fix member binops on entity fields to generate STOREP, this fixes stuff like ent...
[xonotic/gmqcc.git] / ir.cpp
1 #include <stdlib.h>
2 #include <string.h>
3
4 #include "gmqcc.h"
5 #include "ir.h"
6
7 /***********************************************************************
8  * Type sizes used at multiple points in the IR codegen
9  */
10
11 const char *type_name[TYPE_COUNT] = {
12     "void",
13     "string",
14     "float",
15     "vector",
16     "entity",
17     "field",
18     "function",
19     "pointer",
20     "integer",
21     "variant",
22     "struct",
23     "union",
24     "array",
25
26     "nil",
27     "<no-expression>"
28 };
29
30 static size_t type_sizeof_[TYPE_COUNT] = {
31     1, /* TYPE_VOID     */
32     1, /* TYPE_STRING   */
33     1, /* TYPE_FLOAT    */
34     3, /* TYPE_VECTOR   */
35     1, /* TYPE_ENTITY   */
36     1, /* TYPE_FIELD    */
37     1, /* TYPE_FUNCTION */
38     1, /* TYPE_POINTER  */
39     1, /* TYPE_INTEGER  */
40     3, /* TYPE_VARIANT  */
41     0, /* TYPE_STRUCT   */
42     0, /* TYPE_UNION    */
43     0, /* TYPE_ARRAY    */
44     0, /* TYPE_NIL      */
45     0, /* TYPE_NOESPR   */
46 };
47
48 const uint16_t type_store_instr[TYPE_COUNT] = {
49     INSTR_STORE_F, /* should use I when having integer support */
50     INSTR_STORE_S,
51     INSTR_STORE_F,
52     INSTR_STORE_V,
53     INSTR_STORE_ENT,
54     INSTR_STORE_FLD,
55     INSTR_STORE_FNC,
56     INSTR_STORE_ENT, /* should use I */
57 #if 0
58     INSTR_STORE_I, /* integer type */
59 #else
60     INSTR_STORE_F,
61 #endif
62
63     INSTR_STORE_V, /* variant, should never be accessed */
64
65     VINSTR_END, /* struct */
66     VINSTR_END, /* union  */
67     VINSTR_END, /* array  */
68     VINSTR_END, /* nil    */
69     VINSTR_END, /* noexpr */
70 };
71
72 const uint16_t field_store_instr[TYPE_COUNT] = {
73     INSTR_STORE_FLD,
74     INSTR_STORE_FLD,
75     INSTR_STORE_FLD,
76     INSTR_STORE_V,
77     INSTR_STORE_FLD,
78     INSTR_STORE_FLD,
79     INSTR_STORE_FLD,
80     INSTR_STORE_FLD,
81 #if 0
82     INSTR_STORE_FLD, /* integer type */
83 #else
84     INSTR_STORE_FLD,
85 #endif
86
87     INSTR_STORE_V, /* variant, should never be accessed */
88
89     VINSTR_END, /* struct */
90     VINSTR_END, /* union  */
91     VINSTR_END, /* array  */
92     VINSTR_END, /* nil    */
93     VINSTR_END, /* noexpr */
94 };
95
96 const uint16_t type_storep_instr[TYPE_COUNT] = {
97     INSTR_STOREP_F, /* should use I when having integer support */
98     INSTR_STOREP_S,
99     INSTR_STOREP_F,
100     INSTR_STOREP_V,
101     INSTR_STOREP_ENT,
102     INSTR_STOREP_FLD,
103     INSTR_STOREP_FNC,
104     INSTR_STOREP_ENT, /* should use I */
105 #if 0
106     INSTR_STOREP_ENT, /* integer type */
107 #else
108     INSTR_STOREP_F,
109 #endif
110
111     INSTR_STOREP_V, /* variant, should never be accessed */
112
113     VINSTR_END, /* struct */
114     VINSTR_END, /* union  */
115     VINSTR_END, /* array  */
116     VINSTR_END, /* nil    */
117     VINSTR_END, /* noexpr */
118 };
119
120 const uint16_t type_eq_instr[TYPE_COUNT] = {
121     INSTR_EQ_F, /* should use I when having integer support */
122     INSTR_EQ_S,
123     INSTR_EQ_F,
124     INSTR_EQ_V,
125     INSTR_EQ_E,
126     INSTR_EQ_E, /* FLD has no comparison */
127     INSTR_EQ_FNC,
128     INSTR_EQ_E, /* should use I */
129 #if 0
130     INSTR_EQ_I,
131 #else
132     INSTR_EQ_F,
133 #endif
134
135     INSTR_EQ_V, /* variant, should never be accessed */
136
137     VINSTR_END, /* struct */
138     VINSTR_END, /* union  */
139     VINSTR_END, /* array  */
140     VINSTR_END, /* nil    */
141     VINSTR_END, /* noexpr */
142 };
143
144 const uint16_t type_ne_instr[TYPE_COUNT] = {
145     INSTR_NE_F, /* should use I when having integer support */
146     INSTR_NE_S,
147     INSTR_NE_F,
148     INSTR_NE_V,
149     INSTR_NE_E,
150     INSTR_NE_E, /* FLD has no comparison */
151     INSTR_NE_FNC,
152     INSTR_NE_E, /* should use I */
153 #if 0
154     INSTR_NE_I,
155 #else
156     INSTR_NE_F,
157 #endif
158
159     INSTR_NE_V, /* variant, should never be accessed */
160
161     VINSTR_END, /* struct */
162     VINSTR_END, /* union  */
163     VINSTR_END, /* array  */
164     VINSTR_END, /* nil    */
165     VINSTR_END, /* noexpr */
166 };
167
168 const uint16_t type_not_instr[TYPE_COUNT] = {
169     INSTR_NOT_F, /* should use I when having integer support */
170     VINSTR_END,  /* not to be used, depends on string related -f flags */
171     INSTR_NOT_F,
172     INSTR_NOT_V,
173     INSTR_NOT_ENT,
174     INSTR_NOT_ENT,
175     INSTR_NOT_FNC,
176     INSTR_NOT_ENT, /* should use I */
177 #if 0
178     INSTR_NOT_I, /* integer type */
179 #else
180     INSTR_NOT_F,
181 #endif
182
183     INSTR_NOT_V, /* variant, should never be accessed */
184
185     VINSTR_END, /* struct */
186     VINSTR_END, /* union  */
187     VINSTR_END, /* array  */
188     VINSTR_END, /* nil    */
189     VINSTR_END, /* noexpr */
190 };
191
192 /* protos */
193 static void            ir_function_dump(ir_function*, char *ind, int (*oprintf)(const char*,...));
194
195 static ir_value*       ir_block_create_general_instr(ir_block *self, lex_ctx_t, const char *label,
196                                                      int op, ir_value *a, ir_value *b, qc_type outype);
197 static bool GMQCC_WARN ir_block_create_store(ir_block*, lex_ctx_t, ir_value *target, ir_value *what);
198 static void            ir_block_dump(ir_block*, char *ind, int (*oprintf)(const char*,...));
199
200 static bool            ir_instr_op(ir_instr*, int op, ir_value *value, bool writing);
201 static void            ir_instr_dump(ir_instr* in, char *ind, int (*oprintf)(const char*,...));
202 /* error functions */
203
204 static void irerror(lex_ctx_t ctx, const char *msg, ...)
205 {
206     va_list ap;
207     va_start(ap, msg);
208     con_cvprintmsg(ctx, LVL_ERROR, "internal error", msg, ap);
209     va_end(ap);
210 }
211
212 static bool GMQCC_WARN irwarning(lex_ctx_t ctx, int warntype, const char *fmt, ...)
213 {
214     bool    r;
215     va_list ap;
216     va_start(ap, fmt);
217     r = vcompile_warning(ctx, warntype, fmt, ap);
218     va_end(ap);
219     return r;
220 }
221
222 /***********************************************************************
223  * Vector utility functions
224  */
225
226 static bool GMQCC_WARN vec_ir_value_find(std::vector<ir_value *> &vec, const ir_value *what, size_t *idx)
227 {
228     for (auto &it : vec) {
229         if (it != what)
230             continue;
231         if (idx)
232             *idx = &it - &vec[0];
233         return true;
234     }
235     return false;
236 }
237
238 static bool GMQCC_WARN vec_ir_block_find(std::vector<ir_block *> &vec, ir_block *what, size_t *idx)
239 {
240     for (auto &it : vec) {
241         if (it != what)
242             continue;
243         if (idx)
244             *idx = &it - &vec[0];
245         return true;
246     }
247     return false;
248 }
249
250 static bool GMQCC_WARN vec_ir_instr_find(std::vector<ir_instr *> &vec, ir_instr *what, size_t *idx)
251 {
252     for (auto &it : vec) {
253         if (it != what)
254             continue;
255         if (idx)
256             *idx = &it - &vec[0];
257         return true;
258     }
259     return false;
260 }
261
262 /***********************************************************************
263  * IR Builder
264  */
265
266 static void ir_block_delete_quick(ir_block* self);
267 static void ir_instr_delete_quick(ir_instr *self);
268 static void ir_function_delete_quick(ir_function *self);
269
270 ir_builder::ir_builder(const std::string& modulename)
271 : m_name(modulename),
272   m_code(new code_t)
273 {
274     m_htglobals   = util_htnew(IR_HT_SIZE);
275     m_htfields    = util_htnew(IR_HT_SIZE);
276     m_htfunctions = util_htnew(IR_HT_SIZE);
277
278     m_nil = new ir_value("nil", store_value, TYPE_NIL);
279     m_nil->m_cvq = CV_CONST;
280
281     for (size_t i = 0; i != IR_MAX_VINSTR_TEMPS; ++i) {
282         /* we write to them, but they're not supposed to be used outside the IR, so
283          * let's not allow the generation of ir_instrs which use these.
284          * So it's a constant noexpr.
285          */
286         m_vinstr_temp[i] = new ir_value("vinstr_temp", store_value, TYPE_NOEXPR);
287         m_vinstr_temp[i]->m_cvq = CV_CONST;
288     }
289 }
290
291 ir_builder::~ir_builder()
292 {
293     util_htdel(m_htglobals);
294     util_htdel(m_htfields);
295     util_htdel(m_htfunctions);
296     for (auto& f : m_functions)
297         ir_function_delete_quick(f.release());
298     m_functions.clear(); // delete them now before deleting the rest:
299
300     delete m_nil;
301
302     for (size_t i = 0; i != IR_MAX_VINSTR_TEMPS; ++i) {
303         delete m_vinstr_temp[i];
304     }
305
306     m_extparams.clear();
307     m_extparam_protos.clear();
308 }
309
310 ir_function* ir_builder::createFunction(const std::string& name, qc_type outtype)
311 {
312     ir_function *fn = (ir_function*)util_htget(m_htfunctions, name.c_str());
313     if (fn)
314         return nullptr;
315
316     fn = new ir_function(this, outtype);
317     fn->m_name = name;
318     m_functions.emplace_back(fn);
319     util_htset(m_htfunctions, name.c_str(), fn);
320
321     fn->m_value = createGlobal(fn->m_name, TYPE_FUNCTION);
322     if (!fn->m_value) {
323         delete fn;
324         return nullptr;
325     }
326
327     fn->m_value->m_hasvalue = true;
328     fn->m_value->m_outtype = outtype;
329     fn->m_value->m_constval.vfunc = fn;
330     fn->m_value->m_context = fn->m_context;
331
332     return fn;
333 }
334
335 ir_value* ir_builder::createGlobal(const std::string& name, qc_type vtype)
336 {
337     ir_value *ve;
338
339     if (name[0] != '#')
340     {
341         ve = (ir_value*)util_htget(m_htglobals, name.c_str());
342         if (ve) {
343             return nullptr;
344         }
345     }
346
347     ve = new ir_value(std::string(name), store_global, vtype);
348     m_globals.emplace_back(ve);
349     util_htset(m_htglobals, name.c_str(), ve);
350     return ve;
351 }
352
353 ir_value* ir_builder::get_va_count()
354 {
355     if (m_reserved_va_count)
356         return m_reserved_va_count;
357     return (m_reserved_va_count = createGlobal("reserved:va_count", TYPE_FLOAT));
358 }
359
360 ir_value* ir_builder::createField(const std::string& name, qc_type vtype)
361 {
362     ir_value *ve = (ir_value*)util_htget(m_htfields, name.c_str());
363     if (ve) {
364         return nullptr;
365     }
366
367     ve = new ir_value(std::string(name), store_global, TYPE_FIELD);
368     ve->m_fieldtype = vtype;
369     m_fields.emplace_back(ve);
370     util_htset(m_htfields, name.c_str(), ve);
371     return ve;
372 }
373
374 /***********************************************************************
375  *IR Function
376  */
377
378 static bool ir_function_naive_phi(ir_function*);
379 static void ir_function_enumerate(ir_function*);
380 static bool ir_function_calculate_liferanges(ir_function*);
381 static bool ir_function_allocate_locals(ir_function*);
382
383 ir_function::ir_function(ir_builder* owner_, qc_type outtype_)
384 : m_owner(owner_),
385   m_name("<@unnamed>"),
386   m_outtype(outtype_)
387 {
388     m_context.file = "<@no context>";
389     m_context.line = 0;
390 }
391
392 ir_function::~ir_function()
393 {
394 }
395
396 static void ir_function_delete_quick(ir_function *self)
397 {
398     for (auto& b : self->m_blocks)
399         ir_block_delete_quick(b.release());
400     delete self;
401 }
402
403 static void ir_function_collect_value(ir_function *self, ir_value *v)
404 {
405     self->m_values.emplace_back(v);
406 }
407
408 ir_block* ir_function_create_block(lex_ctx_t ctx, ir_function *self, const char *label)
409 {
410     ir_block* bn = new ir_block(self, label ? std::string(label) : std::string());
411     bn->m_context = ctx;
412     self->m_blocks.emplace_back(bn);
413
414     if ((self->m_flags & IR_FLAG_BLOCK_COVERAGE) && self->m_owner->m_coverage_func)
415         (void)ir_block_create_call(bn, ctx, nullptr, self->m_owner->m_coverage_func, false);
416
417     return bn;
418 }
419
420 static bool instr_is_operation(uint16_t op)
421 {
422     return ( (op >= INSTR_MUL_F  && op <= INSTR_GT) ||
423              (op >= INSTR_LOAD_F && op <= INSTR_LOAD_FNC) ||
424              (op == INSTR_ADDRESS) ||
425              (op >= INSTR_NOT_F  && op <= INSTR_NOT_FNC) ||
426              (op >= INSTR_AND    && op <= INSTR_BITOR) ||
427              (op >= INSTR_CALL0  && op <= INSTR_CALL8) ||
428              (op >= VINSTR_BITAND_V && op <= VINSTR_NEG_V) );
429 }
430
431 static bool ir_function_pass_peephole(ir_function *self)
432 {
433     for (auto& bp : self->m_blocks) {
434         ir_block *block = bp.get();
435         for (size_t i = 0; i < block->m_instr.size(); ++i) {
436             ir_instr *inst;
437             inst = block->m_instr[i];
438
439             if (i >= 1 &&
440                 (inst->m_opcode >= INSTR_STORE_F &&
441                  inst->m_opcode <= INSTR_STORE_FNC))
442             {
443                 ir_instr *store;
444                 ir_instr *oper;
445                 ir_value *value;
446
447                 store = inst;
448
449                 oper  = block->m_instr[i-1];
450                 if (!instr_is_operation(oper->m_opcode))
451                     continue;
452
453                 /* Don't change semantics of MUL_VF in engines where these may not alias. */
454                 if (OPTS_FLAG(LEGACY_VECTOR_MATHS)) {
455                     if (oper->m_opcode == INSTR_MUL_VF && oper->_m_ops[2]->m_memberof == oper->_m_ops[1])
456                         continue;
457                     if (oper->m_opcode == INSTR_MUL_FV && oper->_m_ops[1]->m_memberof == oper->_m_ops[2])
458                         continue;
459                 }
460
461                 value = oper->_m_ops[0];
462
463                 /* only do it for SSA values */
464                 if (value->m_store != store_value)
465                     continue;
466
467                 /* don't optimize out the temp if it's used later again */
468                 if (value->m_reads.size() != 1)
469                     continue;
470
471                 /* The very next store must use this value */
472                 if (value->m_reads[0] != store)
473                     continue;
474
475                 /* And of course the store must _read_ from it, so it's in
476                  * OP 1 */
477                 if (store->_m_ops[1] != value)
478                     continue;
479
480                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
481                 (void)!ir_instr_op(oper, 0, store->_m_ops[0], true);
482
483                 block->m_instr.erase(block->m_instr.begin() + i);
484                 delete store;
485             }
486             else if (inst->m_opcode == VINSTR_COND)
487             {
488                 /* COND on a value resulting from a NOT could
489                  * remove the NOT and swap its operands
490                  */
491                 while (true) {
492                     ir_block *tmp;
493                     size_t    inotid;
494                     ir_instr *inot;
495                     ir_value *value;
496                     value = inst->_m_ops[0];
497
498                     if (value->m_store != store_value || value->m_reads.size() != 1 || value->m_reads[0] != inst)
499                         break;
500
501                     inot = value->m_writes[0];
502                     if (inot->_m_ops[0] != value ||
503                         inot->m_opcode < INSTR_NOT_F ||
504                         inot->m_opcode > INSTR_NOT_FNC ||
505                         inot->m_opcode == INSTR_NOT_V || /* can't do these */
506                         inot->m_opcode == INSTR_NOT_S)
507                     {
508                         break;
509                     }
510
511                     /* count */
512                     ++opts_optimizationcount[OPTIM_PEEPHOLE];
513                     /* change operand */
514                     (void)!ir_instr_op(inst, 0, inot->_m_ops[1], false);
515                     /* remove NOT */
516                     tmp = inot->m_owner;
517                     for (inotid = 0; inotid < tmp->m_instr.size(); ++inotid) {
518                         if (tmp->m_instr[inotid] == inot)
519                             break;
520                     }
521                     if (inotid >= tmp->m_instr.size()) {
522                         compile_error(inst->m_context, "sanity-check failed: failed to find instruction to optimize out");
523                         return false;
524                     }
525                     tmp->m_instr.erase(tmp->m_instr.begin() + inotid);
526                     delete inot;
527                     /* swap ontrue/onfalse */
528                     tmp = inst->m_bops[0];
529                     inst->m_bops[0] = inst->m_bops[1];
530                     inst->m_bops[1] = tmp;
531                 }
532                 continue;
533             }
534         }
535     }
536
537     return true;
538 }
539
540 static bool ir_function_pass_tailrecursion(ir_function *self)
541 {
542     size_t p;
543
544     for (auto& bp : self->m_blocks) {
545         ir_block *block = bp.get();
546
547         ir_value *funcval;
548         ir_instr *ret, *call, *store = nullptr;
549
550         if (!block->m_final || block->m_instr.size() < 2)
551             continue;
552
553         ret = block->m_instr.back();
554         if (ret->m_opcode != INSTR_DONE && ret->m_opcode != INSTR_RETURN)
555             continue;
556
557         call = block->m_instr[block->m_instr.size()-2];
558         if (call->m_opcode >= INSTR_STORE_F && call->m_opcode <= INSTR_STORE_FNC) {
559             /* account for the unoptimized
560              * CALL
561              * STORE %return, %tmp
562              * RETURN %tmp
563              * version
564              */
565             if (block->m_instr.size() < 3)
566                 continue;
567
568             store = call;
569             call = block->m_instr[block->m_instr.size()-3];
570         }
571
572         if (call->m_opcode < INSTR_CALL0 || call->m_opcode > INSTR_CALL8)
573             continue;
574
575         if (store) {
576             /* optimize out the STORE */
577             if (ret->_m_ops[0]   &&
578                 ret->_m_ops[0]   == store->_m_ops[0] &&
579                 store->_m_ops[1] == call->_m_ops[0])
580             {
581                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
582                 call->_m_ops[0] = store->_m_ops[0];
583                 block->m_instr.erase(block->m_instr.end()-2);
584                 delete store;
585             }
586             else
587                 continue;
588         }
589
590         if (!call->_m_ops[0])
591             continue;
592
593         funcval = call->_m_ops[1];
594         if (!funcval)
595             continue;
596         if (funcval->m_vtype != TYPE_FUNCTION || funcval->m_constval.vfunc != self)
597             continue;
598
599         /* now we have a CALL and a RET, check if it's a tailcall */
600         if (ret->_m_ops[0] && call->_m_ops[0] != ret->_m_ops[0])
601             continue;
602
603         ++opts_optimizationcount[OPTIM_TAIL_RECURSION];
604         block->m_instr.erase(block->m_instr.end()-2, block->m_instr.end());
605
606         block->m_final = false; /* open it back up */
607
608         /* emite parameter-stores */
609         for (p = 0; p < call->m_params.size(); ++p) {
610             /* assert(call->params_count <= self->locals_count); */
611             if (!ir_block_create_store(block, call->m_context, self->m_locals[p].get(), call->m_params[p])) {
612                 irerror(call->m_context, "failed to create tailcall store instruction for parameter %i", (int)p);
613                 return false;
614             }
615         }
616         if (!ir_block_create_jump(block, call->m_context, self->m_blocks[0].get())) {
617             irerror(call->m_context, "failed to create tailcall jump");
618             return false;
619         }
620
621         delete call;
622         delete ret;
623     }
624
625     return true;
626 }
627
628 bool ir_function_finalize(ir_function *self)
629 {
630     if (self->m_builtin)
631         return true;
632
633     for (auto& lp : self->m_locals) {
634         ir_value *v = lp.get();
635         if (v->m_reads.empty() && v->m_writes.size() && !(v->m_flags & IR_FLAG_NOREF)) {
636             // if it's a vector check to ensure all it's members are unused before
637             // claiming it's unused, otherwise skip the vector entierly
638             if (v->m_vtype == TYPE_VECTOR)
639             {
640                 size_t mask = (1 << 3) - 1, bits = 0;
641                 for (size_t i = 0; i < 3; i++)
642                     if (!v->m_members[i] || (v->m_members[i]->m_reads.empty()
643                         && v->m_members[i]->m_writes.size()))
644                         bits |= (1 << i);
645                 // all components are unused so just report the vector
646                 if (bits == mask && irwarning(v->m_context, WARN_UNUSED_VARIABLE,
647                     "unused variable: `%s`", v->m_name.c_str()))
648                     return false;
649                 else if (bits != mask)
650                     // individual components are unused so mention them
651                     for (size_t i = 0; i < 3; i++)
652                         if ((bits & (1 << i))
653                             && irwarning(v->m_context, WARN_UNUSED_COMPONENT,
654                                 "unused vector component: `%s.%c`", v->m_name.c_str(), "xyz"[i]))
655                             return false;
656             }
657             // just a standard variable
658             else if (irwarning(v->m_context, WARN_UNUSED_VARIABLE,
659                     "unused variable: `%s`", v->m_name.c_str())) return false;
660         }
661     }
662
663     if (OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
664         if (!ir_function_pass_peephole(self)) {
665             irerror(self->m_context, "generic optimization pass broke something in `%s`", self->m_name.c_str());
666             return false;
667         }
668     }
669
670     if (OPTS_OPTIMIZATION(OPTIM_TAIL_RECURSION)) {
671         if (!ir_function_pass_tailrecursion(self)) {
672             irerror(self->m_context, "tail-recursion optimization pass broke something in `%s`", self->m_name.c_str());
673             return false;
674         }
675     }
676
677     if (!ir_function_naive_phi(self)) {
678         irerror(self->m_context, "internal error: ir_function_naive_phi failed");
679         return false;
680     }
681
682     for (auto& lp : self->m_locals) {
683         ir_value *v = lp.get();
684         if (v->m_vtype == TYPE_VECTOR ||
685             (v->m_vtype == TYPE_FIELD && v->m_outtype == TYPE_VECTOR))
686         {
687             v->vectorMember(0);
688             v->vectorMember(1);
689             v->vectorMember(2);
690         }
691     }
692     for (auto& vp : self->m_values) {
693         ir_value *v = vp.get();
694         if (v->m_vtype == TYPE_VECTOR ||
695             (v->m_vtype == TYPE_FIELD && v->m_outtype == TYPE_VECTOR))
696         {
697             v->vectorMember(0);
698             v->vectorMember(1);
699             v->vectorMember(2);
700         }
701     }
702
703     ir_function_enumerate(self);
704
705     if (!ir_function_calculate_liferanges(self))
706         return false;
707     if (!ir_function_allocate_locals(self))
708         return false;
709     return true;
710 }
711
712 ir_value* ir_function_create_local(ir_function *self, const std::string& name, qc_type vtype, bool param)
713 {
714     ir_value *ve;
715
716     if (param &&
717         !self->m_locals.empty() &&
718         self->m_locals.back()->m_store != store_param)
719     {
720         irerror(self->m_context, "cannot add parameters after adding locals");
721         return nullptr;
722     }
723
724     ve = new ir_value(std::string(name), (param ? store_param : store_local), vtype);
725     if (param)
726         ve->m_locked = true;
727     self->m_locals.emplace_back(ve);
728     return ve;
729 }
730
731 /***********************************************************************
732  *IR Block
733  */
734
735 ir_block::ir_block(ir_function* owner, const std::string& name)
736 : m_owner(owner),
737   m_label(name)
738 {
739     m_context.file = "<@no context>";
740     m_context.line = 0;
741 }
742
743 ir_block::~ir_block()
744 {
745     for (auto &i : m_instr)
746         delete i;
747 }
748
749 static void ir_block_delete_quick(ir_block* self)
750 {
751     for (auto &i : self->m_instr)
752         ir_instr_delete_quick(i);
753     self->m_instr.clear();
754     delete self;
755 }
756
757 /***********************************************************************
758  *IR Instructions
759  */
760
761 ir_instr::ir_instr(lex_ctx_t ctx, ir_block* owner_, int op)
762 : m_opcode(op),
763   m_context(ctx),
764   m_owner(owner_)
765 {
766 }
767
768 ir_instr::~ir_instr()
769 {
770     // The following calls can only delete from
771     // vectors, we still want to delete this instruction
772     // so ignore the return value. Since with the warn_unused_result attribute
773     // gcc doesn't care about an explicit: (void)foo(); to ignore the result,
774     // I have to improvise here and use if(foo());
775     for (auto &it : m_phi) {
776         size_t idx;
777         if (vec_ir_instr_find(it.value->m_writes, this, &idx))
778             it.value->m_writes.erase(it.value->m_writes.begin() + idx);
779         if (vec_ir_instr_find(it.value->m_reads, this, &idx))
780             it.value->m_reads.erase(it.value->m_reads.begin() + idx);
781     }
782     for (auto &it : m_params) {
783         size_t idx;
784         if (vec_ir_instr_find(it->m_writes, this, &idx))
785             it->m_writes.erase(it->m_writes.begin() + idx);
786         if (vec_ir_instr_find(it->m_reads, this, &idx))
787             it->m_reads.erase(it->m_reads.begin() + idx);
788     }
789     (void)!ir_instr_op(this, 0, nullptr, false);
790     (void)!ir_instr_op(this, 1, nullptr, false);
791     (void)!ir_instr_op(this, 2, nullptr, false);
792 }
793
794 static void ir_instr_delete_quick(ir_instr *self)
795 {
796     self->m_phi.clear();
797     self->m_params.clear();
798     self->_m_ops[0] = nullptr;
799     self->_m_ops[1] = nullptr;
800     self->_m_ops[2] = nullptr;
801     delete self;
802 }
803
804 static bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
805 {
806     if (v && v->m_vtype == TYPE_NOEXPR) {
807         irerror(self->m_context, "tried to use a NOEXPR value");
808         return false;
809     }
810
811     if (self->_m_ops[op]) {
812         size_t idx;
813         if (writing && vec_ir_instr_find(self->_m_ops[op]->m_writes, self, &idx))
814             self->_m_ops[op]->m_writes.erase(self->_m_ops[op]->m_writes.begin() + idx);
815         else if (vec_ir_instr_find(self->_m_ops[op]->m_reads, self, &idx))
816             self->_m_ops[op]->m_reads.erase(self->_m_ops[op]->m_reads.begin() + idx);
817     }
818     if (v) {
819         if (writing)
820             v->m_writes.push_back(self);
821         else
822             v->m_reads.push_back(self);
823     }
824     self->_m_ops[op] = v;
825     return true;
826 }
827
828 /***********************************************************************
829  *IR Value
830  */
831
832 void ir_value::setCodeAddress(int32_t gaddr)
833 {
834     m_code.globaladdr = gaddr;
835     if (m_members[0]) m_members[0]->m_code.globaladdr = gaddr;
836     if (m_members[1]) m_members[1]->m_code.globaladdr = gaddr;
837     if (m_members[2]) m_members[2]->m_code.globaladdr = gaddr;
838 }
839
840 int32_t ir_value::codeAddress() const
841 {
842     if (m_store == store_return)
843         return OFS_RETURN + m_code.addroffset;
844     return m_code.globaladdr + m_code.addroffset;
845 }
846
847 ir_value::ir_value(std::string&& name_, store_type store_, qc_type vtype_)
848     : m_name(move(name_))
849     , m_vtype(vtype_)
850     , m_store(store_)
851 {
852     m_fieldtype = TYPE_VOID;
853     m_outtype = TYPE_VOID;
854     m_flags = 0;
855
856     m_cvq          = CV_NONE;
857     m_hasvalue     = false;
858     m_context.file = "<@no context>";
859     m_context.line = 0;
860
861     memset(&m_constval, 0, sizeof(m_constval));
862     memset(&m_code,     0, sizeof(m_code));
863
864     m_members[0] = nullptr;
865     m_members[1] = nullptr;
866     m_members[2] = nullptr;
867     m_memberof = nullptr;
868
869     m_unique_life = false;
870     m_locked = false;
871     m_callparam  = false;
872 }
873
874 ir_value::ir_value(ir_function *owner, std::string&& name, store_type storetype, qc_type vtype)
875     : ir_value(move(name), storetype, vtype)
876 {
877     ir_function_collect_value(owner, this);
878 }
879
880 ir_value::~ir_value()
881 {
882     size_t i;
883     if (m_hasvalue) {
884         if (m_vtype == TYPE_STRING)
885             mem_d((void*)m_constval.vstring);
886     }
887     if (!(m_flags & IR_FLAG_SPLIT_VECTOR)) {
888         for (i = 0; i < 3; ++i) {
889             if (m_members[i])
890                 delete m_members[i];
891         }
892     }
893 }
894
895
896 /*  helper function */
897 ir_value* ir_builder::literalFloat(float value, bool add_to_list) {
898     ir_value *v = new ir_value("#IMMEDIATE", store_global, TYPE_FLOAT);
899     v->m_flags |= IR_FLAG_ERASABLE;
900     v->m_hasvalue = true;
901     v->m_cvq = CV_CONST;
902     v->m_constval.vfloat = value;
903
904     m_globals.emplace_back(v);
905     if (add_to_list)
906         m_const_floats.emplace_back(v);
907     return v;
908 }
909
910 ir_value* ir_value::vectorMember(unsigned int member)
911 {
912     std::string name;
913     ir_value *m;
914     if (member >= 3)
915         return nullptr;
916
917     if (m_members[member])
918         return m_members[member];
919
920     if (!m_name.empty()) {
921         char member_name[3] = { '_', char('x' + member), 0 };
922         name = m_name + member_name;
923     }
924
925     if (m_vtype == TYPE_VECTOR)
926     {
927         m = new ir_value(move(name), m_store, TYPE_FLOAT);
928         if (!m)
929             return nullptr;
930         m->m_context = m_context;
931
932         m_members[member] = m;
933         m->m_code.addroffset = member;
934     }
935     else if (m_vtype == TYPE_FIELD)
936     {
937         if (m_fieldtype != TYPE_VECTOR)
938             return nullptr;
939         m = new ir_value(move(name), m_store, TYPE_FIELD);
940         if (!m)
941             return nullptr;
942         m->m_fieldtype = TYPE_FLOAT;
943         m->m_context = m_context;
944
945         m_members[member] = m;
946         m->m_code.addroffset = member;
947     }
948     else
949     {
950         irerror(m_context, "invalid member access on %s", m_name.c_str());
951         return nullptr;
952     }
953
954     m->m_memberof = this;
955     return m;
956 }
957
958 size_t ir_value::size() const {
959     if (m_vtype == TYPE_FIELD && m_fieldtype == TYPE_VECTOR)
960         return type_sizeof_[TYPE_VECTOR];
961     return type_sizeof_[m_vtype];
962 }
963
964 bool ir_value::setFloat(float f)
965 {
966     if (m_vtype != TYPE_FLOAT)
967         return false;
968     m_constval.vfloat = f;
969     m_hasvalue = true;
970     return true;
971 }
972
973 bool ir_value::setFunc(int f)
974 {
975     if (m_vtype != TYPE_FUNCTION)
976         return false;
977     m_constval.vint = f;
978     m_hasvalue = true;
979     return true;
980 }
981
982 bool ir_value::setVector(vec3_t v)
983 {
984     if (m_vtype != TYPE_VECTOR)
985         return false;
986     m_constval.vvec = v;
987     m_hasvalue = true;
988     return true;
989 }
990
991 bool ir_value::setField(ir_value *fld)
992 {
993     if (m_vtype != TYPE_FIELD)
994         return false;
995     m_constval.vpointer = fld;
996     m_hasvalue = true;
997     return true;
998 }
999
1000 bool ir_value::setString(const char *str)
1001 {
1002     if (m_vtype != TYPE_STRING)
1003         return false;
1004     m_constval.vstring = util_strdupe(str);
1005     m_hasvalue = true;
1006     return true;
1007 }
1008
1009 #if 0
1010 bool ir_value::setInt(int i)
1011 {
1012     if (m_vtype != TYPE_INTEGER)
1013         return false;
1014     m_constval.vint = i;
1015     m_hasvalue = true;
1016     return true;
1017 }
1018 #endif
1019
1020 bool ir_value::lives(size_t at)
1021 {
1022     for (auto& l : m_life) {
1023         if (l.start <= at && at <= l.end)
1024             return true;
1025         if (l.start > at) /* since it's ordered */
1026             return false;
1027     }
1028     return false;
1029 }
1030
1031 bool ir_value::insertLife(size_t idx, ir_life_entry_t e)
1032 {
1033     m_life.insert(m_life.begin() + idx, e);
1034     return true;
1035 }
1036
1037 bool ir_value::setAlive(size_t s)
1038 {
1039     size_t i;
1040     const size_t vs = m_life.size();
1041     ir_life_entry_t *life_found = nullptr;
1042     ir_life_entry_t *before = nullptr;
1043     ir_life_entry_t new_entry;
1044
1045     /* Find the first range >= s */
1046     for (i = 0; i < vs; ++i)
1047     {
1048         before = life_found;
1049         life_found = &m_life[i];
1050         if (life_found->start > s)
1051             break;
1052     }
1053     /* nothing found? append */
1054     if (i == vs) {
1055         ir_life_entry_t e;
1056         if (life_found && life_found->end+1 == s)
1057         {
1058             /* previous life range can be merged in */
1059             life_found->end++;
1060             return true;
1061         }
1062         if (life_found && life_found->end >= s)
1063             return false;
1064         e.start = e.end = s;
1065         m_life.emplace_back(e);
1066         return true;
1067     }
1068     /* found */
1069     if (before)
1070     {
1071         if (before->end + 1 == s &&
1072             life_found->start - 1 == s)
1073         {
1074             /* merge */
1075             before->end = life_found->end;
1076             m_life.erase(m_life.begin()+i);
1077             return true;
1078         }
1079         if (before->end + 1 == s)
1080         {
1081             /* extend before */
1082             before->end++;
1083             return true;
1084         }
1085         /* already contained */
1086         if (before->end >= s)
1087             return false;
1088     }
1089     /* extend */
1090     if (life_found->start - 1 == s)
1091     {
1092         life_found->start--;
1093         return true;
1094     }
1095     /* insert a new entry */
1096     new_entry.start = new_entry.end = s;
1097     return insertLife(i, new_entry);
1098 }
1099
1100 bool ir_value::mergeLife(const ir_value *other)
1101 {
1102     size_t i, myi;
1103
1104     if (other->m_life.empty())
1105         return true;
1106
1107     if (m_life.empty()) {
1108         m_life = other->m_life;
1109         return true;
1110     }
1111
1112     myi = 0;
1113     for (i = 0; i < other->m_life.size(); ++i)
1114     {
1115         const ir_life_entry_t &otherlife = other->m_life[i];
1116         while (true)
1117         {
1118             ir_life_entry_t *entry = &m_life[myi];
1119
1120             if (otherlife.end+1 < entry->start)
1121             {
1122                 /* adding an interval before entry */
1123                 if (!insertLife(myi, otherlife))
1124                     return false;
1125                 ++myi;
1126                 break;
1127             }
1128
1129             if (otherlife.start <  entry->start &&
1130                 otherlife.end+1 >= entry->start)
1131             {
1132                 /* starts earlier and overlaps */
1133                 entry->start = otherlife.start;
1134             }
1135
1136             if (otherlife.end   >  entry->end &&
1137                 otherlife.start <= entry->end+1)
1138             {
1139                 /* ends later and overlaps */
1140                 entry->end = otherlife.end;
1141             }
1142
1143             /* see if our change combines it with the next ranges */
1144             while (myi+1 < m_life.size() &&
1145                    entry->end+1 >= m_life[1+myi].start)
1146             {
1147                 /* overlaps with (myi+1) */
1148                 if (entry->end < m_life[1+myi].end)
1149                     entry->end = m_life[1+myi].end;
1150                 m_life.erase(m_life.begin() + (myi + 1));
1151                 entry = &m_life[myi];
1152             }
1153
1154             /* see if we're after the entry */
1155             if (otherlife.start > entry->end)
1156             {
1157                 ++myi;
1158                 /* append if we're at the end */
1159                 if (myi >= m_life.size()) {
1160                     m_life.emplace_back(otherlife);
1161                     break;
1162                 }
1163                 /* otherweise check the next range */
1164                 continue;
1165             }
1166             break;
1167         }
1168     }
1169     return true;
1170 }
1171
1172 static bool ir_values_overlap(const ir_value *a, const ir_value *b)
1173 {
1174     /* For any life entry in A see if it overlaps with
1175      * any life entry in B.
1176      * Note that the life entries are orderes, so we can make a
1177      * more efficient algorithm there than naively translating the
1178      * statement above.
1179      */
1180
1181     const ir_life_entry_t *la, *lb, *enda, *endb;
1182
1183     /* first of all, if either has no life range, they cannot clash */
1184     if (a->m_life.empty() || b->m_life.empty())
1185         return false;
1186
1187     la = &a->m_life.front();
1188     lb = &b->m_life.front();
1189     enda = &a->m_life.back() + 1;
1190     endb = &b->m_life.back() + 1;
1191     while (true)
1192     {
1193         /* check if the entries overlap, for that,
1194          * both must start before the other one ends.
1195          */
1196         if (la->start < lb->end &&
1197             lb->start < la->end)
1198         {
1199             return true;
1200         }
1201
1202         /* entries are ordered
1203          * one entry is earlier than the other
1204          * that earlier entry will be moved forward
1205          */
1206         if (la->start < lb->start)
1207         {
1208             /* order: A B, move A forward
1209              * check if we hit the end with A
1210              */
1211             if (++la == enda)
1212                 break;
1213         }
1214         else /* if (lb->start < la->start)  actually <= */
1215         {
1216             /* order: B A, move B forward
1217              * check if we hit the end with B
1218              */
1219             if (++lb == endb)
1220                 break;
1221         }
1222     }
1223     return false;
1224 }
1225
1226 /***********************************************************************
1227  *IR main operations
1228  */
1229
1230 static bool ir_check_unreachable(ir_block *self)
1231 {
1232     /* The IR should never have to deal with unreachable code */
1233     if (!self->m_final/* || OPTS_FLAG(ALLOW_UNREACHABLE_CODE)*/)
1234         return true;
1235     irerror(self->m_context, "unreachable statement (%s)", self->m_label.c_str());
1236     return false;
1237 }
1238
1239 bool ir_block_create_store_op(ir_block *self, lex_ctx_t ctx, int op, ir_value *target, ir_value *what)
1240 {
1241     ir_instr *in;
1242     if (!ir_check_unreachable(self))
1243         return false;
1244
1245     if (target->m_store == store_value &&
1246         (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC))
1247     {
1248         irerror(self->m_context, "cannot store to an SSA value");
1249         irerror(self->m_context, "trying to store: %s <- %s", target->m_name.c_str(), what->m_name.c_str());
1250         irerror(self->m_context, "instruction: %s", util_instr_str[op]);
1251         return false;
1252     }
1253
1254     in = new ir_instr(ctx, self, op);
1255     if (!in)
1256         return false;
1257
1258     if (!ir_instr_op(in, 0, target, (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) ||
1259         !ir_instr_op(in, 1, what, false))
1260     {
1261         delete in;
1262         return false;
1263     }
1264     self->m_instr.push_back(in);
1265     return true;
1266 }
1267
1268 bool ir_block_create_state_op(ir_block *self, lex_ctx_t ctx, ir_value *frame, ir_value *think)
1269 {
1270     ir_instr *in;
1271     if (!ir_check_unreachable(self))
1272         return false;
1273
1274     in = new ir_instr(ctx, self, INSTR_STATE);
1275     if (!in)
1276         return false;
1277
1278     if (!ir_instr_op(in, 0, frame, false) ||
1279         !ir_instr_op(in, 1, think, false))
1280     {
1281         delete in;
1282         return false;
1283     }
1284     self->m_instr.push_back(in);
1285     return true;
1286 }
1287
1288 static bool ir_block_create_store(ir_block *self, lex_ctx_t ctx, ir_value *target, ir_value *what)
1289 {
1290     int op = 0;
1291     qc_type vtype;
1292     if (target->m_vtype == TYPE_VARIANT)
1293         vtype = what->m_vtype;
1294     else
1295         vtype = target->m_vtype;
1296
1297 #if 0
1298     if      (vtype == TYPE_FLOAT   && what->m_vtype == TYPE_INTEGER)
1299         op = INSTR_CONV_ITOF;
1300     else if (vtype == TYPE_INTEGER && what->m_vtype == TYPE_FLOAT)
1301         op = INSTR_CONV_FTOI;
1302 #endif
1303         op = type_store_instr[vtype];
1304
1305     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1306         if (op == INSTR_STORE_FLD && what->m_fieldtype == TYPE_VECTOR)
1307             op = INSTR_STORE_V;
1308     }
1309
1310     return ir_block_create_store_op(self, ctx, op, target, what);
1311 }
1312
1313 bool ir_block_create_storep(ir_block *self, lex_ctx_t ctx, ir_value *target, ir_value *what)
1314 {
1315     int op = 0;
1316     qc_type vtype;
1317
1318     if (target->m_vtype != TYPE_POINTER)
1319         return false;
1320
1321     /* storing using pointer - target is a pointer, type must be
1322      * inferred from source
1323      */
1324     vtype = what->m_vtype;
1325
1326     op = type_storep_instr[vtype];
1327     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1328         if (op == INSTR_STOREP_FLD && what->m_fieldtype == TYPE_VECTOR)
1329             op = INSTR_STOREP_V;
1330     }
1331
1332     return ir_block_create_store_op(self, ctx, op, target, what);
1333 }
1334
1335 bool ir_block_create_return(ir_block *self, lex_ctx_t ctx, ir_value *v)
1336 {
1337     ir_instr *in;
1338     if (!ir_check_unreachable(self))
1339         return false;
1340
1341     self->m_final = true;
1342
1343     self->m_is_return = true;
1344     in = new ir_instr(ctx, self, INSTR_RETURN);
1345     if (!in)
1346         return false;
1347
1348     if (v && !ir_instr_op(in, 0, v, false)) {
1349         delete in;
1350         return false;
1351     }
1352
1353     self->m_instr.push_back(in);
1354     return true;
1355 }
1356
1357 bool ir_block_create_if(ir_block *self, lex_ctx_t ctx, ir_value *v,
1358                         ir_block *ontrue, ir_block *onfalse)
1359 {
1360     ir_instr *in;
1361     if (!ir_check_unreachable(self))
1362         return false;
1363     self->m_final = true;
1364     /*in = new ir_instr(ctx, self, (v->m_vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
1365     in = new ir_instr(ctx, self, VINSTR_COND);
1366     if (!in)
1367         return false;
1368
1369     if (!ir_instr_op(in, 0, v, false)) {
1370         delete in;
1371         return false;
1372     }
1373
1374     in->m_bops[0] = ontrue;
1375     in->m_bops[1] = onfalse;
1376
1377     self->m_instr.push_back(in);
1378
1379     self->m_exits.push_back(ontrue);
1380     self->m_exits.push_back(onfalse);
1381     ontrue->m_entries.push_back(self);
1382     onfalse->m_entries.push_back(self);
1383     return true;
1384 }
1385
1386 bool ir_block_create_jump(ir_block *self, lex_ctx_t ctx, ir_block *to)
1387 {
1388     ir_instr *in;
1389     if (!ir_check_unreachable(self))
1390         return false;
1391     self->m_final = true;
1392     in = new ir_instr(ctx, self, VINSTR_JUMP);
1393     if (!in)
1394         return false;
1395
1396     in->m_bops[0] = to;
1397     self->m_instr.push_back(in);
1398
1399     self->m_exits.push_back(to);
1400     to->m_entries.push_back(self);
1401     return true;
1402 }
1403
1404 bool ir_block_create_goto(ir_block *self, lex_ctx_t ctx, ir_block *to)
1405 {
1406     self->m_owner->m_flags |= IR_FLAG_HAS_GOTO;
1407     return ir_block_create_jump(self, ctx, to);
1408 }
1409
1410 ir_instr* ir_block_create_phi(ir_block *self, lex_ctx_t ctx, const char *label, qc_type ot)
1411 {
1412     ir_value *out;
1413     ir_instr *in;
1414     if (!ir_check_unreachable(self))
1415         return nullptr;
1416     in = new ir_instr(ctx, self, VINSTR_PHI);
1417     if (!in)
1418         return nullptr;
1419     out = new ir_value(self->m_owner, label ? label : "", store_value, ot);
1420     if (!out) {
1421         delete in;
1422         return nullptr;
1423     }
1424     if (!ir_instr_op(in, 0, out, true)) {
1425         delete in;
1426         return nullptr;
1427     }
1428     self->m_instr.push_back(in);
1429     return in;
1430 }
1431
1432 ir_value* ir_phi_value(ir_instr *self)
1433 {
1434     return self->_m_ops[0];
1435 }
1436
1437 void ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
1438 {
1439     ir_phi_entry_t pe;
1440
1441     if (!vec_ir_block_find(self->m_owner->m_entries, b, nullptr)) {
1442         // Must not be possible to cause this, otherwise the AST
1443         // is doing something wrong.
1444         irerror(self->m_context, "Invalid entry block for PHI");
1445         exit(EXIT_FAILURE);
1446     }
1447
1448     pe.value = v;
1449     pe.from = b;
1450     v->m_reads.push_back(self);
1451     self->m_phi.push_back(pe);
1452 }
1453
1454 /* call related code */
1455 ir_instr* ir_block_create_call(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *func, bool noreturn)
1456 {
1457     ir_value *out;
1458     ir_instr *in;
1459     if (!ir_check_unreachable(self))
1460         return nullptr;
1461     in = new ir_instr(ctx, self, (noreturn ? VINSTR_NRCALL : INSTR_CALL0));
1462     if (!in)
1463         return nullptr;
1464     if (noreturn) {
1465         self->m_final = true;
1466         self->m_is_return = true;
1467     }
1468     out = new ir_value(self->m_owner, label ? label : "", (func->m_outtype == TYPE_VOID) ? store_return : store_value, func->m_outtype);
1469     if (!out) {
1470         delete in;
1471         return nullptr;
1472     }
1473     if (!ir_instr_op(in, 0, out, true) ||
1474         !ir_instr_op(in, 1, func, false))
1475     {
1476         delete in;
1477         return nullptr;
1478     }
1479     self->m_instr.push_back(in);
1480     /*
1481     if (noreturn) {
1482         if (!ir_block_create_return(self, ctx, nullptr)) {
1483             compile_error(ctx, "internal error: failed to generate dummy-return instruction");
1484             delete in;
1485             return nullptr;
1486         }
1487     }
1488     */
1489     return in;
1490 }
1491
1492 ir_value* ir_call_value(ir_instr *self)
1493 {
1494     return self->_m_ops[0];
1495 }
1496
1497 void ir_call_param(ir_instr* self, ir_value *v)
1498 {
1499     self->m_params.push_back(v);
1500     v->m_reads.push_back(self);
1501 }
1502
1503 /* binary op related code */
1504
1505 ir_value* ir_block_create_binop(ir_block *self, lex_ctx_t ctx,
1506                                 const char *label, int opcode,
1507                                 ir_value *left, ir_value *right)
1508 {
1509     qc_type ot = TYPE_VOID;
1510     switch (opcode) {
1511         case INSTR_ADD_F:
1512         case INSTR_SUB_F:
1513         case INSTR_DIV_F:
1514         case INSTR_MUL_F:
1515         case INSTR_MUL_V:
1516         case INSTR_AND:
1517         case INSTR_OR:
1518 #if 0
1519         case INSTR_AND_I:
1520         case INSTR_AND_IF:
1521         case INSTR_AND_FI:
1522         case INSTR_OR_I:
1523         case INSTR_OR_IF:
1524         case INSTR_OR_FI:
1525 #endif
1526         case INSTR_BITAND:
1527         case INSTR_BITOR:
1528         case VINSTR_BITXOR:
1529 #if 0
1530         case INSTR_SUB_S: /* -- offset of string as float */
1531         case INSTR_MUL_IF:
1532         case INSTR_MUL_FI:
1533         case INSTR_DIV_IF:
1534         case INSTR_DIV_FI:
1535         case INSTR_BITOR_IF:
1536         case INSTR_BITOR_FI:
1537         case INSTR_BITAND_FI:
1538         case INSTR_BITAND_IF:
1539         case INSTR_EQ_I:
1540         case INSTR_NE_I:
1541 #endif
1542             ot = TYPE_FLOAT;
1543             break;
1544 #if 0
1545         case INSTR_ADD_I:
1546         case INSTR_ADD_IF:
1547         case INSTR_ADD_FI:
1548         case INSTR_SUB_I:
1549         case INSTR_SUB_FI:
1550         case INSTR_SUB_IF:
1551         case INSTR_MUL_I:
1552         case INSTR_DIV_I:
1553         case INSTR_BITAND_I:
1554         case INSTR_BITOR_I:
1555         case INSTR_XOR_I:
1556         case INSTR_RSHIFT_I:
1557         case INSTR_LSHIFT_I:
1558             ot = TYPE_INTEGER;
1559             break;
1560 #endif
1561         case INSTR_ADD_V:
1562         case INSTR_SUB_V:
1563         case INSTR_MUL_VF:
1564         case INSTR_MUL_FV:
1565         case VINSTR_BITAND_V:
1566         case VINSTR_BITOR_V:
1567         case VINSTR_BITXOR_V:
1568         case VINSTR_BITAND_VF:
1569         case VINSTR_BITOR_VF:
1570         case VINSTR_BITXOR_VF:
1571         case VINSTR_CROSS:
1572 #if 0
1573         case INSTR_DIV_VF:
1574         case INSTR_MUL_IV:
1575         case INSTR_MUL_VI:
1576 #endif
1577             ot = TYPE_VECTOR;
1578             break;
1579 #if 0
1580         case INSTR_ADD_SF:
1581             ot = TYPE_POINTER;
1582             break;
1583 #endif
1584     /*
1585      * after the following default case, the value of opcode can never
1586      * be 1, 2, 3, 4, 5, 6, 7, 8, 9, 62, 63, 64, 65
1587      */
1588         default:
1589             /* ranges: */
1590             /* boolean operations result in floats */
1591
1592             /*
1593              * opcode >= 10 takes true branch opcode is at least 10
1594              * opcode <= 23 takes false branch opcode is at least 24
1595              */
1596             if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
1597                 ot = TYPE_FLOAT;
1598
1599             /*
1600              * At condition "opcode <= 23", the value of "opcode" must be
1601              * at least 24.
1602              * At condition "opcode <= 23", the value of "opcode" cannot be
1603              * equal to any of {1, 2, 3, 4, 5, 6, 7, 8, 9, 62, 63, 64, 65}.
1604              * The condition "opcode <= 23" cannot be true.
1605              *
1606              * Thus ot=2 (TYPE_FLOAT) can never be true
1607              */
1608 #if 0
1609             else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
1610                 ot = TYPE_FLOAT;
1611             else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
1612                 ot = TYPE_FLOAT;
1613 #endif
1614             break;
1615     };
1616     if (ot == TYPE_VOID) {
1617         /* The AST or parser were supposed to check this! */
1618         return nullptr;
1619     }
1620
1621     return ir_block_create_general_instr(self, ctx, label, opcode, left, right, ot);
1622 }
1623
1624 ir_value* ir_block_create_unary(ir_block *self, lex_ctx_t ctx,
1625                                 const char *label, int opcode,
1626                                 ir_value *operand)
1627 {
1628     qc_type ot = TYPE_FLOAT;
1629     switch (opcode) {
1630         case INSTR_NOT_F:
1631         case INSTR_NOT_V:
1632         case INSTR_NOT_S:
1633         case INSTR_NOT_ENT:
1634         case INSTR_NOT_FNC: /*
1635         case INSTR_NOT_I:   */
1636             ot = TYPE_FLOAT;
1637             break;
1638
1639         /*
1640          * Negation for virtual instructions is emulated with 0-value. Thankfully
1641          * the operand for 0 already exists so we just source it from here.
1642          */
1643         case VINSTR_NEG_F:
1644             return ir_block_create_general_instr(self, ctx, label, INSTR_SUB_F, nullptr, operand, ot);
1645         case VINSTR_NEG_V:
1646             return ir_block_create_general_instr(self, ctx, label, INSTR_SUB_V, self->m_owner->m_owner->m_nil, operand, TYPE_VECTOR);
1647
1648         default:
1649             ot = operand->m_vtype;
1650             break;
1651     };
1652     if (ot == TYPE_VOID) {
1653         /* The AST or parser were supposed to check this! */
1654         return nullptr;
1655     }
1656
1657     /* let's use the general instruction creator and pass nullptr for OPB */
1658     return ir_block_create_general_instr(self, ctx, label, opcode, operand, nullptr, ot);
1659 }
1660
1661 static ir_value* ir_block_create_general_instr(ir_block *self, lex_ctx_t ctx, const char *label,
1662                                         int op, ir_value *a, ir_value *b, qc_type outype)
1663 {
1664     ir_instr *instr;
1665     ir_value *out;
1666
1667     out = new ir_value(self->m_owner, label ? label : "", store_value, outype);
1668     if (!out)
1669         return nullptr;
1670
1671     instr = new ir_instr(ctx, self, op);
1672     if (!instr) {
1673         return nullptr;
1674     }
1675
1676     if (!ir_instr_op(instr, 0, out, true) ||
1677         !ir_instr_op(instr, 1, a, false) ||
1678         !ir_instr_op(instr, 2, b, false) )
1679     {
1680         goto on_error;
1681     }
1682
1683     self->m_instr.push_back(instr);
1684
1685     return out;
1686 on_error:
1687     delete instr;
1688     return nullptr;
1689 }
1690
1691 ir_value* ir_block_create_fieldaddress(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *ent, ir_value *field)
1692 {
1693     ir_value *v;
1694
1695     /* Support for various pointer types todo if so desired */
1696     if (ent->m_vtype != TYPE_ENTITY)
1697         return nullptr;
1698
1699     if (field->m_vtype != TYPE_FIELD)
1700         return nullptr;
1701
1702     v = ir_block_create_general_instr(self, ctx, label, INSTR_ADDRESS, ent, field, TYPE_POINTER);
1703     v->m_fieldtype = field->m_fieldtype;
1704     return v;
1705 }
1706
1707 ir_value* ir_block_create_load_from_ent(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *ent, ir_value *field, qc_type outype)
1708 {
1709     int op;
1710     if (ent->m_vtype != TYPE_ENTITY)
1711         return nullptr;
1712
1713     /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */
1714     if (field->m_vtype != TYPE_FIELD)
1715         return nullptr;
1716
1717     switch (outype)
1718     {
1719         case TYPE_FLOAT:    op = INSTR_LOAD_F;   break;
1720         case TYPE_VECTOR:   op = INSTR_LOAD_V;   break;
1721         case TYPE_STRING:   op = INSTR_LOAD_S;   break;
1722         case TYPE_FIELD:    op = INSTR_LOAD_FLD; break;
1723         case TYPE_ENTITY:   op = INSTR_LOAD_ENT; break;
1724         case TYPE_FUNCTION: op = INSTR_LOAD_FNC; break;
1725 #if 0
1726         case TYPE_POINTER: op = INSTR_LOAD_I;   break;
1727         case TYPE_INTEGER: op = INSTR_LOAD_I;   break;
1728 #endif
1729         default:
1730             irerror(self->m_context, "invalid type for ir_block_create_load_from_ent: %s", type_name[outype]);
1731             return nullptr;
1732     }
1733
1734     return ir_block_create_general_instr(self, ctx, label, op, ent, field, outype);
1735 }
1736
1737 /* PHI resolving breaks the SSA, and must thus be the last
1738  * step before life-range calculation.
1739  */
1740
1741 static bool ir_block_naive_phi(ir_block *self);
1742 bool ir_function_naive_phi(ir_function *self)
1743 {
1744     for (auto& b : self->m_blocks)
1745         if (!ir_block_naive_phi(b.get()))
1746             return false;
1747     return true;
1748 }
1749
1750 static bool ir_block_naive_phi(ir_block *self)
1751 {
1752     size_t i;
1753     /* FIXME: optionally, create_phi can add the phis
1754      * to a list so we don't need to loop through blocks
1755      * - anyway: "don't optimize YET"
1756      */
1757     for (i = 0; i < self->m_instr.size(); ++i)
1758     {
1759         ir_instr *instr = self->m_instr[i];
1760         if (instr->m_opcode != VINSTR_PHI)
1761             continue;
1762
1763         self->m_instr.erase(self->m_instr.begin()+i);
1764         --i; /* NOTE: i+1 below */
1765
1766         for (auto &it : instr->m_phi) {
1767             ir_value *v = it.value;
1768             ir_block *b = it.from;
1769             if (v->m_store == store_value && v->m_reads.size() == 1 && v->m_writes.size() == 1) {
1770                 /* replace the value */
1771                 if (!ir_instr_op(v->m_writes[0], 0, instr->_m_ops[0], true))
1772                     return false;
1773             } else {
1774                 /* force a move instruction */
1775                 ir_instr *prevjump = b->m_instr.back();
1776                 b->m_instr.pop_back();
1777                 b->m_final = false;
1778                 instr->_m_ops[0]->m_store = store_global;
1779                 if (!ir_block_create_store(b, instr->m_context, instr->_m_ops[0], v))
1780                     return false;
1781                 instr->_m_ops[0]->m_store = store_value;
1782                 b->m_instr.push_back(prevjump);
1783                 b->m_final = true;
1784             }
1785         }
1786         delete instr;
1787     }
1788     return true;
1789 }
1790
1791 /***********************************************************************
1792  *IR Temp allocation code
1793  * Propagating value life ranges by walking through the function backwards
1794  * until no more changes are made.
1795  * In theory this should happen once more than once for every nested loop
1796  * level.
1797  * Though this implementation might run an additional time for if nests.
1798  */
1799
1800 /* Enumerate instructions used by value's life-ranges
1801  */
1802 static void ir_block_enumerate(ir_block *self, size_t *_eid)
1803 {
1804     size_t eid = *_eid;
1805     for (auto &i : self->m_instr)
1806         i->m_eid = eid++;
1807     *_eid = eid;
1808 }
1809
1810 /* Enumerate blocks and instructions.
1811  * The block-enumeration is unordered!
1812  * We do not really use the block enumreation, however
1813  * the instruction enumeration is important for life-ranges.
1814  */
1815 void ir_function_enumerate(ir_function *self)
1816 {
1817     size_t instruction_id = 0;
1818     size_t block_eid = 0;
1819     for (auto& block : self->m_blocks)
1820     {
1821         /* each block now gets an additional "entry" instruction id
1822          * we can use to avoid point-life issues
1823          */
1824         block->m_entry_id = instruction_id;
1825         block->m_eid      = block_eid;
1826         ++instruction_id;
1827         ++block_eid;
1828
1829         ir_block_enumerate(block.get(), &instruction_id);
1830     }
1831 }
1832
1833 /* Local-value allocator
1834  * After finishing creating the liferange of all values used in a function
1835  * we can allocate their global-positions.
1836  * This is the counterpart to register-allocation in register machines.
1837  */
1838 struct function_allocator {
1839     std::vector<std::unique_ptr<ir_value>> locals;
1840     std::vector<size_t> sizes;
1841     std::vector<size_t> positions;
1842     std::vector<bool> unique;
1843 };
1844
1845 static bool function_allocator_alloc(function_allocator *alloc, ir_value *var)
1846 {
1847     ir_value *slot;
1848     size_t vsize = var->size();
1849
1850     var->m_code.local = alloc->locals.size();
1851
1852     slot = new ir_value("reg", store_global, var->m_vtype);
1853     if (!slot)
1854         return false;
1855
1856     if (!slot->mergeLife(var))
1857         goto localerror;
1858
1859     alloc->locals.emplace_back(slot);
1860     alloc->sizes.push_back(vsize);
1861     alloc->unique.push_back(var->m_unique_life);
1862
1863     return true;
1864
1865 localerror:
1866     delete slot;
1867     return false;
1868 }
1869
1870 static bool ir_function_allocator_assign(ir_function *self, function_allocator *alloc, ir_value *v)
1871 {
1872     size_t a;
1873
1874     if (v->m_unique_life)
1875         return function_allocator_alloc(alloc, v);
1876
1877     for (a = 0; a < alloc->locals.size(); ++a)
1878     {
1879         /* if it's reserved for a unique liferange: skip */
1880         if (alloc->unique[a])
1881             continue;
1882
1883         ir_value *slot = alloc->locals[a].get();
1884
1885         /* never resize parameters
1886          * will be required later when overlapping temps + locals
1887          */
1888         if (a < self->m_params.size() &&
1889             alloc->sizes[a] < v->size())
1890         {
1891             continue;
1892         }
1893
1894         if (ir_values_overlap(v, slot))
1895             continue;
1896
1897         if (!slot->mergeLife(v))
1898             return false;
1899
1900         /* adjust size for this slot */
1901         if (alloc->sizes[a] < v->size())
1902             alloc->sizes[a] = v->size();
1903
1904         v->m_code.local = a;
1905         return true;
1906     }
1907     if (a >= alloc->locals.size()) {
1908         if (!function_allocator_alloc(alloc, v))
1909             return false;
1910     }
1911     return true;
1912 }
1913
1914 bool ir_function_allocate_locals(ir_function *self)
1915 {
1916     size_t pos;
1917     bool   opt_gt = OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS);
1918
1919     function_allocator lockalloc, globalloc;
1920
1921     if (self->m_locals.empty() && self->m_values.empty())
1922         return true;
1923
1924     size_t i;
1925     for (i = 0; i < self->m_locals.size(); ++i)
1926     {
1927         ir_value *v = self->m_locals[i].get();
1928         if ((self->m_flags & IR_FLAG_MASK_NO_LOCAL_TEMPS) || !OPTS_OPTIMIZATION(OPTIM_LOCAL_TEMPS)) {
1929             v->m_locked      = true;
1930             v->m_unique_life = true;
1931         }
1932         else if (i >= self->m_params.size())
1933             break;
1934         else
1935             v->m_locked = true; /* lock parameters locals */
1936         if (!function_allocator_alloc((v->m_locked || !opt_gt ? &lockalloc : &globalloc), v))
1937             return false;
1938     }
1939     for (; i < self->m_locals.size(); ++i)
1940     {
1941         ir_value *v = self->m_locals[i].get();
1942         if (v->m_life.empty())
1943             continue;
1944         if (!ir_function_allocator_assign(self, (v->m_locked || !opt_gt ? &lockalloc : &globalloc), v))
1945             return false;
1946     }
1947
1948     /* Allocate a slot for any value that still exists */
1949     for (i = 0; i < self->m_values.size(); ++i)
1950     {
1951         ir_value *v = self->m_values[i].get();
1952
1953         if (v->m_life.empty())
1954             continue;
1955
1956         /* CALL optimization:
1957          * If the value is a parameter-temp: 1 write, 1 read from a CALL
1958          * and it's not "locked", write it to the OFS_PARM directly.
1959          */
1960         if (OPTS_OPTIMIZATION(OPTIM_CALL_STORES) && !v->m_locked && !v->m_unique_life) {
1961             if (v->m_reads.size() == 1 && v->m_writes.size() == 1 &&
1962                 (v->m_reads[0]->m_opcode == VINSTR_NRCALL ||
1963                  (v->m_reads[0]->m_opcode >= INSTR_CALL0 && v->m_reads[0]->m_opcode <= INSTR_CALL8)
1964                 )
1965                )
1966             {
1967                 size_t param;
1968                 ir_instr *call = v->m_reads[0];
1969                 if (!vec_ir_value_find(call->m_params, v, &param)) {
1970                     irerror(call->m_context, "internal error: unlocked parameter %s not found", v->m_name.c_str());
1971                     return false;
1972                 }
1973                 ++opts_optimizationcount[OPTIM_CALL_STORES];
1974                 v->m_callparam = true;
1975                 if (param < 8)
1976                     v->setCodeAddress(OFS_PARM0 + 3*param);
1977                 else {
1978                     size_t nprotos = self->m_owner->m_extparam_protos.size();
1979                     ir_value *ep;
1980                     param -= 8;
1981                     if (nprotos > param)
1982                         ep = self->m_owner->m_extparam_protos[param].get();
1983                     else
1984                     {
1985                         ep = self->m_owner->generateExtparamProto();
1986                         while (++nprotos <= param)
1987                             ep = self->m_owner->generateExtparamProto();
1988                     }
1989                     ir_instr_op(v->m_writes[0], 0, ep, true);
1990                     call->m_params[param+8] = ep;
1991                 }
1992                 continue;
1993             }
1994             if (v->m_writes.size() == 1 && v->m_writes[0]->m_opcode == INSTR_CALL0) {
1995                 v->m_store = store_return;
1996                 if (v->m_members[0]) v->m_members[0]->m_store = store_return;
1997                 if (v->m_members[1]) v->m_members[1]->m_store = store_return;
1998                 if (v->m_members[2]) v->m_members[2]->m_store = store_return;
1999                 ++opts_optimizationcount[OPTIM_CALL_STORES];
2000                 continue;
2001             }
2002         }
2003
2004         if (!ir_function_allocator_assign(self, (v->m_locked || !opt_gt ? &lockalloc : &globalloc), v))
2005             return false;
2006     }
2007
2008     if (lockalloc.sizes.empty() && globalloc.sizes.empty())
2009         return true;
2010
2011     lockalloc.positions.push_back(0);
2012     globalloc.positions.push_back(0);
2013
2014     /* Adjust slot positions based on sizes */
2015     if (!lockalloc.sizes.empty()) {
2016         pos = (lockalloc.sizes.size() ? lockalloc.positions[0] : 0);
2017         for (i = 1; i < lockalloc.sizes.size(); ++i)
2018         {
2019             pos = lockalloc.positions[i-1] + lockalloc.sizes[i-1];
2020             lockalloc.positions.push_back(pos);
2021         }
2022         self->m_allocated_locals = pos + lockalloc.sizes.back();
2023     }
2024     if (!globalloc.sizes.empty()) {
2025         pos = (globalloc.sizes.size() ? globalloc.positions[0] : 0);
2026         for (i = 1; i < globalloc.sizes.size(); ++i)
2027         {
2028             pos = globalloc.positions[i-1] + globalloc.sizes[i-1];
2029             globalloc.positions.push_back(pos);
2030         }
2031         self->m_globaltemps = pos + globalloc.sizes.back();
2032     }
2033
2034     /* Locals need to know their new position */
2035     for (auto& local : self->m_locals) {
2036         if (local->m_locked || !opt_gt)
2037             local->m_code.local = lockalloc.positions[local->m_code.local];
2038         else
2039             local->m_code.local = globalloc.positions[local->m_code.local];
2040     }
2041     /* Take over the actual slot positions on values */
2042     for (auto& value : self->m_values) {
2043         if (value->m_locked || !opt_gt)
2044             value->m_code.local = lockalloc.positions[value->m_code.local];
2045         else
2046             value->m_code.local = globalloc.positions[value->m_code.local];
2047     }
2048
2049     return true;
2050 }
2051
2052 /* Get information about which operand
2053  * is read from, or written to.
2054  */
2055 static void ir_op_read_write(int op, size_t *read, size_t *write)
2056 {
2057     switch (op)
2058     {
2059     case VINSTR_JUMP:
2060     case INSTR_GOTO:
2061         *write = 0;
2062         *read = 0;
2063         break;
2064     case INSTR_IF:
2065     case INSTR_IFNOT:
2066 #if 0
2067     case INSTR_IF_S:
2068     case INSTR_IFNOT_S:
2069 #endif
2070     case INSTR_RETURN:
2071     case VINSTR_COND:
2072         *write = 0;
2073         *read = 1;
2074         break;
2075     case INSTR_STOREP_F:
2076     case INSTR_STOREP_V:
2077     case INSTR_STOREP_S:
2078     case INSTR_STOREP_ENT:
2079     case INSTR_STOREP_FLD:
2080     case INSTR_STOREP_FNC:
2081         *write = 0;
2082         *read  = 7;
2083         break;
2084     default:
2085         *write = 1;
2086         *read = 6;
2087         break;
2088     };
2089 }
2090
2091 static bool ir_block_living_add_instr(ir_block *self, size_t eid) {
2092     bool changed = false;
2093     for (auto &it : self->m_living)
2094         if (it->setAlive(eid))
2095             changed = true;
2096     return changed;
2097 }
2098
2099 static bool ir_block_living_lock(ir_block *self) {
2100     bool changed = false;
2101     for (auto &it : self->m_living) {
2102         if (it->m_locked)
2103             continue;
2104         it->m_locked = true;
2105         changed = true;
2106     }
2107     return changed;
2108 }
2109
2110 static bool ir_block_life_propagate(ir_block *self, bool *changed)
2111 {
2112     ir_instr *instr;
2113     ir_value *value;
2114     size_t i, o, mem;
2115     // bitmasks which operands are read from or written to
2116     size_t read, write;
2117
2118     self->m_living.clear();
2119
2120     for (auto &prev : self->m_exits) {
2121         for (auto &it : prev->m_living)
2122             if (!vec_ir_value_find(self->m_living, it, nullptr))
2123                 self->m_living.push_back(it);
2124     }
2125
2126     i = self->m_instr.size();
2127     while (i)
2128     { --i;
2129         instr = self->m_instr[i];
2130
2131         /* See which operands are read and write operands */
2132         ir_op_read_write(instr->m_opcode, &read, &write);
2133
2134         /* Go through the 3 main operands
2135          * writes first, then reads
2136          */
2137         for (o = 0; o < 3; ++o)
2138         {
2139             if (!instr->_m_ops[o]) /* no such operand */
2140                 continue;
2141
2142             value = instr->_m_ops[o];
2143
2144             /* We only care about locals */
2145             /* we also calculate parameter liferanges so that locals
2146              * can take up parameter slots */
2147             if (value->m_store != store_value &&
2148                 value->m_store != store_local &&
2149                 value->m_store != store_param)
2150                 continue;
2151
2152             /* write operands */
2153             /* When we write to a local, we consider it "dead" for the
2154              * remaining upper part of the function, since in SSA a value
2155              * can only be written once (== created)
2156              */
2157             if (write & (1<<o))
2158             {
2159                 size_t idx;
2160                 bool in_living = vec_ir_value_find(self->m_living, value, &idx);
2161                 if (!in_living)
2162                 {
2163                     /* If the value isn't alive it hasn't been read before... */
2164                     /* TODO: See if the warning can be emitted during parsing or AST processing
2165                      * otherwise have warning printed here.
2166                      * IF printing a warning here: include filecontext_t,
2167                      * and make sure it's only printed once
2168                      * since this function is run multiple times.
2169                      */
2170                     /* con_err( "Value only written %s\n", value->m_name); */
2171                     if (value->setAlive(instr->m_eid))
2172                         *changed = true;
2173                 } else {
2174                     /* since 'living' won't contain it
2175                      * anymore, merge the value, since
2176                      * (A) doesn't.
2177                      */
2178                     if (value->setAlive(instr->m_eid))
2179                         *changed = true;
2180                     // Then remove
2181                     self->m_living.erase(self->m_living.begin() + idx);
2182                 }
2183                 /* Removing a vector removes all members */
2184                 for (mem = 0; mem < 3; ++mem) {
2185                     if (value->m_members[mem] && vec_ir_value_find(self->m_living, value->m_members[mem], &idx)) {
2186                         if (value->m_members[mem]->setAlive(instr->m_eid))
2187                             *changed = true;
2188                         self->m_living.erase(self->m_living.begin() + idx);
2189                     }
2190                 }
2191                 /* Removing the last member removes the vector */
2192                 if (value->m_memberof) {
2193                     value = value->m_memberof;
2194                     for (mem = 0; mem < 3; ++mem) {
2195                         if (value->m_members[mem] && vec_ir_value_find(self->m_living, value->m_members[mem], nullptr))
2196                             break;
2197                     }
2198                     if (mem == 3 && vec_ir_value_find(self->m_living, value, &idx)) {
2199                         if (value->setAlive(instr->m_eid))
2200                             *changed = true;
2201                         self->m_living.erase(self->m_living.begin() + idx);
2202                     }
2203                 }
2204             }
2205         }
2206
2207         /* These operations need a special case as they can break when using
2208          * same source and destination operand otherwise, as the engine may
2209          * read the source multiple times. */
2210         if (instr->m_opcode == INSTR_MUL_VF ||
2211             instr->m_opcode == VINSTR_BITAND_VF ||
2212             instr->m_opcode == VINSTR_BITOR_VF ||
2213             instr->m_opcode == VINSTR_BITXOR ||
2214             instr->m_opcode == VINSTR_BITXOR_VF ||
2215             instr->m_opcode == VINSTR_BITXOR_V ||
2216             instr->m_opcode == VINSTR_CROSS)
2217         {
2218             value = instr->_m_ops[2];
2219             /* the float source will get an additional lifetime */
2220             if (value->setAlive(instr->m_eid+1))
2221                 *changed = true;
2222             if (value->m_memberof && value->m_memberof->setAlive(instr->m_eid+1))
2223                 *changed = true;
2224         }
2225
2226         if (instr->m_opcode == INSTR_MUL_FV ||
2227             instr->m_opcode == INSTR_LOAD_V ||
2228             instr->m_opcode == VINSTR_BITXOR ||
2229             instr->m_opcode == VINSTR_BITXOR_VF ||
2230             instr->m_opcode == VINSTR_BITXOR_V ||
2231             instr->m_opcode == VINSTR_CROSS)
2232         {
2233             value = instr->_m_ops[1];
2234             /* the float source will get an additional lifetime */
2235             if (value->setAlive(instr->m_eid+1))
2236                 *changed = true;
2237             if (value->m_memberof && value->m_memberof->setAlive(instr->m_eid+1))
2238                 *changed = true;
2239         }
2240
2241         for (o = 0; o < 3; ++o)
2242         {
2243             if (!instr->_m_ops[o]) /* no such operand */
2244                 continue;
2245
2246             value = instr->_m_ops[o];
2247
2248             /* We only care about locals */
2249             /* we also calculate parameter liferanges so that locals
2250              * can take up parameter slots */
2251             if (value->m_store != store_value &&
2252                 value->m_store != store_local &&
2253                 value->m_store != store_param)
2254                 continue;
2255
2256             /* read operands */
2257             if (read & (1<<o))
2258             {
2259                 if (!vec_ir_value_find(self->m_living, value, nullptr))
2260                     self->m_living.push_back(value);
2261                 /* reading adds the full vector */
2262                 if (value->m_memberof && !vec_ir_value_find(self->m_living, value->m_memberof, nullptr))
2263                     self->m_living.push_back(value->m_memberof);
2264                 for (mem = 0; mem < 3; ++mem) {
2265                     if (value->m_members[mem] && !vec_ir_value_find(self->m_living, value->m_members[mem], nullptr))
2266                         self->m_living.push_back(value->m_members[mem]);
2267                 }
2268             }
2269         }
2270         /* PHI operands are always read operands */
2271         for (auto &it : instr->m_phi) {
2272             value = it.value;
2273             if (!vec_ir_value_find(self->m_living, value, nullptr))
2274                 self->m_living.push_back(value);
2275             /* reading adds the full vector */
2276             if (value->m_memberof && !vec_ir_value_find(self->m_living, value->m_memberof, nullptr))
2277                 self->m_living.push_back(value->m_memberof);
2278             for (mem = 0; mem < 3; ++mem) {
2279                 if (value->m_members[mem] && !vec_ir_value_find(self->m_living, value->m_members[mem], nullptr))
2280                     self->m_living.push_back(value->m_members[mem]);
2281             }
2282         }
2283
2284         /* on a call, all these values must be "locked" */
2285         if (instr->m_opcode >= INSTR_CALL0 && instr->m_opcode <= INSTR_CALL8) {
2286             if (ir_block_living_lock(self))
2287                 *changed = true;
2288         }
2289         /* call params are read operands too */
2290         for (auto &it : instr->m_params) {
2291             value = it;
2292             if (!vec_ir_value_find(self->m_living, value, nullptr))
2293                 self->m_living.push_back(value);
2294             /* reading adds the full vector */
2295             if (value->m_memberof && !vec_ir_value_find(self->m_living, value->m_memberof, nullptr))
2296                 self->m_living.push_back(value->m_memberof);
2297             for (mem = 0; mem < 3; ++mem) {
2298                 if (value->m_members[mem] && !vec_ir_value_find(self->m_living, value->m_members[mem], nullptr))
2299                     self->m_living.push_back(value->m_members[mem]);
2300             }
2301         }
2302
2303         /* (A) */
2304         if (ir_block_living_add_instr(self, instr->m_eid))
2305             *changed = true;
2306     }
2307     /* the "entry" instruction ID */
2308     if (ir_block_living_add_instr(self, self->m_entry_id))
2309         *changed = true;
2310
2311     return true;
2312 }
2313
2314 bool ir_function_calculate_liferanges(ir_function *self)
2315 {
2316     /* parameters live at 0 */
2317     for (size_t i = 0; i < self->m_params.size(); ++i)
2318         if (!self->m_locals[i].get()->setAlive(0))
2319             compile_error(self->m_context, "internal error: failed value-life merging");
2320
2321     bool changed;
2322     do {
2323         self->m_run_id++;
2324         changed = false;
2325         for (auto i = self->m_blocks.rbegin(); i != self->m_blocks.rend(); ++i)
2326             ir_block_life_propagate(i->get(), &changed);
2327     } while (changed);
2328
2329     if (self->m_blocks.size()) {
2330         ir_block *block = self->m_blocks[0].get();
2331         for (auto &it : block->m_living) {
2332             ir_value *v = it;
2333             if (v->m_store != store_local)
2334                 continue;
2335             if (v->m_vtype == TYPE_VECTOR)
2336                 continue;
2337             self->m_flags |= IR_FLAG_HAS_UNINITIALIZED;
2338             /* find the instruction reading from it */
2339             size_t s = 0;
2340             for (; s < v->m_reads.size(); ++s) {
2341                 if (v->m_reads[s]->m_eid == v->m_life[0].end)
2342                     break;
2343             }
2344             if (s < v->m_reads.size()) {
2345                 if (irwarning(v->m_context, WARN_USED_UNINITIALIZED,
2346                               "variable `%s` may be used uninitialized in this function\n"
2347                               " -> %s:%i",
2348                               v->m_name.c_str(),
2349                               v->m_reads[s]->m_context.file, v->m_reads[s]->m_context.line)
2350                    )
2351                 {
2352                     return false;
2353                 }
2354                 continue;
2355             }
2356             if (v->m_memberof) {
2357                 ir_value *vec = v->m_memberof;
2358                 for (s = 0; s < vec->m_reads.size(); ++s) {
2359                     if (vec->m_reads[s]->m_eid == v->m_life[0].end)
2360                         break;
2361                 }
2362                 if (s < vec->m_reads.size()) {
2363                     if (irwarning(v->m_context, WARN_USED_UNINITIALIZED,
2364                                   "variable `%s` may be used uninitialized in this function\n"
2365                                   " -> %s:%i",
2366                                   v->m_name.c_str(),
2367                                   vec->m_reads[s]->m_context.file, vec->m_reads[s]->m_context.line)
2368                        )
2369                     {
2370                         return false;
2371                     }
2372                     continue;
2373                 }
2374             }
2375             if (irwarning(v->m_context, WARN_USED_UNINITIALIZED,
2376                           "variable `%s` may be used uninitialized in this function", v->m_name.c_str()))
2377             {
2378                 return false;
2379             }
2380         }
2381     }
2382     return true;
2383 }
2384
2385 /***********************************************************************
2386  *IR Code-Generation
2387  *
2388  * Since the IR has the convention of putting 'write' operands
2389  * at the beginning, we have to rotate the operands of instructions
2390  * properly in order to generate valid QCVM code.
2391  *
2392  * Having destinations at a fixed position is more convenient. In QC
2393  * this is *mostly* OPC,  but FTE adds at least 2 instructions which
2394  * read from from OPA,  and store to OPB rather than OPC.   Which is
2395  * partially the reason why the implementation of these instructions
2396  * in darkplaces has been delayed for so long.
2397  *
2398  * Breaking conventions is annoying...
2399  */
2400 static bool gen_global_field(code_t *code, ir_value *global)
2401 {
2402     if (global->m_hasvalue)
2403     {
2404         ir_value *fld = global->m_constval.vpointer;
2405         if (!fld) {
2406             irerror(global->m_context, "Invalid field constant with no field: %s", global->m_name.c_str());
2407             return false;
2408         }
2409
2410         /* copy the field's value */
2411         global->setCodeAddress(code->globals.size());
2412         code->globals.push_back(fld->m_code.fieldaddr);
2413         if (global->m_fieldtype == TYPE_VECTOR) {
2414             code->globals.push_back(fld->m_code.fieldaddr+1);
2415             code->globals.push_back(fld->m_code.fieldaddr+2);
2416         }
2417     }
2418     else
2419     {
2420         global->setCodeAddress(code->globals.size());
2421         code->globals.push_back(0);
2422         if (global->m_fieldtype == TYPE_VECTOR) {
2423             code->globals.push_back(0);
2424             code->globals.push_back(0);
2425         }
2426     }
2427     if (global->m_code.globaladdr < 0)
2428         return false;
2429     return true;
2430 }
2431
2432 static bool gen_global_pointer(code_t *code, ir_value *global)
2433 {
2434     if (global->m_hasvalue)
2435     {
2436         ir_value *target = global->m_constval.vpointer;
2437         if (!target) {
2438             irerror(global->m_context, "Invalid pointer constant: %s", global->m_name.c_str());
2439             /* nullptr pointers are pointing to the nullptr constant, which also
2440              * sits at address 0, but still has an ir_value for itself.
2441              */
2442             return false;
2443         }
2444
2445         /* Here, relocations ARE possible - in fteqcc-enhanced-qc:
2446          * void() foo; <- proto
2447          * void() *fooptr = &foo;
2448          * void() foo = { code }
2449          */
2450         if (!target->m_code.globaladdr) {
2451             /* FIXME: Check for the constant nullptr ir_value!
2452              * because then code.globaladdr being 0 is valid.
2453              */
2454             irerror(global->m_context, "FIXME: Relocation support");
2455             return false;
2456         }
2457
2458         global->setCodeAddress(code->globals.size());
2459         code->globals.push_back(target->m_code.globaladdr);
2460     }
2461     else
2462     {
2463         global->setCodeAddress(code->globals.size());
2464         code->globals.push_back(0);
2465     }
2466     if (global->m_code.globaladdr < 0)
2467         return false;
2468     return true;
2469 }
2470
2471 static bool gen_blocks_recursive(code_t *code, ir_function *func, ir_block *block)
2472 {
2473     prog_section_statement_t stmt;
2474     ir_instr *instr;
2475     ir_block *target;
2476     ir_block *ontrue;
2477     ir_block *onfalse;
2478     size_t    stidx;
2479     size_t    i;
2480     int       j;
2481
2482     block->m_generated = true;
2483     block->m_code_start = code->statements.size();
2484     for (i = 0; i < block->m_instr.size(); ++i)
2485     {
2486         instr = block->m_instr[i];
2487
2488         if (instr->m_opcode == VINSTR_PHI) {
2489             irerror(block->m_context, "cannot generate virtual instruction (phi)");
2490             return false;
2491         }
2492
2493         if (instr->m_opcode == VINSTR_JUMP) {
2494             target = instr->m_bops[0];
2495             /* for uncoditional jumps, if the target hasn't been generated
2496              * yet, we generate them right here.
2497              */
2498             if (!target->m_generated)
2499                 return gen_blocks_recursive(code, func, target);
2500
2501             /* otherwise we generate a jump instruction */
2502             stmt.opcode = INSTR_GOTO;
2503             stmt.o1.s1 = target->m_code_start - code->statements.size();
2504             stmt.o2.s1 = 0;
2505             stmt.o3.s1 = 0;
2506             if (stmt.o1.s1 != 1)
2507                 code_push_statement(code, &stmt, instr->m_context);
2508
2509             /* no further instructions can be in this block */
2510             return true;
2511         }
2512
2513         if (instr->m_opcode == VINSTR_BITXOR) {
2514             stmt.opcode = INSTR_BITOR;
2515             stmt.o1.s1 = instr->_m_ops[1]->codeAddress();
2516             stmt.o2.s1 = instr->_m_ops[2]->codeAddress();
2517             stmt.o3.s1 = instr->_m_ops[0]->codeAddress();
2518             code_push_statement(code, &stmt, instr->m_context);
2519             stmt.opcode = INSTR_BITAND;
2520             stmt.o1.s1 = instr->_m_ops[1]->codeAddress();
2521             stmt.o2.s1 = instr->_m_ops[2]->codeAddress();
2522             stmt.o3.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress();
2523             code_push_statement(code, &stmt, instr->m_context);
2524             stmt.opcode = INSTR_SUB_F;
2525             stmt.o1.s1 = instr->_m_ops[0]->codeAddress();
2526             stmt.o2.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress();
2527             stmt.o3.s1 = instr->_m_ops[0]->codeAddress();
2528             code_push_statement(code, &stmt, instr->m_context);
2529
2530             /* instruction generated */
2531             continue;
2532         }
2533
2534         if (instr->m_opcode == VINSTR_BITAND_V) {
2535             stmt.opcode = INSTR_BITAND;
2536             stmt.o1.s1 = instr->_m_ops[1]->codeAddress();
2537             stmt.o2.s1 = instr->_m_ops[2]->codeAddress();
2538             stmt.o3.s1 = instr->_m_ops[0]->codeAddress();
2539             code_push_statement(code, &stmt, instr->m_context);
2540             ++stmt.o1.s1;
2541             ++stmt.o2.s1;
2542             ++stmt.o3.s1;
2543             code_push_statement(code, &stmt, instr->m_context);
2544             ++stmt.o1.s1;
2545             ++stmt.o2.s1;
2546             ++stmt.o3.s1;
2547             code_push_statement(code, &stmt, instr->m_context);
2548
2549             /* instruction generated */
2550             continue;
2551         }
2552
2553         if (instr->m_opcode == VINSTR_BITOR_V) {
2554             stmt.opcode = INSTR_BITOR;
2555             stmt.o1.s1 = instr->_m_ops[1]->codeAddress();
2556             stmt.o2.s1 = instr->_m_ops[2]->codeAddress();
2557             stmt.o3.s1 = instr->_m_ops[0]->codeAddress();
2558             code_push_statement(code, &stmt, instr->m_context);
2559             ++stmt.o1.s1;
2560             ++stmt.o2.s1;
2561             ++stmt.o3.s1;
2562             code_push_statement(code, &stmt, instr->m_context);
2563             ++stmt.o1.s1;
2564             ++stmt.o2.s1;
2565             ++stmt.o3.s1;
2566             code_push_statement(code, &stmt, instr->m_context);
2567
2568             /* instruction generated */
2569             continue;
2570         }
2571
2572         if (instr->m_opcode == VINSTR_BITXOR_V) {
2573             for (j = 0; j < 3; ++j) {
2574                 stmt.opcode = INSTR_BITOR;
2575                 stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + j;
2576                 stmt.o2.s1 = instr->_m_ops[2]->codeAddress() + j;
2577                 stmt.o3.s1 = instr->_m_ops[0]->codeAddress() + j;
2578                 code_push_statement(code, &stmt, instr->m_context);
2579                 stmt.opcode = INSTR_BITAND;
2580                 stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + j;
2581                 stmt.o2.s1 = instr->_m_ops[2]->codeAddress() + j;
2582                 stmt.o3.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress() + j;
2583                 code_push_statement(code, &stmt, instr->m_context);
2584             }
2585             stmt.opcode = INSTR_SUB_V;
2586             stmt.o1.s1 = instr->_m_ops[0]->codeAddress();
2587             stmt.o2.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress();
2588             stmt.o3.s1 = instr->_m_ops[0]->codeAddress();
2589             code_push_statement(code, &stmt, instr->m_context);
2590
2591             /* instruction generated */
2592             continue;
2593         }
2594
2595         if (instr->m_opcode == VINSTR_BITAND_VF) {
2596             stmt.opcode = INSTR_BITAND;
2597             stmt.o1.s1 = instr->_m_ops[1]->codeAddress();
2598             stmt.o2.s1 = instr->_m_ops[2]->codeAddress();
2599             stmt.o3.s1 = instr->_m_ops[0]->codeAddress();
2600             code_push_statement(code, &stmt, instr->m_context);
2601             ++stmt.o1.s1;
2602             ++stmt.o3.s1;
2603             code_push_statement(code, &stmt, instr->m_context);
2604             ++stmt.o1.s1;
2605             ++stmt.o3.s1;
2606             code_push_statement(code, &stmt, instr->m_context);
2607
2608             /* instruction generated */
2609             continue;
2610         }
2611
2612         if (instr->m_opcode == VINSTR_BITOR_VF) {
2613             stmt.opcode = INSTR_BITOR;
2614             stmt.o1.s1 = instr->_m_ops[1]->codeAddress();
2615             stmt.o2.s1 = instr->_m_ops[2]->codeAddress();
2616             stmt.o3.s1 = instr->_m_ops[0]->codeAddress();
2617             code_push_statement(code, &stmt, instr->m_context);
2618             ++stmt.o1.s1;
2619             ++stmt.o3.s1;
2620             code_push_statement(code, &stmt, instr->m_context);
2621             ++stmt.o1.s1;
2622             ++stmt.o3.s1;
2623             code_push_statement(code, &stmt, instr->m_context);
2624
2625             /* instruction generated */
2626             continue;
2627         }
2628
2629         if (instr->m_opcode == VINSTR_BITXOR_VF) {
2630             for (j = 0; j < 3; ++j) {
2631                 stmt.opcode = INSTR_BITOR;
2632                 stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + j;
2633                 stmt.o2.s1 = instr->_m_ops[2]->codeAddress();
2634                 stmt.o3.s1 = instr->_m_ops[0]->codeAddress() + j;
2635                 code_push_statement(code, &stmt, instr->m_context);
2636                 stmt.opcode = INSTR_BITAND;
2637                 stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + j;
2638                 stmt.o2.s1 = instr->_m_ops[2]->codeAddress();
2639                 stmt.o3.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress() + j;
2640                 code_push_statement(code, &stmt, instr->m_context);
2641             }
2642             stmt.opcode = INSTR_SUB_V;
2643             stmt.o1.s1 = instr->_m_ops[0]->codeAddress();
2644             stmt.o2.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress();
2645             stmt.o3.s1 = instr->_m_ops[0]->codeAddress();
2646             code_push_statement(code, &stmt, instr->m_context);
2647
2648             /* instruction generated */
2649             continue;
2650         }
2651
2652         if (instr->m_opcode == VINSTR_CROSS) {
2653             stmt.opcode = INSTR_MUL_F;
2654             for (j = 0; j < 3; ++j) {
2655                 stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + (j + 1) % 3;
2656                 stmt.o2.s1 = instr->_m_ops[2]->codeAddress() + (j + 2) % 3;
2657                 stmt.o3.s1 = instr->_m_ops[0]->codeAddress() + j;
2658                 code_push_statement(code, &stmt, instr->m_context);
2659                 stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + (j + 2) % 3;
2660                 stmt.o2.s1 = instr->_m_ops[2]->codeAddress() + (j + 1) % 3;
2661                 stmt.o3.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress() + j;
2662                 code_push_statement(code, &stmt, instr->m_context);
2663             }
2664             stmt.opcode = INSTR_SUB_V;
2665             stmt.o1.s1 = instr->_m_ops[0]->codeAddress();
2666             stmt.o2.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress();
2667             stmt.o3.s1 = instr->_m_ops[0]->codeAddress();
2668             code_push_statement(code, &stmt, instr->m_context);
2669
2670             /* instruction generated */
2671             continue;
2672         }
2673
2674         if (instr->m_opcode == VINSTR_COND) {
2675             ontrue  = instr->m_bops[0];
2676             onfalse = instr->m_bops[1];
2677             /* TODO: have the AST signal which block should
2678              * come first: eg. optimize IFs without ELSE...
2679              */
2680
2681             stmt.o1.u1 = instr->_m_ops[0]->codeAddress();
2682             stmt.o2.u1 = 0;
2683             stmt.o3.s1 = 0;
2684
2685             if (ontrue->m_generated) {
2686                 stmt.opcode = INSTR_IF;
2687                 stmt.o2.s1 = ontrue->m_code_start - code->statements.size();
2688                 if (stmt.o2.s1 != 1)
2689                     code_push_statement(code, &stmt, instr->m_context);
2690             }
2691             if (onfalse->m_generated) {
2692                 stmt.opcode = INSTR_IFNOT;
2693                 stmt.o2.s1 = onfalse->m_code_start - code->statements.size();
2694                 if (stmt.o2.s1 != 1)
2695                     code_push_statement(code, &stmt, instr->m_context);
2696             }
2697             if (!ontrue->m_generated) {
2698                 if (onfalse->m_generated)
2699                     return gen_blocks_recursive(code, func, ontrue);
2700             }
2701             if (!onfalse->m_generated) {
2702                 if (ontrue->m_generated)
2703                     return gen_blocks_recursive(code, func, onfalse);
2704             }
2705             /* neither ontrue nor onfalse exist */
2706             stmt.opcode = INSTR_IFNOT;
2707             if (!instr->m_likely) {
2708                 /* Honor the likelyhood hint */
2709                 ir_block *tmp = onfalse;
2710                 stmt.opcode = INSTR_IF;
2711                 onfalse = ontrue;
2712                 ontrue = tmp;
2713             }
2714             stidx = code->statements.size();
2715             code_push_statement(code, &stmt, instr->m_context);
2716             /* on false we jump, so add ontrue-path */
2717             if (!gen_blocks_recursive(code, func, ontrue))
2718                 return false;
2719             /* fixup the jump address */
2720             code->statements[stidx].o2.s1 = code->statements.size() - stidx;
2721             /* generate onfalse path */
2722             if (onfalse->m_generated) {
2723                 /* fixup the jump address */
2724                 code->statements[stidx].o2.s1 = onfalse->m_code_start - stidx;
2725                 if (stidx+2 == code->statements.size() && code->statements[stidx].o2.s1 == 1) {
2726                     code->statements[stidx] = code->statements[stidx+1];
2727                     if (code->statements[stidx].o1.s1 < 0)
2728                         code->statements[stidx].o1.s1++;
2729                     code_pop_statement(code);
2730                 }
2731                 stmt.opcode = code->statements.back().opcode;
2732                 if (stmt.opcode == INSTR_GOTO ||
2733                     stmt.opcode == INSTR_IF ||
2734                     stmt.opcode == INSTR_IFNOT ||
2735                     stmt.opcode == INSTR_RETURN ||
2736                     stmt.opcode == INSTR_DONE)
2737                 {
2738                     /* no use jumping from here */
2739                     return true;
2740                 }
2741                 /* may have been generated in the previous recursive call */
2742                 stmt.opcode = INSTR_GOTO;
2743                 stmt.o1.s1 = onfalse->m_code_start - code->statements.size();
2744                 stmt.o2.s1 = 0;
2745                 stmt.o3.s1 = 0;
2746                 if (stmt.o1.s1 != 1)
2747                     code_push_statement(code, &stmt, instr->m_context);
2748                 return true;
2749             }
2750             else if (stidx+2 == code->statements.size() && code->statements[stidx].o2.s1 == 1) {
2751                 code->statements[stidx] = code->statements[stidx+1];
2752                 if (code->statements[stidx].o1.s1 < 0)
2753                     code->statements[stidx].o1.s1++;
2754                 code_pop_statement(code);
2755             }
2756             /* if not, generate now */
2757             return gen_blocks_recursive(code, func, onfalse);
2758         }
2759
2760         if ( (instr->m_opcode >= INSTR_CALL0 && instr->m_opcode <= INSTR_CALL8)
2761            || instr->m_opcode == VINSTR_NRCALL)
2762         {
2763             size_t p, first;
2764             ir_value *retvalue;
2765
2766             first = instr->m_params.size();
2767             if (first > 8)
2768                 first = 8;
2769             for (p = 0; p < first; ++p)
2770             {
2771                 ir_value *param = instr->m_params[p];
2772                 if (param->m_callparam)
2773                     continue;
2774
2775                 stmt.opcode = INSTR_STORE_F;
2776                 stmt.o3.u1 = 0;
2777
2778                 if (param->m_vtype == TYPE_FIELD)
2779                     stmt.opcode = field_store_instr[param->m_fieldtype];
2780                 else if (param->m_vtype == TYPE_NIL)
2781                     stmt.opcode = INSTR_STORE_V;
2782                 else
2783                     stmt.opcode = type_store_instr[param->m_vtype];
2784                 stmt.o1.u1 = param->codeAddress();
2785                 stmt.o2.u1 = OFS_PARM0 + 3 * p;
2786
2787                 if (param->m_vtype == TYPE_VECTOR && (param->m_flags & IR_FLAG_SPLIT_VECTOR)) {
2788                     /* fetch 3 separate floats */
2789                     stmt.opcode = INSTR_STORE_F;
2790                     stmt.o1.u1 = param->m_members[0]->codeAddress();
2791                     code_push_statement(code, &stmt, instr->m_context);
2792                     stmt.o2.u1++;
2793                     stmt.o1.u1 = param->m_members[1]->codeAddress();
2794                     code_push_statement(code, &stmt, instr->m_context);
2795                     stmt.o2.u1++;
2796                     stmt.o1.u1 = param->m_members[2]->codeAddress();
2797                     code_push_statement(code, &stmt, instr->m_context);
2798                 }
2799                 else
2800                     code_push_statement(code, &stmt, instr->m_context);
2801             }
2802             /* Now handle extparams */
2803             first = instr->m_params.size();
2804             for (; p < first; ++p)
2805             {
2806                 ir_builder *ir = func->m_owner;
2807                 ir_value *param = instr->m_params[p];
2808                 ir_value *targetparam;
2809
2810                 if (param->m_callparam)
2811                     continue;
2812
2813                 if (p-8 >= ir->m_extparams.size())
2814                     ir->generateExtparam();
2815
2816                 targetparam = ir->m_extparams[p-8];
2817
2818                 stmt.opcode = INSTR_STORE_F;
2819                 stmt.o3.u1 = 0;
2820
2821                 if (param->m_vtype == TYPE_FIELD)
2822                     stmt.opcode = field_store_instr[param->m_fieldtype];
2823                 else if (param->m_vtype == TYPE_NIL)
2824                     stmt.opcode = INSTR_STORE_V;
2825                 else
2826                     stmt.opcode = type_store_instr[param->m_vtype];
2827                 stmt.o1.u1 = param->codeAddress();
2828                 stmt.o2.u1 = targetparam->codeAddress();
2829                 if (param->m_vtype == TYPE_VECTOR && (param->m_flags & IR_FLAG_SPLIT_VECTOR)) {
2830                     /* fetch 3 separate floats */
2831                     stmt.opcode = INSTR_STORE_F;
2832                     stmt.o1.u1 = param->m_members[0]->codeAddress();
2833                     code_push_statement(code, &stmt, instr->m_context);
2834                     stmt.o2.u1++;
2835                     stmt.o1.u1 = param->m_members[1]->codeAddress();
2836                     code_push_statement(code, &stmt, instr->m_context);
2837                     stmt.o2.u1++;
2838                     stmt.o1.u1 = param->m_members[2]->codeAddress();
2839                     code_push_statement(code, &stmt, instr->m_context);
2840                 }
2841                 else
2842                     code_push_statement(code, &stmt, instr->m_context);
2843             }
2844
2845             stmt.opcode = INSTR_CALL0 + instr->m_params.size();
2846             if (stmt.opcode > INSTR_CALL8)
2847                 stmt.opcode = INSTR_CALL8;
2848             stmt.o1.u1 = instr->_m_ops[1]->codeAddress();
2849             stmt.o2.u1 = 0;
2850             stmt.o3.u1 = 0;
2851             code_push_statement(code, &stmt, instr->m_context);
2852
2853             retvalue = instr->_m_ops[0];
2854             if (retvalue && retvalue->m_store != store_return &&
2855                 (retvalue->m_store == store_global || retvalue->m_life.size()))
2856             {
2857                 /* not to be kept in OFS_RETURN */
2858                 if (retvalue->m_vtype == TYPE_FIELD && OPTS_FLAG(ADJUST_VECTOR_FIELDS))
2859                     stmt.opcode = field_store_instr[retvalue->m_fieldtype];
2860                 else
2861                     stmt.opcode = type_store_instr[retvalue->m_vtype];
2862                 stmt.o1.u1 = OFS_RETURN;
2863                 stmt.o2.u1 = retvalue->codeAddress();
2864                 stmt.o3.u1 = 0;
2865                 code_push_statement(code, &stmt, instr->m_context);
2866             }
2867             continue;
2868         }
2869
2870         if (instr->m_opcode == INSTR_STATE) {
2871             stmt.opcode = instr->m_opcode;
2872             if (instr->_m_ops[0])
2873                 stmt.o1.u1 = instr->_m_ops[0]->codeAddress();
2874             if (instr->_m_ops[1])
2875                 stmt.o2.u1 = instr->_m_ops[1]->codeAddress();
2876             stmt.o3.u1 = 0;
2877             code_push_statement(code, &stmt, instr->m_context);
2878             continue;
2879         }
2880
2881         stmt.opcode = instr->m_opcode;
2882         stmt.o1.u1 = 0;
2883         stmt.o2.u1 = 0;
2884         stmt.o3.u1 = 0;
2885
2886         /* This is the general order of operands */
2887         if (instr->_m_ops[0])
2888             stmt.o3.u1 = instr->_m_ops[0]->codeAddress();
2889
2890         if (instr->_m_ops[1])
2891             stmt.o1.u1 = instr->_m_ops[1]->codeAddress();
2892
2893         if (instr->_m_ops[2])
2894             stmt.o2.u1 = instr->_m_ops[2]->codeAddress();
2895
2896         if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE)
2897         {
2898             stmt.o1.u1 = stmt.o3.u1;
2899             stmt.o3.u1 = 0;
2900         }
2901         else if ((stmt.opcode >= INSTR_STORE_F &&
2902                   stmt.opcode <= INSTR_STORE_FNC) ||
2903                  (stmt.opcode >= INSTR_STOREP_F &&
2904                   stmt.opcode <= INSTR_STOREP_FNC))
2905         {
2906             /* 2-operand instructions with A -> B */
2907             stmt.o2.u1 = stmt.o3.u1;
2908             stmt.o3.u1 = 0;
2909
2910             /* tiny optimization, don't output
2911              * STORE a, a
2912              */
2913             if (stmt.o2.u1 == stmt.o1.u1 &&
2914                 OPTS_OPTIMIZATION(OPTIM_PEEPHOLE))
2915             {
2916                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
2917                 continue;
2918             }
2919         }
2920         code_push_statement(code, &stmt, instr->m_context);
2921     }
2922     return true;
2923 }
2924
2925 static bool gen_function_code(code_t *code, ir_function *self)
2926 {
2927     ir_block *block;
2928     prog_section_statement_t stmt, *retst;
2929
2930     /* Starting from entry point, we generate blocks "as they come"
2931      * for now. Dead blocks will not be translated obviously.
2932      */
2933     if (self->m_blocks.empty()) {
2934         irerror(self->m_context, "Function '%s' declared without body.", self->m_name.c_str());
2935         return false;
2936     }
2937
2938     block = self->m_blocks[0].get();
2939     if (block->m_generated)
2940         return true;
2941
2942     if (!gen_blocks_recursive(code, self, block)) {
2943         irerror(self->m_context, "failed to generate blocks for '%s'", self->m_name.c_str());
2944         return false;
2945     }
2946
2947     /* code_write and qcvm -disasm need to know that the function ends here */
2948     retst = &code->statements.back();
2949     if (OPTS_OPTIMIZATION(OPTIM_VOID_RETURN) &&
2950         self->m_outtype == TYPE_VOID &&
2951         retst->opcode == INSTR_RETURN &&
2952         !retst->o1.u1 && !retst->o2.u1 && !retst->o3.u1)
2953     {
2954         retst->opcode = INSTR_DONE;
2955         ++opts_optimizationcount[OPTIM_VOID_RETURN];
2956     } else {
2957         lex_ctx_t last;
2958
2959         stmt.opcode = INSTR_DONE;
2960         stmt.o1.u1  = 0;
2961         stmt.o2.u1  = 0;
2962         stmt.o3.u1  = 0;
2963         last.line   = code->linenums.back();
2964         last.column = code->columnnums.back();
2965
2966         code_push_statement(code, &stmt, last);
2967     }
2968     return true;
2969 }
2970
2971 qcint_t ir_builder::filestring(const char *filename)
2972 {
2973     /* NOTE: filename pointers are copied, we never strdup them,
2974      * thus we can use pointer-comparison to find the string.
2975      */
2976     qcint_t  str;
2977
2978     for (size_t i = 0; i != m_filenames.size(); ++i) {
2979         if (!strcmp(m_filenames[i], filename))
2980             return i;
2981     }
2982
2983     str = code_genstring(m_code.get(), filename);
2984     m_filenames.push_back(filename);
2985     m_filestrings.push_back(str);
2986     return str;
2987 }
2988
2989 bool ir_builder::generateGlobalFunction(ir_value *global)
2990 {
2991     prog_section_function_t fun;
2992     ir_function            *irfun;
2993
2994     size_t i;
2995
2996     if (!global->m_hasvalue || (!global->m_constval.vfunc)) {
2997         irerror(global->m_context, "Invalid state of function-global: not constant: %s", global->m_name.c_str());
2998         return false;
2999     }
3000
3001     irfun = global->m_constval.vfunc;
3002     fun.name = global->m_code.name;
3003     fun.file = filestring(global->m_context.file);
3004     fun.profile = 0; /* always 0 */
3005     fun.nargs = irfun->m_params.size();
3006     if (fun.nargs > 8)
3007         fun.nargs = 8;
3008
3009     for (i = 0; i < 8; ++i) {
3010         if ((int32_t)i >= fun.nargs)
3011             fun.argsize[i] = 0;
3012         else
3013             fun.argsize[i] = type_sizeof_[irfun->m_params[i]];
3014     }
3015
3016     fun.firstlocal = 0;
3017     fun.locals = irfun->m_allocated_locals;
3018
3019     if (irfun->m_builtin)
3020         fun.entry = irfun->m_builtin+1;
3021     else {
3022         irfun->m_code_function_def = m_code->functions.size();
3023         fun.entry = m_code->statements.size();
3024     }
3025
3026     m_code->functions.push_back(fun);
3027     return true;
3028 }
3029
3030 ir_value* ir_builder::generateExtparamProto()
3031 {
3032     char      name[128];
3033
3034     util_snprintf(name, sizeof(name), "EXTPARM#%i", (int)(m_extparam_protos.size()));
3035     ir_value *global = new ir_value(name, store_global, TYPE_VECTOR);
3036     m_extparam_protos.emplace_back(global);
3037
3038     return global;
3039 }
3040
3041 void ir_builder::generateExtparam()
3042 {
3043     prog_section_def_t def;
3044     ir_value          *global;
3045
3046     if (m_extparam_protos.size() < m_extparams.size()+1)
3047         global = generateExtparamProto();
3048     else
3049         global = m_extparam_protos[m_extparams.size()].get();
3050
3051     def.name = code_genstring(m_code.get(), global->m_name.c_str());
3052     def.type = TYPE_VECTOR;
3053     def.offset = m_code->globals.size();
3054
3055     m_code->defs.push_back(def);
3056
3057     global->setCodeAddress(def.offset);
3058
3059     m_code->globals.push_back(0);
3060     m_code->globals.push_back(0);
3061     m_code->globals.push_back(0);
3062
3063     m_extparams.emplace_back(global);
3064 }
3065
3066 static bool gen_function_extparam_copy(code_t *code, ir_function *self)
3067 {
3068     ir_builder *ir = self->m_owner;
3069
3070     size_t numparams = self->m_params.size();
3071     if (!numparams)
3072         return true;
3073
3074     prog_section_statement_t stmt;
3075     stmt.opcode = INSTR_STORE_F;
3076     stmt.o3.s1 = 0;
3077     for (size_t i = 8; i < numparams; ++i) {
3078         size_t ext = i - 8;
3079         if (ext >= ir->m_extparams.size())
3080             ir->generateExtparam();
3081
3082         ir_value *ep = ir->m_extparams[ext];
3083
3084         stmt.opcode = type_store_instr[self->m_locals[i]->m_vtype];
3085         if (self->m_locals[i]->m_vtype == TYPE_FIELD &&
3086             self->m_locals[i]->m_fieldtype == TYPE_VECTOR)
3087         {
3088             stmt.opcode = INSTR_STORE_V;
3089         }
3090         stmt.o1.u1 = ep->codeAddress();
3091         stmt.o2.u1 = self->m_locals[i].get()->codeAddress();
3092         code_push_statement(code, &stmt, self->m_context);
3093     }
3094
3095     return true;
3096 }
3097
3098 static bool gen_function_varargs_copy(code_t *code, ir_function *self)
3099 {
3100     size_t i, ext, numparams, maxparams;
3101
3102     ir_builder *ir = self->m_owner;
3103     ir_value   *ep;
3104     prog_section_statement_t stmt;
3105
3106     numparams = self->m_params.size();
3107     if (!numparams)
3108         return true;
3109
3110     stmt.opcode = INSTR_STORE_V;
3111     stmt.o3.s1 = 0;
3112     maxparams = numparams + self->m_max_varargs;
3113     for (i = numparams; i < maxparams; ++i) {
3114         if (i < 8) {
3115             stmt.o1.u1 = OFS_PARM0 + 3*i;
3116             stmt.o2.u1 = self->m_locals[i].get()->codeAddress();
3117             code_push_statement(code, &stmt, self->m_context);
3118             continue;
3119         }
3120         ext = i - 8;
3121         while (ext >= ir->m_extparams.size())
3122             ir->generateExtparam();
3123
3124         ep = ir->m_extparams[ext];
3125
3126         stmt.o1.u1 = ep->codeAddress();
3127         stmt.o2.u1 = self->m_locals[i].get()->codeAddress();
3128         code_push_statement(code, &stmt, self->m_context);
3129     }
3130
3131     return true;
3132 }
3133
3134 bool ir_builder::generateFunctionLocals(ir_value *global)
3135 {
3136     prog_section_function_t *def;
3137     ir_function             *irfun;
3138     uint32_t                 firstlocal, firstglobal;
3139
3140     irfun = global->m_constval.vfunc;
3141     def   = &m_code->functions[0] + irfun->m_code_function_def;
3142
3143     if (OPTS_OPTION_BOOL(OPTION_G) ||
3144         !OPTS_OPTIMIZATION(OPTIM_OVERLAP_LOCALS)        ||
3145         (irfun->m_flags & IR_FLAG_MASK_NO_OVERLAP))
3146     {
3147         firstlocal = def->firstlocal = m_code->globals.size();
3148     } else {
3149         firstlocal = def->firstlocal = m_first_common_local;
3150         ++opts_optimizationcount[OPTIM_OVERLAP_LOCALS];
3151     }
3152
3153     firstglobal = (OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS) ? m_first_common_globaltemp : firstlocal);
3154
3155     for (size_t i = m_code->globals.size(); i < firstlocal + irfun->m_allocated_locals; ++i)
3156         m_code->globals.push_back(0);
3157
3158     for (auto& lp : irfun->m_locals) {
3159         ir_value *v = lp.get();
3160         if (v->m_locked || !OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS)) {
3161             v->setCodeAddress(firstlocal + v->m_code.local);
3162             if (!generateGlobal(v, true)) {
3163                 irerror(v->m_context, "failed to generate local %s", v->m_name.c_str());
3164                 return false;
3165             }
3166         }
3167         else
3168             v->setCodeAddress(firstglobal + v->m_code.local);
3169     }
3170     for (auto& vp : irfun->m_values) {
3171         ir_value *v = vp.get();
3172         if (v->m_callparam)
3173             continue;
3174         if (v->m_locked)
3175             v->setCodeAddress(firstlocal + v->m_code.local);
3176         else
3177             v->setCodeAddress(firstglobal + v->m_code.local);
3178     }
3179     return true;
3180 }
3181
3182 bool ir_builder::generateGlobalFunctionCode(ir_value *global)
3183 {
3184     prog_section_function_t *fundef;
3185     ir_function             *irfun;
3186
3187     irfun = global->m_constval.vfunc;
3188     if (!irfun) {
3189         if (global->m_cvq == CV_NONE) {
3190             if (irwarning(global->m_context, WARN_IMPLICIT_FUNCTION_POINTER,
3191                           "function `%s` has no body and in QC implicitly becomes a function-pointer",
3192                           global->m_name.c_str()))
3193             {
3194                 /* Not bailing out just now. If this happens a lot you don't want to have
3195                  * to rerun gmqcc for each such function.
3196                  */
3197
3198                 /* return false; */
3199             }
3200         }
3201         /* this was a function pointer, don't generate code for those */
3202         return true;
3203     }
3204
3205     if (irfun->m_builtin)
3206         return true;
3207
3208     /*
3209      * If there is no definition and the thing is eraseable, we can ignore
3210      * outputting the function to begin with.
3211      */
3212     if (global->m_flags & IR_FLAG_ERASABLE && irfun->m_code_function_def < 0) {
3213         return true;
3214     }
3215
3216     if (irfun->m_code_function_def < 0) {
3217         irerror(irfun->m_context, "`%s`: IR global wasn't generated, failed to access function-def", irfun->m_name.c_str());
3218         return false;
3219     }
3220     fundef = &m_code->functions[irfun->m_code_function_def];
3221
3222     fundef->entry = m_code->statements.size();
3223     if (!generateFunctionLocals(global)) {
3224         irerror(irfun->m_context, "Failed to generate locals for function %s", irfun->m_name.c_str());
3225         return false;
3226     }
3227     if (!gen_function_extparam_copy(m_code.get(), irfun)) {
3228         irerror(irfun->m_context, "Failed to generate extparam-copy code for function %s", irfun->m_name.c_str());
3229         return false;
3230     }
3231     if (irfun->m_max_varargs && !gen_function_varargs_copy(m_code.get(), irfun)) {
3232         irerror(irfun->m_context, "Failed to generate vararg-copy code for function %s", irfun->m_name.c_str());
3233         return false;
3234     }
3235     if (!gen_function_code(m_code.get(), irfun)) {
3236         irerror(irfun->m_context, "Failed to generate code for function %s", irfun->m_name.c_str());
3237         return false;
3238     }
3239     return true;
3240 }
3241
3242 static void gen_vector_defs(code_t *code, prog_section_def_t def, const char *name)
3243 {
3244     char  *component;
3245     size_t len, i;
3246
3247     if (!name || name[0] == '#' || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3248         return;
3249
3250     def.type = TYPE_FLOAT;
3251
3252     len = strlen(name);
3253
3254     component = (char*)mem_a(len+3);
3255     memcpy(component, name, len);
3256     len += 2;
3257     component[len-0] = 0;
3258     component[len-2] = '_';
3259
3260     component[len-1] = 'x';
3261
3262     for (i = 0; i < 3; ++i) {
3263         def.name = code_genstring(code, component);
3264         code->defs.push_back(def);
3265         def.offset++;
3266         component[len-1]++;
3267     }
3268
3269     mem_d(component);
3270 }
3271
3272 static void gen_vector_fields(code_t *code, prog_section_field_t fld, const char *name)
3273 {
3274     char  *component;
3275     size_t len, i;
3276
3277     if (!name || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3278         return;
3279
3280     fld.type = TYPE_FLOAT;
3281
3282     len = strlen(name);
3283
3284     component = (char*)mem_a(len+3);
3285     memcpy(component, name, len);
3286     len += 2;
3287     component[len-0] = 0;
3288     component[len-2] = '_';
3289
3290     component[len-1] = 'x';
3291
3292     for (i = 0; i < 3; ++i) {
3293         fld.name = code_genstring(code, component);
3294         code->fields.push_back(fld);
3295         fld.offset++;
3296         component[len-1]++;
3297     }
3298
3299     mem_d(component);
3300 }
3301
3302 bool ir_builder::generateGlobal(ir_value *global, bool islocal)
3303 {
3304     size_t             i;
3305     int32_t           *iptr;
3306     prog_section_def_t def;
3307     bool               pushdef = opts.optimizeoff;
3308
3309     /* we don't generate split-vectors */
3310     if (global->m_vtype == TYPE_VECTOR && (global->m_flags & IR_FLAG_SPLIT_VECTOR))
3311         return true;
3312
3313     def.type = global->m_vtype;
3314     def.offset = m_code->globals.size();
3315     def.name = 0;
3316     if (OPTS_OPTION_BOOL(OPTION_G) || !islocal)
3317     {
3318         pushdef = true;
3319
3320         /*
3321          * if we're eraseable and the function isn't referenced ignore outputting
3322          * the function.
3323          */
3324         if (global->m_flags & IR_FLAG_ERASABLE && global->m_reads.empty()) {
3325             return true;
3326         }
3327
3328         if (OPTS_OPTIMIZATION(OPTIM_STRIP_CONSTANT_NAMES) &&
3329             !(global->m_flags & IR_FLAG_INCLUDE_DEF) &&
3330             (global->m_name[0] == '#' || global->m_cvq == CV_CONST))
3331         {
3332             pushdef = false;
3333         }
3334
3335         if (pushdef) {
3336             if (global->m_name[0] == '#') {
3337                 if (!m_str_immediate)
3338                     m_str_immediate = code_genstring(m_code.get(), "IMMEDIATE");
3339                 def.name = global->m_code.name = m_str_immediate;
3340             }
3341             else
3342                 def.name = global->m_code.name = code_genstring(m_code.get(), global->m_name.c_str());
3343         }
3344         else
3345             def.name   = 0;
3346         if (islocal) {
3347             def.offset = global->codeAddress();
3348             m_code->defs.push_back(def);
3349             if (global->m_vtype == TYPE_VECTOR)
3350                 gen_vector_defs(m_code.get(), def, global->m_name.c_str());
3351             else if (global->m_vtype == TYPE_FIELD && global->m_fieldtype == TYPE_VECTOR)
3352                 gen_vector_defs(m_code.get(), def, global->m_name.c_str());
3353             return true;
3354         }
3355     }
3356     if (islocal)
3357         return true;
3358
3359     switch (global->m_vtype)
3360     {
3361     case TYPE_VOID:
3362         if (0 == global->m_name.compare("end_sys_globals")) {
3363             // TODO: remember this point... all the defs before this one
3364             // should be checksummed and added to progdefs.h when we generate it.
3365         }
3366         else if (0 == global->m_name.compare("end_sys_fields")) {
3367             // TODO: same as above but for entity-fields rather than globsl
3368         }
3369         else if(irwarning(global->m_context, WARN_VOID_VARIABLES, "unrecognized variable of type void `%s`",
3370                           global->m_name.c_str()))
3371         {
3372             /* Not bailing out */
3373             /* return false; */
3374         }
3375         /* I'd argue setting it to 0 is sufficient, but maybe some depend on knowing how far
3376          * the system fields actually go? Though the engine knows this anyway...
3377          * Maybe this could be an -foption
3378          * fteqcc creates data for end_sys_* - of size 1, so let's do the same
3379          */
3380         global->setCodeAddress(m_code->globals.size());
3381         m_code->globals.push_back(0);
3382         /* Add the def */
3383         if (pushdef)
3384             m_code->defs.push_back(def);
3385         return true;
3386     case TYPE_POINTER:
3387         if (pushdef)
3388             m_code->defs.push_back(def);
3389         return gen_global_pointer(m_code.get(), global);
3390     case TYPE_FIELD:
3391         if (pushdef) {
3392             m_code->defs.push_back(def);
3393             if (global->m_fieldtype == TYPE_VECTOR)
3394                 gen_vector_defs(m_code.get(), def, global->m_name.c_str());
3395         }
3396         return gen_global_field(m_code.get(), global);
3397     case TYPE_ENTITY:
3398         /* fall through */
3399     case TYPE_FLOAT:
3400     {
3401         global->setCodeAddress(m_code->globals.size());
3402         if (global->m_hasvalue) {
3403             if (global->m_cvq == CV_CONST && global->m_reads.empty())
3404                 return true;
3405             iptr = (int32_t*)&global->m_constval.ivec[0];
3406             m_code->globals.push_back(*iptr);
3407         } else {
3408             m_code->globals.push_back(0);
3409         }
3410         if (!islocal && global->m_cvq != CV_CONST)
3411             def.type |= DEF_SAVEGLOBAL;
3412         if (pushdef)
3413             m_code->defs.push_back(def);
3414
3415         return global->m_code.globaladdr >= 0;
3416     }
3417     case TYPE_STRING:
3418     {
3419         global->setCodeAddress(m_code->globals.size());
3420         if (global->m_hasvalue) {
3421             if (global->m_cvq == CV_CONST && global->m_reads.empty())
3422                 return true;
3423             uint32_t load = code_genstring(m_code.get(), global->m_constval.vstring);
3424             m_code->globals.push_back(load);
3425         } else {
3426             m_code->globals.push_back(0);
3427         }
3428         if (!islocal && global->m_cvq != CV_CONST)
3429             def.type |= DEF_SAVEGLOBAL;
3430         if (pushdef)
3431             m_code->defs.push_back(def);
3432         return global->m_code.globaladdr >= 0;
3433     }
3434     case TYPE_VECTOR:
3435     {
3436         size_t d;
3437         global->setCodeAddress(m_code->globals.size());
3438         if (global->m_hasvalue) {
3439             iptr = (int32_t*)&global->m_constval.ivec[0];
3440             m_code->globals.push_back(iptr[0]);
3441             if (global->m_code.globaladdr < 0)
3442                 return false;
3443             for (d = 1; d < type_sizeof_[global->m_vtype]; ++d) {
3444                 m_code->globals.push_back(iptr[d]);
3445             }
3446         } else {
3447             m_code->globals.push_back(0);
3448             if (global->m_code.globaladdr < 0)
3449                 return false;
3450             for (d = 1; d < type_sizeof_[global->m_vtype]; ++d) {
3451                 m_code->globals.push_back(0);
3452             }
3453         }
3454         if (!islocal && global->m_cvq != CV_CONST)
3455             def.type |= DEF_SAVEGLOBAL;
3456
3457         if (pushdef) {
3458             m_code->defs.push_back(def);
3459             def.type &= ~DEF_SAVEGLOBAL;
3460             gen_vector_defs(m_code.get(), def, global->m_name.c_str());
3461         }
3462         return global->m_code.globaladdr >= 0;
3463     }
3464     case TYPE_FUNCTION:
3465         global->setCodeAddress(m_code->globals.size());
3466         if (!global->m_hasvalue) {
3467             m_code->globals.push_back(0);
3468             if (global->m_code.globaladdr < 0)
3469                 return false;
3470         } else {
3471             m_code->globals.push_back(m_code->functions.size());
3472             if (!generateGlobalFunction(global))
3473                 return false;
3474         }
3475         if (!islocal && global->m_cvq != CV_CONST)
3476             def.type |= DEF_SAVEGLOBAL;
3477         if (pushdef)
3478             m_code->defs.push_back(def);
3479         return true;
3480     case TYPE_VARIANT:
3481         /* assume biggest type */
3482             global->setCodeAddress(m_code->globals.size());
3483             m_code->globals.push_back(0);
3484             for (i = 1; i < type_sizeof_[TYPE_VARIANT]; ++i)
3485                 m_code->globals.push_back(0);
3486             return true;
3487     default:
3488         /* refuse to create 'void' type or any other fancy business. */
3489         irerror(global->m_context, "Invalid type for global variable `%s`: %s",
3490                 global->m_name.c_str(), type_name[global->m_vtype]);
3491         return false;
3492     }
3493 }
3494
3495 static GMQCC_INLINE void ir_builder_prepare_field(code_t *code, ir_value *field)
3496 {
3497     field->m_code.fieldaddr = code_alloc_field(code, type_sizeof_[field->m_fieldtype]);
3498 }
3499
3500 static bool ir_builder_gen_field(ir_builder *self, ir_value *field)
3501 {
3502     prog_section_def_t def;
3503     prog_section_field_t fld;
3504
3505     (void)self;
3506
3507     def.type   = (uint16_t)field->m_vtype;
3508     def.offset = (uint16_t)self->m_code->globals.size();
3509
3510     /* create a global named the same as the field */
3511     if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_GMQCC) {
3512         /* in our standard, the global gets a dot prefix */
3513         size_t len = field->m_name.length();
3514         char name[1024];
3515
3516         /* we really don't want to have to allocate this, and 1024
3517          * bytes is more than enough for a variable/field name
3518          */
3519         if (len+2 >= sizeof(name)) {
3520             irerror(field->m_context, "invalid field name size: %u", (unsigned int)len);
3521             return false;
3522         }
3523
3524         name[0] = '.';
3525         memcpy(name+1, field->m_name.c_str(), len); // no strncpy - we used strlen above
3526         name[len+1] = 0;
3527
3528         def.name = code_genstring(self->m_code.get(), name);
3529         fld.name = def.name + 1; /* we reuse that string table entry */
3530     } else {
3531         /* in plain QC, there cannot be a global with the same name,
3532          * and so we also name the global the same.
3533          * FIXME: fteqcc should create a global as well
3534          * check if it actually uses the same name. Probably does
3535          */
3536         def.name = code_genstring(self->m_code.get(), field->m_name.c_str());
3537         fld.name = def.name;
3538     }
3539
3540     field->m_code.name = def.name;
3541
3542     self->m_code->defs.push_back(def);
3543
3544     fld.type = field->m_fieldtype;
3545
3546     if (fld.type == TYPE_VOID) {
3547         irerror(field->m_context, "field is missing a type: %s - don't know its size", field->m_name.c_str());
3548         return false;
3549     }
3550
3551     fld.offset = field->m_code.fieldaddr;
3552
3553     self->m_code->fields.push_back(fld);
3554
3555     field->setCodeAddress(self->m_code->globals.size());
3556     self->m_code->globals.push_back(fld.offset);
3557     if (fld.type == TYPE_VECTOR) {
3558         self->m_code->globals.push_back(fld.offset+1);
3559         self->m_code->globals.push_back(fld.offset+2);
3560     }
3561
3562     if (field->m_fieldtype == TYPE_VECTOR) {
3563         gen_vector_defs  (self->m_code.get(), def, field->m_name.c_str());
3564         gen_vector_fields(self->m_code.get(), fld, field->m_name.c_str());
3565     }
3566
3567     return field->m_code.globaladdr >= 0;
3568 }
3569
3570 static void ir_builder_collect_reusables(ir_builder *builder) {
3571     std::vector<ir_value*> reusables;
3572
3573     for (auto& gp : builder->m_globals) {
3574         ir_value *value = gp.get();
3575         if (value->m_vtype != TYPE_FLOAT || !value->m_hasvalue)
3576             continue;
3577         if (value->m_cvq == CV_CONST || (value->m_name.length() >= 1 && value->m_name[0] == '#'))
3578             reusables.emplace_back(value);
3579     }
3580     builder->m_const_floats = move(reusables);
3581 }
3582
3583 static void ir_builder_split_vector(ir_builder *self, ir_value *vec) {
3584     ir_value* found[3] = { nullptr, nullptr, nullptr };
3585
3586     // must not be written to
3587     if (vec->m_writes.size())
3588         return;
3589     // must not be trying to access individual members
3590     if (vec->m_members[0] || vec->m_members[1] || vec->m_members[2])
3591         return;
3592     // should be actually used otherwise it won't be generated anyway
3593     if (vec->m_reads.empty())
3594         return;
3595     //size_t count = vec->m_reads.size();
3596     //if (!count)
3597     //    return;
3598
3599     // may only be used directly as function parameters, so if we find some other instruction cancel
3600     for (ir_instr *user : vec->m_reads) {
3601         // we only split vectors if they're used directly as parameter to a call only!
3602         if ((user->m_opcode < INSTR_CALL0 || user->m_opcode > INSTR_CALL8) && user->m_opcode != VINSTR_NRCALL)
3603             return;
3604     }
3605
3606     vec->m_flags |= IR_FLAG_SPLIT_VECTOR;
3607
3608     // find existing floats making up the split
3609     for (ir_value *c : self->m_const_floats) {
3610         if (!found[0] && c->m_constval.vfloat == vec->m_constval.vvec.x)
3611             found[0] = c;
3612         if (!found[1] && c->m_constval.vfloat == vec->m_constval.vvec.y)
3613             found[1] = c;
3614         if (!found[2] && c->m_constval.vfloat == vec->m_constval.vvec.z)
3615             found[2] = c;
3616         if (found[0] && found[1] && found[2])
3617             break;
3618     }
3619
3620     // generate floats for not yet found components
3621     if (!found[0])
3622         found[0] = self->literalFloat(vec->m_constval.vvec.x, true);
3623     if (!found[1]) {
3624         if (vec->m_constval.vvec.y == vec->m_constval.vvec.x)
3625             found[1] = found[0];
3626         else
3627             found[1] = self->literalFloat(vec->m_constval.vvec.y, true);
3628     }
3629     if (!found[2]) {
3630         if (vec->m_constval.vvec.z == vec->m_constval.vvec.x)
3631             found[2] = found[0];
3632         else if (vec->m_constval.vvec.z == vec->m_constval.vvec.y)
3633             found[2] = found[1];
3634         else
3635             found[2] = self->literalFloat(vec->m_constval.vvec.z, true);
3636     }
3637
3638     // the .members array should be safe to use here
3639     vec->m_members[0] = found[0];
3640     vec->m_members[1] = found[1];
3641     vec->m_members[2] = found[2];
3642
3643     // register the readers for these floats
3644     found[0]->m_reads.insert(found[0]->m_reads.end(), vec->m_reads.begin(), vec->m_reads.end());
3645     found[1]->m_reads.insert(found[1]->m_reads.end(), vec->m_reads.begin(), vec->m_reads.end());
3646     found[2]->m_reads.insert(found[2]->m_reads.end(), vec->m_reads.begin(), vec->m_reads.end());
3647 }
3648
3649 static void ir_builder_split_vectors(ir_builder *self) {
3650     // member values may be added to self->m_globals during this operation, but
3651     // no new vectors will be added, we need to iterate via an index as
3652     // c++ iterators would be invalidated
3653     const size_t count = self->m_globals.size();
3654     for (size_t i = 0; i != count; ++i) {
3655         ir_value *v = self->m_globals[i].get();
3656         if (v->m_vtype != TYPE_VECTOR || !v->m_name.length() || v->m_name[0] != '#')
3657             continue;
3658         ir_builder_split_vector(self, v);
3659     }
3660 }
3661
3662 bool ir_builder::generate(const char *filename)
3663 {
3664     prog_section_statement_t stmt;
3665     char  *lnofile = nullptr;
3666
3667     if (OPTS_FLAG(SPLIT_VECTOR_PARAMETERS)) {
3668         ir_builder_collect_reusables(this);
3669         if (!m_const_floats.empty())
3670             ir_builder_split_vectors(this);
3671     }
3672
3673     for (auto& fp : m_fields)
3674         ir_builder_prepare_field(m_code.get(), fp.get());
3675
3676     for (auto& gp : m_globals) {
3677         ir_value *global = gp.get();
3678         if (!generateGlobal(global, false)) {
3679             return false;
3680         }
3681         if (global->m_vtype == TYPE_FUNCTION) {
3682             ir_function *func = global->m_constval.vfunc;
3683             if (func && m_max_locals < func->m_allocated_locals &&
3684                 !(func->m_flags & IR_FLAG_MASK_NO_OVERLAP))
3685             {
3686                 m_max_locals = func->m_allocated_locals;
3687             }
3688             if (func && m_max_globaltemps < func->m_globaltemps)
3689                 m_max_globaltemps = func->m_globaltemps;
3690         }
3691     }
3692
3693     for (auto& fp : m_fields) {
3694         if (!ir_builder_gen_field(this, fp.get()))
3695             return false;
3696     }
3697
3698     // generate nil
3699     m_nil->setCodeAddress(m_code->globals.size());
3700     m_code->globals.push_back(0);
3701     m_code->globals.push_back(0);
3702     m_code->globals.push_back(0);
3703
3704     // generate virtual-instruction temps
3705     for (size_t i = 0; i < IR_MAX_VINSTR_TEMPS; ++i) {
3706         m_vinstr_temp[i]->setCodeAddress(m_code->globals.size());
3707         m_code->globals.push_back(0);
3708         m_code->globals.push_back(0);
3709         m_code->globals.push_back(0);
3710     }
3711
3712     // generate global temps
3713     m_first_common_globaltemp = m_code->globals.size();
3714     m_code->globals.insert(m_code->globals.end(), m_max_globaltemps, 0);
3715     // FIXME:DELME:
3716     //for (size_t i = 0; i < m_max_globaltemps; ++i) {
3717     //    m_code->globals.push_back(0);
3718     //}
3719     // generate common locals
3720     m_first_common_local = m_code->globals.size();
3721     m_code->globals.insert(m_code->globals.end(), m_max_locals, 0);
3722     // FIXME:DELME:
3723     //for (i = 0; i < m_max_locals; ++i) {
3724     //    m_code->globals.push_back(0);
3725     //}
3726
3727     // generate function code
3728
3729     for (auto& gp : m_globals) {
3730         ir_value *global = gp.get();
3731         if (global->m_vtype == TYPE_FUNCTION) {
3732             if (!this->generateGlobalFunctionCode(global))
3733                 return false;
3734         }
3735     }
3736
3737     if (m_code->globals.size() >= 65536) {
3738         irerror(m_globals.back()->m_context,
3739             "This progs file would require more globals than the metadata can handle (%zu). Bailing out.",
3740             m_code->globals.size());
3741         return false;
3742     }
3743
3744     /* DP errors if the last instruction is not an INSTR_DONE. */
3745     if (m_code->statements.back().opcode != INSTR_DONE)
3746     {
3747         lex_ctx_t last;
3748
3749         stmt.opcode = INSTR_DONE;
3750         stmt.o1.u1  = 0;
3751         stmt.o2.u1  = 0;
3752         stmt.o3.u1  = 0;
3753         last.line   = m_code->linenums.back();
3754         last.column = m_code->columnnums.back();
3755
3756         code_push_statement(m_code.get(), &stmt, last);
3757     }
3758
3759     if (OPTS_OPTION_BOOL(OPTION_PP_ONLY))
3760         return true;
3761