/* Copyright (C) 2001-2006, William Joseph. All Rights Reserved. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "mathlib.h" const aabb_t g_aabb_null = { { 0, 0, 0, }, { -FLT_MAX, -FLT_MAX, -FLT_MAX, }, }; void aabb_construct_for_vec3( aabb_t *aabb, const vec3_t min, const vec3_t max ){ VectorMid( min, max, aabb->origin ); VectorSubtract( max, aabb->origin, aabb->extents ); } void aabb_clear( aabb_t *aabb ){ VectorCopy( g_aabb_null.origin, aabb->origin ); VectorCopy( g_aabb_null.extents, aabb->extents ); } void aabb_extend_by_point( aabb_t *aabb, const vec3_t point ){ #if 1 int i; vec_t min, max, displacement; for ( i = 0; i < 3; i++ ) { displacement = point[i] - aabb->origin[i]; if ( fabs( displacement ) > aabb->extents[i] ) { if ( aabb->extents[i] < 0 ) { // degenerate min = max = point[i]; } else if ( displacement > 0 ) { min = aabb->origin[i] - aabb->extents[i]; max = aabb->origin[i] + displacement; } else { max = aabb->origin[i] + aabb->extents[i]; min = aabb->origin[i] + displacement; } aabb->origin[i] = ( min + max ) * 0.5f; aabb->extents[i] = max - aabb->origin[i]; } } #else unsigned int i; for ( i = 0; i < 3; ++i ) { if ( aabb->extents[i] < 0 ) { // degenerate aabb->origin[i] = point[i]; aabb->extents[i] = 0; } else { vec_t displacement = point[i] - aabb->origin[i]; vec_t increment = (vec_t)fabs( displacement ) - aabb->extents[i]; if ( increment > 0 ) { increment *= (vec_t)( ( displacement > 0 ) ? 0.5 : -0.5 ); aabb->extents[i] += increment; aabb->origin[i] += increment; } } } #endif } void aabb_extend_by_aabb( aabb_t *aabb, const aabb_t *aabb_src ){ int i; vec_t min, max, displacement, difference; for ( i = 0; i < 3; i++ ) { displacement = aabb_src->origin[i] - aabb->origin[i]; difference = aabb_src->extents[i] - aabb->extents[i]; if ( aabb->extents[i] < 0 || difference >= fabs( displacement ) ) { // 2nd contains 1st aabb->extents[i] = aabb_src->extents[i]; aabb->origin[i] = aabb_src->origin[i]; } else if ( aabb_src->extents[i] < 0 || -difference >= fabs( displacement ) ) { // 1st contains 2nd continue; } else { // not contained if ( displacement > 0 ) { min = aabb->origin[i] - aabb->extents[i]; max = aabb_src->origin[i] + aabb_src->extents[i]; } else { min = aabb_src->origin[i] - aabb_src->extents[i]; max = aabb->origin[i] + aabb->extents[i]; } aabb->origin[i] = ( min + max ) * 0.5f; aabb->extents[i] = max - aabb->origin[i]; } } } void aabb_extend_by_vec3( aabb_t *aabb, vec3_t extension ){ VectorAdd( aabb->extents, extension, aabb->extents ); } int aabb_test_point( const aabb_t *aabb, const vec3_t point ){ int i; for ( i = 0; i < 3; i++ ) if ( fabs( point[i] - aabb->origin[i] ) >= aabb->extents[i] ) { return 0; } return 1; } int aabb_test_aabb( const aabb_t *aabb, const aabb_t *aabb_src ){ int i; for ( i = 0; i < 3; i++ ) if ( fabs( aabb_src->origin[i] - aabb->origin[i] ) > ( fabs( aabb->extents[i] ) + fabs( aabb_src->extents[i] ) ) ) { return 0; } return 1; } int aabb_test_plane( const aabb_t *aabb, const float *plane ){ float fDist, fIntersect; // calc distance of origin from plane fDist = DotProduct( plane, aabb->origin ) + plane[3]; // calc extents distance relative to plane normal fIntersect = (vec_t)( fabs( plane[0] * aabb->extents[0] ) + fabs( plane[1] * aabb->extents[1] ) + fabs( plane[2] * aabb->extents[2] ) ); // accept if origin is less than or equal to this distance if ( fabs( fDist ) < fIntersect ) { return 1; // partially inside } else if ( fDist < 0 ) { return 2; // totally inside } return 0; // totally outside } /* Fast Ray-Box Intersection by Andrew Woo from "Graphics Gems", Academic Press, 1990 */ const int NUMDIM = 3; const int RIGHT = 0; const int LEFT = 1; const int MIDDLE = 2; int aabb_intersect_ray( const aabb_t *aabb, const ray_t *ray, vec3_t intersection ){ int inside = 1; char quadrant[NUMDIM]; register int i; int whichPlane; double maxT[NUMDIM]; double candidatePlane[NUMDIM]; const float *origin = ray->origin; const float *direction = ray->direction; /* Find candidate planes; this loop can be avoided if rays cast all from the eye(assume perpsective view) */ for ( i = 0; i < NUMDIM; i++ ) { if ( origin[i] < ( aabb->origin[i] - aabb->extents[i] ) ) { quadrant[i] = LEFT; candidatePlane[i] = ( aabb->origin[i] - aabb->extents[i] ); inside = 0; } else if ( origin[i] > ( aabb->origin[i] + aabb->extents[i] ) ) { quadrant[i] = RIGHT; candidatePlane[i] = ( aabb->origin[i] + aabb->extents[i] ); inside = 0; } else { quadrant[i] = MIDDLE; } } /* Ray origin inside bounding box */ if ( inside == 1 ) { VectorCopy( ray->origin, intersection ); return 1; } /* Calculate T distances to candidate planes */ for ( i = 0; i < NUMDIM; i++ ) { if ( quadrant[i] != MIDDLE && direction[i] != 0. ) { maxT[i] = ( candidatePlane[i] - origin[i] ) / direction[i]; } else{ maxT[i] = -1.; } } /* Get largest of the maxT's for final choice of intersection */ whichPlane = 0; for ( i = 1; i < NUMDIM; i++ ) if ( maxT[whichPlane] < maxT[i] ) { whichPlane = i; } /* Check final candidate actually inside box */ if ( maxT[whichPlane] < 0. ) { return 0; } for ( i = 0; i < NUMDIM; i++ ) { if ( whichPlane != i ) { intersection[i] = (vec_t)( origin[i] + maxT[whichPlane] * direction[i] ); if ( fabs( intersection[i] - aabb->origin[i] ) > aabb->extents[i] ) { return 0; } } else { intersection[i] = (vec_t)candidatePlane[i]; } } return 1; /* ray hits box */ } int aabb_test_ray( const aabb_t* aabb, const ray_t* ray ){ vec3_t displacement, ray_absolute; vec_t f; displacement[0] = ray->origin[0] - aabb->origin[0]; if ( fabs( displacement[0] ) > aabb->extents[0] && displacement[0] * ray->direction[0] >= 0.0f ) { return 0; } displacement[1] = ray->origin[1] - aabb->origin[1]; if ( fabs( displacement[1] ) > aabb->extents[1] && displacement[1] * ray->direction[1] >= 0.0f ) { return 0; } displacement[2] = ray->origin[2] - aabb->origin[2]; if ( fabs( displacement[2] ) > aabb->extents[2] && displacement[2] * ray->direction[2] >= 0.0f ) { return 0; } ray_absolute[0] = (float)fabs( ray->direction[0] ); ray_absolute[1] = (float)fabs( ray->direction[1] ); ray_absolute[2] = (float)fabs( ray->direction[2] ); f = ray->direction[1] * displacement[2] - ray->direction[2] * displacement[1]; if ( (float)fabs( f ) > aabb->extents[1] * ray_absolute[2] + aabb->extents[2] * ray_absolute[1] ) { return 0; } f = ray->direction[2] * displacement[0] - ray->direction[0] * displacement[2]; if ( (float)fabs( f ) > aabb->extents[0] * ray_absolute[2] + aabb->extents[2] * ray_absolute[0] ) { return 0; } f = ray->direction[0] * displacement[1] - ray->direction[1] * displacement[0]; if ( (float)fabs( f ) > aabb->extents[0] * ray_absolute[1] + aabb->extents[1] * ray_absolute[0] ) { return 0; } return 1; } void aabb_orthogonal_transform( aabb_t* dst, const aabb_t* src, const m4x4_t transform ){ VectorCopy( src->origin, dst->origin ); m4x4_transform_point( transform, dst->origin ); dst->extents[0] = (vec_t)( fabs( transform[0] * src->extents[0] ) + fabs( transform[4] * src->extents[1] ) + fabs( transform[8] * src->extents[2] ) ); dst->extents[1] = (vec_t)( fabs( transform[1] * src->extents[0] ) + fabs( transform[5] * src->extents[1] ) + fabs( transform[9] * src->extents[2] ) ); dst->extents[2] = (vec_t)( fabs( transform[2] * src->extents[0] ) + fabs( transform[6] * src->extents[1] ) + fabs( transform[10] * src->extents[2] ) ); } void aabb_for_bbox( aabb_t *aabb, const bbox_t *bbox ){ int i; vec3_t temp[3]; VectorCopy( bbox->aabb.origin, aabb->origin ); // calculate the AABB extents in local coord space from the OBB extents and axes VectorScale( bbox->axes[0], bbox->aabb.extents[0], temp[0] ); VectorScale( bbox->axes[1], bbox->aabb.extents[1], temp[1] ); VectorScale( bbox->axes[2], bbox->aabb.extents[2], temp[2] ); for ( i = 0; i < 3; i++ ) aabb->extents[i] = (vec_t)( fabs( temp[0][i] ) + fabs( temp[1][i] ) + fabs( temp[2][i] ) ); } void aabb_for_area( aabb_t *aabb, vec3_t area_tl, vec3_t area_br, int axis ){ aabb_clear( aabb ); aabb->extents[axis] = FLT_MAX; aabb_extend_by_point( aabb, area_tl ); aabb_extend_by_point( aabb, area_br ); } int aabb_oriented_intersect_plane( const aabb_t *aabb, const m4x4_t transform, const vec_t* plane ){ vec_t fDist, fIntersect; // calc distance of origin from plane fDist = DotProduct( plane, aabb->origin ) + plane[3]; // calc extents distance relative to plane normal fIntersect = (vec_t)( fabs( aabb->extents[0] * DotProduct( plane, transform ) ) + fabs( aabb->extents[1] * DotProduct( plane, transform + 4 ) ) + fabs( aabb->extents[2] * DotProduct( plane, transform + 8 ) ) ); // accept if origin is less than this distance if ( fabs( fDist ) < fIntersect ) { return 1; // partially inside } else if ( fDist < 0 ) { return 2; // totally inside } return 0; // totally outside } void aabb_corners( const aabb_t* aabb, vec3_t corners[8] ){ vec3_t min, max; VectorSubtract( aabb->origin, aabb->extents, min ); VectorAdd( aabb->origin, aabb->extents, max ); VectorSet( corners[0], min[0], max[1], max[2] ); VectorSet( corners[1], max[0], max[1], max[2] ); VectorSet( corners[2], max[0], min[1], max[2] ); VectorSet( corners[3], min[0], min[1], max[2] ); VectorSet( corners[4], min[0], max[1], min[2] ); VectorSet( corners[5], max[0], max[1], min[2] ); VectorSet( corners[6], max[0], min[1], min[2] ); VectorSet( corners[7], min[0], min[1], min[2] ); } void bbox_update_radius( bbox_t *bbox ){ bbox->radius = VectorLength( bbox->aabb.extents ); } void aabb_for_transformed_aabb( aabb_t* dst, const aabb_t* src, const m4x4_t transform ){ if ( src->extents[0] < 0 || src->extents[1] < 0 || src->extents[2] < 0 ) { aabb_clear( dst ); return; } VectorCopy( src->origin, dst->origin ); m4x4_transform_point( transform, dst->origin ); dst->extents[0] = (vec_t)( fabs( transform[0] * src->extents[0] ) + fabs( transform[4] * src->extents[1] ) + fabs( transform[8] * src->extents[2] ) ); dst->extents[1] = (vec_t)( fabs( transform[1] * src->extents[0] ) + fabs( transform[5] * src->extents[1] ) + fabs( transform[9] * src->extents[2] ) ); dst->extents[2] = (vec_t)( fabs( transform[2] * src->extents[0] ) + fabs( transform[6] * src->extents[1] ) + fabs( transform[10] * src->extents[2] ) ); } void bbox_for_oriented_aabb( bbox_t *bbox, const aabb_t *aabb, const m4x4_t matrix, const vec3_t euler, const vec3_t scale ){ double rad[3]; double pi_180 = Q_PI / 180; double A, B, C, D, E, F, AD, BD; VectorCopy( aabb->origin, bbox->aabb.origin ); m4x4_transform_point( matrix, bbox->aabb.origin ); bbox->aabb.extents[0] = aabb->extents[0] * scale[0]; bbox->aabb.extents[1] = aabb->extents[1] * scale[1]; bbox->aabb.extents[2] = aabb->extents[2] * scale[2]; rad[0] = euler[0] * pi_180; rad[1] = euler[1] * pi_180; rad[2] = euler[2] * pi_180; A = cos( rad[0] ); B = sin( rad[0] ); C = cos( rad[1] ); D = sin( rad[1] ); E = cos( rad[2] ); F = sin( rad[2] ); AD = A * -D; BD = B * -D; bbox->axes[0][0] = (vec_t)( C * E ); bbox->axes[0][1] = (vec_t)( -BD * E + A * F ); bbox->axes[0][2] = (vec_t)( AD * E + B * F ); bbox->axes[1][0] = (vec_t)( -C * F ); bbox->axes[1][1] = (vec_t)( BD * F + A * E ); bbox->axes[1][2] = (vec_t)( -AD * F + B * E ); bbox->axes[2][0] = (vec_t)D; bbox->axes[2][1] = (vec_t)( -B * C ); bbox->axes[2][2] = (vec_t)( A * C ); bbox_update_radius( bbox ); } int bbox_intersect_plane( const bbox_t *bbox, const vec_t* plane ){ vec_t fDist, fIntersect; // calc distance of origin from plane fDist = DotProduct( plane, bbox->aabb.origin ) + plane[3]; // trivial accept/reject using bounding sphere if ( fabs( fDist ) > bbox->radius ) { if ( fDist < 0 ) { return 2; // totally inside } else{ return 0; // totally outside } } // calc extents distance relative to plane normal fIntersect = (vec_t)( fabs( bbox->aabb.extents[0] * DotProduct( plane, bbox->axes[0] ) ) + fabs( bbox->aabb.extents[1] * DotProduct( plane, bbox->axes[1] ) ) + fabs( bbox->aabb.extents[2] * DotProduct( plane, bbox->axes[2] ) ) ); // accept if origin is less than this distance if ( fabs( fDist ) < fIntersect ) { return 1; // partially inside } else if ( fDist < 0 ) { return 2; // totally inside } return 0; // totally outside }