/* Copyright (C) 1999-2006 Id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "winding.h" #include #include "math/line.h" inline double plane3_distance_to_point( const Plane3& plane, const DoubleVector3& point ){ return vector3_dot( point, plane.normal() ) - plane.dist(); } inline double plane3_distance_to_point( const Plane3& plane, const Vector3& point ){ return vector3_dot( point, plane.normal() ) - plane.dist(); } /// \brief Returns the point at which \p line intersects \p plane, or an undefined value if there is no intersection. inline DoubleVector3 line_intersect_plane( const DoubleLine& line, const Plane3& plane ){ return line.origin + vector3_scaled( line.direction, -plane3_distance_to_point( plane, line.origin ) / vector3_dot( line.direction, plane.normal() ) ); } inline bool float_is_largest_absolute( double axis, double other ){ return fabs( axis ) > fabs( other ); } /// \brief Returns the index of the component of \p v that has the largest absolute value. inline int vector3_largest_absolute_component_index( const DoubleVector3& v ){ return ( float_is_largest_absolute( v[1], v[0] ) ) ? ( float_is_largest_absolute( v[1], v[2] ) ) ? 1 : 2 : ( float_is_largest_absolute( v[0], v[2] ) ) ? 0 : 2; } /// \brief Returns the infinite line that is the intersection of \p plane and \p other. inline DoubleLine plane3_intersect_plane3( const Plane3& plane, const Plane3& other ){ DoubleLine line; line.direction = vector3_cross( plane.normal(), other.normal() ); switch ( vector3_largest_absolute_component_index( line.direction ) ) { case 0: line.origin.x() = 0; line.origin.y() = ( -other.dist() * plane.normal().z() - -plane.dist() * other.normal().z() ) / line.direction.x(); line.origin.z() = ( -plane.dist() * other.normal().y() - -other.dist() * plane.normal().y() ) / line.direction.x(); break; case 1: line.origin.x() = ( -plane.dist() * other.normal().z() - -other.dist() * plane.normal().z() ) / line.direction.y(); line.origin.y() = 0; line.origin.z() = ( -other.dist() * plane.normal().x() - -plane.dist() * other.normal().x() ) / line.direction.y(); break; case 2: line.origin.x() = ( -other.dist() * plane.normal().y() - -plane.dist() * other.normal().y() ) / line.direction.z(); line.origin.y() = ( -plane.dist() * other.normal().x() - -other.dist() * plane.normal().x() ) / line.direction.z(); line.origin.z() = 0; break; default: break; } return line; } /// \brief Keep the value of \p infinity as small as possible to improve precision in Winding_Clip. void Winding_createInfinite( FixedWinding& winding, const Plane3& plane, double infinity ){ double max = -infinity; int x = -1; for ( int i = 0 ; i < 3; i++ ) { double d = fabs( plane.normal()[i] ); if ( d > max ) { x = i; max = d; } } if ( x == -1 ) { globalErrorStream() << "invalid plane\n"; return; } DoubleVector3 vup = g_vector3_identity; switch ( x ) { case 0: case 1: vup[2] = 1; break; case 2: vup[0] = 1; break; } vector3_add( vup, vector3_scaled( plane.normal(), -vector3_dot( vup, plane.normal() ) ) ); vector3_normalise( vup ); DoubleVector3 org = vector3_scaled( plane.normal(), plane.dist() ); DoubleVector3 vright = vector3_cross( vup, plane.normal() ); vector3_scale( vup, infinity ); vector3_scale( vright, infinity ); // project a really big axis aligned box onto the plane DoubleLine r1, r2, r3, r4; r1.origin = vector3_added( vector3_subtracted( org, vright ), vup ); r1.direction = vector3_normalised( vright ); winding.push_back( FixedWindingVertex( r1.origin, r1, c_brush_maxFaces ) ); r2.origin = vector3_added( vector3_added( org, vright ), vup ); r2.direction = vector3_normalised( vector3_negated( vup ) ); winding.push_back( FixedWindingVertex( r2.origin, r2, c_brush_maxFaces ) ); r3.origin = vector3_subtracted( vector3_added( org, vright ), vup ); r3.direction = vector3_normalised( vector3_negated( vright ) ); winding.push_back( FixedWindingVertex( r3.origin, r3, c_brush_maxFaces ) ); r4.origin = vector3_subtracted( vector3_subtracted( org, vright ), vup ); r4.direction = vector3_normalised( vup ); winding.push_back( FixedWindingVertex( r4.origin, r4, c_brush_maxFaces ) ); } inline PlaneClassification Winding_ClassifyDistance( const double distance, const double epsilon ){ if ( distance > epsilon ) { return ePlaneFront; } if ( distance < -epsilon ) { return ePlaneBack; } return ePlaneOn; } /// \brief Returns true if /// !flipped && winding is completely BACK or ON /// or flipped && winding is completely FRONT or ON bool Winding_TestPlane( const Winding& winding, const Plane3& plane, bool flipped ){ const int test = ( flipped ) ? ePlaneBack : ePlaneFront; for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i ) { if ( test == Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON ) ) { return false; } } return true; } /// \brief Returns true if any point in \p w1 is in front of plane2, or any point in \p w2 is in front of plane1 bool Winding_PlanesConcave( const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2 ){ return !Winding_TestPlane( w1, plane2, false ) || !Winding_TestPlane( w2, plane1, false ); } brushsplit_t Winding_ClassifyPlane( const Winding& winding, const Plane3& plane ){ brushsplit_t split; for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i ) { ++split.counts[Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON )]; } return split; } #define DEBUG_EPSILON ON_EPSILON const double DEBUG_EPSILON_SQUARED = DEBUG_EPSILON * DEBUG_EPSILON; #define WINDING_DEBUG 0 /// \brief Clip \p winding which lies on \p plane by \p clipPlane, resulting in \p clipped. /// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding. /// If \p winding is completely in back of the plane, \p clipped will be empty. /// If \p winding intersects the plane, the edge of \p clipped which lies on \p clipPlane will store the value of \p adjacent. void Winding_Clip( const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped ){ PlaneClassification classification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding.back().vertex ), ON_EPSILON ); PlaneClassification nextClassification; // for each edge for ( std::size_t next = 0, i = winding.size() - 1; next != winding.size(); i = next, ++next, classification = nextClassification ) { nextClassification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding[next].vertex ), ON_EPSILON ); const FixedWindingVertex& vertex = winding[i]; // if first vertex of edge is ON if ( classification == ePlaneOn ) { // append first vertex to output winding if ( nextClassification == ePlaneBack ) { // this edge lies on the clip plane clipped.push_back( FixedWindingVertex( vertex.vertex, plane3_intersect_plane3( plane, clipPlane ), adjacent ) ); } else { clipped.push_back( vertex ); } continue; } // if first vertex of edge is FRONT if ( classification == ePlaneFront ) { // add first vertex to output winding clipped.push_back( vertex ); } // if second vertex of edge is ON if ( nextClassification == ePlaneOn ) { continue; } // else if second vertex of edge is same as first else if ( nextClassification == classification ) { continue; } // else if first vertex of edge is FRONT and there are only two edges else if ( classification == ePlaneFront && winding.size() == 2 ) { continue; } // else first vertex is FRONT and second is BACK or vice versa else { // append intersection point of line and plane to output winding DoubleVector3 mid( line_intersect_plane( vertex.edge, clipPlane ) ); if ( classification == ePlaneFront ) { // this edge lies on the clip plane clipped.push_back( FixedWindingVertex( mid, plane3_intersect_plane3( plane, clipPlane ), adjacent ) ); } else { clipped.push_back( FixedWindingVertex( mid, vertex.edge, vertex.adjacent ) ); } } } } std::size_t Winding_FindAdjacent( const Winding& winding, std::size_t face ){ for ( std::size_t i = 0; i < winding.numpoints; ++i ) { ASSERT_MESSAGE( winding[i].adjacent != c_brush_maxFaces, "edge connectivity data is invalid" ); if ( winding[i].adjacent == face ) { return i; } } return c_brush_maxFaces; } std::size_t Winding_Opposite( const Winding& winding, const std::size_t index, const std::size_t other ){ ASSERT_MESSAGE( index < winding.numpoints && other < winding.numpoints, "Winding_Opposite: index out of range" ); double dist_best = 0; std::size_t index_best = c_brush_maxFaces; Ray edge( ray_for_points( winding[index].vertex, winding[other].vertex ) ); for ( std::size_t i = 0; i < winding.numpoints; ++i ) { if ( i == index || i == other ) { continue; } double dist_squared = ray_squared_distance_to_point( edge, winding[i].vertex ); if ( dist_squared > dist_best ) { dist_best = dist_squared; index_best = i; } } return index_best; } std::size_t Winding_Opposite( const Winding& winding, const std::size_t index ){ return Winding_Opposite( winding, index, Winding_next( winding, index ) ); } /// \brief Calculate the \p centroid of the polygon defined by \p winding which lies on plane \p plane. void Winding_Centroid( const Winding& winding, const Plane3& plane, Vector3& centroid ){ double area2 = 0, x_sum = 0, y_sum = 0; const ProjectionAxis axis = projectionaxis_for_normal( plane.normal() ); const indexremap_t remap = indexremap_for_projectionaxis( axis ); for ( std::size_t i = winding.numpoints - 1, j = 0; j < winding.numpoints; i = j, ++j ) { const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] - winding[j].vertex[remap.x] * winding[i].vertex[remap.y]; area2 += ai; x_sum += ( winding[j].vertex[remap.x] + winding[i].vertex[remap.x] ) * ai; y_sum += ( winding[j].vertex[remap.y] + winding[i].vertex[remap.y] ) * ai; } centroid[remap.x] = static_cast( x_sum / ( 3 * area2 ) ); centroid[remap.y] = static_cast( y_sum / ( 3 * area2 ) ); { Ray ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 0 ) ); ray.origin[remap.x] = centroid[remap.x]; ray.origin[remap.y] = centroid[remap.y]; ray.direction[remap.z] = 1; centroid[remap.z] = static_cast( ray_distance_to_plane( ray, plane ) ); } }