/* Copyright (C) 1999-2007 id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "stdafx.h" // compute a determinant using Sarrus rule //++timo "inline" this with a macro // NOTE : the three vec3_t are understood as columns of the matrix vec_t SarrusDet( vec3_t a, vec3_t b, vec3_t c ){ return a[0] * b[1] * c[2] + b[0] * c[1] * a[2] + c[0] * a[1] * b[2] - c[0] * b[1] * a[2] - a[1] * b[0] * c[2] - a[0] * b[2] * c[1]; } // in many case we know three points A,B,C in two axis base B1 and B2 // and we want the matrix M so that A(B1) = T * A(B2) // NOTE: 2D homogeneous space stuff // NOTE: we don't do any check to see if there's a solution or we have a particular case .. need to make sure before calling // NOTE: the third coord of the A,B,C point is ignored // NOTE: see the commented out section to fill M and D //++timo TODO: update the other members to use this when possible void MatrixForPoints( vec3_t M[3], vec3_t D[2], brushprimit_texdef_t *T ){ // vec3_t M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way) vec_t det; // vec3_t D[2]; M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; #if 0 // fill the data vectors M[0][0] = A2[0]; M[0][1] = B2[0]; M[0][2] = C2[0]; M[1][0] = A2[1]; M[1][1] = B2[1]; M[1][2] = C2[1]; M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; D[0][0] = A1[0]; D[0][1] = B1[0]; D[0][2] = C1[0]; D[1][0] = A1[1]; D[1][1] = B1[1]; D[1][2] = C1[1]; #endif // solve det = SarrusDet( M[0], M[1], M[2] ); T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } //++timo replace everywhere texX by texS etc. ( ----> and in q3map !) // NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME ! // WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0 // rotation by (0,RotY,RotZ) assigns X to normal void ComputeAxisBase( vec3_t normal,vec3_t texS,vec3_t texT ){ vec_t RotY,RotZ; // do some cleaning if ( fabs( normal[0] ) < 1e-6 ) { normal[0] = 0.0f; } if ( fabs( normal[1] ) < 1e-6 ) { normal[1] = 0.0f; } if ( fabs( normal[2] ) < 1e-6 ) { normal[2] = 0.0f; } RotY = -atan2( normal[2],sqrt( normal[1] * normal[1] + normal[0] * normal[0] ) ); RotZ = atan2( normal[1],normal[0] ); // rotate (0,1,0) and (0,0,1) to compute texS and texT texS[0] = -sin( RotZ ); texS[1] = cos( RotZ ); texS[2] = 0; // the texT vector is along -Z ( T texture coorinates axis ) texT[0] = -sin( RotY ) * cos( RotZ ); texT[1] = -sin( RotY ) * sin( RotZ ); texT[2] = -cos( RotY ); } void FaceToBrushPrimitFace( face_t *f ){ vec3_t texX,texY; vec3_t proj; // ST of (0,0) (1,0) (0,1) vec_t ST[3][5]; // [ point index ] [ xyz ST ] //++timo not used as long as brushprimit_texdef and texdef are static /* f->brushprimit_texdef.contents=f->texdef.contents; f->brushprimit_texdef.flags=f->texdef.flags; f->brushprimit_texdef.value=f->texdef.value; strcpy(f->brushprimit_texdef.name,f->texdef.name); */ #ifdef DBG_BP if ( f->plane.normal[0] == 0.0f && f->plane.normal[1] == 0.0f && f->plane.normal[2] == 0.0f ) { Sys_Printf( "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n" ); } // check d_texture if ( !f->d_texture ) { Sys_Printf( "Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n" ); return; } #endif // compute axis base ComputeAxisBase( f->plane.normal,texX,texY ); // compute projection vector VectorCopy( f->plane.normal,proj ); VectorScale( proj,f->plane.dist,proj ); // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane // use old texture code to compute the ST coords of these points VectorCopy( proj,ST[0] ); EmitTextureCoordinates( ST[0], f->d_texture, f ); VectorCopy( texX,ST[1] ); VectorAdd( ST[1],proj,ST[1] ); EmitTextureCoordinates( ST[1], f->d_texture, f ); VectorCopy( texY,ST[2] ); VectorAdd( ST[2],proj,ST[2] ); EmitTextureCoordinates( ST[2], f->d_texture, f ); // compute texture matrix f->brushprimit_texdef.coords[0][2] = ST[0][3]; f->brushprimit_texdef.coords[1][2] = ST[0][4]; f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2]; f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2]; f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2]; f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2]; } // compute texture coordinates for the winding points void EmitBrushPrimitTextureCoordinates( face_t * f, winding_t * w ){ vec3_t texX,texY; vec_t x,y; // compute axis base ComputeAxisBase( f->plane.normal,texX,texY ); // in case the texcoords matrix is empty, build a default one // same behaviour as if scale[0]==0 && scale[1]==0 in old code if ( f->brushprimit_texdef.coords[0][0] == 0 && f->brushprimit_texdef.coords[1][0] == 0 && f->brushprimit_texdef.coords[0][1] == 0 && f->brushprimit_texdef.coords[1][1] == 0 ) { f->brushprimit_texdef.coords[0][0] = 1.0f; f->brushprimit_texdef.coords[1][1] = 1.0f; ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); } int i; for ( i = 0 ; i < w->numpoints ; i++ ) { x = DotProduct( w->points[i],texX ); y = DotProduct( w->points[i],texY ); #ifdef DBG_BP if ( g_qeglobals.bNeedConvert ) { // check we compute the same ST as the traditional texture computation used before vec_t S = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; vec_t T = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; if ( fabs( S - w->points[i][3] ) > 1e-2 || fabs( T - w->points[i][4] ) > 1e-2 ) { if ( fabs( S - w->points[i][3] ) > 1e-4 || fabs( T - w->points[i][4] ) > 1e-4 ) { Sys_Printf( "Warning : precision loss in brush -> brush primitive texture computation\n" ); } else{ Sys_Printf( "Warning : brush -> brush primitive texture computation bug detected\n" ); } } } #endif w->points[i][3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; w->points[i][4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; } } // compute a fake shift scale rot representation from the texture matrix // these shift scale rot values are to be understood in the local axis base void TexMatToFakeTexCoords( vec_t texMat[2][3], float shift[2], float *rot, float scale[2] ){ #ifdef DBG_BP // check this matrix is orthogonal if ( fabs( texMat[0][0] * 1.0L * texMat[0][1] + texMat[1][0] * 1.0L * texMat[1][1] ) > ZERO_EPSILON ) { Sys_Printf( "Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n" ); } #endif scale[0] = sqrt( texMat[0][0] * 1.0L * texMat[0][0] + texMat[1][0] * 1.0L * texMat[1][0] ); scale[1] = sqrt( texMat[0][1] * 1.0L * texMat[0][1] + texMat[1][1] * 1.0L * texMat[1][1] ); #ifdef DBG_BP if ( scale[0] < ZERO_EPSILON || scale[1] < ZERO_EPSILON ) { Sys_Printf( "Warning : unexpected scale==0 in TexMatToFakeTexCoords\n" ); } #endif // compute rotate value if ( fabs( texMat[0][0] ) < ZERO_EPSILON ) { #ifdef DBG_BP // check brushprimit_texdef[1][0] is not zero if ( fabs( texMat[1][0] ) < ZERO_EPSILON ) { Sys_Printf( "Warning : unexpected texdef[1][0]==0 in TexMatToFakeTexCoords\n" ); } #endif // rotate is +-90 if ( texMat[1][0] > 0 ) { *rot = 90.0f; } else{ *rot = -90.0f; } } else{ *rot = RAD2DEG( atan2( texMat[1][0] * 1.0L, texMat[0][0] * 1.0L ) ); } shift[0] = -texMat[0][2]; shift[1] = texMat[1][2]; } // compute back the texture matrix from fake shift scale rot // the matrix returned must be understood as a qtexture_t with width=2 height=2 ( the default one ) void FakeTexCoordsToTexMat( float shift[2], float rot, float scale[2], vec_t texMat[2][3] ){ texMat[0][0] = scale[0] * 1.0L * cos( DEG2RAD( 1.0L * rot ) ); texMat[1][0] = scale[0] * 1.0L * sin( DEG2RAD( 1.0L * rot ) ); texMat[0][1] = -scale[1] * 1.0L * sin( DEG2RAD( 1.0L * rot ) ); texMat[1][1] = scale[1] * 1.0L * cos( DEG2RAD( 1.0L * rot ) ); texMat[0][2] = -shift[0]; texMat[1][2] = shift[1]; } // convert a texture matrix between two qtexture_t // if NULL for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates ) void ConvertTexMatWithQTexture( vec_t texMat1[2][3], qtexture_t *qtex1, vec_t texMat2[2][3], qtexture_t *qtex2 ){ float s1,s2; s1 = ( qtex1 ? static_cast( qtex1->width ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->width ) : 2.0f ); s2 = ( qtex1 ? static_cast( qtex1->height ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->height ) : 2.0f ); texMat2[0][0] = s1 * texMat1[0][0]; texMat2[0][1] = s1 * texMat1[0][1]; texMat2[0][2] = s1 * texMat1[0][2]; texMat2[1][0] = s2 * texMat1[1][0]; texMat2[1][1] = s2 * texMat1[1][1]; texMat2[1][2] = s2 * texMat1[1][2]; } void ConvertTexMatWithQTexture( brushprimit_texdef_t *texMat1, qtexture_t *qtex1, brushprimit_texdef_t *texMat2, qtexture_t *qtex2 ){ ConvertTexMatWithQTexture( texMat1->coords, qtex1, texMat2->coords, qtex2 ); } // used for texture locking // will move the texture according to a geometric vector void ShiftTextureGeometric_BrushPrimit( face_t *f, vec3_t delta ){ vec3_t texS,texT; vec_t tx,ty; vec3_t M[3]; // columns of the matrix .. easier that way vec_t det; vec3_t D[2]; // compute plane axis base ( doesn't change with translation ) ComputeAxisBase( f->plane.normal, texS, texT ); // compute translation vector in plane axis base tx = DotProduct( delta, texS ); ty = DotProduct( delta, texT ); // fill the data vectors M[0][0] = tx; M[0][1] = 1.0f + tx; M[0][2] = tx; M[1][0] = ty; M[1][1] = ty; M[1][2] = 1.0f + ty; M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; D[0][0] = f->brushprimit_texdef.coords[0][2]; D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; D[1][0] = f->brushprimit_texdef.coords[1][2]; D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } // shift a texture (texture adjustments) along it's current texture axes // x and y are geometric values, which we must compute as ST increments // this depends on the texture size and the pixel/texel ratio void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y ){ float s,t; // as a ratio against texture size // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) s = ( x * 2.0 ) / (float)f->d_texture->width; t = ( y * 2.0 ) / (float)f->d_texture->height; f->brushprimit_texdef.coords[0][2] -= s; f->brushprimit_texdef.coords[1][2] -= t; } // TTimo: FIXME: I don't like that, it feels broken // (and it's likely that it's not used anymore) // best fitted 2D vector is x.X+y.Y void ComputeBest2DVector( vec3_t v, vec3_t X, vec3_t Y, int &x, int &y ){ double sx,sy; sx = DotProduct( v, X ); sy = DotProduct( v, Y ); if ( fabs( sy ) > fabs( sx ) ) { x = 0; if ( sy > 0.0 ) { y = 1; } else{ y = -1; } } else { y = 0; if ( sx > 0.0 ) { x = 1; } else{ x = -1; } } } //++timo FIXME quick'n dirty hack, doesn't care about current texture settings (angle) // can be improved .. bug #107311 // mins and maxs are the face bounding box //++timo fixme: we use the face info, mins and maxs are irrelevant void Face_FitTexture_BrushPrimit( face_t *f, vec3_t mins, vec3_t maxs, int nHeight, int nWidth ){ vec3_t BBoxSTMin, BBoxSTMax; winding_t *w; int i,j; vec_t val; vec3_t M[3],D[2]; // vec3_t N[2],Mf[2]; brushprimit_texdef_t N; vec3_t Mf[2]; // we'll be working on a standardized texture size // ConvertTexMatWithQTexture( &f->brushprimit_texdef, f->d_texture, &f->brushprimit_texdef, NULL ); // compute the BBox in ST coords EmitBrushPrimitTextureCoordinates( f, f->face_winding ); ClearBounds( BBoxSTMin, BBoxSTMax ); w = f->face_winding; for ( i = 0 ; i < w->numpoints ; i++ ) { // AddPointToBounds in 2D on (S,T) coordinates for ( j = 0 ; j < 2 ; j++ ) { val = w->points[i][j + 3]; if ( val < BBoxSTMin[j] ) { BBoxSTMin[j] = val; } if ( val > BBoxSTMax[j] ) { BBoxSTMax[j] = val; } } } // we have the three points of the BBox (BBoxSTMin[0].BBoxSTMin[1]) (BBoxSTMax[0],BBoxSTMin[1]) (BBoxSTMin[0],BBoxSTMax[1]) in ST space // the BP matrix we are looking for gives (0,0) (nwidth,0) (0,nHeight) coordinates in (Sfit,Tfit) space to these three points // we have A(Sfit,Tfit) = (0,0) = Mf * A(TexS,TexT) = N * M * A(TexS,TexT) = N * A(S,T) // so we solve the system for N and then Mf = N * M M[0][0] = BBoxSTMin[0]; M[0][1] = BBoxSTMax[0]; M[0][2] = BBoxSTMin[0]; M[1][0] = BBoxSTMin[1]; M[1][1] = BBoxSTMin[1]; M[1][2] = BBoxSTMax[1]; D[0][0] = 0.0f; D[0][1] = nWidth; D[0][2] = 0.0f; D[1][0] = 0.0f; D[1][1] = 0.0f; D[1][2] = nHeight; MatrixForPoints( M, D, &N ); #if 0 // FIT operation gives coordinates of three points of the bounding box in (S',T'), our target axis base // A(S',T')=(0,0) B(S',T')=(nWidth,0) C(S',T')=(0,nHeight) // and we have them in (S,T) axis base: A(S,T)=(BBoxSTMin[0],BBoxSTMin[1]) B(S,T)=(BBoxSTMax[0],BBoxSTMin[1]) C(S,T)=(BBoxSTMin[0],BBoxSTMax[1]) // we compute the N transformation so that: A(S',T') = N * A(S,T) VectorSet( N[0], ( BBoxSTMax[0] - BBoxSTMin[0] ) / (float)nWidth, 0.0f, BBoxSTMin[0] ); VectorSet( N[1], 0.0f, ( BBoxSTMax[1] - BBoxSTMin[1] ) / (float)nHeight, BBoxSTMin[1] ); #endif // the final matrix is the product (Mf stands for Mfit) Mf[0][0] = N.coords[0][0] * f->brushprimit_texdef.coords[0][0] + N.coords[0][1] * f->brushprimit_texdef.coords[1][0]; Mf[0][1] = N.coords[0][0] * f->brushprimit_texdef.coords[0][1] + N.coords[0][1] * f->brushprimit_texdef.coords[1][1]; Mf[0][2] = N.coords[0][0] * f->brushprimit_texdef.coords[0][2] + N.coords[0][1] * f->brushprimit_texdef.coords[1][2] + N.coords[0][2]; Mf[1][0] = N.coords[1][0] * f->brushprimit_texdef.coords[0][0] + N.coords[1][1] * f->brushprimit_texdef.coords[1][0]; Mf[1][1] = N.coords[1][0] * f->brushprimit_texdef.coords[0][1] + N.coords[1][1] * f->brushprimit_texdef.coords[1][1]; Mf[1][2] = N.coords[1][0] * f->brushprimit_texdef.coords[0][2] + N.coords[1][1] * f->brushprimit_texdef.coords[1][2] + N.coords[1][2]; // copy back VectorCopy( Mf[0], f->brushprimit_texdef.coords[0] ); VectorCopy( Mf[1], f->brushprimit_texdef.coords[1] ); // handle the texture size // ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); } void BrushPrimitFaceToFace( face_t *f ){ #if 0 // we have parsed brush primitives and need conversion back to standard format // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it // FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling // I tried various tweaks, no luck .. seems shifting is lost brushprimit_texdef_t aux; ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->d_texture, &aux, NULL ); TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale ); face->texdef.scale[0] /= 2.0; face->texdef.scale[1] /= 2.0; #else // new method by divVerent@alientrap.org: Shift and scale no longer get lost when opening a BP map in texdef mode. vec3_t texX,texY; vec3_t proj; vec_t ST[3][5]; ComputeAxisBase( f->plane.normal,texX,texY ); VectorCopy( f->plane.normal,proj ); VectorScale( proj,f->plane.dist,proj ); VectorCopy( proj,ST[0] ); VectorCopy( texX,ST[1] ); VectorAdd( ST[1],proj,ST[1] ); VectorCopy( texY,ST[2] ); VectorAdd( ST[2],proj,ST[2] ); ST[0][3] = f->brushprimit_texdef.coords[0][2]; ST[0][4] = f->brushprimit_texdef.coords[1][2]; ST[1][3] = f->brushprimit_texdef.coords[0][0] + ST[0][3]; ST[1][4] = f->brushprimit_texdef.coords[1][0] + ST[0][4]; ST[2][3] = f->brushprimit_texdef.coords[0][1] + ST[0][3]; ST[2][4] = f->brushprimit_texdef.coords[1][1] + ST[0][4]; Face_TexdefFromTextureCoordinates( ST[0], ST[1], ST[2], f->d_texture, f ); #endif } // TEXTURE LOCKING ----------------------------------------------------------------------------------------------------- // (Relevant to the editor only?) // internally used for texture locking on rotation and flipping // the general algorithm is the same for both lockings, it's only the geometric transformation part that changes // so I wanted to keep it in a single function // if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best // (but right now I want to keep brush_primit.cpp striclty C) qboolean txlock_bRotation; // rotation locking params int txl_nAxis; float txl_fDeg; vec3_t txl_vOrigin; // flip locking params vec3_t txl_matrix[3]; vec3_t txl_origin; void TextureLockTransformation_BrushPrimit( face_t *f ){ vec3_t Orig,texS,texT; // axis base of initial plane // used by transformation algo vec3_t temp; int j; vec3_t vRotate; // rotation vector vec3_t rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base } vec3_t rNormal,rtexS,rtexT; // axis base for the transformed plane vec3_t lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) vec3_t M[3]; vec_t det; vec3_t D[2]; // compute plane axis base ComputeAxisBase( f->plane.normal, texS, texT ); VectorSet( Orig, 0.0f, 0.0f, 0.0f ); // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base ) // input: Orig, texS, texT (and the global locking params) // ouput: rOrig, rvecS, rvecT, rNormal if ( txlock_bRotation ) { // rotation vector VectorSet( vRotate, 0.0f, 0.0f, 0.0f ); vRotate[txl_nAxis] = txl_fDeg; VectorRotateOrigin( Orig, vRotate, txl_vOrigin, rOrig ); VectorRotateOrigin( texS, vRotate, txl_vOrigin, rvecS ); VectorRotateOrigin( texT, vRotate, txl_vOrigin, rvecT ); // compute normal of plane after rotation VectorRotate( f->plane.normal, vRotate, rNormal ); } else { VectorSubtract( Orig, txl_origin, temp ); for ( j = 0 ; j < 3 ; j++ ) rOrig[j] = DotProduct( temp, txl_matrix[j] ) + txl_origin[j]; VectorSubtract( texS, txl_origin, temp ); for ( j = 0 ; j < 3 ; j++ ) rvecS[j] = DotProduct( temp, txl_matrix[j] ) + txl_origin[j]; VectorSubtract( texT, txl_origin, temp ); for ( j = 0 ; j < 3 ; j++ ) rvecT[j] = DotProduct( temp, txl_matrix[j] ) + txl_origin[j]; // we also need the axis base of the target plane, apply the transformation matrix to the normal too.. for ( j = 0 ; j < 3 ; j++ ) rNormal[j] = DotProduct( f->plane.normal, txl_matrix[j] ); } // compute rotated plane axis base ComputeAxisBase( rNormal, rtexS, rtexT ); // compute S/T coordinates of the three points in rotated axis base ( in M matrix ) lOrig[0] = DotProduct( rOrig, rtexS ); lOrig[1] = DotProduct( rOrig, rtexT ); lvecS[0] = DotProduct( rvecS, rtexS ); lvecS[1] = DotProduct( rvecS, rtexT ); lvecT[0] = DotProduct( rvecT, rtexS ); lvecT[1] = DotProduct( rvecT, rtexT ); M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f; M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f; M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f; // fill data vector D[0][0] = f->brushprimit_texdef.coords[0][2]; D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; D[1][0] = f->brushprimit_texdef.coords[1][2]; D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } // texture locking // called before the points on the face are actually rotated void RotateFaceTexture_BrushPrimit( face_t *f, int nAxis, float fDeg, vec3_t vOrigin ){ // this is a placeholder to call the general texture locking algorithm txlock_bRotation = true; txl_nAxis = nAxis; txl_fDeg = fDeg; VectorCopy( vOrigin, txl_vOrigin ); TextureLockTransformation_BrushPrimit( f ); } // compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation) // this matches the select_matrix algo used in select.cpp // this needs to be called on the face BEFORE any geometric transformation // it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done void ApplyMatrix_BrushPrimit( face_t *f, vec3_t matrix[3], vec3_t origin ){ // this is a placeholder to call the general texture locking algorithm txlock_bRotation = false; VectorCopy( matrix[0], txl_matrix[0] ); VectorCopy( matrix[1], txl_matrix[1] ); VectorCopy( matrix[2], txl_matrix[2] ); VectorCopy( origin, txl_origin ); TextureLockTransformation_BrushPrimit( f ); } // don't do C==A! void BPMatMul( vec_t A[2][3], vec_t B[2][3], vec_t C[2][3] ){ C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0]; C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0]; C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1]; C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1]; C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2]; C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2]; } void BPMatDump( vec_t A[2][3] ){ Sys_Printf( "%g %g %g\n%g %g %g\n0 0 1\n", A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2] ); } void BPMatRotate( vec_t A[2][3], float theta ){ vec_t m[2][3]; vec_t aux[2][3]; memset( &m, 0, sizeof( vec_t ) * 6 ); m[0][0] = cos( theta * Q_PI / 180.0 ); m[0][1] = -sin( theta * Q_PI / 180.0 ); m[1][0] = -m[0][1]; m[1][1] = m[0][0]; BPMatMul( A, m, aux ); BPMatCopy( aux,A ); } // get the relative axes of the current texturing void BrushPrimit_GetRelativeAxes( face_t *f, vec3_t vecS, vec3_t vecT ){ vec_t vS[2],vT[2]; // first we compute them as expressed in plane axis base // BP matrix has coordinates of plane axis base expressed in geometric axis base // so we use the line vectors vS[0] = f->brushprimit_texdef.coords[0][0]; vS[1] = f->brushprimit_texdef.coords[0][1]; vT[0] = f->brushprimit_texdef.coords[1][0]; vT[1] = f->brushprimit_texdef.coords[1][1]; // now compute those vectors in geometric space vec3_t texS, texT; // axis base of the plane (geometric) ComputeAxisBase( f->plane.normal, texS, texT ); // vecS[] = vS[0].texS[] + vS[1].texT[] // vecT[] = vT[0].texS[] + vT[1].texT[] vecS[0] = vS[0] * texS[0] + vS[1] * texT[0]; vecS[1] = vS[0] * texS[1] + vS[1] * texT[1]; vecS[2] = vS[0] * texS[2] + vS[1] * texT[2]; vecT[0] = vT[0] * texS[0] + vT[1] * texT[0]; vecT[1] = vT[0] * texS[1] + vT[1] * texT[1]; vecT[2] = vT[0] * texS[2] + vT[1] * texT[2]; } // GL matrix 4x4 product (3D homogeneous matrix) // NOTE: the crappy thing is that GL doesn't follow the standard convention [line][column] // otherwise it's all good void GLMatMul( vec_t M[4][4], vec_t A[4], vec_t B[4] ){ unsigned short i,j; for ( i = 0; i < 4; i++ ) { B[i] = 0.0; for ( j = 0; j < 4; j++ ) { B[i] += M[j][i] * A[j]; } } } qboolean IsBrushPrimitMode(){ return( g_qeglobals.m_bBrushPrimitMode ); }