             set_def_bfall_to = true;
3197         }
3198     }
3199
3200     /* Jump from the last bnot to bout */
3201     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
3202         /*
3203         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
3204         */
3205         return false;
3206     }
3207
3208     /* If there was a default case, put it down here */
3209     if (def_case) {
3210         ir_block *bcase;
3211
3212         /* No need to create an extra block */
3213         bcase = func->curblock;
3214
3215         /* Insert the fallthrough jump */
3216         if (def_bfall && !def_bfall->final) {
3217             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
3218                 return false;
3219         }
3220
3221         /* Now generate the default code */
3222         cgen = def_case->code->codegen;
3223         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
3224             return false;
3225
3226         /* see if we need to fall through */
3227         if (def_bfall_to && !func->curblock->final)
3228         {
3229             if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
3230                 return false;
3231         }
3232     }
3233
3234     /* Jump from the last bnot to bout */
3235     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
3236         return false;
3237     /* enter the outgoing block */
3238     func->curblock = bout;
3239
3240     /* restore the break block */
3241     vec_pop(func->breakblocks);
3242
3243     /* Move 'bout' to the end, it's nicer */
3244     vec_remove(func->ir_func->blocks, bout_id, 1);
3245     vec_push(func->ir_func->blocks, bout);
3246
3247     return true;
3248 }
3249
3250 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
3251 {
3252     size_t i;
3253     ir_value *dummy;
3254
3255     if (self->undefined) {
3256         compile_error(ast_ctx(self), "internal error: ast_label never defined");
3257         return false;
3258     }
3259
3260     *out = NULL;
3261     if (lvalue) {
3262         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
3263         return false;
3264     }
3265
3266     /* simply create a new block and jump to it */
3267     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
3268     if (!self->irblock) {
3269         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
3270         return false;
3271     }
3272     if (!func->curblock->final) {
3273         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
3274             return false;
3275     }
3276
3277     /* enter the new block */
3278     func->curblock = self->irblock;
3279
3280     /* Generate all the leftover gotos */
3281     for (i = 0; i < vec_size(self->gotos); ++i) {
3282         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
3283             return false;
3284     }
3285
3286     return true;
3287 }
3288
3289 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
3290 {
3291     *out = NULL;
3292     if (lvalue) {
3293         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
3294         return false;
3295     }
3296
3297     if (self->target->irblock) {
3298         if (self->irblock_from) {
3299             /* we already tried once, this is the callback */
3300             self->irblock_from->final = false;
3301             if (!ir_block_create_goto(self->irblock_from, ast_ctx(self), self->target->irblock)) {
3302                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
3303                 return false;
3304             }
3305         }
3306         else
3307         {
3308             if (!ir_block_create_goto(func->curblock, ast_ctx(self), self->target->irblock)) {
3309                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
3310                 return false;
3311             }
3312         }
3313     }
3314     else
3315     {
3316         /* the target has not yet been created...
3317          * close this block in a sneaky way:
3318          */
3319         func->curblock->final = true;
3320         self->irblock_from = func->curblock;
3321         ast_label_register_goto(self->target, self);
3322     }
3323
3324     return true;
3325 }
3326
3327 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
3328 {
3329     ast_expression_codegen *cgen;
3330     ir_value              **params;
3331     ir_instr               *callinstr;
3332     size_t i;
3333
3334     ir_value *funval = NULL;
3335
3336     /* return values are never lvalues */
3337     if (lvalue) {
3338         compile_error(ast_ctx(self), "not an l-value (function call)");
3339         return false;
3340     }
3341
3342     if (self->expression.outr) {
3343         *out = self->expression.outr;
3344         return true;
3345     }
3346
3347     cgen = self->func->codegen;
3348     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
3349         return false;
3350     if (!funval)
3351         return false;
3352
3353     params = NULL;
3354
3355     /* parameters */
3356     for (i = 0; i < vec_size(self->params); ++i)
3357     {
3358         ir_value *param;
3359         ast_expression *expr = self->params[i];
3360
3361         cgen = expr->codegen;
3362         if (!(*cgen)(expr, func, false, &param))
3363             goto error;
3364         if (!param)
3365             goto error;
3366         vec_push(params, param);
3367     }
3368
3369     /* varargs counter */
3370     if (self->va_count) {
3371         ir_value   *va_count;
3372         ir_builder *builder = func->curblock->owner->owner;
3373         cgen = self->va_count->codegen;
3374         if (!(*cgen)((ast_expression*)(self->va_count), func, false, &va_count))
3375             return false;
3376         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), INSTR_STORE_F,
3377                                       ir_builder_get_va_count(builder), va_count))
3378         {
3379             return false;
3380         }
3381     }
3382
3383     callinstr = ir_block_create_call(func->curblock, ast_ctx(self),
3384                                      ast_function_label(func, "call"),
3385                                      funval, !!(self->func->flags & AST_FLAG_NORETURN));
3386     if (!callinstr)
3387         goto error;
3388
3389     for (i = 0; i < vec_size(params); ++i) {
3390         ir_call_param(callinstr, params[i]);
3391     }
3392
3393     *out = ir_call_value(callinstr);
3394     self->expression.outr = *out;
3395
3396     codegen_output_type(self, *out);
3397
3398     vec_free(params);
3399     return true;
3400 error:
3401     vec_free(params);
3402     return false;
3403 }