X-Git-Url: http://de.git.xonotic.org/?p=xonotic%2Fgmqcc.git;a=blobdiff_plain;f=fold.c;h=c9f1a0695c07f8fe1b9c35b62f7bbfab4eaaa360;hp=98e854ee3ceedd91c082a5d7e4dd496f97c378d4;hb=b1016c7f48c9d9e499351ad3a7c84db71325b81d;hpb=b0460de935e2aba35acebf9f5b6184f2e2ab3337 diff --git a/fold.c b/fold.c index 98e854e..c9f1a06 100644 --- a/fold.c +++ b/fold.c @@ -34,31 +34,19 @@ * stage constant folding, where, witht he help of the AST, operator * usages can be constant folded. Then there is the constant folding * in the IR for things like eliding if statements, can occur. - * + * * This file is thus, split into two parts. */ -ast_expression **fold_const_values = NULL; - -static GMQCC_INLINE bool fold_possible(const ast_value *val) { - return ast_istype((ast_expression*)val, ast_value) && - val->hasvalue && (val->cvq == CV_CONST) && - ((ast_expression*)val)->vtype != TYPE_FUNCTION; /* why not for functions? */ -} -#define isfloatonly(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT) -#define isvectoronly(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR) -#define isstringonly(X) (((ast_expression*)(X))->vtype == TYPE_STRING) -#define isfloat(X) (isfloatonly (X) && fold_possible(X)) -#define isvector(X) (isvectoronly(X) && fold_possible(X)) -#define isstring(X) (isstringonly(X) && fold_possible(X)) -#define isfloats(X,Y) (isfloat (X) && isfloat (Y)) -#define isvectors(X,Y) (isvector (X) && isvector(Y)) -#define isstrings(X,Y) (isstring (X) && isstring(Y)) +#define isfloat(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT) +#define isvector(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR) +#define isstring(X) (((ast_expression*)(X))->vtype == TYPE_STRING) +#define isfloats(X,Y) (isfloat (X) && isfloat (Y)) /* * Implementation of basic vector math for vec3_t, for trivial constant * folding. - * + * * TODO: gcc/clang hinting for autovectorization */ static GMQCC_INLINE vec3_t vec3_add(vec3_t a, vec3_t b) { @@ -77,14 +65,6 @@ static GMQCC_INLINE vec3_t vec3_sub(vec3_t a, vec3_t b) { return out; } -static GMQCC_INLINE vec3_t vec3_not(vec3_t a) { - vec3_t out; - out.x = !a.x; - out.y = !a.y; - out.z = !a.z; - return out; -} - static GMQCC_INLINE vec3_t vec3_neg(vec3_t a) { vec3_t out; out.x = -a.x; @@ -93,19 +73,59 @@ static GMQCC_INLINE vec3_t vec3_neg(vec3_t a) { return out; } +static GMQCC_INLINE vec3_t vec3_or(vec3_t a, vec3_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b.x)); + out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b.y)); + out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b.z)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_orvf(vec3_t a, qcfloat_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b)); + out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b)); + out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_and(vec3_t a, vec3_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b.x)); + out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b.y)); + out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b.z)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_andvf(vec3_t a, qcfloat_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b)); + out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b)); + out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b)); + return out; +} + static GMQCC_INLINE vec3_t vec3_xor(vec3_t a, vec3_t b) { vec3_t out; - out.x = (qcfloat_t)((qcint_t)a.x ^ (qcint_t)b.x); - out.y = (qcfloat_t)((qcint_t)a.y ^ (qcint_t)b.y); - out.z = (qcfloat_t)((qcint_t)a.z ^ (qcint_t)b.z); + out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b.x)); + out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b.y)); + out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b.z)); return out; } static GMQCC_INLINE vec3_t vec3_xorvf(vec3_t a, qcfloat_t b) { vec3_t out; - out.x = (qcfloat_t)((qcint_t)a.x ^ (qcint_t)b); - out.y = (qcfloat_t)((qcint_t)a.y ^ (qcint_t)b); - out.z = (qcfloat_t)((qcint_t)a.z ^ (qcint_t)b); + out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b)); + out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b)); + out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_not(vec3_t a) { + vec3_t out; + out.x = (qcfloat_t)(~((qcint_t)a.x)); + out.y = (qcfloat_t)(~((qcint_t)a.y)); + out.z = (qcfloat_t)(~((qcint_t)a.z)); return out; } @@ -113,7 +133,6 @@ static GMQCC_INLINE qcfloat_t vec3_mulvv(vec3_t a, vec3_t b) { return (a.x * b.x + a.y * b.y + a.z * b.z); } - static GMQCC_INLINE vec3_t vec3_mulvf(vec3_t a, qcfloat_t b) { vec3_t out; out.x = a.x * b; @@ -136,17 +155,64 @@ static GMQCC_INLINE vec3_t vec3_create(float x, float y, float z) { return out; } +static GMQCC_INLINE qcfloat_t vec3_notf(vec3_t a) { + return (!a.x && !a.y && !a.z); +} + +static GMQCC_INLINE bool vec3_pbool(vec3_t a) { + return (a.x && a.y && a.z); +} -static GMQCC_INLINE float fold_immvalue_float(ast_value *expr) { - return expr->constval.vfloat; +static GMQCC_INLINE vec3_t vec3_cross(vec3_t a, vec3_t b) { + vec3_t out; + out.x = a.y * b.z - a.z * b.y; + out.y = a.z * b.x - a.x * b.z; + out.z = a.x * b.y - a.y * b.x; + return out; } -static GMQCC_INLINE vec3_t fold_immvalue_vector(ast_value *expr) { - return expr->constval.vvec; + +static lex_ctx_t fold_ctx(fold_t *fold) { + lex_ctx_t ctx; + if (fold->parser->lex) + return parser_ctx(fold->parser); + + memset(&ctx, 0, sizeof(ctx)); + return ctx; } -static GMQCC_INLINE const char *fold_immvalue_string(ast_value *expr) { - return expr->constval.vstring; + +static GMQCC_INLINE bool fold_immediate_true(fold_t *fold, ast_value *v) { + switch (v->expression.vtype) { + case TYPE_FLOAT: + return !!v->constval.vfloat; + case TYPE_INTEGER: + return !!v->constval.vint; + case TYPE_VECTOR: + if (OPTS_FLAG(CORRECT_LOGIC)) + return vec3_pbool(v->constval.vvec); + return !!(v->constval.vvec.x); + case TYPE_STRING: + if (!v->constval.vstring) + return false; + if (OPTS_FLAG(TRUE_EMPTY_STRINGS)) + return true; + return !!v->constval.vstring[0]; + default: + compile_error(fold_ctx(fold), "internal error: fold_immediate_true on invalid type"); + break; + } + return !!v->constval.vfunc; } +/* Handy macros to determine if an ast_value can be constant folded. */ +#define fold_can_1(X) \ + (ast_istype(((ast_expression*)(X)), ast_value) && (X)->hasvalue && ((X)->cvq == CV_CONST) && \ + ((ast_expression*)(X))->vtype != TYPE_FUNCTION) + +#define fold_can_2(X, Y) (fold_can_1(X) && fold_can_1(Y)) + +#define fold_immvalue_float(E) ((E)->constval.vfloat) +#define fold_immvalue_vector(E) ((E)->constval.vvec) +#define fold_immvalue_string(E) ((E)->constval.vstring) fold_t *fold_init(parser_t *parser) { fold_t *fold = (fold_t*)mem_a(sizeof(fold_t)); @@ -166,6 +232,7 @@ fold_t *fold_init(parser_t *parser) { (void)fold_constgen_float (fold, -1.0f); (void)fold_constgen_vector(fold, vec3_create(0.0f, 0.0f, 0.0f)); + (void)fold_constgen_vector(fold, vec3_create(-1.0f, -1.0f, -1.0f)); return fold; } @@ -207,21 +274,12 @@ void fold_cleanup(fold_t *fold) { mem_d(fold); } -static lex_ctx_t fold_ctx(fold_t *fold) { - lex_ctx_t ctx; - if (fold->parser->lex) - return parser_ctx(fold->parser); - - memset(&ctx, 0, sizeof(ctx)); - return ctx; -} - ast_expression *fold_constgen_float(fold_t *fold, qcfloat_t value) { ast_value *out = NULL; size_t i; for (i = 0; i < vec_size(fold->imm_float); i++) { - if (fold->imm_float[i]->constval.vfloat == value) + if (!memcmp(&fold->imm_float[i]->constval.vfloat, &value, sizeof(qcfloat_t))) return (ast_expression*)fold->imm_float[i]; } @@ -281,29 +339,30 @@ ast_expression *fold_constgen_string(fold_t *fold, const char *str, bool transla return (ast_expression*)out; } -static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t *vec, ast_value *sel, const char *set) { + +static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t vec, ast_value *sel, const char *set) { /* * vector-component constant folding works by matching the component sets * to eliminate expensive operations on whole-vectors (3 components at runtime). - * to achive this effect in a clean manner this function generalizes the + * to achive this effect in a clean manner this function generalizes the * values through the use of a set paramater, which is used as an indexing method * for creating the elided ast binary expression. * * Consider 'n 0 0' where y, and z need to be tested for 0, and x is - * used as the value in a binary operation generating an INSTR_MUL instruction + * used as the value in a binary operation generating an INSTR_MUL instruction, * to acomplish the indexing of the correct component value we use set[0], set[1], set[2] * as x, y, z, where the values of those operations return 'x', 'y', 'z'. Because * of how ASCII works we can easily deliniate: * vec.z is the same as set[2]-'x' for when set[2] is 'z', 'z'-'x' results in a * literal value of 2, using this 2, we know that taking the address of vec->x (float) * and indxing it with this literal will yeild the immediate address of that component - * + * * Of course more work needs to be done to generate the correct index for the ast_member_new * call, which is no problem: set[0]-'x' suffices that job. */ - qcfloat_t x = (&vec->x)[set[0]-'x']; - qcfloat_t y = (&vec->x)[set[1]-'x']; - qcfloat_t z = (&vec->x)[set[2]-'x']; + qcfloat_t x = (&vec.x)[set[0]-'x']; + qcfloat_t y = (&vec.x)[set[1]-'x']; + qcfloat_t z = (&vec.x)[set[2]-'x']; if (!y && !z) { ast_expression *out; @@ -311,46 +370,90 @@ static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t *vec, a out = (ast_expression*)ast_member_new(fold_ctx(fold), (ast_expression*)sel, set[0]-'x', NULL); out->node.keep = false; ((ast_member*)out)->rvalue = true; - if (!x != -1) + if (x != -1.0f) return (ast_expression*)ast_binary_new(fold_ctx(fold), INSTR_MUL_F, fold_constgen_float(fold, x), out); } + return NULL; +} + + +static GMQCC_INLINE ast_expression *fold_op_neg(fold_t *fold, ast_value *a) { + if (isfloat(a)) { + if (fold_can_1(a)) + return fold_constgen_float(fold, -fold_immvalue_float(a)); + } else if (isvector(a)) { + if (fold_can_1(a)) + return fold_constgen_vector(fold, vec3_neg(fold_immvalue_vector(a))); + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_not(fold_t *fold, ast_value *a) { + if (isfloat(a)) { + if (fold_can_1(a)) + return fold_constgen_float(fold, !fold_immvalue_float(a)); + } else if (isvector(a)) { + if (fold_can_1(a)) + return fold_constgen_float(fold, vec3_notf(fold_immvalue_vector(a))); + } else if (isstring(a)) { + if (fold_can_1(a)) { + if (OPTS_FLAG(TRUE_EMPTY_STRINGS)) + return fold_constgen_float(fold, !fold_immvalue_string(a)); + else + return fold_constgen_float(fold, !fold_immvalue_string(a) || !*fold_immvalue_string(a)); + } + } + return NULL; +} +static GMQCC_INLINE ast_expression *fold_op_add(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, fold_immvalue_float(a) + fold_immvalue_float(b)); + } else if (isvector(a)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_add(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } return NULL; } +static GMQCC_INLINE ast_expression *fold_op_sub(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, fold_immvalue_float(a) - fold_immvalue_float(b)); + } else if (isvector(a)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_sub(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } + return NULL; +} static GMQCC_INLINE ast_expression *fold_op_mul(fold_t *fold, ast_value *a, ast_value *b) { - if (isfloatonly(a)) { - return (fold_possible(a) && fold_possible(b)) - ? fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(b), fold_immvalue_float(a))) /* a=float, b=vector */ - : NULL; /* cannot fold them */ - } else if (isfloats(a, b)) { - return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b)); /* a=float, b=float */ - } else if (isvectoronly(a)) { - if (isfloat(b) && fold_possible(a)) - return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), fold_immvalue_float(b))); /* a=vector, b=float */ - else if (isvector(b)) { - /* - * if we made it here the two ast values are both vectors. However because vectors are represented as - * three float values, constant folding can still occur within reason of the individual const-qualification - * of the components the vector is composed of. - */ - if (fold_possible(a) && fold_possible(b)) + if (isfloat(a)) { + if (isvector(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(b), fold_immvalue_float(a))); + } else { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b)); + } + } else if (isvector(a)) { + if (isfloat(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + } else { + if (fold_can_2(a, b)) { return fold_constgen_float(fold, vec3_mulvv(fold_immvalue_vector(a), fold_immvalue_vector(b))); - else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_possible(a)) { - vec3_t vec = fold_immvalue_vector(a); + } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(a)) { ast_expression *out; - if ((out = fold_op_mul_vec(fold, &vec, b, "xyz"))) return out; - if ((out = fold_op_mul_vec(fold, &vec, b, "yxz"))) return out; - if ((out = fold_op_mul_vec(fold, &vec, b, "zxy"))) return out; - return NULL; - } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_possible(b)) { - vec3_t vec = fold_immvalue_vector(b); + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "xyz"))) return out; + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "yxz"))) return out; + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "zxy"))) return out; + } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(b)) { ast_expression *out; - if ((out = fold_op_mul_vec(fold, &vec, a, "xyz"))) return out; - if ((out = fold_op_mul_vec(fold, &vec, a, "yxz"))) return out; - if ((out = fold_op_mul_vec(fold, &vec, a, "zxy"))) return out; - return NULL; + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "xyz"))) return out; + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "yxz"))) return out; + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "zxy"))) return out; } } } @@ -358,25 +461,182 @@ static GMQCC_INLINE ast_expression *fold_op_mul(fold_t *fold, ast_value *a, ast_ } static GMQCC_INLINE ast_expression *fold_op_div(fold_t *fold, ast_value *a, ast_value *b) { - if (isfloatonly(a)) { - return (fold_possible(a) && fold_possible(b)) - ? fold_constgen_float(fold, fold_immvalue_float(a) / fold_immvalue_float(b)) - : NULL; + if (isfloat(a)) { + if (fold_can_2(a, b)) { + return fold_constgen_float(fold, fold_immvalue_float(a) / fold_immvalue_float(b)); + } else if (fold_can_1(b)) { + return (ast_expression*)ast_binary_new( + fold_ctx(fold), + INSTR_MUL_F, + (ast_expression*)a, + fold_constgen_float(fold, 1.0f / fold_immvalue_float(b)) + ); + } + } else if (isvector(a)) { + if (fold_can_2(a, b)) { + return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), 1.0f / fold_immvalue_float(b))); + } else { + return (ast_expression*)ast_binary_new( + fold_ctx(fold), + INSTR_MUL_VF, + (ast_expression*)a, + (fold_can_1(b)) + ? (ast_expression*)fold_constgen_float(fold, 1.0f / fold_immvalue_float(b)) + : (ast_expression*)ast_binary_new( + fold_ctx(fold), + INSTR_DIV_F, + (ast_expression*)fold->imm_float[1], + (ast_expression*)b + ) + ); + } + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_mod(fold_t *fold, ast_value *a, ast_value *b) { + return (fold_can_2(a, b)) + ? fold_constgen_float(fold, fmod(fold_immvalue_float(a), fold_immvalue_float(b))) + : NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_bor(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) | ((qcint_t)fold_immvalue_float(b)))); + } else { + if (isvector(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_or(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } else { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_orvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + } } + return NULL; +} - if (isvectoronly(a)) { - if (fold_possible(a) && fold_possible(b)) - return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), 1.0f / fold_immvalue_float(b))); - else if (fold_possible(b)) - return fold_constgen_float (fold, 1.0f / fold_immvalue_float(b)); +static GMQCC_INLINE ast_expression *fold_op_band(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) & ((qcint_t)fold_immvalue_float(b)))); + } else { + if (isvector(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_and(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } else { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_andvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + } + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_xor(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) ^ ((qcint_t)fold_immvalue_float(b)))); + } else { + if (isvector(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_xor(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } else { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_xorvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + } + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_lshift(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a, b) && isfloats(a, b)) + return fold_constgen_float(fold, (qcfloat_t)((qcuint_t)(fold_immvalue_float(a)) << (qcuint_t)(fold_immvalue_float(b)))); + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_rshift(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a, b) && isfloats(a, b)) + return fold_constgen_float(fold, (qcfloat_t)((qcuint_t)(fold_immvalue_float(a)) >> (qcuint_t)(fold_immvalue_float(b)))); + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_andor(fold_t *fold, ast_value *a, ast_value *b, float expr) { + if (fold_can_2(a, b)) { + if (OPTS_FLAG(PERL_LOGIC)) { + if (fold_immediate_true(fold, a)) + return (ast_expression*)b; + } else { + return fold_constgen_float ( + fold, + ((expr) ? (fold_immediate_true(fold, a) || fold_immediate_true(fold, b)) + : (fold_immediate_true(fold, a) && fold_immediate_true(fold, b))) + ? 1 + : 0 + ); + } + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_tern(fold_t *fold, ast_value *a, ast_value *b, ast_value *c) { + if (fold_can_1(a)) { + return fold_immediate_true(fold, a) + ? (ast_expression*)b + : (ast_expression*)c; + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_exp(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, (qcfloat_t)powf(fold_immvalue_float(a), fold_immvalue_float(b))); + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_lteqgt(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a,b)) { + if (fold_immvalue_float(a) < fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[2]; + if (fold_immvalue_float(a) == fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[0]; + if (fold_immvalue_float(a) > fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[1]; + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_cmp(fold_t *fold, ast_value *a, ast_value *b, bool ne) { + if (fold_can_2(a, b)) { + return fold_constgen_float( + fold, + (ne) ? (fold_immvalue_float(a) != fold_immvalue_float(b)) + : (fold_immvalue_float(a) == fold_immvalue_float(b)) + ); + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_bnot(fold_t *fold, ast_value *a) { + if (isfloat(a)) { + if (fold_can_1(a)) + return fold_constgen_float(fold, ~((qcint_t)fold_immvalue_float(a))); + } else { + if (isvector(a)) { + if (fold_can_1(a)) + return fold_constgen_vector(fold, vec3_not(fold_immvalue_vector(a))); + } } return NULL; } +static GMQCC_INLINE ast_expression *fold_op_cross(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_cross(fold_immvalue_vector(a), fold_immvalue_vector(b))); + return NULL; +} + ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **opexprs) { - ast_value *a = (ast_value*)opexprs[0]; - ast_value *b = (ast_value*)opexprs[1]; - ast_value *c = (ast_value*)opexprs[2]; + ast_value *a = (ast_value*)opexprs[0]; + ast_value *b = (ast_value*)opexprs[1]; + ast_value *c = (ast_value*)opexprs[2]; + ast_expression *e = NULL; /* can a fold operation be applied to this operator usage? */ if (!info->folds) @@ -385,75 +645,236 @@ ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **op switch(info->operands) { case 3: if(!c) return NULL; case 2: if(!b) return NULL; + case 1: + if(!a) { + compile_error(fold_ctx(fold), "internal error: fold_op no operands to fold\n"); + return NULL; + } } + /* + * we could use a boolean and default case but ironically gcc produces + * invalid broken assembly from that operation. clang/tcc get it right, + * but interestingly ignore compiling this to a jump-table when I do that, + * this happens to be the most efficent method, since you have per-level + * granularity on the pointer check happening only for the case you check + * it in. Opposed to the default method which would involve a boolean and + * pointer check after wards. + */ + #define fold_op_case(ARGS, ARGS_OPID, OP, ARGS_FOLD) \ + case opid##ARGS ARGS_OPID: \ + if ((e = fold_op_##OP ARGS_FOLD)) { \ + ++opts_optimizationcount[OPTIM_CONST_FOLD]; \ + } \ + return e + switch(info->id) { - case opid2('-', 'P'): - return isfloat (a) ? fold_constgen_float (fold, fold_immvalue_float(a)) - : isvector(a) ? fold_constgen_vector(fold, vec3_neg(fold_immvalue_vector(a))) - : NULL; - case opid2('!', 'P'): - return isfloat (a) ? fold_constgen_float (fold, !fold_immvalue_float(a)) - : isvector(a) ? fold_constgen_vector(fold, vec3_not(fold_immvalue_vector(a))) - : isstring(a) ? fold_constgen_float (fold, !fold_immvalue_string(a) || OPTS_FLAG(TRUE_EMPTY_STRINGS) ? 0 : !*fold_immvalue_string(a)) - : NULL; - case opid1('+'): - return isfloats(a,b) ? fold_constgen_float (fold, fold_immvalue_float(a) + fold_immvalue_float(b)) - : isvectors(a,b) ? fold_constgen_vector(fold, vec3_add(fold_immvalue_vector(a), fold_immvalue_vector(b))) - : NULL; - case opid1('-'): - return isfloats(a,b) ? fold_constgen_float (fold, fold_immvalue_float(a) - fold_immvalue_float(b)) - : isvectors(a,b) ? fold_constgen_vector(fold, vec3_sub(fold_immvalue_vector(a), fold_immvalue_vector(b))) - : NULL; - case opid1('%'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) % ((qcint_t)fold_immvalue_float(b)))) - : NULL; - case opid1('|'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) | ((qcint_t)fold_immvalue_float(b)))) - : NULL; - case opid1('&'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) & ((qcint_t)fold_immvalue_float(b)))) - : NULL; - case opid1('^'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) ^ ((qcint_t)fold_immvalue_float(b)))) - : isvectors(a,b) ? fold_constgen_vector(fold, vec3_xor (fold_immvalue_vector(a), fold_immvalue_vector(b))) - : isvector(a)&&isfloat(b) ? fold_constgen_vector(fold, vec3_xorvf(fold_immvalue_vector(a), fold_immvalue_float (b))) - : NULL; - case opid2('<','<'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcuint_t)(fold_immvalue_float(a)) << ((qcuint_t)fold_immvalue_float(b))))) - : NULL; - case opid2('>','>'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcuint_t)(fold_immvalue_float(a)) >> ((qcuint_t)fold_immvalue_float(b))))) - : NULL; - case opid2('*','*'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)powf(fold_immvalue_float(a), fold_immvalue_float(b))) - : NULL; - case opid2('!','='): - return isfloats(a,b) ? fold_constgen_float (fold, fold_immvalue_float(a) != fold_immvalue_float(b)) - : NULL; - case opid2('=','='): - return isfloats(a,b) ? fold_constgen_float (fold, fold_immvalue_float(a) == fold_immvalue_float(b)) - : NULL; - case opid2('~','P'): - return isfloat(a) ? fold_constgen_float (fold, ~(qcint_t)fold_immvalue_float(a)) - : NULL; - - case opid1('*'): return fold_op_mul(fold, a, b); - case opid1('/'): return fold_op_div(fold, a, b); - /* TODO: seperate function for this case */ - return NULL; - case opid2('|','|'): - /* TODO: seperate function for this case */ - return NULL; - case opid2('&','&'): - /* TODO: seperate function for this case */ - return NULL; - case opid2('?',':'): - /* TODO: seperate function for this case */ - return NULL; - case opid3('<','=','>'): - /* TODO: seperate function for this case */ - return NULL; + fold_op_case(2, ('-', 'P'), neg, (fold, a)); + fold_op_case(2, ('!', 'P'), not, (fold, a)); + fold_op_case(1, ('+'), add, (fold, a, b)); + fold_op_case(1, ('-'), sub, (fold, a, b)); + fold_op_case(1, ('*'), mul, (fold, a, b)); + fold_op_case(1, ('/'), div, (fold, a, b)); + fold_op_case(1, ('%'), mod, (fold, a, b)); + fold_op_case(1, ('|'), bor, (fold, a, b)); + fold_op_case(1, ('&'), band, (fold, a, b)); + fold_op_case(1, ('^'), xor, (fold, a, b)); + fold_op_case(2, ('<', '<'), lshift, (fold, a, b)); + fold_op_case(2, ('>', '>'), rshift, (fold, a, b)); + fold_op_case(2, ('|', '|'), andor, (fold, a, b, true)); + fold_op_case(2, ('&', '&'), andor, (fold, a, b, false)); + fold_op_case(2, ('?', ':'), tern, (fold, a, b, c)); + fold_op_case(2, ('*', '*'), exp, (fold, a, b)); + fold_op_case(3, ('<','=','>'), lteqgt, (fold, a, b)); + fold_op_case(2, ('!', '='), cmp, (fold, a, b, true)); + fold_op_case(2, ('=', '='), cmp, (fold, a, b, false)); + fold_op_case(2, ('~', 'P'), bnot, (fold, a)); + fold_op_case(2, ('>', '<'), cross, (fold, a, b)); + } + #undef fold_op_case + compile_error(fold_ctx(fold), "internal error: attempted to constant-fold for unsupported operator"); + return NULL; +} + +/* + * Constant folding for compiler intrinsics, simaler approach to operator + * folding, primarly: individual functions for each intrinsics to fold, + * and a generic selection function. + */ +static GMQCC_INLINE ast_expression *fold_intrin_mod(fold_t *fold, ast_value *lhs, ast_value *rhs) { + return fold_constgen_float( + fold, + fmodf( + fold_immvalue_float(lhs), + fold_immvalue_float(rhs) + ) + ); +} + +static GMQCC_INLINE ast_expression *fold_intrin_pow(fold_t *fold, ast_value *lhs, ast_value *rhs) { + return fold_constgen_float( + fold, + powf( + fold_immvalue_float(lhs), + fold_immvalue_float(rhs) + ) + ); +} + +static GMQCC_INLINE ast_expression *fold_intrin_exp(fold_t *fold, ast_value *value) { + return fold_constgen_float(fold, exp(fold_immvalue_float(value))); +} + +static GMQCC_INLINE ast_expression *fold_intrin_isnan(fold_t *fold, ast_value *value) { + return fold_constgen_float(fold, isnan(fold_immvalue_float(value)) != 0.0f); +} + +static GMQCC_INLINE ast_expression *fold_intrin_fabs(fold_t *fold, ast_value *value) { + return fold_constgen_float(fold, fabs(fold_immvalue_float(value))); +} + +ast_expression *fold_intrin(fold_t *fold, const char *intrin, ast_expression **arg) { + ast_expression *ret = NULL; + + if (!strcmp(intrin, "mod")) ret = fold_intrin_mod (fold, (ast_value*)arg[0], (ast_value*)arg[1]); + if (!strcmp(intrin, "pow")) ret = fold_intrin_pow (fold, (ast_value*)arg[0], (ast_value*)arg[1]); + if (!strcmp(intrin, "exp")) ret = fold_intrin_exp (fold, (ast_value*)arg[0]); + if (!strcmp(intrin, "isnan")) ret = fold_intrin_isnan(fold, (ast_value*)arg[0]); + if (!strcmp(intrin, "fabs")) ret = fold_intrin_fabs (fold, (ast_value*)arg[0]); + + if (ret) + ++opts_optimizationcount[OPTIM_CONST_FOLD]; + + return ret; +} + +/* + * These are all the actual constant folding methods that happen in between + * the AST/IR stage of the compiler , i.e eliminating branches for const + * expressions, which is the only supported thing so far. We undefine the + * testing macros here because an ir_value is differant than an ast_value. + */ +#undef expect +#undef isfloat +#undef isstring +#undef isvector +#undef fold_immvalue_float +#undef fold_immvalue_string +#undef fold_immvalue_vector +#undef fold_can_1 +#undef fold_can_2 + +#define isfloat(X) ((X)->vtype == TYPE_FLOAT) +/*#define isstring(X) ((X)->vtype == TYPE_STRING)*/ +/*#define isvector(X) ((X)->vtype == TYPE_VECTOR)*/ +#define fold_immvalue_float(X) ((X)->constval.vfloat) +#define fold_immvalue_vector(X) ((X)->constval.vvec) +/*#define fold_immvalue_string(X) ((X)->constval.vstring)*/ +#define fold_can_1(X) ((X)->hasvalue && (X)->cvq == CV_CONST) +/*#define fold_can_2(X,Y) (fold_can_1(X) && fold_can_1(Y))*/ + +static ast_expression *fold_superfluous(ast_expression *left, ast_expression *right, int op) { + ast_expression *swapped = NULL; /* using this as bool */ + ast_value *load; + + if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) { + swapped = left; + left = right; + right = swapped; + } + + if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) + return NULL; + + switch (op) { + case INSTR_DIV_F: + if (swapped) + return NULL; + case INSTR_MUL_F: + if (fold_immvalue_float(load) == 1.0f) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; + + + case INSTR_ADD_F: + case INSTR_SUB_F: + if (fold_immvalue_float(load) == 0.0f) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; + + case INSTR_MUL_V: + if (vec3_cmp(fold_immvalue_vector(load), vec3_create(1, 1, 1))) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; + + case INSTR_ADD_V: + case INSTR_SUB_V: + if (vec3_cmp(fold_immvalue_vector(load), vec3_create(0, 0, 0))) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; } + return NULL; } + +ast_expression *fold_binary(lex_ctx_t ctx, int op, ast_expression *left, ast_expression *right) { + ast_expression *ret = fold_superfluous(left, right, op); + if (ret) + return ret; + return (ast_expression*)ast_binary_new(ctx, op, left, right); +} + +static GMQCC_INLINE int fold_cond(ir_value *condval, ast_function *func, ast_ifthen *branch) { + if (isfloat(condval) && fold_can_1(condval) && OPTS_OPTIMIZATION(OPTIM_CONST_FOLD_DCE)) { + ast_expression_codegen *cgen; + ir_block *elide; + ir_value *dummy; + bool istrue = (fold_immvalue_float(condval) != 0.0f && branch->on_true); + bool isfalse = (fold_immvalue_float(condval) == 0.0f && branch->on_false); + ast_expression *path = (istrue) ? branch->on_true : + (isfalse) ? branch->on_false : NULL; + if (!path) { + /* + * no path to take implies that the evaluation is if(0) and there + * is no else block. so eliminate all the code. + */ + ++opts_optimizationcount[OPTIM_CONST_FOLD_DCE]; + return true; + } + + if (!(elide = ir_function_create_block(ast_ctx(branch), func->ir_func, ast_function_label(func, ((istrue) ? "ontrue" : "onfalse"))))) + return false; + if (!(*(cgen = path->codegen))((ast_expression*)path, func, false, &dummy)) + return false; + if (!ir_block_create_jump(func->curblock, ast_ctx(branch), elide)) + return false; + /* + * now the branch has been eliminated and the correct block for the constant evaluation + * is expanded into the current block for the function. + */ + func->curblock = elide; + ++opts_optimizationcount[OPTIM_CONST_FOLD_DCE]; + return true; + } + return -1; /* nothing done */ +} + +int fold_cond_ternary(ir_value *condval, ast_function *func, ast_ternary *branch) { + return fold_cond(condval, func, (ast_ifthen*)branch); +} + +int fold_cond_ifthen(ir_value *condval, ast_function *func, ast_ifthen *branch) { + return fold_cond(condval, func, branch); +}