/* Copyright (C) 1999-2006 Id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "brush_primit.h" #include "debugging/debugging.h" #include "itexdef.h" #include "itextures.h" #include #include "stringio.h" #include "texturelib.h" #include "math/matrix.h" #include "math/plane.h" #include "math/aabb.h" #include "winding.h" #include "preferences.h" /*! \brief Construct a transform from XYZ space to ST space (3d to 2d). This will be one of three axis-aligned spaces, depending on the surface normal. NOTE: could also be done by swapping values. */ void Normal_GetTransform(const Vector3& normal, Matrix4& transform) { switch (projectionaxis_for_normal(normal)) { case eProjectionAxisZ: transform[0] = 1; transform[1] = 0; transform[2] = 0; transform[4] = 0; transform[5] = 1; transform[6] = 0; transform[8] = 0; transform[9] = 0; transform[10] = 1; break; case eProjectionAxisY: transform[0] = 1; transform[1] = 0; transform[2] = 0; transform[4] = 0; transform[5] = 0; transform[6] = -1; transform[8] = 0; transform[9] = 1; transform[10] = 0; break; case eProjectionAxisX: transform[0] = 0; transform[1] = 0; transform[2] = 1; transform[4] = 1; transform[5] = 0; transform[6] = 0; transform[8] = 0; transform[9] = 1; transform[10] = 0; break; } transform[3] = transform[7] = transform[11] = transform[12] = transform[13] = transform[14] = 0; transform[15] = 1; } /*! \brief Construct a transform in ST space from the texdef. Transforms constructed from quake's texdef format are (-shift)*(1/scale)*(-rotate) with x translation sign flipped. This would really make more sense if it was inverseof(shift*rotate*scale).. oh well. */ inline void Texdef_toTransform(const texdef_t& texdef, float width, float height, Matrix4& transform) { double inverse_scale[2]; // transform to texdef shift/scale/rotate inverse_scale[0] = 1 / (texdef.scale[0] * width); inverse_scale[1] = 1 / (texdef.scale[1] * -height); transform[12] = texdef.shift[0] / width; transform[13] = -texdef.shift[1] / -height; double c = cos(degrees_to_radians(-texdef.rotate)); double s = sin(degrees_to_radians(-texdef.rotate)); transform[0] = static_cast(c * inverse_scale[0]); transform[1] = static_cast(s * inverse_scale[1]); transform[4] = static_cast(-s * inverse_scale[0]); transform[5] = static_cast(c * inverse_scale[1]); transform[2] = transform[3] = transform[6] = transform[7] = transform[8] = transform[9] = transform[11] = transform[14] = 0; transform[10] = transform[15] = 1; } inline void BPTexdef_toTransform(const brushprimit_texdef_t& bp_texdef, Matrix4& transform) { transform = g_matrix4_identity; transform.xx() = bp_texdef.coords[0][0]; transform.yx() = bp_texdef.coords[0][1]; transform.tx() = bp_texdef.coords[0][2]; transform.xy() = bp_texdef.coords[1][0]; transform.yy() = bp_texdef.coords[1][1]; transform.ty() = bp_texdef.coords[1][2]; } inline void Texdef_toTransform(const TextureProjection& projection, float width, float height, Matrix4& transform) { if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { BPTexdef_toTransform(projection.m_brushprimit_texdef, transform); } else { Texdef_toTransform(projection.m_texdef, width, height, transform); } } // handles degenerate cases, just in case library atan2 doesn't inline double arctangent_yx(double y, double x) { if(fabs(x) > 1.0E-6) { return atan2(y, x); } else if(y > 0) { return c_half_pi; } else { return -c_half_pi; } } inline void Texdef_fromTransform(texdef_t& texdef, float width, float height, const Matrix4& transform) { texdef.scale[0] = static_cast((1.0 / vector2_length(Vector2(transform[0], transform[4]))) / width); texdef.scale[1] = static_cast((1.0 / vector2_length(Vector2(transform[1], transform[5]))) / height); texdef.rotate = static_cast(-radians_to_degrees(arctangent_yx(-transform[4], transform[0]))); if(texdef.rotate == -180.0f) { texdef.rotate = 180.0f; } texdef.shift[0] = transform[12] * width; texdef.shift[1] = transform[13] * height; // If the 2d cross-product of the x and y axes is positive, one of the axes has a negative scale. if(vector2_cross(Vector2(transform[0], transform[4]), Vector2(transform[1], transform[5])) > 0) { if(texdef.rotate >= 180.0f) { texdef.rotate -= 180.0f; texdef.scale[0] = -texdef.scale[0]; } else { texdef.scale[1] = -texdef.scale[1]; } } //globalOutputStream() << "fromTransform: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n"; } inline void BPTexdef_fromTransform(brushprimit_texdef_t& bp_texdef, const Matrix4& transform) { bp_texdef.coords[0][0] = transform.xx(); bp_texdef.coords[0][1] = transform.yx(); bp_texdef.coords[0][2] = transform.tx(); bp_texdef.coords[1][0] = transform.xy(); bp_texdef.coords[1][1] = transform.yy(); bp_texdef.coords[1][2] = transform.ty(); } inline void Texdef_fromTransform(TextureProjection& projection, float width, float height, const Matrix4& transform) { ASSERT_MESSAGE((transform[0] != 0 || transform[4] != 0) && (transform[1] != 0 || transform[5] != 0), "invalid texture matrix"); if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { BPTexdef_fromTransform(projection.m_brushprimit_texdef, transform); } else { Texdef_fromTransform(projection.m_texdef, width, height, transform); } } inline void Texdef_normalise(texdef_t& texdef, float width, float height) { // it may be useful to also normalise the rotation here, if this function is used elsewhere. texdef.shift[0] = float_mod(texdef.shift[0], width); texdef.shift[1] = float_mod(texdef.shift[1], height); //globalOutputStream() << "normalise: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n"; } inline void BPTexdef_normalise(brushprimit_texdef_t& bp_texdef, float width, float height) { bp_texdef.coords[0][2] = float_mod(bp_texdef.coords[0][2], width); bp_texdef.coords[1][2] = float_mod(bp_texdef.coords[1][2], height); } /// \brief Normalise \p projection for a given texture \p width and \p height. /// /// All texture-projection translation (shift) values are congruent modulo the dimensions of the texture. /// This function normalises shift values to the smallest positive congruent values. void Texdef_normalise(TextureProjection& projection, float width, float height) { if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { BPTexdef_normalise(projection.m_brushprimit_texdef, width, height); } else { Texdef_normalise(projection.m_texdef, width, height); } } void ComputeAxisBase(const Vector3& normal, Vector3& texS, Vector3& texT); inline void DebugAxisBase(const Vector3& normal) { Vector3 x, y; ComputeAxisBase(normal, x, y); globalOutputStream() << "BP debug: " << x << y << normal << "\n"; } void Texdef_basisForNormal(const TextureProjection& projection, const Vector3& normal, Matrix4& basis) { if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { basis = g_matrix4_identity; ComputeAxisBase(normal, vector4_to_vector3(basis.x()), vector4_to_vector3(basis.y())); vector4_to_vector3(basis.z()) = normal; matrix4_transpose(basis); //DebugAxisBase(normal); } else if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE) { basis = g_matrix4_identity; vector4_to_vector3(basis.x()) = projection.m_basis_s; vector4_to_vector3(basis.y()) = vector3_negated(projection.m_basis_t); vector4_to_vector3(basis.z()) = vector3_normalised(vector3_cross(vector4_to_vector3(basis.x()), vector4_to_vector3(basis.y()))); matrix4_multiply_by_matrix4(basis, matrix4_rotation_for_z_degrees(-projection.m_texdef.rotate)); //globalOutputStream() << "debug: " << projection.m_basis_s << projection.m_basis_t << normal << "\n"; matrix4_transpose(basis); } else { Normal_GetTransform(normal, basis); } } void Texdef_EmitTextureCoordinates(const TextureProjection& projection, std::size_t width, std::size_t height, Winding& w, const Vector3& normal, const Matrix4& localToWorld) { if(w.numpoints < 3) { return; } //globalOutputStream() << "normal: " << normal << "\n"; Matrix4 local2tex; Texdef_toTransform(projection, (float)width, (float)height, local2tex); //globalOutputStream() << "texdef: " << static_cast(local2tex.x()) << static_cast(local2tex.y()) << "\n"; #if 0 { TextureProjection tmp; Texdef_fromTransform(tmp, (float)width, (float)height, local2tex); Matrix4 tmpTransform; Texdef_toTransform(tmp, (float)width, (float)height, tmpTransform); ASSERT_MESSAGE(matrix4_equal_epsilon(local2tex, tmpTransform, 0.0001f), "bleh"); } #endif { Matrix4 xyz2st; // we don't care if it's not normalised... Texdef_basisForNormal(projection, matrix4_transformed_direction(localToWorld, normal), xyz2st); //globalOutputStream() << "basis: " << static_cast(xyz2st.x()) << static_cast(xyz2st.y()) << static_cast(xyz2st.z()) << "\n"; matrix4_multiply_by_matrix4(local2tex, xyz2st); } Vector3 tangent(vector3_normalised(vector4_to_vector3(matrix4_transposed(local2tex).x()))); Vector3 bitangent(vector3_normalised(vector4_to_vector3(matrix4_transposed(local2tex).y()))); matrix4_multiply_by_matrix4(local2tex, localToWorld); for(Winding::iterator i = w.begin(); i != w.end(); ++i) { Vector3 texcoord = matrix4_transformed_point(local2tex, (*i).vertex); (*i).texcoord[0] = texcoord[0]; (*i).texcoord[1] = texcoord[1]; (*i).tangent = tangent; (*i).bitangent = bitangent; } } /*! \brief Provides the axis-base of the texture ST space for this normal, as they had been transformed to world XYZ space. */ void TextureAxisFromNormal(const Vector3& normal, Vector3& s, Vector3& t) { switch (projectionaxis_for_normal(normal)) { case eProjectionAxisZ: s[0] = 1; s[1] = 0; s[2] = 0; t[0] = 0; t[1] = -1; t[2] = 0; break; case eProjectionAxisY: s[0] = 1; s[1] = 0; s[2] = 0; t[0] = 0; t[1] = 0; t[2] = -1; break; case eProjectionAxisX: s[0] = 0; s[1] = 1; s[2] = 0; t[0] = 0; t[1] = 0; t[2] = -1; break; } } void Texdef_Assign(texdef_t& td, const texdef_t& other) { td = other; } void Texdef_Shift(texdef_t& td, float s, float t) { td.shift[0] += s; td.shift[1] += t; } void Texdef_Scale(texdef_t& td, float s, float t) { td.scale[0] += s; td.scale[1] += t; } void Texdef_Rotate(texdef_t& td, float angle) { td.rotate += angle; td.rotate = static_cast(float_to_integer(td.rotate) % 360); } // NOTE: added these from Ritual's Q3Radiant void ClearBounds(Vector3& mins, Vector3& maxs) { mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } void AddPointToBounds(const Vector3& v, Vector3& mins, Vector3& maxs) { int i; float val; for (i=0 ; i<3 ; i++) { val = v[i]; if (val < mins[i]) mins[i] = val; if (val > maxs[i]) maxs[i] = val; } } template inline BasicVector3 vector3_inverse(const BasicVector3& self) { return BasicVector3( Element(1.0 / self.x()), Element(1.0 / self.y()), Element(1.0 / self.z()) ); } // low level functions .. put in mathlib? #define BPMatCopy(a,b) {b[0][0] = a[0][0]; b[0][1] = a[0][1]; b[0][2] = a[0][2]; b[1][0] = a[1][0]; b[1][1] = a[1][1]; b[1][2] = a[1][2];} // apply a scale transformation to the BP matrix #define BPMatScale(m,sS,sT) {m[0][0]*=sS; m[1][0]*=sS; m[0][1]*=sT; m[1][1]*=sT;} // apply a translation transformation to a BP matrix #define BPMatTranslate(m,s,t) {m[0][2] += m[0][0]*s + m[0][1]*t; m[1][2] += m[1][0]*s+m[1][1]*t;} // 2D homogeneous matrix product C = A*B void BPMatMul(float A[2][3], float B[2][3], float C[2][3]); // apply a rotation (degrees) void BPMatRotate(float A[2][3], float theta); #ifdef _DEBUG void BPMatDump(float A[2][3]); #endif #ifdef _DEBUG //#define DBG_BP #endif bp_globals_t g_bp_globals; float g_texdef_default_scale; // compute a determinant using Sarrus rule //++timo "inline" this with a macro // NOTE : the three vectors are understood as columns of the matrix inline float SarrusDet(const Vector3& a, const Vector3& b, const Vector3& c) { return a[0]*b[1]*c[2]+b[0]*c[1]*a[2]+c[0]*a[1]*b[2] -c[0]*b[1]*a[2]-a[1]*b[0]*c[2]-a[0]*b[2]*c[1]; } // in many case we know three points A,B,C in two axis base B1 and B2 // and we want the matrix M so that A(B1) = T * A(B2) // NOTE: 2D homogeneous space stuff // NOTE: we don't do any check to see if there's a solution or we have a particular case .. need to make sure before calling // NOTE: the third coord of the A,B,C point is ignored // NOTE: see the commented out section to fill M and D //++timo TODO: update the other members to use this when possible void MatrixForPoints( Vector3 M[3], Vector3 D[2], brushprimit_texdef_t *T ) { // Vector3 M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way) float det; // Vector3 D[2]; M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; #if 0 // fill the data vectors M[0][0]=A2[0]; M[0][1]=B2[0]; M[0][2]=C2[0]; M[1][0]=A2[1]; M[1][1]=B2[1]; M[1][2]=C2[1]; M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; D[0][0]=A1[0]; D[0][1]=B1[0]; D[0][2]=C1[0]; D[1][0]=A1[1]; D[1][1]=B1[1]; D[1][2]=C1[1]; #endif // solve det = SarrusDet( M[0], M[1], M[2] ); T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } //++timo replace everywhere texX by texS etc. ( ----> and in q3map !) // NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME ! // WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0 // rotation by (0,RotY,RotZ) assigns X to normal void ComputeAxisBase(const Vector3& normal, Vector3& texS, Vector3& texT) { #if 1 const Vector3 up(0, 0, 1); const Vector3 down(0, 0, -1); if(vector3_equal_epsilon(normal, up, float(1e-6))) { texS = Vector3(0, 1, 0); texT = Vector3(1, 0, 0); } else if(vector3_equal_epsilon(normal, down, float(1e-6))) { texS = Vector3(0, 1, 0); texT = Vector3(-1, 0, 0); } else { texS = vector3_normalised(vector3_cross(normal, up)); texT = vector3_normalised(vector3_cross(normal, texS)); vector3_negate(texS); } #else float RotY,RotZ; // do some cleaning /* if (fabs(normal[0])<1e-6) normal[0]=0.0f; if (fabs(normal[1])<1e-6) normal[1]=0.0f; if (fabs(normal[2])<1e-6) normal[2]=0.0f; */ RotY=-atan2(normal[2],sqrt(normal[1]*normal[1]+normal[0]*normal[0])); RotZ=atan2(normal[1],normal[0]); // rotate (0,1,0) and (0,0,1) to compute texS and texT texS[0]=-sin(RotZ); texS[1]=cos(RotZ); texS[2]=0; // the texT vector is along -Z ( T texture coorinates axis ) texT[0]=-sin(RotY)*cos(RotZ); texT[1]=-sin(RotY)*sin(RotZ); texT[2]=-cos(RotY); #endif } #if 0 // texdef conversion void FaceToBrushPrimitFace(face_t *f) { Vector3 texX,texY; Vector3 proj; // ST of (0,0) (1,0) (0,1) float ST[3][5]; // [ point index ] [ xyz ST ] //++timo not used as long as brushprimit_texdef and texdef are static /* f->brushprimit_texdef.contents=f->texdef.contents; f->brushprimit_texdef.flags=f->texdef.flags; f->brushprimit_texdef.value=f->texdef.value; strcpy(f->brushprimit_texdef.name,f->texdef.name); */ #ifdef DBG_BP if ( f->plane.normal[0]==0.0f && f->plane.normal[1]==0.0f && f->plane.normal[2]==0.0f ) { globalOutputStream() << "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n"; } // check d_texture if (!f->d_texture) { globalOutputStream() << "Warning : f.d_texture is 0 in FaceToBrushPrimitFace\n"; return; } #endif // compute axis base ComputeAxisBase(f->plane.normal,texX,texY); // compute projection vector VectorCopy(f->plane.normal,proj); VectorScale(proj,f->plane.dist,proj); // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane // use old texture code to compute the ST coords of these points VectorCopy(proj,ST[0]); EmitTextureCoordinates(ST[0], f->pShader->getTexture(), f); VectorCopy(texX,ST[1]); VectorAdd(ST[1],proj,ST[1]); EmitTextureCoordinates(ST[1], f->pShader->getTexture(), f); VectorCopy(texY,ST[2]); VectorAdd(ST[2],proj,ST[2]); EmitTextureCoordinates(ST[2], f->pShader->getTexture(), f); // compute texture matrix f->brushprimit_texdef.coords[0][2]=ST[0][3]; f->brushprimit_texdef.coords[1][2]=ST[0][4]; f->brushprimit_texdef.coords[0][0]=ST[1][3]-f->brushprimit_texdef.coords[0][2]; f->brushprimit_texdef.coords[1][0]=ST[1][4]-f->brushprimit_texdef.coords[1][2]; f->brushprimit_texdef.coords[0][1]=ST[2][3]-f->brushprimit_texdef.coords[0][2]; f->brushprimit_texdef.coords[1][1]=ST[2][4]-f->brushprimit_texdef.coords[1][2]; } // compute texture coordinates for the winding points void EmitBrushPrimitTextureCoordinates(face_t * f, Winding * w) { Vector3 texX,texY; float x,y; // compute axis base ComputeAxisBase(f->plane.normal,texX,texY); // in case the texcoords matrix is empty, build a default one // same behaviour as if scale[0]==0 && scale[1]==0 in old code if (f->brushprimit_texdef.coords[0][0]==0 && f->brushprimit_texdef.coords[1][0]==0 && f->brushprimit_texdef.coords[0][1]==0 && f->brushprimit_texdef.coords[1][1]==0) { f->brushprimit_texdef.coords[0][0] = 1.0f; f->brushprimit_texdef.coords[1][1] = 1.0f; ConvertTexMatWithQTexture( &f->brushprimit_texdef, 0, &f->brushprimit_texdef, f->pShader->getTexture() ); } int i; for (i=0 ; ibrushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2]; float T=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2]; if ( fabs(S-w.point_at(i)[3])>1e-2 || fabs(T-w.point_at(i)[4])>1e-2 ) { if ( fabs(S-w.point_at(i)[3])>1e-4 || fabs(T-w.point_at(i)[4])>1e-4 ) globalOutputStream() << "Warning : precision loss in brush -> brush primitive texture computation\n"; else globalOutputStream() << "Warning : brush -> brush primitive texture computation bug detected\n"; } } #endif #endif w.point_at(i)[3]=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2]; w.point_at(i)[4]=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2]; } } #endif typedef float texmat_t[2][3]; void TexMat_Scale(texmat_t texmat, float s, float t) { texmat[0][0] *= s; texmat[0][1] *= s; texmat[0][2] *= s; texmat[1][0] *= t; texmat[1][1] *= t; texmat[1][2] *= t; } void TexMat_Assign(texmat_t texmat, const texmat_t other) { texmat[0][0] = other[0][0]; texmat[0][1] = other[0][1]; texmat[0][2] = other[0][2]; texmat[1][0] = other[1][0]; texmat[1][1] = other[1][1]; texmat[1][2] = other[1][2]; } void ConvertTexMatWithDimensions(const texmat_t texmat1, std::size_t w1, std::size_t h1, texmat_t texmat2, std::size_t w2, std::size_t h2) { TexMat_Assign(texmat2, texmat1); TexMat_Scale(texmat2, static_cast(w1) / static_cast(w2), static_cast(h1) / static_cast(h2)); } #if 0 // convert a texture matrix between two qtexture_t // if 0 for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates ) void ConvertTexMatWithQTexture( const float texMat1[2][3], const qtexture_t *qtex1, float texMat2[2][3], const qtexture_t *qtex2 ) { ConvertTexMatWithDimensions(texMat1, (qtex1) ? qtex1->width : 2, (qtex1) ? qtex1->height : 2, texMat2, (qtex2) ? qtex2->width : 2, (qtex2) ? qtex2->height : 2); } void ConvertTexMatWithQTexture( const brushprimit_texdef_t *texMat1, const qtexture_t *qtex1, brushprimit_texdef_t *texMat2, const qtexture_t *qtex2 ) { ConvertTexMatWithQTexture(texMat1->coords, qtex1, texMat2->coords, qtex2); } #endif // compute a fake shift scale rot representation from the texture matrix // these shift scale rot values are to be understood in the local axis base // Note: this code looks similar to Texdef_fromTransform, but the algorithm is slightly different. void TexMatToFakeTexCoords(const brushprimit_texdef_t& bp_texdef, texdef_t& texdef) { texdef.scale[0] = static_cast(1.0 / vector2_length(Vector2(bp_texdef.coords[0][0], bp_texdef.coords[1][0]))); texdef.scale[1] = static_cast(1.0 / vector2_length(Vector2(bp_texdef.coords[0][1], bp_texdef.coords[1][1]))); texdef.rotate = -static_cast(radians_to_degrees(arctangent_yx(bp_texdef.coords[1][0], bp_texdef.coords[0][0]))); texdef.shift[0] = -bp_texdef.coords[0][2]; texdef.shift[1] = bp_texdef.coords[1][2]; // determine whether or not an axis is flipped using a 2d cross-product double cross = vector2_cross(Vector2(bp_texdef.coords[0][0], bp_texdef.coords[0][1]), Vector2(bp_texdef.coords[1][0], bp_texdef.coords[1][1])); if(cross < 0) { // This is a bit of a compromise when using BPs--since we don't know *which* axis was flipped, // we pick one (rather arbitrarily) using the following convention: If the X-axis is between // 0 and 180, we assume it's the Y-axis that flipped, otherwise we assume it's the X-axis and // subtract out 180 degrees to compensate. if(texdef.rotate >= 180.0f) { texdef.rotate -= 180.0f; texdef.scale[0] = -texdef.scale[0]; } else { texdef.scale[1] = -texdef.scale[1]; } } } // compute back the texture matrix from fake shift scale rot void FakeTexCoordsToTexMat(const texdef_t& texdef, brushprimit_texdef_t& bp_texdef) { double r = degrees_to_radians(-texdef.rotate); double c = cos(r); double s = sin(r); double x = 1.0f / texdef.scale[0]; double y = 1.0f / texdef.scale[1]; bp_texdef.coords[0][0] = static_cast(x * c); bp_texdef.coords[1][0] = static_cast(x * s); bp_texdef.coords[0][1] = static_cast(y * -s); bp_texdef.coords[1][1] = static_cast(y * c); bp_texdef.coords[0][2] = -texdef.shift[0]; bp_texdef.coords[1][2] = texdef.shift[1]; } #if 0 // texture locking (brush primit) // used for texture locking // will move the texture according to a geometric vector void ShiftTextureGeometric_BrushPrimit(face_t *f, Vector3& delta) { Vector3 texS,texT; float tx,ty; Vector3 M[3]; // columns of the matrix .. easier that way float det; Vector3 D[2]; // compute plane axis base ( doesn't change with translation ) ComputeAxisBase( f->plane.normal, texS, texT ); // compute translation vector in plane axis base tx = vector3_dot( delta, texS ); ty = vector3_dot( delta, texT ); // fill the data vectors M[0][0]=tx; M[0][1]=1.0f+tx; M[0][2]=tx; M[1][0]=ty; M[1][1]=ty; M[1][2]=1.0f+ty; M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; D[0][0]=f->brushprimit_texdef.coords[0][2]; D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2]; D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2]; D[1][0]=f->brushprimit_texdef.coords[1][2]; D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2]; D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } // shift a texture (texture adjustments) along it's current texture axes // x and y are geometric values, which we must compute as ST increments // this depends on the texture size and the pixel/texel ratio void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y) { float s,t; // as a ratio against texture size // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) s = (x * 2.0) / (float)f->pShader->getTexture().width; t = (y * 2.0) / (float)f->pShader->getTexture().height; f->brushprimit_texdef.coords[0][2] -= s; f->brushprimit_texdef.coords[1][2] -= t; } #endif // TTimo: FIXME: I don't like that, it feels broken // (and it's likely that it's not used anymore) // best fitted 2D vector is x.X+y.Y void ComputeBest2DVector( Vector3& v, Vector3& X, Vector3& Y, int &x, int &y ) { double sx,sy; sx = vector3_dot( v, X ); sy = vector3_dot( v, Y ); if ( fabs(sy) > fabs(sx) ) { x = 0; if ( sy > 0.0 ) y = 1; else y = -1; } else { y = 0; if ( sx > 0.0 ) x = 1; else x = -1; } } #if 0 // texdef conversion void BrushPrimitFaceToFace(face_t *face) { // we have parsed brush primitives and need conversion back to standard format // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it // FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling // I tried various tweaks, no luck .. seems shifting is lost brushprimit_texdef_t aux; ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->pShader->getTexture(), &aux, 0 ); TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale ); face->texdef.scale[0]/=2.0; face->texdef.scale[1]/=2.0; } #endif #if 0 // texture locking (brush primit) // TEXTURE LOCKING ----------------------------------------------------------------------------------------------------- // (Relevant to the editor only?) // internally used for texture locking on rotation and flipping // the general algorithm is the same for both lockings, it's only the geometric transformation part that changes // so I wanted to keep it in a single function // if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best // (but right now I want to keep brush_primit.cpp striclty C) bool txlock_bRotation; // rotation locking params int txl_nAxis; float txl_fDeg; Vector3 txl_vOrigin; // flip locking params Vector3 txl_matrix[3]; Vector3 txl_origin; void TextureLockTransformation_BrushPrimit(face_t *f) { Vector3 Orig,texS,texT; // axis base of initial plane // used by transformation algo Vector3 temp; int j; Vector3 vRotate; // rotation vector Vector3 rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base } Vector3 rNormal,rtexS,rtexT; // axis base for the transformed plane Vector3 lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) Vector3 M[3]; float det; Vector3 D[2]; // compute plane axis base ComputeAxisBase( f->plane.normal, texS, texT ); VectorSet(Orig, 0.0f, 0.0f, 0.0f); // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base ) // input: Orig, texS, texT (and the global locking params) // ouput: rOrig, rvecS, rvecT, rNormal if (txlock_bRotation) { // rotation vector VectorSet( vRotate, 0.0f, 0.0f, 0.0f ); vRotate[txl_nAxis]=txl_fDeg; VectorRotateOrigin ( Orig, vRotate, txl_vOrigin, rOrig ); VectorRotateOrigin ( texS, vRotate, txl_vOrigin, rvecS ); VectorRotateOrigin ( texT, vRotate, txl_vOrigin, rvecT ); // compute normal of plane after rotation VectorRotate ( f->plane.normal, vRotate, rNormal ); } else { for (j=0 ; j<3 ; j++) rOrig[j] = vector3_dot(vector3_subtracted(Orig, txl_origin), txl_matrix[j]) + txl_origin[j]; for (j=0 ; j<3 ; j++) rvecS[j] = vector3_dot(vector3_subtracted(texS, txl_origin), txl_matrix[j]) + txl_origin[j]; for (j=0 ; j<3 ; j++) rvecT[j] = vector3_dot(vector3_subtracted(texT, txl_origin), txl_matrix[j]) + txl_origin[j]; // we also need the axis base of the target plane, apply the transformation matrix to the normal too.. for (j=0 ; j<3 ; j++) rNormal[j] = vector3_dot(f->plane.normal, txl_matrix[j]); } // compute rotated plane axis base ComputeAxisBase( rNormal, rtexS, rtexT ); // compute S/T coordinates of the three points in rotated axis base ( in M matrix ) lOrig[0] = vector3_dot( rOrig, rtexS ); lOrig[1] = vector3_dot( rOrig, rtexT ); lvecS[0] = vector3_dot( rvecS, rtexS ); lvecS[1] = vector3_dot( rvecS, rtexT ); lvecT[0] = vector3_dot( rvecT, rtexS ); lvecT[1] = vector3_dot( rvecT, rtexT ); M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f; M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f; M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f; // fill data vector D[0][0]=f->brushprimit_texdef.coords[0][2]; D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2]; D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2]; D[1][0]=f->brushprimit_texdef.coords[1][2]; D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2]; D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } // texture locking // called before the points on the face are actually rotated void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, Vector3& vOrigin ) { // this is a placeholder to call the general texture locking algorithm txlock_bRotation = true; txl_nAxis = nAxis; txl_fDeg = fDeg; VectorCopy(vOrigin, txl_vOrigin); TextureLockTransformation_BrushPrimit(f); } // compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation) // this matches the select_matrix algo used in select.cpp // this needs to be called on the face BEFORE any geometric transformation // it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done void ApplyMatrix_BrushPrimit(face_t *f, Vector3 matrix[3], Vector3& origin) { // this is a placeholder to call the general texture locking algorithm txlock_bRotation = false; VectorCopy(matrix[0], txl_matrix[0]); VectorCopy(matrix[1], txl_matrix[1]); VectorCopy(matrix[2], txl_matrix[2]); VectorCopy(origin, txl_origin); TextureLockTransformation_BrushPrimit(f); } #endif // don't do C==A! void BPMatMul(float A[2][3], float B[2][3], float C[2][3]) { C[0][0] = A[0][0]*B[0][0]+A[0][1]*B[1][0]; C[1][0] = A[1][0]*B[0][0]+A[1][1]*B[1][0]; C[0][1] = A[0][0]*B[0][1]+A[0][1]*B[1][1]; C[1][1] = A[1][0]*B[0][1]+A[1][1]*B[1][1]; C[0][2] = A[0][0]*B[0][2]+A[0][1]*B[1][2]+A[0][2]; C[1][2] = A[1][0]*B[0][2]+A[1][1]*B[1][2]+A[1][2]; } void BPMatDump(float A[2][3]) { globalOutputStream() << "" << A[0][0] << " " << A[0][1] << " " << A[0][2] << "\n" << A[1][0] << " " << A[1][2] << " " << A[1][2] << "\n0 0 1\n"; } void BPMatRotate(float A[2][3], float theta) { float m[2][3]; float aux[2][3]; memset(&m, 0, sizeof(float)*6); m[0][0] = static_cast(cos(degrees_to_radians(theta))); m[0][1] = static_cast(-sin(degrees_to_radians(theta))); m[1][0] = -m[0][1]; m[1][1] = m[0][0]; BPMatMul(A, m, aux); BPMatCopy(aux,A); } #if 0 // camera-relative texture shift // get the relative axes of the current texturing void BrushPrimit_GetRelativeAxes(face_t *f, Vector3& vecS, Vector3& vecT) { float vS[2],vT[2]; // first we compute them as expressed in plane axis base // BP matrix has coordinates of plane axis base expressed in geometric axis base // so we use the line vectors vS[0] = f->brushprimit_texdef.coords[0][0]; vS[1] = f->brushprimit_texdef.coords[0][1]; vT[0] = f->brushprimit_texdef.coords[1][0]; vT[1] = f->brushprimit_texdef.coords[1][1]; // now compute those vectors in geometric space Vector3 texS, texT; // axis base of the plane (geometric) ComputeAxisBase(f->plane.normal, texS, texT); // vecS[] = vS[0].texS[] + vS[1].texT[] // vecT[] = vT[0].texS[] + vT[1].texT[] vecS[0] = vS[0]*texS[0] + vS[1]*texT[0]; vecS[1] = vS[0]*texS[1] + vS[1]*texT[1]; vecS[2] = vS[0]*texS[2] + vS[1]*texT[2]; vecT[0] = vT[0]*texS[0] + vT[1]*texT[0]; vecT[1] = vT[0]*texS[1] + vT[1]*texT[1]; vecT[2] = vT[0]*texS[2] + vT[1]*texT[2]; } // brush primitive texture adjustments, use the camera view to map adjustments // ShiftTextureRelative_BrushPrimit ( s , t ) will shift relative to the texture void ShiftTextureRelative_Camera(face_t *f, int x, int y) { Vector3 vecS, vecT; float XY[2]; // the values we are going to send for translation float sgn[2]; // +1 or -1 int axis[2]; CamWnd* pCam; // get the two relative texture axes for the current texturing BrushPrimit_GetRelativeAxes(f, vecS, vecT); // center point of the face, project it on the camera space Vector3 C; VectorClear(C); int i; for (i=0; iface_winding->numpoints; i++) { VectorAdd(C,f->face_winding->point_at(i),C); } VectorScale(C,1.0/f->face_winding->numpoints,C); pCam = g_pParentWnd->GetCamWnd(); pCam->MatchViewAxes(C, vecS, axis[0], sgn[0]); pCam->MatchViewAxes(C, vecT, axis[1], sgn[1]); // this happens when the two directions can't be mapped on two different directions on the screen // then the move will occur against a single axis // (i.e. the user is not positioned well enough to send understandable shift commands) // NOTE: in most cases this warning is not very relevant because the user would use one of the two axes // for which the solution is easy (the other one being unknown) // so this warning could be removed if (axis[0] == axis[1]) globalOutputStream() << "Warning: degenerate in ShiftTextureRelative_Camera\n"; // compute the X Y geometric increments // those geometric increments will be applied along the texture axes (the ones we computed above) XY[0] = 0; XY[1] = 0; if (x!=0) { // moving right/left XY[axis[0]] += sgn[0]*x; } if (y!=0) { XY[axis[1]] += sgn[1]*y; } // we worked out a move along vecS vecT, and we now it's geometric amplitude // apply it ShiftTextureRelative_BrushPrimit(f, XY[0], XY[1]); } #endif void BPTexdef_Assign(brushprimit_texdef_t& bp_td, const brushprimit_texdef_t& bp_other) { bp_td = bp_other; } void BPTexdef_Shift(brushprimit_texdef_t& bp_td, float s, float t) { // shift a texture (texture adjustments) along it's current texture axes // x and y are geometric values, which we must compute as ST increments // this depends on the texture size and the pixel/texel ratio // as a ratio against texture size // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) bp_td.coords[0][2] -= s; bp_td.coords[1][2] += t; } void BPTexdef_Scale(brushprimit_texdef_t& bp_td, float s, float t) { // apply same scale as the spinner button of the surface inspector texdef_t texdef; // compute fake shift scale rot TexMatToFakeTexCoords( bp_td, texdef ); // update texdef.scale[0] += s; texdef.scale[1] += t; // compute new normalized texture matrix FakeTexCoordsToTexMat( texdef, bp_td ); } void BPTexdef_Rotate(brushprimit_texdef_t& bp_td, float angle) { // apply same scale as the spinner button of the surface inspector texdef_t texdef; // compute fake shift scale rot TexMatToFakeTexCoords( bp_td, texdef ); // update texdef.rotate += angle; // compute new normalized texture matrix FakeTexCoordsToTexMat( texdef, bp_td ); } void BPTexdef_Construct(brushprimit_texdef_t& bp_td, std::size_t width, std::size_t height) { bp_td.coords[0][0] = 1.0f; bp_td.coords[1][1] = 1.0f; ConvertTexMatWithDimensions(bp_td.coords, 2, 2, bp_td.coords, width, height); } void Texdef_Assign(TextureProjection& projection, const TextureProjection& other) { if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { BPTexdef_Assign(projection.m_brushprimit_texdef, other.m_brushprimit_texdef); } else { Texdef_Assign(projection.m_texdef, other.m_texdef); if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE) { projection.m_basis_s = other.m_basis_s; projection.m_basis_t = other.m_basis_t; } } } void Texdef_Shift(TextureProjection& projection, float s, float t) { if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { BPTexdef_Shift(projection.m_brushprimit_texdef, s, t); } else { Texdef_Shift(projection.m_texdef, s, t); } } void Texdef_Scale(TextureProjection& projection, float s, float t) { if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { BPTexdef_Scale(projection.m_brushprimit_texdef, s, t); } else { Texdef_Scale(projection.m_texdef, s, t); } } void Texdef_Rotate(TextureProjection& projection, float angle) { if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { BPTexdef_Rotate(projection.m_brushprimit_texdef, angle); } else { Texdef_Rotate(projection.m_texdef, angle); } } void Texdef_FitTexture(TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat) { if(w.numpoints < 3) { return; } Matrix4 st2tex; Texdef_toTransform(projection, (float)width, (float)height, st2tex); // the current texture transform Matrix4 local2tex = st2tex; { Matrix4 xyz2st; Texdef_basisForNormal(projection, normal, xyz2st); matrix4_multiply_by_matrix4(local2tex, xyz2st); } // the bounds of the current texture transform AABB bounds; for(Winding::const_iterator i = w.begin(); i != w.end(); ++i) { Vector3 texcoord = matrix4_transformed_point(local2tex, (*i).vertex); aabb_extend_by_point_safe(bounds, texcoord); } bounds.origin.z() = 0; bounds.extents.z() = 1; // the bounds of a perfectly fitted texture transform AABB perfect(Vector3(s_repeat * 0.5, t_repeat * 0.5, 0), Vector3(s_repeat * 0.5, t_repeat * 0.5, 1)); // the difference between the current texture transform and the perfectly fitted transform Matrix4 matrix(matrix4_translation_for_vec3(bounds.origin - perfect.origin)); matrix4_pivoted_scale_by_vec3(matrix, bounds.extents / perfect.extents, perfect.origin); matrix4_affine_invert(matrix); // apply the difference to the current texture transform matrix4_premultiply_by_matrix4(st2tex, matrix); Texdef_fromTransform(projection, (float)width, (float)height, st2tex); Texdef_normalise(projection, (float)width, (float)height); } float Texdef_getDefaultTextureScale() { return g_texdef_default_scale; } void TexDef_Construct_Default(TextureProjection& projection) { projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale(); projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale(); if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { FakeTexCoordsToTexMat(projection.m_texdef, projection.m_brushprimit_texdef); } } void ShiftScaleRotate_fromFace(texdef_t& shiftScaleRotate, const TextureProjection& projection) { if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { TexMatToFakeTexCoords(projection.m_brushprimit_texdef, shiftScaleRotate); } else { shiftScaleRotate = projection.m_texdef; } } void ShiftScaleRotate_toFace(const texdef_t& shiftScaleRotate, TextureProjection& projection) { if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { // compute texture matrix // the matrix returned must be understood as a qtexture_t with width=2 height=2 FakeTexCoordsToTexMat( shiftScaleRotate, projection.m_brushprimit_texdef ); } else { projection.m_texdef = shiftScaleRotate; } } inline void print_vector3(const Vector3& v) { globalOutputStream() << "( " << v.x() << " " << v.y() << " " << v.z() << " )\n"; } inline void print_3x3(const Matrix4& m) { globalOutputStream() << "( " << m.xx() << " " << m.xy() << " " << m.xz() << " ) " << "( " << m.yx() << " " << m.yy() << " " << m.yz() << " ) " << "( " << m.zx() << " " << m.zy() << " " << m.zz() << " )\n"; } inline Matrix4 matrix4_rotation_for_vector3(const Vector3& x, const Vector3& y, const Vector3& z) { return Matrix4( x.x(), x.y(), x.z(), 0, y.x(), y.y(), y.z(), 0, z.x(), z.y(), z.z(), 0, 0, 0, 0, 1 ); } inline Matrix4 matrix4_swap_axes(const Vector3& from, const Vector3& to) { if(from.x() != 0 && to.y() != 0) { return matrix4_rotation_for_vector3(to, from, g_vector3_axis_z); } if(from.x() != 0 && to.z() != 0) { return matrix4_rotation_for_vector3(to, g_vector3_axis_y, from); } if(from.y() != 0 && to.z() != 0) { return matrix4_rotation_for_vector3(g_vector3_axis_x, to, from); } if(from.y() != 0 && to.x() != 0) { return matrix4_rotation_for_vector3(from, to, g_vector3_axis_z); } if(from.z() != 0 && to.x() != 0) { return matrix4_rotation_for_vector3(from, g_vector3_axis_y, to); } if(from.z() != 0 && to.y() != 0) { return matrix4_rotation_for_vector3(g_vector3_axis_x, from, to); } ERROR_MESSAGE("unhandled axis swap case"); return g_matrix4_identity; } inline Matrix4 matrix4_reflection_for_plane(const Plane3& plane) { return Matrix4( static_cast(1 - (2 * plane.a * plane.a)), static_cast(-2 * plane.a * plane.b), static_cast(-2 * plane.a * plane.c), 0, static_cast(-2 * plane.b * plane.a), static_cast(1 - (2 * plane.b * plane.b)), static_cast(-2 * plane.b * plane.c), 0, static_cast(-2 * plane.c * plane.a), static_cast(-2 * plane.c * plane.b), static_cast(1 - (2 * plane.c * plane.c)), 0, static_cast(-2 * plane.d * plane.a), static_cast(-2 * plane.d * plane.b), static_cast(-2 * plane.d * plane.c), 1 ); } inline Matrix4 matrix4_reflection_for_plane45(const Plane3& plane, const Vector3& from, const Vector3& to) { Vector3 first = from; Vector3 second = to; if(vector3_dot(from, plane.normal()) > 0 == vector3_dot(to, plane.normal()) > 0) { first = vector3_negated(first); second = vector3_negated(second); } #if 0 globalOutputStream() << "normal: "; print_vector3(plane.normal()); globalOutputStream() << "from: "; print_vector3(first); globalOutputStream() << "to: "; print_vector3(second); #endif Matrix4 swap = matrix4_swap_axes(first, second); Matrix4 tmp = matrix4_reflection_for_plane(plane); swap.tx() = -static_cast(-2 * plane.a * plane.d); swap.ty() = -static_cast(-2 * plane.b * plane.d); swap.tz() = -static_cast(-2 * plane.c * plane.d); return swap; } void Texdef_transformLocked(TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed) { //globalOutputStream() << "identity2transformed: " << identity2transformed << "\n"; //globalOutputStream() << "plane.normal(): " << plane.normal() << "\n"; Vector3 normalTransformed(matrix4_transformed_direction(identity2transformed, plane.normal())); //globalOutputStream() << "normalTransformed: " << normalTransformed << "\n"; // identity: identity space // transformed: transformation // stIdentity: base st projection space before transformation // stTransformed: base st projection space after transformation // stOriginal: original texdef space // stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal Matrix4 identity2stIdentity; Texdef_basisForNormal(projection, plane.normal(), identity2stIdentity); //globalOutputStream() << "identity2stIdentity: " << identity2stIdentity << "\n"; if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE) { matrix4_transform_direction(identity2transformed, projection.m_basis_s); matrix4_transform_direction(identity2transformed, projection.m_basis_t); } Matrix4 transformed2stTransformed; Texdef_basisForNormal(projection, normalTransformed, transformed2stTransformed); Matrix4 stTransformed2identity(matrix4_affine_inverse(matrix4_multiplied_by_matrix4(transformed2stTransformed, identity2transformed))); Vector3 originalProjectionAxis(vector4_to_vector3(matrix4_affine_inverse(identity2stIdentity).z())); Vector3 transformedProjectionAxis(vector4_to_vector3(stTransformed2identity.z())); Matrix4 stIdentity2stOriginal; Texdef_toTransform(projection, (float)width, (float)height, stIdentity2stOriginal); Matrix4 identity2stOriginal(matrix4_multiplied_by_matrix4(stIdentity2stOriginal, identity2stIdentity)); //globalOutputStream() << "originalProj: " << originalProjectionAxis << "\n"; //globalOutputStream() << "transformedProj: " << transformedProjectionAxis << "\n"; double dot = vector3_dot(originalProjectionAxis, transformedProjectionAxis); //globalOutputStream() << "dot: " << dot << "\n"; if(dot == 0) { // The projection axis chosen for the transformed normal is at 90 degrees // to the transformed projection axis chosen for the original normal. // This happens when the projection axis is ambiguous - e.g. for the plane // 'X == Y' the projection axis could be either X or Y. //globalOutputStream() << "flipped\n"; #if 0 globalOutputStream() << "projection off by 90\n"; globalOutputStream() << "normal: "; print_vector3(plane.normal()); globalOutputStream() << "original projection: "; print_vector3(originalProjectionAxis); globalOutputStream() << "transformed projection: "; print_vector3(transformedProjectionAxis); #endif Matrix4 identityCorrected = matrix4_reflection_for_plane45(plane, originalProjectionAxis, transformedProjectionAxis); identity2stOriginal = matrix4_multiplied_by_matrix4(identity2stOriginal, identityCorrected); } Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4(identity2stOriginal, stTransformed2identity); Texdef_fromTransform(projection, (float)width, (float)height, stTransformed2stOriginal); Texdef_normalise(projection, (float)width, (float)height); } #if 1 void Q3_to_matrix(const texdef_t& texdef, float width, float height, const Vector3& normal, Matrix4& matrix) { Normal_GetTransform(normal, matrix); Matrix4 transform; Texdef_toTransform(texdef, width, height, transform); matrix4_multiply_by_matrix4(matrix, transform); } void BP_from_matrix(brushprimit_texdef_t& bp_texdef, const Vector3& normal, const Matrix4& transform) { Matrix4 basis; basis = g_matrix4_identity; ComputeAxisBase(normal, vector4_to_vector3(basis.x()), vector4_to_vector3(basis.y())); vector4_to_vector3(basis.z()) = normal; matrix4_transpose(basis); matrix4_affine_invert(basis); Matrix4 basis2texture = matrix4_multiplied_by_matrix4(basis, transform); BPTexdef_fromTransform(bp_texdef, basis2texture); } void Q3_to_BP(const texdef_t& texdef, float width, float height, const Vector3& normal, brushprimit_texdef_t& bp_texdef) { Matrix4 matrix; Q3_to_matrix(texdef, width, height, normal, matrix); BP_from_matrix(bp_texdef, normal, matrix); } #endif