]> de.git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
get rid of some code duplication, and fix some wrong type adoptions in the ast
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38
39 /* It must not be possible to get here. */
40 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 {
42     (void)self;
43     con_err("ast node missing destroy()\n");
44     abort();
45 }
46
47 /* Initialize main ast node aprts */
48 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
49 {
50     self->node.context = ctx;
51     self->node.destroy = &_ast_node_destroy;
52     self->node.keep    = false;
53     self->node.nodetype = nodetype;
54     self->node.side_effects = false;
55 }
56
57 /* weight and side effects */
58 static void _ast_propagate_effects(ast_node *self, ast_node *other)
59 {
60     if (ast_side_effects(other))
61         ast_side_effects(self) = true;
62 }
63 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
64
65 /* General expression initialization */
66 static void ast_expression_init(ast_expression *self,
67                                 ast_expression_codegen *codegen)
68 {
69     self->expression.codegen  = codegen;
70     self->expression.vtype    = TYPE_VOID;
71     self->expression.next     = NULL;
72     self->expression.outl     = NULL;
73     self->expression.outr     = NULL;
74     self->expression.variadic = false;
75     self->expression.params   = NULL;
76 }
77
78 static void ast_expression_delete(ast_expression *self)
79 {
80     size_t i;
81     if (self->expression.next)
82         ast_delete(self->expression.next);
83     for (i = 0; i < vec_size(self->expression.params); ++i) {
84         ast_delete(self->expression.params[i]);
85     }
86     vec_free(self->expression.params);
87 }
88
89 static void ast_expression_delete_full(ast_expression *self)
90 {
91     ast_expression_delete(self);
92     mem_d(self);
93 }
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < vec_size(fromex->params); ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117         vec_push(selfex->params, v);
118     }
119     return cp;
120 }
121
122 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
123 {
124     size_t i;
125     const ast_expression_common *fromex;
126     ast_expression_common *selfex;
127     self->expression.vtype = other->expression.vtype;
128     if (other->expression.next) {
129         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
130         if (!self->expression.next)
131             return false;
132     }
133     fromex   = &other->expression;
134     selfex = &self->expression;
135     selfex->variadic = fromex->variadic;
136     for (i = 0; i < vec_size(fromex->params); ++i) {
137         ast_value *v = ast_value_copy(fromex->params[i]);
138         if (!v)
139             return false;
140         vec_push(selfex->params, v);
141     }
142     return true;
143 }
144
145 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
146 {
147     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
148     ast_expression_init(self, NULL);
149     self->expression.codegen = NULL;
150     self->expression.next    = NULL;
151     self->expression.vtype   = vtype;
152     return self;
153 }
154
155 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
156 {
157     size_t i;
158     const ast_expression_common *fromex;
159     ast_expression_common *selfex;
160
161     if (!ex)
162         return NULL;
163     else
164     {
165         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
166         ast_expression_init(self, NULL);
167
168         fromex   = &ex->expression;
169         selfex = &self->expression;
170
171         /* This may never be codegen()d */
172         selfex->codegen = NULL;
173
174         selfex->vtype = fromex->vtype;
175         if (fromex->next)
176         {
177             selfex->next = ast_type_copy(ctx, fromex->next);
178             if (!selfex->next) {
179                 ast_expression_delete_full(self);
180                 return NULL;
181             }
182         }
183         else
184             selfex->next = NULL;
185
186         selfex->variadic = fromex->variadic;
187         for (i = 0; i < vec_size(fromex->params); ++i) {
188             ast_value *v = ast_value_copy(fromex->params[i]);
189             if (!v) {
190                 ast_expression_delete_full(self);
191                 return NULL;
192             }
193             vec_push(selfex->params, v);
194         }
195
196         return self;
197     }
198 }
199
200 bool ast_compare_type(ast_expression *a, ast_expression *b)
201 {
202     if (a->expression.vtype != b->expression.vtype)
203         return false;
204     if (!a->expression.next != !b->expression.next)
205         return false;
206     if (vec_size(a->expression.params) != vec_size(b->expression.params))
207         return false;
208     if (a->expression.variadic != b->expression.variadic)
209         return false;
210     if (vec_size(a->expression.params)) {
211         size_t i;
212         for (i = 0; i < vec_size(a->expression.params); ++i) {
213             if (!ast_compare_type((ast_expression*)a->expression.params[i],
214                                   (ast_expression*)b->expression.params[i]))
215                 return false;
216         }
217     }
218     if (a->expression.next)
219         return ast_compare_type(a->expression.next, b->expression.next);
220     return true;
221 }
222
223 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
224 {
225     const char *typestr;
226     size_t typelen;
227     size_t i;
228
229     if (!e) {
230         if (pos + 6 >= bufsize)
231             goto full;
232         strcpy(buf + pos, "(null)");
233         return pos + 6;
234     }
235
236     if (pos + 1 >= bufsize)
237         goto full;
238
239     switch (e->expression.vtype) {
240         case TYPE_VARIANT:
241             strcpy(buf + pos, "(variant)");
242             return pos + 9;
243
244         case TYPE_FIELD:
245             buf[pos++] = '.';
246             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
247
248         case TYPE_POINTER:
249             if (pos + 3 >= bufsize)
250                 goto full;
251             buf[pos++] = '*';
252             buf[pos++] = '(';
253             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
254             if (pos + 1 >= bufsize)
255                 goto full;
256             buf[pos++] = ')';
257             return pos;
258
259         case TYPE_FUNCTION:
260             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
261             if (pos + 2 >= bufsize)
262                 goto full;
263             if (!vec_size(e->expression.params)) {
264                 buf[pos++] = '(';
265                 buf[pos++] = ')';
266                 return pos;
267             }
268             buf[pos++] = '(';
269             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
270             for (i = 1; i < vec_size(e->expression.params); ++i) {
271                 if (pos + 2 >= bufsize)
272                     goto full;
273                 buf[pos++] = ',';
274                 buf[pos++] = ' ';
275                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
276             }
277             if (pos + 1 >= bufsize)
278                 goto full;
279             buf[pos++] = ')';
280             return pos;
281
282         case TYPE_ARRAY:
283             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
284             if (pos + 1 >= bufsize)
285                 goto full;
286             buf[pos++] = '[';
287             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = ']';
291             return pos;
292
293         default:
294             typestr = type_name[e->expression.vtype];
295             typelen = strlen(typestr);
296             if (pos + typelen >= bufsize)
297                 goto full;
298             strcpy(buf + pos, typestr);
299             return pos + typelen;
300     }
301
302 full:
303     buf[bufsize-3] = '.';
304     buf[bufsize-2] = '.';
305     buf[bufsize-1] = '.';
306     return bufsize;
307 }
308
309 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
310 {
311     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
312     buf[pos] = 0;
313 }
314
315 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
316 {
317     ast_instantiate(ast_value, ctx, ast_value_delete);
318     ast_expression_init((ast_expression*)self,
319                         (ast_expression_codegen*)&ast_value_codegen);
320     self->expression.node.keep = true; /* keep */
321
322     self->name = name ? util_strdup(name) : NULL;
323     self->expression.vtype = t;
324     self->expression.next  = NULL;
325     self->isfield  = false;
326     self->cvq      = CV_NONE;
327     self->hasvalue = false;
328     self->uses    = 0;
329     memset(&self->constval, 0, sizeof(self->constval));
330
331     self->ir_v           = NULL;
332     self->ir_values      = NULL;
333     self->ir_value_count = 0;
334
335     self->setter = NULL;
336     self->getter = NULL;
337
338     return self;
339 }
340
341 void ast_value_delete(ast_value* self)
342 {
343     if (self->name)
344         mem_d((void*)self->name);
345     if (self->hasvalue) {
346         switch (self->expression.vtype)
347         {
348         case TYPE_STRING:
349             mem_d((void*)self->constval.vstring);
350             break;
351         case TYPE_FUNCTION:
352             /* unlink us from the function node */
353             self->constval.vfunc->vtype = NULL;
354             break;
355         /* NOTE: delete function? currently collected in
356          * the parser structure
357          */
358         default:
359             break;
360         }
361     }
362     if (self->ir_values)
363         mem_d(self->ir_values);
364     ast_expression_delete((ast_expression*)self);
365     mem_d(self);
366 }
367
368 void ast_value_params_add(ast_value *self, ast_value *p)
369 {
370     vec_push(self->expression.params, p);
371 }
372
373 bool ast_value_set_name(ast_value *self, const char *name)
374 {
375     if (self->name)
376         mem_d((void*)self->name);
377     self->name = util_strdup(name);
378     return !!self->name;
379 }
380
381 ast_binary* ast_binary_new(lex_ctx ctx, int op,
382                            ast_expression* left, ast_expression* right)
383 {
384     ast_instantiate(ast_binary, ctx, ast_binary_delete);
385     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
386
387     self->op = op;
388     self->left = left;
389     self->right = right;
390
391     ast_propagate_effects(self, left);
392     ast_propagate_effects(self, right);
393
394     if (op >= INSTR_EQ_F && op <= INSTR_GT)
395         self->expression.vtype = TYPE_FLOAT;
396     else if (op == INSTR_AND || op == INSTR_OR ||
397              op == INSTR_BITAND || op == INSTR_BITOR)
398         self->expression.vtype = TYPE_FLOAT;
399     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
400         self->expression.vtype = TYPE_VECTOR;
401     else if (op == INSTR_MUL_V)
402         self->expression.vtype = TYPE_FLOAT;
403     else
404         self->expression.vtype = left->expression.vtype;
405
406     return self;
407 }
408
409 void ast_binary_delete(ast_binary *self)
410 {
411     ast_unref(self->left);
412     ast_unref(self->right);
413     ast_expression_delete((ast_expression*)self);
414     mem_d(self);
415 }
416
417 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
418                                ast_expression* left, ast_expression* right)
419 {
420     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
421     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
422
423     ast_side_effects(self) = true;
424
425     self->opstore = storop;
426     self->opbin   = op;
427     self->dest    = left;
428     self->source  = right;
429
430     self->keep_dest = false;
431
432     if (!ast_type_adopt(self, left)) {
433         ast_delete(self);
434         return NULL;
435     }
436
437     return self;
438 }
439
440 void ast_binstore_delete(ast_binstore *self)
441 {
442     if (!self->keep_dest)
443         ast_unref(self->dest);
444     ast_unref(self->source);
445     ast_expression_delete((ast_expression*)self);
446     mem_d(self);
447 }
448
449 ast_unary* ast_unary_new(lex_ctx ctx, int op,
450                          ast_expression *expr)
451 {
452     ast_instantiate(ast_unary, ctx, ast_unary_delete);
453     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
454
455     self->op = op;
456     self->operand = expr;
457
458     ast_propagate_effects(self, expr);
459
460     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
461         self->expression.vtype = TYPE_FLOAT;
462     } else
463         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
464
465     return self;
466 }
467
468 void ast_unary_delete(ast_unary *self)
469 {
470     ast_unref(self->operand);
471     ast_expression_delete((ast_expression*)self);
472     mem_d(self);
473 }
474
475 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
476 {
477     ast_instantiate(ast_return, ctx, ast_return_delete);
478     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
479
480     self->operand = expr;
481
482     if (expr)
483         ast_propagate_effects(self, expr);
484
485     return self;
486 }
487
488 void ast_return_delete(ast_return *self)
489 {
490     if (self->operand)
491         ast_unref(self->operand);
492     ast_expression_delete((ast_expression*)self);
493     mem_d(self);
494 }
495
496 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
497 {
498     if (field->expression.vtype != TYPE_FIELD) {
499         compile_error(ctx, "ast_entfield_new with expression not of type field");
500         return NULL;
501     }
502     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
503 }
504
505 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
506 {
507     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
508
509     if (!outtype) {
510         mem_d(self);
511         /* Error: field has no type... */
512         return NULL;
513     }
514
515     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
516
517     self->entity = entity;
518     self->field  = field;
519     ast_propagate_effects(self, entity);
520     ast_propagate_effects(self, field);
521
522     if (!ast_type_adopt(self, outtype)) {
523         ast_entfield_delete(self);
524         return NULL;
525     }
526
527     return self;
528 }
529
530 void ast_entfield_delete(ast_entfield *self)
531 {
532     ast_unref(self->entity);
533     ast_unref(self->field);
534     ast_expression_delete((ast_expression*)self);
535     mem_d(self);
536 }
537
538 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
539 {
540     ast_instantiate(ast_member, ctx, ast_member_delete);
541     if (field >= 3) {
542         mem_d(self);
543         return NULL;
544     }
545
546     if (owner->expression.vtype != TYPE_VECTOR &&
547         owner->expression.vtype != TYPE_FIELD) {
548         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
549         mem_d(self);
550         return NULL;
551     }
552
553     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
554     self->expression.node.keep = true; /* keep */
555
556     if (owner->expression.vtype == TYPE_VECTOR) {
557         self->expression.vtype = TYPE_FLOAT;
558         self->expression.next  = NULL;
559     } else {
560         self->expression.vtype = TYPE_FIELD;
561         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
562     }
563
564     self->owner = owner;
565     ast_propagate_effects(self, owner);
566
567     self->field = field;
568     if (name)
569         self->name = util_strdup(name);
570     else
571         self->name = NULL;
572
573     return self;
574 }
575
576 void ast_member_delete(ast_member *self)
577 {
578     /* The owner is always an ast_value, which has .keep=true,
579      * also: ast_members are usually deleted after the owner, thus
580      * this will cause invalid access
581     ast_unref(self->owner);
582      * once we allow (expression).x to access a vector-member, we need
583      * to change this: preferably by creating an alternate ast node for this
584      * purpose that is not garbage-collected.
585     */
586     ast_expression_delete((ast_expression*)self);
587     mem_d(self);
588 }
589
590 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
591 {
592     ast_expression *outtype;
593     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
594
595     outtype = array->expression.next;
596     if (!outtype) {
597         mem_d(self);
598         /* Error: field has no type... */
599         return NULL;
600     }
601
602     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
603
604     self->array = array;
605     self->index = index;
606     ast_propagate_effects(self, array);
607     ast_propagate_effects(self, index);
608
609     if (!ast_type_adopt(self, outtype)) {
610         ast_array_index_delete(self);
611         return NULL;
612     }
613     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
614         if (self->expression.vtype != TYPE_ARRAY) {
615             compile_error(ast_ctx(self), "array_index node on type");
616             ast_array_index_delete(self);
617             return NULL;
618         }
619         self->array = outtype;
620         self->expression.vtype = TYPE_FIELD;
621     }
622
623     return self;
624 }
625
626 void ast_array_index_delete(ast_array_index *self)
627 {
628     ast_unref(self->array);
629     ast_unref(self->index);
630     ast_expression_delete((ast_expression*)self);
631     mem_d(self);
632 }
633
634 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
635 {
636     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
637     if (!ontrue && !onfalse) {
638         /* because it is invalid */
639         mem_d(self);
640         return NULL;
641     }
642     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
643
644     self->cond     = cond;
645     self->on_true  = ontrue;
646     self->on_false = onfalse;
647     ast_propagate_effects(self, cond);
648     if (ontrue)
649         ast_propagate_effects(self, ontrue);
650     if (onfalse)
651         ast_propagate_effects(self, onfalse);
652
653     return self;
654 }
655
656 void ast_ifthen_delete(ast_ifthen *self)
657 {
658     ast_unref(self->cond);
659     if (self->on_true)
660         ast_unref(self->on_true);
661     if (self->on_false)
662         ast_unref(self->on_false);
663     ast_expression_delete((ast_expression*)self);
664     mem_d(self);
665 }
666
667 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
668 {
669     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
670     /* This time NEITHER must be NULL */
671     if (!ontrue || !onfalse) {
672         mem_d(self);
673         return NULL;
674     }
675     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
676
677     self->cond     = cond;
678     self->on_true  = ontrue;
679     self->on_false = onfalse;
680     ast_propagate_effects(self, cond);
681     ast_propagate_effects(self, ontrue);
682     ast_propagate_effects(self, onfalse);
683
684     if (!ast_type_adopt(self, ontrue)) {
685         ast_ternary_delete(self);
686         return NULL;
687     }
688
689     return self;
690 }
691
692 void ast_ternary_delete(ast_ternary *self)
693 {
694     ast_unref(self->cond);
695     ast_unref(self->on_true);
696     ast_unref(self->on_false);
697     ast_expression_delete((ast_expression*)self);
698     mem_d(self);
699 }
700
701 ast_loop* ast_loop_new(lex_ctx ctx,
702                        ast_expression *initexpr,
703                        ast_expression *precond,
704                        ast_expression *postcond,
705                        ast_expression *increment,
706                        ast_expression *body)
707 {
708     ast_instantiate(ast_loop, ctx, ast_loop_delete);
709     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
710
711     self->initexpr  = initexpr;
712     self->precond   = precond;
713     self->postcond  = postcond;
714     self->increment = increment;
715     self->body      = body;
716
717     if (initexpr)
718         ast_propagate_effects(self, initexpr);
719     if (precond)
720         ast_propagate_effects(self, precond);
721     if (postcond)
722         ast_propagate_effects(self, postcond);
723     if (increment)
724         ast_propagate_effects(self, increment);
725     if (body)
726         ast_propagate_effects(self, body);
727
728     return self;
729 }
730
731 void ast_loop_delete(ast_loop *self)
732 {
733     if (self->initexpr)
734         ast_unref(self->initexpr);
735     if (self->precond)
736         ast_unref(self->precond);
737     if (self->postcond)
738         ast_unref(self->postcond);
739     if (self->increment)
740         ast_unref(self->increment);
741     if (self->body)
742         ast_unref(self->body);
743     ast_expression_delete((ast_expression*)self);
744     mem_d(self);
745 }
746
747 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
748 {
749     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
750     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
751
752     self->is_continue = iscont;
753
754     return self;
755 }
756
757 void ast_breakcont_delete(ast_breakcont *self)
758 {
759     ast_expression_delete((ast_expression*)self);
760     mem_d(self);
761 }
762
763 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
764 {
765     ast_instantiate(ast_switch, ctx, ast_switch_delete);
766     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
767
768     self->operand = op;
769     self->cases   = NULL;
770
771     ast_propagate_effects(self, op);
772
773     return self;
774 }
775
776 void ast_switch_delete(ast_switch *self)
777 {
778     size_t i;
779     ast_unref(self->operand);
780
781     for (i = 0; i < vec_size(self->cases); ++i) {
782         if (self->cases[i].value)
783             ast_unref(self->cases[i].value);
784         ast_unref(self->cases[i].code);
785     }
786     vec_free(self->cases);
787
788     ast_expression_delete((ast_expression*)self);
789     mem_d(self);
790 }
791
792 ast_label* ast_label_new(lex_ctx ctx, const char *name)
793 {
794     ast_instantiate(ast_label, ctx, ast_label_delete);
795     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
796
797     self->name    = util_strdup(name);
798     self->irblock = NULL;
799     self->gotos   = NULL;
800
801     return self;
802 }
803
804 void ast_label_delete(ast_label *self)
805 {
806     mem_d((void*)self->name);
807     vec_free(self->gotos);
808     ast_expression_delete((ast_expression*)self);
809     mem_d(self);
810 }
811
812 void ast_label_register_goto(ast_label *self, ast_goto *g)
813 {
814     vec_push(self->gotos, g);
815 }
816
817 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
818 {
819     ast_instantiate(ast_goto, ctx, ast_goto_delete);
820     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
821
822     self->name    = util_strdup(name);
823     self->target  = NULL;
824     self->irblock_from = NULL;
825
826     return self;
827 }
828
829 void ast_goto_delete(ast_goto *self)
830 {
831     mem_d((void*)self->name);
832     ast_expression_delete((ast_expression*)self);
833     mem_d(self);
834 }
835
836 void ast_goto_set_label(ast_goto *self, ast_label *label)
837 {
838     self->target = label;
839 }
840
841 ast_call* ast_call_new(lex_ctx ctx,
842                        ast_expression *funcexpr)
843 {
844     ast_instantiate(ast_call, ctx, ast_call_delete);
845     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
846
847     ast_side_effects(self) = true;
848
849     self->params = NULL;
850     self->func   = funcexpr;
851
852     ast_type_adopt(self, funcexpr->expression.next);
853
854     return self;
855 }
856
857 void ast_call_delete(ast_call *self)
858 {
859     size_t i;
860     for (i = 0; i < vec_size(self->params); ++i)
861         ast_unref(self->params[i]);
862     vec_free(self->params);
863
864     if (self->func)
865         ast_unref(self->func);
866
867     ast_expression_delete((ast_expression*)self);
868     mem_d(self);
869 }
870
871 bool ast_call_check_types(ast_call *self)
872 {
873     size_t i;
874     bool   retval = true;
875     const  ast_expression *func = self->func;
876     size_t count = vec_size(self->params);
877     if (count > vec_size(func->expression.params))
878         count = vec_size(func->expression.params);
879
880     for (i = 0; i < count; ++i) {
881         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
882             char texp[1024];
883             char tgot[1024];
884             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
885             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
886             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
887                      (unsigned int)(i+1), texp, tgot);
888             /* we don't immediately return */
889             retval = false;
890         }
891     }
892     return retval;
893 }
894
895 ast_store* ast_store_new(lex_ctx ctx, int op,
896                          ast_expression *dest, ast_expression *source)
897 {
898     ast_instantiate(ast_store, ctx, ast_store_delete);
899     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
900
901     ast_side_effects(self) = true;
902
903     self->op = op;
904     self->dest = dest;
905     self->source = source;
906
907     if (!ast_type_adopt(self, dest)) {
908         ast_delete(self);
909         return NULL;
910     }
911
912     return self;
913 }
914
915 void ast_store_delete(ast_store *self)
916 {
917     ast_unref(self->dest);
918     ast_unref(self->source);
919     ast_expression_delete((ast_expression*)self);
920     mem_d(self);
921 }
922
923 ast_block* ast_block_new(lex_ctx ctx)
924 {
925     ast_instantiate(ast_block, ctx, ast_block_delete);
926     ast_expression_init((ast_expression*)self,
927                         (ast_expression_codegen*)&ast_block_codegen);
928
929     self->locals  = NULL;
930     self->exprs   = NULL;
931     self->collect = NULL;
932
933     return self;
934 }
935
936 bool ast_block_add_expr(ast_block *self, ast_expression *e)
937 {
938     ast_propagate_effects(self, e);
939     vec_push(self->exprs, e);
940     if (self->expression.next) {
941         ast_delete(self->expression.next);
942         self->expression.next = NULL;
943     }
944     if (!ast_type_adopt(self, e)) {
945         compile_error(ast_ctx(self), "internal error: failed to adopt type");
946         return false;
947     }
948     return true;
949 }
950
951 void ast_block_collect(ast_block *self, ast_expression *expr)
952 {
953     vec_push(self->collect, expr);
954     expr->expression.node.keep = true;
955 }
956
957 void ast_block_delete(ast_block *self)
958 {
959     size_t i;
960     for (i = 0; i < vec_size(self->exprs); ++i)
961         ast_unref(self->exprs[i]);
962     vec_free(self->exprs);
963     for (i = 0; i < vec_size(self->locals); ++i)
964         ast_delete(self->locals[i]);
965     vec_free(self->locals);
966     for (i = 0; i < vec_size(self->collect); ++i)
967         ast_delete(self->collect[i]);
968     vec_free(self->collect);
969     ast_expression_delete((ast_expression*)self);
970     mem_d(self);
971 }
972
973 bool ast_block_set_type(ast_block *self, ast_expression *from)
974 {
975     if (self->expression.next)
976         ast_delete(self->expression.next);
977     if (!ast_type_adopt(self, from))
978         return false;
979     return true;
980 }
981
982 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
983 {
984     ast_instantiate(ast_function, ctx, ast_function_delete);
985
986     if (!vtype ||
987         vtype->hasvalue ||
988         vtype->expression.vtype != TYPE_FUNCTION)
989     {
990         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
991                  (int)!vtype,
992                  (int)vtype->hasvalue,
993                  vtype->expression.vtype);
994         mem_d(self);
995         return NULL;
996     }
997
998     self->vtype  = vtype;
999     self->name   = name ? util_strdup(name) : NULL;
1000     self->blocks = NULL;
1001
1002     self->labelcount = 0;
1003     self->builtin = 0;
1004
1005     self->ir_func = NULL;
1006     self->curblock = NULL;
1007
1008     self->breakblock    = NULL;
1009     self->continueblock = NULL;
1010
1011     vtype->hasvalue = true;
1012     vtype->constval.vfunc = self;
1013
1014     return self;
1015 }
1016
1017 void ast_function_delete(ast_function *self)
1018 {
1019     size_t i;
1020     if (self->name)
1021         mem_d((void*)self->name);
1022     if (self->vtype) {
1023         /* ast_value_delete(self->vtype); */
1024         self->vtype->hasvalue = false;
1025         self->vtype->constval.vfunc = NULL;
1026         /* We use unref - if it was stored in a global table it is supposed
1027          * to be deleted from *there*
1028          */
1029         ast_unref(self->vtype);
1030     }
1031     for (i = 0; i < vec_size(self->blocks); ++i)
1032         ast_delete(self->blocks[i]);
1033     vec_free(self->blocks);
1034     mem_d(self);
1035 }
1036
1037 const char* ast_function_label(ast_function *self, const char *prefix)
1038 {
1039     size_t id;
1040     size_t len;
1041     char  *from;
1042
1043     if (!opts_dump && !opts_dumpfin)
1044         return NULL;
1045
1046     id  = (self->labelcount++);
1047     len = strlen(prefix);
1048
1049     from = self->labelbuf + sizeof(self->labelbuf)-1;
1050     *from-- = 0;
1051     do {
1052         unsigned int digit = id % 10;
1053         *from = digit + '0';
1054         id /= 10;
1055     } while (id);
1056     memcpy(from - len, prefix, len);
1057     return from - len;
1058 }
1059
1060 /*********************************************************************/
1061 /* AST codegen part
1062  * by convention you must never pass NULL to the 'ir_value **out'
1063  * parameter. If you really don't care about the output, pass a dummy.
1064  * But I can't imagine a pituation where the output is truly unnecessary.
1065  */
1066
1067 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1068 {
1069     if (out->vtype == TYPE_FIELD)
1070         out->fieldtype = self->next->expression.vtype;
1071     if (out->vtype == TYPE_FUNCTION)
1072         out->outtype = self->next->expression.vtype;
1073 }
1074
1075 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1076 #define codegen_output_type_expr(a,o) (_ast_codegen_output_type(a,(o)))
1077
1078 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1079 {
1080     (void)func;
1081     (void)lvalue;
1082     /* NOTE: This is the codegen for a variable used in an expression.
1083      * It is not the codegen to generate the value. For this purpose,
1084      * ast_local_codegen and ast_global_codegen are to be used before this
1085      * is executed. ast_function_codegen should take care of its locals,
1086      * and the ast-user should take care of ast_global_codegen to be used
1087      * on all the globals.
1088      */
1089     if (!self->ir_v) {
1090         char typename[1024];
1091         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
1092         compile_error(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
1093         return false;
1094     }
1095     *out = self->ir_v;
1096     return true;
1097 }
1098
1099 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1100 {
1101     ir_value *v = NULL;
1102
1103     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1104     {
1105         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1106         if (!func)
1107             return false;
1108         func->context = ast_ctx(self);
1109         func->value->context = ast_ctx(self);
1110
1111         self->constval.vfunc->ir_func = func;
1112         self->ir_v = func->value;
1113         /* The function is filled later on ast_function_codegen... */
1114         return true;
1115     }
1116
1117     if (isfield && self->expression.vtype == TYPE_FIELD) {
1118         ast_expression *fieldtype = self->expression.next;
1119
1120         if (self->hasvalue) {
1121             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1122             goto error;
1123         }
1124
1125         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1126             size_t ai;
1127             char   *name;
1128             size_t  namelen;
1129
1130             ast_expression_common *elemtype;
1131             int                    vtype;
1132             ast_value             *array = (ast_value*)fieldtype;
1133
1134             if (!ast_istype(fieldtype, ast_value)) {
1135                 compile_error(ast_ctx(self), "internal error: ast_value required");
1136                 return false;
1137             }
1138
1139             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1140             if (!array->expression.count || array->expression.count > opts_max_array_size)
1141                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1142
1143             elemtype = &array->expression.next->expression;
1144             vtype = elemtype->vtype;
1145
1146             v = ir_builder_create_field(ir, self->name, vtype);
1147             if (!v) {
1148                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1149                 return false;
1150             }
1151             v->context = ast_ctx(self);
1152             array->ir_v = self->ir_v = v;
1153
1154             namelen = strlen(self->name);
1155             name    = (char*)mem_a(namelen + 16);
1156             strcpy(name, self->name);
1157
1158             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1159             array->ir_values[0] = v;
1160             for (ai = 1; ai < array->expression.count; ++ai) {
1161                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1162                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1163                 if (!array->ir_values[ai]) {
1164                     mem_d(name);
1165                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1166                     return false;
1167                 }
1168                 array->ir_values[ai]->context = ast_ctx(self);
1169             }
1170             mem_d(name);
1171         }
1172         else
1173         {
1174             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1175             if (!v)
1176                 return false;
1177             v->context = ast_ctx(self);
1178             self->ir_v = v;
1179         }
1180         return true;
1181     }
1182
1183     if (self->expression.vtype == TYPE_ARRAY) {
1184         size_t ai;
1185         char   *name;
1186         size_t  namelen;
1187
1188         ast_expression_common *elemtype = &self->expression.next->expression;
1189         int vtype = elemtype->vtype;
1190
1191         /* same as with field arrays */
1192         if (!self->expression.count || self->expression.count > opts_max_array_size)
1193             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1194
1195         v = ir_builder_create_global(ir, self->name, vtype);
1196         if (!v) {
1197             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1198             return false;
1199         }
1200         v->context = ast_ctx(self);
1201
1202         namelen = strlen(self->name);
1203         name    = (char*)mem_a(namelen + 16);
1204         strcpy(name, self->name);
1205
1206         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1207         self->ir_values[0] = v;
1208         for (ai = 1; ai < self->expression.count; ++ai) {
1209             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1210             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1211             if (!self->ir_values[ai]) {
1212                 mem_d(name);
1213                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1214                 return false;
1215             }
1216             self->ir_values[ai]->context = ast_ctx(self);
1217         }
1218         mem_d(name);
1219     }
1220     else
1221     {
1222         /* Arrays don't do this since there's no "array" value which spans across the
1223          * whole thing.
1224          */
1225         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1226         if (!v) {
1227             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1228             return false;
1229         }
1230         codegen_output_type(self, v);
1231         v->context = ast_ctx(self);
1232     }
1233
1234     if (self->hasvalue) {
1235         switch (self->expression.vtype)
1236         {
1237             case TYPE_FLOAT:
1238                 if (!ir_value_set_float(v, self->constval.vfloat))
1239                     goto error;
1240                 break;
1241             case TYPE_VECTOR:
1242                 if (!ir_value_set_vector(v, self->constval.vvec))
1243                     goto error;
1244                 break;
1245             case TYPE_STRING:
1246                 if (!ir_value_set_string(v, self->constval.vstring))
1247                     goto error;
1248                 break;
1249             case TYPE_ARRAY:
1250                 compile_error(ast_ctx(self), "TODO: global constant array");
1251                 break;
1252             case TYPE_FUNCTION:
1253                 compile_error(ast_ctx(self), "global of type function not properly generated");
1254                 goto error;
1255                 /* Cannot generate an IR value for a function,
1256                  * need a pointer pointing to a function rather.
1257                  */
1258             case TYPE_FIELD:
1259                 if (!self->constval.vfield) {
1260                     compile_error(ast_ctx(self), "field constant without vfield set");
1261                     goto error;
1262                 }
1263                 if (!self->constval.vfield->ir_v) {
1264                     compile_error(ast_ctx(self), "field constant generated before its field");
1265                     goto error;
1266                 }
1267                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1268                     goto error;
1269                 break;
1270             default:
1271                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1272                 break;
1273         }
1274     }
1275
1276     /* link us to the ir_value */
1277     v->cvq = self->cvq;
1278     self->ir_v = v;
1279     return true;
1280
1281 error: /* clean up */
1282     ir_value_delete(v);
1283     return false;
1284 }
1285
1286 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1287 {
1288     ir_value *v = NULL;
1289     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1290     {
1291         /* Do we allow local functions? I think not...
1292          * this is NOT a function pointer atm.
1293          */
1294         return false;
1295     }
1296
1297     if (self->expression.vtype == TYPE_ARRAY) {
1298         size_t ai;
1299         char   *name;
1300         size_t  namelen;
1301
1302         ast_expression_common *elemtype = &self->expression.next->expression;
1303         int vtype = elemtype->vtype;
1304
1305         if (param) {
1306             compile_error(ast_ctx(self), "array-parameters are not supported");
1307             return false;
1308         }
1309
1310         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1311         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1312             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1313         }
1314
1315         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1316         if (!self->ir_values) {
1317             compile_error(ast_ctx(self), "failed to allocate array values");
1318             return false;
1319         }
1320
1321         v = ir_function_create_local(func, self->name, vtype, param);
1322         if (!v) {
1323             compile_error(ast_ctx(self), "ir_function_create_local failed");
1324             return false;
1325         }
1326         v->context = ast_ctx(self);
1327
1328         namelen = strlen(self->name);
1329         name    = (char*)mem_a(namelen + 16);
1330         strcpy(name, self->name);
1331
1332         self->ir_values[0] = v;
1333         for (ai = 1; ai < self->expression.count; ++ai) {
1334             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1335             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1336             if (!self->ir_values[ai]) {
1337                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1338                 return false;
1339             }
1340             self->ir_values[ai]->context = ast_ctx(self);
1341         }
1342     }
1343     else
1344     {
1345         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1346         if (!v)
1347             return false;
1348         codegen_output_type(self, v);
1349         v->context = ast_ctx(self);
1350     }
1351
1352     /* A constant local... hmmm...
1353      * I suppose the IR will have to deal with this
1354      */
1355     if (self->hasvalue) {
1356         switch (self->expression.vtype)
1357         {
1358             case TYPE_FLOAT:
1359                 if (!ir_value_set_float(v, self->constval.vfloat))
1360                     goto error;
1361                 break;
1362             case TYPE_VECTOR:
1363                 if (!ir_value_set_vector(v, self->constval.vvec))
1364                     goto error;
1365                 break;
1366             case TYPE_STRING:
1367                 if (!ir_value_set_string(v, self->constval.vstring))
1368                     goto error;
1369                 break;
1370             default:
1371                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1372                 break;
1373         }
1374     }
1375
1376     /* link us to the ir_value */
1377     v->cvq = self->cvq;
1378     self->ir_v = v;
1379
1380     if (!ast_generate_accessors(self, func->owner))
1381         return false;
1382     return true;
1383
1384 error: /* clean up */
1385     ir_value_delete(v);
1386     return false;
1387 }
1388
1389 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1390 {
1391     size_t i;
1392     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1393     if (!self->setter || !self->getter)
1394         return true;
1395     for (i = 0; i < self->expression.count; ++i) {
1396         if (!self->ir_values) {
1397             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1398             return false;
1399         }
1400         if (!self->ir_values[i]) {
1401             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1402             return false;
1403         }
1404         if (self->ir_values[i]->life) {
1405             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1406             return false;
1407         }
1408     }
1409
1410     options_set(opts_warn, WARN_USED_UNINITIALIZED, false);
1411     if (self->setter) {
1412         if (!ast_global_codegen  (self->setter, ir, false) ||
1413             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1414             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1415         {
1416             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1417             options_set(opts_warn, WARN_USED_UNINITIALIZED, warn);
1418             return false;
1419         }
1420     }
1421     if (self->getter) {
1422         if (!ast_global_codegen  (self->getter, ir, false) ||
1423             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1424             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1425         {
1426             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1427             options_set(opts_warn, WARN_USED_UNINITIALIZED, warn);
1428             return false;
1429         }
1430     }
1431     for (i = 0; i < self->expression.count; ++i) {
1432         vec_free(self->ir_values[i]->life);
1433     }
1434     options_set(opts_warn, WARN_USED_UNINITIALIZED, warn);
1435     return true;
1436 }
1437
1438 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1439 {
1440     ir_function *irf;
1441     ir_value    *dummy;
1442     ast_expression_common *ec;
1443     size_t    i;
1444
1445     (void)ir;
1446
1447     irf = self->ir_func;
1448     if (!irf) {
1449         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1450         return false;
1451     }
1452
1453     /* fill the parameter list */
1454     ec = &self->vtype->expression;
1455     for (i = 0; i < vec_size(ec->params); ++i)
1456     {
1457         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1458             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1459         else
1460             vec_push(irf->params, ec->params[i]->expression.vtype);
1461         if (!self->builtin) {
1462             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1463                 return false;
1464         }
1465     }
1466
1467     if (self->builtin) {
1468         irf->builtin = self->builtin;
1469         return true;
1470     }
1471
1472     if (!vec_size(self->blocks)) {
1473         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1474         return false;
1475     }
1476
1477     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1478     if (!self->curblock) {
1479         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1480         return false;
1481     }
1482
1483     for (i = 0; i < vec_size(self->blocks); ++i) {
1484         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1485         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1486             return false;
1487     }
1488
1489     /* TODO: check return types */
1490     if (!self->curblock->is_return)
1491     {
1492         if (!self->vtype->expression.next ||
1493             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1494         {
1495             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1496         }
1497         else if (vec_size(self->curblock->entries))
1498         {
1499             /* error("missing return"); */
1500             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1501                                 "control reaches end of non-void function (`%s`) via %s",
1502                                 self->name, self->curblock->label))
1503             {
1504                 return false;
1505             }
1506             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1507         }
1508     }
1509     return true;
1510 }
1511
1512 /* Note, you will not see ast_block_codegen generate ir_blocks.
1513  * To the AST and the IR, blocks are 2 different things.
1514  * In the AST it represents a block of code, usually enclosed in
1515  * curly braces {...}.
1516  * While in the IR it represents a block in terms of control-flow.
1517  */
1518 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1519 {
1520     size_t i;
1521
1522     /* We don't use this
1523      * Note: an ast-representation using the comma-operator
1524      * of the form: (a, b, c) = x should not assign to c...
1525      */
1526     if (lvalue) {
1527         compile_error(ast_ctx(self), "not an l-value (code-block)");
1528         return false;
1529     }
1530
1531     if (self->expression.outr) {
1532         *out = self->expression.outr;
1533         return true;
1534     }
1535
1536     /* output is NULL at first, we'll have each expression
1537      * assign to out output, thus, a comma-operator represention
1538      * using an ast_block will return the last generated value,
1539      * so: (b, c) + a  executed both b and c, and returns c,
1540      * which is then added to a.
1541      */
1542     *out = NULL;
1543
1544     /* generate locals */
1545     for (i = 0; i < vec_size(self->locals); ++i)
1546     {
1547         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1548             if (opts_debug)
1549                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1550             return false;
1551         }
1552     }
1553
1554     for (i = 0; i < vec_size(self->exprs); ++i)
1555     {
1556         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1557         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1558             compile_error(ast_ctx(self->exprs[i]), "unreachable statement");
1559             return false;
1560         }
1561         if (!(*gen)(self->exprs[i], func, false, out))
1562             return false;
1563     }
1564
1565     self->expression.outr = *out;
1566
1567     return true;
1568 }
1569
1570 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1571 {
1572     ast_expression_codegen *cgen;
1573     ir_value *left  = NULL;
1574     ir_value *right = NULL;
1575
1576     ast_value       *arr;
1577     ast_value       *idx = 0;
1578     ast_array_index *ai = NULL;
1579
1580     if (lvalue && self->expression.outl) {
1581         *out = self->expression.outl;
1582         return true;
1583     }
1584
1585     if (!lvalue && self->expression.outr) {
1586         *out = self->expression.outr;
1587         return true;
1588     }
1589
1590     if (ast_istype(self->dest, ast_array_index))
1591     {
1592
1593         ai = (ast_array_index*)self->dest;
1594         idx = (ast_value*)ai->index;
1595
1596         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1597             ai = NULL;
1598     }
1599
1600     if (ai) {
1601         /* we need to call the setter */
1602         ir_value  *iridx, *funval;
1603         ir_instr  *call;
1604
1605         if (lvalue) {
1606             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1607             return false;
1608         }
1609
1610         arr = (ast_value*)ai->array;
1611         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1612             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1613             return false;
1614         }
1615
1616         cgen = idx->expression.codegen;
1617         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1618             return false;
1619
1620         cgen = arr->setter->expression.codegen;
1621         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1622             return false;
1623
1624         cgen = self->source->expression.codegen;
1625         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1626             return false;
1627
1628         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval);
1629         if (!call)
1630             return false;
1631         ir_call_param(call, iridx);
1632         ir_call_param(call, right);
1633         self->expression.outr = right;
1634     }
1635     else
1636     {
1637         /* regular code */
1638
1639         cgen = self->dest->expression.codegen;
1640         /* lvalue! */
1641         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1642             return false;
1643         self->expression.outl = left;
1644
1645         cgen = self->source->expression.codegen;
1646         /* rvalue! */
1647         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1648             return false;
1649
1650         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1651             return false;
1652         self->expression.outr = right;
1653     }
1654
1655     /* Theoretically, an assinment returns its left side as an
1656      * lvalue, if we don't need an lvalue though, we return
1657      * the right side as an rvalue, otherwise we have to
1658      * somehow know whether or not we need to dereference the pointer
1659      * on the left side - that is: OP_LOAD if it was an address.
1660      * Also: in original QC we cannot OP_LOADP *anyway*.
1661      */
1662     *out = (lvalue ? left : right);
1663
1664     return true;
1665 }
1666
1667 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1668 {
1669     ast_expression_codegen *cgen;
1670     ir_value *left, *right;
1671
1672     /* A binary operation cannot yield an l-value */
1673     if (lvalue) {
1674         compile_error(ast_ctx(self), "not an l-value (binop)");
1675         return false;
1676     }
1677
1678     if (self->expression.outr) {
1679         *out = self->expression.outr;
1680         return true;
1681     }
1682
1683     if (OPTS_FLAG(SHORT_LOGIC) &&
1684         (self->op == INSTR_AND || self->op == INSTR_OR))
1685     {
1686         /* short circuit evaluation */
1687         ir_block *other, *merge;
1688         ir_block *from_left, *from_right;
1689         ir_instr *phi;
1690         size_t    merge_id;
1691         uint16_t  notop;
1692
1693         /* Note about casting to true boolean values:
1694          * We use a single NOT for sub expressions, and an
1695          * overall NOT at the end, and for that purpose swap
1696          * all the jump conditions in order for the NOT to get
1697          * doubled.
1698          * ie: (a && b) usually becomes (!!a ? !!b : !!a)
1699          * but we translate this to (!(!a ? !a : !b))
1700          */
1701
1702         merge_id = vec_size(func->ir_func->blocks);
1703         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1704
1705         cgen = self->left->expression.codegen;
1706         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1707             return false;
1708         if (!OPTS_FLAG(PERL_LOGIC)) {
1709             notop = type_not_instr[left->vtype];
1710             if (notop == AINSTR_END) {
1711                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1712                 return false;
1713             }
1714             left = ir_block_create_unary(func->curblock, ast_ctx(self),
1715                                          ast_function_label(func, "sce_not"),
1716                                          notop,
1717                                          left);
1718         }
1719         from_left = func->curblock;
1720
1721         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1722         if ( !(self->op == INSTR_OR) != !OPTS_FLAG(PERL_LOGIC) ) {
1723             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1724                 return false;
1725         } else {
1726             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1727                 return false;
1728         }
1729         /* use the likely flag */
1730         vec_last(func->curblock->instr)->likely = true;
1731
1732         func->curblock = other;
1733         cgen = self->right->expression.codegen;
1734         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1735             return false;
1736         if (!OPTS_FLAG(PERL_LOGIC)) {
1737             notop = type_not_instr[right->vtype];
1738             if (notop == AINSTR_END) {
1739                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1740                 return false;
1741             }
1742             right = ir_block_create_unary(func->curblock, ast_ctx(self),
1743                                           ast_function_label(func, "sce_not"),
1744                                           notop,
1745                                           right);
1746         }
1747         from_right = func->curblock;
1748
1749         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1750             return false;
1751
1752         vec_remove(func->ir_func->blocks, merge_id, 1);
1753         vec_push(func->ir_func->blocks, merge);
1754
1755         func->curblock = merge;
1756         phi = ir_block_create_phi(func->curblock, ast_ctx(self), ast_function_label(func, "sce_value"), TYPE_FLOAT);
1757         ir_phi_add(phi, from_left, left);
1758         ir_phi_add(phi, from_right, right);
1759         *out = ir_phi_value(phi);
1760         if (!OPTS_FLAG(PERL_LOGIC)) {
1761             notop = type_not_instr[(*out)->vtype];
1762             if (notop == AINSTR_END) {
1763                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1764                 return false;
1765             }
1766             *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1767                                          ast_function_label(func, "sce_final_not"),
1768                                          notop,
1769                                          *out);
1770         }
1771         if (!*out)
1772             return false;
1773         self->expression.outr = *out;
1774         return true;
1775     }
1776
1777     cgen = self->left->expression.codegen;
1778     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1779         return false;
1780
1781     cgen = self->right->expression.codegen;
1782     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1783         return false;
1784
1785     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1786                                  self->op, left, right);
1787     if (!*out)
1788         return false;
1789     self->expression.outr = *out;
1790
1791     return true;
1792 }
1793
1794 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1795 {
1796     ast_expression_codegen *cgen;
1797     ir_value *leftl = NULL, *leftr, *right, *bin;
1798
1799     ast_value       *arr;
1800     ast_value       *idx = 0;
1801     ast_array_index *ai = NULL;
1802     ir_value        *iridx = NULL;
1803
1804     if (lvalue && self->expression.outl) {
1805         *out = self->expression.outl;
1806         return true;
1807     }
1808
1809     if (!lvalue && self->expression.outr) {
1810         *out = self->expression.outr;
1811         return true;
1812     }
1813
1814     if (ast_istype(self->dest, ast_array_index))
1815     {
1816
1817         ai = (ast_array_index*)self->dest;
1818         idx = (ast_value*)ai->index;
1819
1820         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1821             ai = NULL;
1822     }
1823
1824     /* for a binstore we need both an lvalue and an rvalue for the left side */
1825     /* rvalue of destination! */
1826     if (ai) {
1827         cgen = idx->expression.codegen;
1828         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1829             return false;
1830     }
1831     cgen = self->dest->expression.codegen;
1832     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1833         return false;
1834
1835     /* source as rvalue only */
1836     cgen = self->source->expression.codegen;
1837     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1838         return false;
1839
1840     /* now the binary */
1841     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1842                                 self->opbin, leftr, right);
1843     self->expression.outr = bin;
1844
1845
1846     if (ai) {
1847         /* we need to call the setter */
1848         ir_value  *funval;
1849         ir_instr  *call;
1850
1851         if (lvalue) {
1852             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1853             return false;
1854         }
1855
1856         arr = (ast_value*)ai->array;
1857         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1858             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1859             return false;
1860         }
1861
1862         cgen = arr->setter->expression.codegen;
1863         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1864             return false;
1865
1866         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval);
1867         if (!call)
1868             return false;
1869         ir_call_param(call, iridx);
1870         ir_call_param(call, bin);
1871         self->expression.outr = bin;
1872     } else {
1873         /* now store them */
1874         cgen = self->dest->expression.codegen;
1875         /* lvalue of destination */
1876         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1877             return false;
1878         self->expression.outl = leftl;
1879
1880         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1881             return false;
1882         self->expression.outr = bin;
1883     }
1884
1885     /* Theoretically, an assinment returns its left side as an
1886      * lvalue, if we don't need an lvalue though, we return
1887      * the right side as an rvalue, otherwise we have to
1888      * somehow know whether or not we need to dereference the pointer
1889      * on the left side - that is: OP_LOAD if it was an address.
1890      * Also: in original QC we cannot OP_LOADP *anyway*.
1891      */
1892     *out = (lvalue ? leftl : bin);
1893
1894     return true;
1895 }
1896
1897 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1898 {
1899     ast_expression_codegen *cgen;
1900     ir_value *operand;
1901
1902     /* An unary operation cannot yield an l-value */
1903     if (lvalue) {
1904         compile_error(ast_ctx(self), "not an l-value (binop)");
1905         return false;
1906     }
1907
1908     if (self->expression.outr) {
1909         *out = self->expression.outr;
1910         return true;
1911     }
1912
1913     cgen = self->operand->expression.codegen;
1914     /* lvalue! */
1915     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1916         return false;
1917
1918     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
1919                                  self->op, operand);
1920     if (!*out)
1921         return false;
1922     self->expression.outr = *out;
1923
1924     return true;
1925 }
1926
1927 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1928 {
1929     ast_expression_codegen *cgen;
1930     ir_value *operand;
1931
1932     *out = NULL;
1933
1934     /* In the context of a return operation, we don't actually return
1935      * anything...
1936      */
1937     if (lvalue) {
1938         compile_error(ast_ctx(self), "return-expression is not an l-value");
1939         return false;
1940     }
1941
1942     if (self->expression.outr) {
1943         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1944         return false;
1945     }
1946     self->expression.outr = (ir_value*)1;
1947
1948     if (self->operand) {
1949         cgen = self->operand->expression.codegen;
1950         /* lvalue! */
1951         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1952             return false;
1953
1954         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
1955             return false;
1956     } else {
1957         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
1958             return false;
1959     }
1960
1961     return true;
1962 }
1963
1964 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1965 {
1966     ast_expression_codegen *cgen;
1967     ir_value *ent, *field;
1968
1969     /* This function needs to take the 'lvalue' flag into account!
1970      * As lvalue we provide a field-pointer, as rvalue we provide the
1971      * value in a temp.
1972      */
1973
1974     if (lvalue && self->expression.outl) {
1975         *out = self->expression.outl;
1976         return true;
1977     }
1978
1979     if (!lvalue && self->expression.outr) {
1980         *out = self->expression.outr;
1981         return true;
1982     }
1983
1984     cgen = self->entity->expression.codegen;
1985     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1986         return false;
1987
1988     cgen = self->field->expression.codegen;
1989     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1990         return false;
1991
1992     if (lvalue) {
1993         /* address! */
1994         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
1995                                             ent, field);
1996     } else {
1997         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
1998                                              ent, field, self->expression.vtype);
1999         codegen_output_type(self, *out);
2000     }
2001     if (!*out) {
2002         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2003                  (lvalue ? "ADDRESS" : "FIELD"),
2004                  type_name[self->expression.vtype]);
2005         return false;
2006     }
2007
2008     if (lvalue)
2009         self->expression.outl = *out;
2010     else
2011         self->expression.outr = *out;
2012
2013     /* Hm that should be it... */
2014     return true;
2015 }
2016
2017 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2018 {
2019     ast_expression_codegen *cgen;
2020     ir_value *vec;
2021
2022     /* in QC this is always an lvalue */
2023     (void)lvalue;
2024     if (self->expression.outl) {
2025         *out = self->expression.outl;
2026         return true;
2027     }
2028
2029     cgen = self->owner->expression.codegen;
2030     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
2031         return false;
2032
2033     if (vec->vtype != TYPE_VECTOR &&
2034         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2035     {
2036         return false;
2037     }
2038
2039     *out = ir_value_vector_member(vec, self->field);
2040     self->expression.outl = *out;
2041
2042     return (*out != NULL);
2043 }
2044
2045 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2046 {
2047     ast_value *arr;
2048     ast_value *idx;
2049
2050     if (!lvalue && self->expression.outr) {
2051         *out = self->expression.outr;
2052     }
2053     if (lvalue && self->expression.outl) {
2054         *out = self->expression.outl;
2055     }
2056
2057     if (!ast_istype(self->array, ast_value)) {
2058         compile_error(ast_ctx(self), "array indexing this way is not supported");
2059         /* note this would actually be pointer indexing because the left side is
2060          * not an actual array but (hopefully) an indexable expression.
2061          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2062          * support this path will be filled.
2063          */
2064         return false;
2065     }
2066
2067     arr = (ast_value*)self->array;
2068     idx = (ast_value*)self->index;
2069
2070     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2071         /* Time to use accessor functions */
2072         ast_expression_codegen *cgen;
2073         ir_value               *iridx, *funval;
2074         ir_instr               *call;
2075
2076         if (lvalue) {
2077             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2078             return false;
2079         }
2080
2081         if (!arr->getter) {
2082             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2083             return false;
2084         }
2085
2086         cgen = self->index->expression.codegen;
2087         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2088             return false;
2089
2090         cgen = arr->getter->expression.codegen;
2091         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2092             return false;
2093
2094         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval);
2095         if (!call)
2096             return false;
2097         ir_call_param(call, iridx);
2098
2099         *out = ir_call_value(call);
2100         self->expression.outr = *out;
2101         return true;
2102     }
2103
2104     if (idx->expression.vtype == TYPE_FLOAT) {
2105         unsigned int arridx = idx->constval.vfloat;
2106         if (arridx >= self->array->expression.count)
2107         {
2108             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2109             return false;
2110         }
2111         *out = arr->ir_values[arridx];
2112     }
2113     else if (idx->expression.vtype == TYPE_INTEGER) {
2114         unsigned int arridx = idx->constval.vint;
2115         if (arridx >= self->array->expression.count)
2116         {
2117             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2118             return false;
2119         }
2120         *out = arr->ir_values[arridx];
2121     }
2122     else {
2123         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2124         return false;
2125     }
2126     return true;
2127 }
2128
2129 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2130 {
2131     ast_expression_codegen *cgen;
2132
2133     ir_value *condval;
2134     ir_value *dummy;
2135
2136     ir_block *cond = func->curblock;
2137     ir_block *ontrue;
2138     ir_block *onfalse;
2139     ir_block *ontrue_endblock = NULL;
2140     ir_block *onfalse_endblock = NULL;
2141     ir_block *merge = NULL;
2142
2143     /* We don't output any value, thus also don't care about r/lvalue */
2144     (void)out;
2145     (void)lvalue;
2146
2147     if (self->expression.outr) {
2148         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2149         return false;
2150     }
2151     self->expression.outr = (ir_value*)1;
2152
2153     /* generate the condition */
2154     cgen = self->cond->expression.codegen;
2155     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2156         return false;
2157     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2158     cond = func->curblock;
2159
2160     /* on-true path */
2161
2162     if (self->on_true) {
2163         /* create on-true block */
2164         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2165         if (!ontrue)
2166             return false;
2167
2168         /* enter the block */
2169         func->curblock = ontrue;
2170
2171         /* generate */
2172         cgen = self->on_true->expression.codegen;
2173         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2174             return false;
2175
2176         /* we now need to work from the current endpoint */
2177         ontrue_endblock = func->curblock;
2178     } else
2179         ontrue = NULL;
2180
2181     /* on-false path */
2182     if (self->on_false) {
2183         /* create on-false block */
2184         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2185         if (!onfalse)
2186             return false;
2187
2188         /* enter the block */
2189         func->curblock = onfalse;
2190
2191         /* generate */
2192         cgen = self->on_false->expression.codegen;
2193         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2194             return false;
2195
2196         /* we now need to work from the current endpoint */
2197         onfalse_endblock = func->curblock;
2198     } else
2199         onfalse = NULL;
2200
2201     /* Merge block were they all merge in to */
2202     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2203     {
2204         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2205         if (!merge)
2206             return false;
2207         /* add jumps ot the merge block */
2208         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2209             return false;
2210         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2211             return false;
2212
2213         /* Now enter the merge block */
2214         func->curblock = merge;
2215     }
2216
2217     /* we create the if here, that way all blocks are ordered :)
2218      */
2219     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2220                             (ontrue  ? ontrue  : merge),
2221                             (onfalse ? onfalse : merge)))
2222     {
2223         return false;
2224     }
2225
2226     return true;
2227 }
2228
2229 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2230 {
2231     ast_expression_codegen *cgen;
2232
2233     ir_value *condval;
2234     ir_value *trueval, *falseval;
2235     ir_instr *phi;
2236
2237     ir_block *cond = func->curblock;
2238     ir_block *cond_out = NULL;
2239     ir_block *ontrue, *ontrue_out = NULL;
2240     ir_block *onfalse, *onfalse_out = NULL;
2241     ir_block *merge;
2242
2243     /* Ternary can never create an lvalue... */
2244     if (lvalue)
2245         return false;
2246
2247     /* In theory it shouldn't be possible to pass through a node twice, but
2248      * in case we add any kind of optimization pass for the AST itself, it
2249      * may still happen, thus we remember a created ir_value and simply return one
2250      * if it already exists.
2251      */
2252     if (self->expression.outr) {
2253         *out = self->expression.outr;
2254         return true;
2255     }
2256
2257     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2258
2259     /* generate the condition */
2260     func->curblock = cond;
2261     cgen = self->cond->expression.codegen;
2262     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2263         return false;
2264     cond_out = func->curblock;
2265
2266     /* create on-true block */
2267     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2268     if (!ontrue)
2269         return false;
2270     else
2271     {
2272         /* enter the block */
2273         func->curblock = ontrue;
2274
2275         /* generate */
2276         cgen = self->on_true->expression.codegen;
2277         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2278             return false;
2279
2280         ontrue_out = func->curblock;
2281     }
2282
2283     /* create on-false block */
2284     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2285     if (!onfalse)
2286         return false;
2287     else
2288     {
2289         /* enter the block */
2290         func->curblock = onfalse;
2291
2292         /* generate */
2293         cgen = self->on_false->expression.codegen;
2294         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2295             return false;
2296
2297         onfalse_out = func->curblock;
2298     }
2299
2300     /* create merge block */
2301     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2302     if (!merge)
2303         return false;
2304     /* jump to merge block */
2305     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2306         return false;
2307     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2308         return false;
2309
2310     /* create if instruction */
2311     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2312         return false;
2313
2314     /* Now enter the merge block */
2315     func->curblock = merge;
2316
2317     /* Here, now, we need a PHI node
2318      * but first some sanity checking...
2319      */
2320     if (trueval->vtype != falseval->vtype) {
2321         /* error("ternary with different types on the two sides"); */
2322         return false;
2323     }
2324
2325     /* create PHI */
2326     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), trueval->vtype);
2327     if (!phi)
2328         return false;
2329     ir_phi_add(phi, ontrue_out,  trueval);
2330     ir_phi_add(phi, onfalse_out, falseval);
2331
2332     self->expression.outr = ir_phi_value(phi);
2333     *out = self->expression.outr;
2334
2335     codegen_output_type(self, *out);
2336
2337     return true;
2338 }
2339
2340 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2341 {
2342     ast_expression_codegen *cgen;
2343
2344     ir_value *dummy      = NULL;
2345     ir_value *precond    = NULL;
2346     ir_value *postcond   = NULL;
2347
2348     /* Since we insert some jumps "late" so we have blocks
2349      * ordered "nicely", we need to keep track of the actual end-blocks
2350      * of expressions to add the jumps to.
2351      */
2352     ir_block *bbody      = NULL, *end_bbody      = NULL;
2353     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2354     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2355     ir_block *bincrement = NULL, *end_bincrement = NULL;
2356     ir_block *bout       = NULL, *bin            = NULL;
2357
2358     /* let's at least move the outgoing block to the end */
2359     size_t    bout_id;
2360
2361     /* 'break' and 'continue' need to be able to find the right blocks */
2362     ir_block *bcontinue     = NULL;
2363     ir_block *bbreak        = NULL;
2364
2365     ir_block *old_bcontinue = NULL;
2366     ir_block *old_bbreak    = NULL;
2367
2368     ir_block *tmpblock      = NULL;
2369
2370     (void)lvalue;
2371     (void)out;
2372
2373     if (self->expression.outr) {
2374         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2375         return false;
2376     }
2377     self->expression.outr = (ir_value*)1;
2378
2379     /* NOTE:
2380      * Should we ever need some kind of block ordering, better make this function
2381      * move blocks around than write a block ordering algorithm later... after all
2382      * the ast and ir should work together, not against each other.
2383      */
2384
2385     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2386      * anyway if for example it contains a ternary.
2387      */
2388     if (self->initexpr)
2389     {
2390         cgen = self->initexpr->expression.codegen;
2391         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2392             return false;
2393     }
2394
2395     /* Store the block from which we enter this chaos */
2396     bin = func->curblock;
2397
2398     /* The pre-loop condition needs its own block since we
2399      * need to be able to jump to the start of that expression.
2400      */
2401     if (self->precond)
2402     {
2403         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2404         if (!bprecond)
2405             return false;
2406
2407         /* the pre-loop-condition the least important place to 'continue' at */
2408         bcontinue = bprecond;
2409
2410         /* enter */
2411         func->curblock = bprecond;
2412
2413         /* generate */
2414         cgen = self->precond->expression.codegen;
2415         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2416             return false;
2417
2418         end_bprecond = func->curblock;
2419     } else {
2420         bprecond = end_bprecond = NULL;
2421     }
2422
2423     /* Now the next blocks won't be ordered nicely, but we need to
2424      * generate them this early for 'break' and 'continue'.
2425      */
2426     if (self->increment) {
2427         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2428         if (!bincrement)
2429             return false;
2430         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2431     } else {
2432         bincrement = end_bincrement = NULL;
2433     }
2434
2435     if (self->postcond) {
2436         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2437         if (!bpostcond)
2438             return false;
2439         bcontinue = bpostcond; /* postcond comes before the increment */
2440     } else {
2441         bpostcond = end_bpostcond = NULL;
2442     }
2443
2444     bout_id = vec_size(func->ir_func->blocks);
2445     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2446     if (!bout)
2447         return false;
2448     bbreak = bout;
2449
2450     /* The loop body... */
2451     /* if (self->body) */
2452     {
2453         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2454         if (!bbody)
2455             return false;
2456
2457         /* enter */
2458         func->curblock = bbody;
2459
2460         old_bbreak          = func->breakblock;
2461         old_bcontinue       = func->continueblock;
2462         func->breakblock    = bbreak;
2463         func->continueblock = bcontinue;
2464         if (!func->continueblock)
2465             func->continueblock = bbody;
2466
2467         /* generate */
2468         if (self->body) {
2469             cgen = self->body->expression.codegen;
2470             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2471                 return false;
2472         }
2473
2474         end_bbody = func->curblock;
2475         func->breakblock    = old_bbreak;
2476         func->continueblock = old_bcontinue;
2477     }
2478
2479     /* post-loop-condition */
2480     if (self->postcond)
2481     {
2482         /* enter */
2483         func->curblock = bpostcond;
2484
2485         /* generate */
2486         cgen = self->postcond->expression.codegen;
2487         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2488             return false;
2489
2490         end_bpostcond = func->curblock;
2491     }
2492
2493     /* The incrementor */
2494     if (self->increment)
2495     {
2496         /* enter */
2497         func->curblock = bincrement;
2498
2499         /* generate */
2500         cgen = self->increment->expression.codegen;
2501         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2502             return false;
2503
2504         end_bincrement = func->curblock;
2505     }
2506
2507     /* In any case now, we continue from the outgoing block */
2508     func->curblock = bout;
2509
2510     /* Now all blocks are in place */
2511     /* From 'bin' we jump to whatever comes first */
2512     if      (bprecond)   tmpblock = bprecond;
2513     else if (bbody)      tmpblock = bbody;
2514     else if (bpostcond)  tmpblock = bpostcond;
2515     else                 tmpblock = bout;
2516     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2517         return false;
2518
2519     /* From precond */
2520     if (bprecond)
2521     {
2522         ir_block *ontrue, *onfalse;
2523         if      (bbody)      ontrue = bbody;
2524         else if (bincrement) ontrue = bincrement;
2525         else if (bpostcond)  ontrue = bpostcond;
2526         else                 ontrue = bprecond;
2527         onfalse = bout;
2528         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2529             return false;
2530     }
2531
2532     /* from body */
2533     if (bbody)
2534     {
2535         if      (bincrement) tmpblock = bincrement;
2536         else if (bpostcond)  tmpblock = bpostcond;
2537         else if (bprecond)   tmpblock = bprecond;
2538         else                 tmpblock = bbody;
2539         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2540             return false;
2541     }
2542
2543     /* from increment */
2544     if (bincrement)
2545     {
2546         if      (bpostcond)  tmpblock = bpostcond;
2547         else if (bprecond)   tmpblock = bprecond;
2548         else if (bbody)      tmpblock = bbody;
2549         else                 tmpblock = bout;
2550         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2551             return false;
2552     }
2553
2554     /* from postcond */
2555     if (bpostcond)
2556     {
2557         ir_block *ontrue, *onfalse;
2558         if      (bprecond)   ontrue = bprecond;
2559         else if (bbody)      ontrue = bbody;
2560         else if (bincrement) ontrue = bincrement;
2561         else                 ontrue = bpostcond;
2562         onfalse = bout;
2563         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2564             return false;
2565     }
2566
2567     /* Move 'bout' to the end */
2568     vec_remove(func->ir_func->blocks, bout_id, 1);
2569     vec_push(func->ir_func->blocks, bout);
2570
2571     return true;
2572 }
2573
2574 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2575 {
2576     ir_block *target;
2577
2578     *out = NULL;
2579
2580     if (lvalue) {
2581         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2582         return false;
2583     }
2584
2585     if (self->expression.outr) {
2586         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2587         return false;
2588     }
2589     self->expression.outr = (ir_value*)1;
2590
2591     if (self->is_continue)
2592         target = func->continueblock;
2593     else
2594         target = func->breakblock;
2595
2596     if (!target) {
2597         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2598         return false;
2599     }
2600
2601     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2602         return false;
2603     return true;
2604 }
2605
2606 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2607 {
2608     ast_expression_codegen *cgen;
2609
2610     ast_switch_case *def_case  = NULL;
2611     ir_block        *def_bfall = NULL;
2612
2613     ir_value *dummy     = NULL;
2614     ir_value *irop      = NULL;
2615     ir_block *old_break = NULL;
2616     ir_block *bout      = NULL;
2617     ir_block *bfall     = NULL;
2618     size_t    bout_id;
2619     size_t    c;
2620
2621     char      typestr[1024];
2622     uint16_t  cmpinstr;
2623
2624     if (lvalue) {
2625         compile_error(ast_ctx(self), "switch expression is not an l-value");
2626         return false;
2627     }
2628
2629     if (self->expression.outr) {
2630         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2631         return false;
2632     }
2633     self->expression.outr = (ir_value*)1;
2634
2635     (void)lvalue;
2636     (void)out;
2637
2638     cgen = self->operand->expression.codegen;
2639     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2640         return false;
2641
2642     if (!vec_size(self->cases))
2643         return true;
2644
2645     cmpinstr = type_eq_instr[irop->vtype];
2646     if (cmpinstr >= AINSTR_END) {
2647         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2648         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2649         return false;
2650     }
2651
2652     bout_id = vec_size(func->ir_func->blocks);
2653     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2654     if (!bout)
2655         return false;
2656
2657     /* setup the break block */
2658     old_break        = func->breakblock;
2659     func->breakblock = bout;
2660
2661     /* Now create all cases */
2662     for (c = 0; c < vec_size(self->cases); ++c) {
2663         ir_value *cond, *val;
2664         ir_block *bcase, *bnot;
2665         size_t bnot_id;
2666
2667         ast_switch_case *swcase = &self->cases[c];
2668
2669         if (swcase->value) {
2670             /* A regular case */
2671             /* generate the condition operand */
2672             cgen = swcase->value->expression.codegen;
2673             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2674                 return false;
2675             /* generate the condition */
2676             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2677             if (!cond)
2678                 return false;
2679
2680             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2681             bnot_id = vec_size(func->ir_func->blocks);
2682             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2683             if (!bcase || !bnot)
2684                 return false;
2685             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2686                 return false;
2687
2688             /* Make the previous case-end fall through */
2689             if (bfall && !bfall->final) {
2690                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2691                     return false;
2692             }
2693
2694             /* enter the case */
2695             func->curblock = bcase;
2696             cgen = swcase->code->expression.codegen;
2697             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2698                 return false;
2699
2700             /* remember this block to fall through from */
2701             bfall = func->curblock;
2702
2703             /* enter the else and move it down */
2704             func->curblock = bnot;
2705             vec_remove(func->ir_func->blocks, bnot_id, 1);
2706             vec_push(func->ir_func->blocks, bnot);
2707         } else {
2708             /* The default case */
2709             /* Remember where to fall through from: */
2710             def_bfall = bfall;
2711             bfall     = NULL;
2712             /* remember which case it was */
2713             def_case  = swcase;
2714         }
2715     }
2716
2717     /* Jump from the last bnot to bout */
2718     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2719         /*
2720         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2721         */
2722         return false;
2723     }
2724
2725     /* If there was a default case, put it down here */
2726     if (def_case) {
2727         ir_block *bcase;
2728
2729         /* No need to create an extra block */
2730         bcase = func->curblock;
2731
2732         /* Insert the fallthrough jump */
2733         if (def_bfall && !def_bfall->final) {
2734             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2735                 return false;
2736         }
2737
2738         /* Now generate the default code */
2739         cgen = def_case->code->expression.codegen;
2740         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2741             return false;
2742     }
2743
2744     /* Jump from the last bnot to bout */
2745     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2746         return false;
2747     /* enter the outgoing block */
2748     func->curblock = bout;
2749
2750     /* restore the break block */
2751     func->breakblock = old_break;
2752
2753     /* Move 'bout' to the end, it's nicer */
2754     vec_remove(func->ir_func->blocks, bout_id, 1);
2755     vec_push(func->ir_func->blocks, bout);
2756
2757     return true;
2758 }
2759
2760 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2761 {
2762     size_t i;
2763     ir_value *dummy;
2764
2765     *out = NULL;
2766     if (lvalue) {
2767         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2768         return false;
2769     }
2770
2771     /* simply create a new block and jump to it */
2772     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2773     if (!self->irblock) {
2774         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2775         return false;
2776     }
2777     if (!func->curblock->final) {
2778         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2779             return false;
2780     }
2781
2782     /* enter the new block */
2783     func->curblock = self->irblock;
2784
2785     /* Generate all the leftover gotos */
2786     for (i = 0; i < vec_size(self->gotos); ++i) {
2787         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2788             return false;
2789     }
2790
2791     return true;
2792 }
2793
2794 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2795 {
2796     *out = NULL;
2797     if (lvalue) {
2798         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2799         return false;
2800     }
2801
2802     if (self->target->irblock) {
2803         if (self->irblock_from) {
2804             /* we already tried once, this is the callback */
2805             self->irblock_from->final = false;
2806             if (!ir_block_create_jump(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2807                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2808                 return false;
2809             }
2810         }
2811         else
2812         {
2813             if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->target->irblock)) {
2814                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2815                 return false;
2816             }
2817         }
2818     }
2819     else
2820     {
2821         /* the target has not yet been created...
2822          * close this block in a sneaky way:
2823          */
2824         func->curblock->final = true;
2825         self->irblock_from = func->curblock;
2826         ast_label_register_goto(self->target, self);
2827     }
2828
2829     return true;
2830 }
2831
2832 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2833 {
2834     ast_expression_codegen *cgen;
2835     ir_value              **params;
2836     ir_instr               *callinstr;
2837     size_t i;
2838
2839     ir_value *funval = NULL;
2840
2841     /* return values are never lvalues */
2842     if (lvalue) {
2843         compile_error(ast_ctx(self), "not an l-value (function call)");
2844         return false;
2845     }
2846
2847     if (self->expression.outr) {
2848         *out = self->expression.outr;
2849         return true;
2850     }
2851
2852     cgen = self->func->expression.codegen;
2853     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2854         return false;
2855     if (!funval)
2856         return false;
2857
2858     params = NULL;
2859
2860     /* parameters */
2861     for (i = 0; i < vec_size(self->params); ++i)
2862     {
2863         ir_value *param;
2864         ast_expression *expr = self->params[i];
2865
2866         cgen = expr->expression.codegen;
2867         if (!(*cgen)(expr, func, false, &param))
2868             goto error;
2869         if (!param)
2870             goto error;
2871         vec_push(params, param);
2872     }
2873
2874     callinstr = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "call"), funval);
2875     if (!callinstr)
2876         goto error;
2877
2878     for (i = 0; i < vec_size(params); ++i) {
2879         ir_call_param(callinstr, params[i]);
2880     }
2881
2882     *out = ir_call_value(callinstr);
2883     self->expression.outr = *out;
2884
2885     codegen_output_type(self, *out);
2886
2887     vec_free(params);
2888     return true;
2889 error:
2890     vec_free(params);
2891     return false;
2892 }