/* Copyright (C) 2001-2006, William Joseph. All Rights Reserved. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #if !defined( INCLUDED_CONTAINER_ARRAY_H ) #define INCLUDED_CONTAINER_ARRAY_H #include #include #include "memory/allocator.h" /// \brief An array whose size is variable at run-time. /// /// - Resizing the array destroys all the existing elements and invalidates all iterators. /// - Default-Constructible, Copyable, Assignable. /// - Compatible with the containers and algorithms in the Standard Template Library (STL) - http://www.sgi.com/tech/stl/ /// /// \param Element The type to be stored in the array. Must provide a default-constructor and a copy-constructor. /// \param Allocator A custom memory-allocator, conforming to the std::allocator interface. template > class Array : public Allocator { std::size_t m_size; Element* m_data; Element* construct( std::size_t size ){ #if 1 return New( *this ).vector( size ); #else return new Element[size]; #endif } template Element* construct( std::size_t size, const T1& value ){ return New( *this ).vector( size, value ); } void destroy( Element* data, std::size_t size ){ #if 1 Delete( *this ).vector( data, size ); #else delete[] data; #endif } public: typedef Element value_type; typedef value_type* iterator; typedef const value_type* const_iterator; Array() : m_size( 0 ), m_data( 0 ){ } Array( std::size_t size ) : m_size( size ), m_data( construct( size ) ){ } template Array( std::size_t size, const T1& value ) : m_size( size ), m_data( construct( size, value ) ){ } Array( const Array& other ) : Allocator( other ), m_size( other.size() ), m_data( construct( m_size ) ){ std::copy( other.begin(), other.end(), begin() ); } template Array( Iterator start, Iterator finish ) : m_size( std::distance( start, finish ) ), m_data( construct( m_size ) ){ std::copy( start, finish, begin() ); } ~Array(){ destroy( m_data, m_size ); } Array& operator=( const Array& other ){ if ( other.size() == size() ) { std::copy( other.begin(), other.end(), begin() ); } else { Array temp( other ); temp.swap( *this ); } return *this; } void swap( Array& other ){ std::swap( m_size, other.m_size ); std::swap( m_data, other.m_data ); } iterator begin(){ return m_data; } const_iterator begin() const { return m_data; } iterator end(){ return m_data + m_size; } const_iterator end() const { return m_data + m_size; } value_type& operator[]( std::size_t index ){ #if defined( _DEBUG ) ASSERT_MESSAGE( index < size(), "array index out of bounds" ); #endif return m_data[index]; } const value_type& operator[]( std::size_t index ) const { #if defined( _DEBUG ) ASSERT_MESSAGE( index < size(), "array index out of bounds" ); #endif return m_data[index]; } value_type* data(){ return m_data; } const value_type* data() const { return m_data; } std::size_t size() const { return m_size; } bool empty() const { return m_size == 0; } void resize( std::size_t count ){ if ( count != size() ) { Array temp( count ); temp.swap( *this ); } } void resize( std::size_t count, const value_type& value ){ if ( count != size() ) { Array temp( count, value ); temp.swap( *this ); } } }; namespace std { /// \brief Swaps the values of \p self and \p other. /// Overloads std::swap. template inline void swap( Array& self, Array& other ){ self.swap( other ); } } #endif