/* Copyright (C) 2001-2006, William Joseph. All Rights Reserved. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #if !defined(INCLUDED_CONTAINER_ARRAY_H) #define INCLUDED_CONTAINER_ARRAY_H #include #include #include "memory/allocator.h" /// \brief An array whose size is variable at run-time. /// /// - Resizing the array destroys all the existing elements and invalidates all iterators. /// - Default-Constructible, Copyable, Assignable. /// - Compatible with the containers and algorithms in the Standard Template Library (STL) - http://www.sgi.com/tech/stl/ /// /// \param Element The type to be stored in the array. Must provide a default-constructor and a copy-constructor. /// \param Allocator A custom memory-allocator, conforming to the std::allocator interface. template > class Array : public Allocator { std::size_t m_size; Element* m_data; Element* construct(std::size_t size) { #if 1 return New(*this).vector(size); #else return new Element[size]; #endif } template Element* construct(std::size_t size, const T1& value) { return New(*this).vector(size, value); } void destroy(Element* data, std::size_t size) { #if 1 Delete(*this).vector(data, size); #else delete[] data; #endif } public: typedef Element value_type; typedef value_type* iterator; typedef const value_type* const_iterator; Array() : m_size(0), m_data(0) { } Array(std::size_t size) : m_size(size), m_data(construct(size)) { } template Array(std::size_t size, const T1& value) : m_size(size), m_data(construct(size, value)) { } Array(const Array& other) : Allocator(other), m_size(other.size()), m_data(construct(m_size)) { std::copy(other.begin(), other.end(), begin()); } template Array(Iterator start, Iterator finish) : m_size(std::distance(start, finish)), m_data(construct(m_size)) { std::copy(start, finish, begin()); } ~Array() { destroy(m_data, m_size); } Array& operator=(const Array& other) { if(other.size() == size()) { std::copy(other.begin(), other.end(), begin()); } else { Array temp(other); temp.swap(*this); } return *this; } void swap(Array& other) { std::swap(m_size, other.m_size); std::swap(m_data, other.m_data); } iterator begin() { return m_data; } const_iterator begin() const { return m_data; } iterator end() { return m_data + m_size; } const_iterator end() const { return m_data + m_size; } value_type& operator[](std::size_t index) { #if defined(_DEBUG) ASSERT_MESSAGE(index < size(), "array index out of bounds"); #endif return m_data[index]; } const value_type& operator[](std::size_t index) const { #if defined(_DEBUG) ASSERT_MESSAGE(index < size(), "array index out of bounds"); #endif return m_data[index]; } value_type* data() { return m_data; } const value_type* data() const { return m_data; } std::size_t size() const { return m_size; } bool empty() const { return m_size == 0; } void resize(std::size_t count) { if(count != size()) { Array temp(count); temp.swap(*this); } } void resize(std::size_t count, const value_type& value) { if(count != size()) { Array temp(count, value); temp.swap(*this); } } }; namespace std { /// \brief Swaps the values of \p self and \p other. /// Overloads std::swap. template inline void swap(Array& self, Array& other) { self.swap(other); } } #endif