/* Copyright (C) 1999-2006 Id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "winding.h" #include #include "math/line.h" inline double plane3_distance_to_point(const Plane3& plane, const DoubleVector3& point) { return vector3_dot(point, plane.normal()) - plane.dist(); } inline double plane3_distance_to_point(const Plane3& plane, const Vector3& point) { return vector3_dot(point, plane.normal()) - plane.dist(); } /// \brief Returns the point at which \p line intersects \p plane, or an undefined value if there is no intersection. inline DoubleVector3 line_intersect_plane(const DoubleLine& line, const Plane3& plane) { return line.origin + vector3_scaled( line.direction, -plane3_distance_to_point(plane, line.origin) / vector3_dot(line.direction, plane.normal()) ); } inline bool float_is_largest_absolute(double axis, double other) { return fabs(axis) > fabs(other); } /// \brief Returns the index of the component of \p v that has the largest absolute value. inline int vector3_largest_absolute_component_index(const DoubleVector3& v) { return (float_is_largest_absolute(v[1], v[0])) ? (float_is_largest_absolute(v[1], v[2])) ? 1 : 2 : (float_is_largest_absolute(v[0], v[2])) ? 0 : 2; } /// \brief Returns the infinite line that is the intersection of \p plane and \p other. inline DoubleLine plane3_intersect_plane3(const Plane3& plane, const Plane3& other) { DoubleLine line; line.direction = vector3_cross(plane.normal(), other.normal()); switch(vector3_largest_absolute_component_index(line.direction)) { case 0: line.origin.x() = 0; line.origin.y() = (-other.dist() * plane.normal().z() - -plane.dist() * other.normal().z()) / line.direction.x(); line.origin.z() = (-plane.dist() * other.normal().y() - -other.dist() * plane.normal().y()) / line.direction.x(); break; case 1: line.origin.x() = (-plane.dist() * other.normal().z() - -other.dist() * plane.normal().z()) / line.direction.y(); line.origin.y() = 0; line.origin.z() = (-other.dist() * plane.normal().x() - -plane.dist() * other.normal().x()) / line.direction.y(); break; case 2: line.origin.x() = (-other.dist() * plane.normal().y() - -plane.dist() * other.normal().y()) / line.direction.z(); line.origin.y() = (-plane.dist() * other.normal().x() - -other.dist() * plane.normal().x()) / line.direction.z(); line.origin.z() = 0; break; default: break; } return line; } /// \brief Keep the value of \p infinity as small as possible to improve precision in Winding_Clip. void Winding_createInfinite(FixedWinding& winding, const Plane3& plane, double infinity) { double max = -infinity; int x = -1; for (int i=0 ; i<3; i++) { double d = fabs(plane.normal()[i]); if (d > max) { x = i; max = d; } } if(x == -1) { globalErrorStream() << "invalid plane\n"; return; } DoubleVector3 vup = g_vector3_identity; switch (x) { case 0: case 1: vup[2] = 1; break; case 2: vup[0] = 1; break; } vector3_add(vup, vector3_scaled(plane.normal(), -vector3_dot(vup, plane.normal()))); vector3_normalise(vup); DoubleVector3 org = vector3_scaled(plane.normal(), plane.dist()); DoubleVector3 vright = vector3_cross(vup, plane.normal()); vector3_scale(vup, infinity); vector3_scale(vright, infinity); // project a really big axis aligned box onto the plane DoubleLine r1, r2, r3, r4; r1.origin = vector3_added(vector3_subtracted(org, vright), vup); r1.direction = vector3_normalised(vright); winding.push_back(FixedWindingVertex(r1.origin, r1, c_brush_maxFaces)); r2.origin = vector3_added(vector3_added(org, vright), vup); r2.direction = vector3_normalised(vector3_negated(vup)); winding.push_back(FixedWindingVertex(r2.origin, r2, c_brush_maxFaces)); r3.origin = vector3_subtracted(vector3_added(org, vright), vup); r3.direction = vector3_normalised(vector3_negated(vright)); winding.push_back(FixedWindingVertex(r3.origin, r3, c_brush_maxFaces)); r4.origin = vector3_subtracted(vector3_subtracted(org, vright), vup); r4.direction = vector3_normalised(vup); winding.push_back(FixedWindingVertex(r4.origin, r4, c_brush_maxFaces)); } inline PlaneClassification Winding_ClassifyDistance(const double distance, const double epsilon) { if(distance > epsilon) { return ePlaneFront; } if(distance < -epsilon) { return ePlaneBack; } return ePlaneOn; } /// \brief Returns true if /// !flipped && winding is completely BACK or ON /// or flipped && winding is completely FRONT or ON bool Winding_TestPlane(const Winding& winding, const Plane3& plane, bool flipped) { const int test = (flipped) ? ePlaneBack : ePlaneFront; for(Winding::const_iterator i = winding.begin(); i != winding.end(); ++i) { if(test == Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON)) { return false; } } return true; } /// \brief Returns true if any point in \p w1 is in front of plane2, or any point in \p w2 is in front of plane1 bool Winding_PlanesConcave(const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2) { return !Winding_TestPlane(w1, plane2, false) || !Winding_TestPlane(w2, plane1, false); } brushsplit_t Winding_ClassifyPlane(const Winding& winding, const Plane3& plane) { brushsplit_t split; for(Winding::const_iterator i = winding.begin(); i != winding.end(); ++i) { ++split.counts[Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON)]; } return split; } #define DEBUG_EPSILON ON_EPSILON const double DEBUG_EPSILON_SQUARED = DEBUG_EPSILON * DEBUG_EPSILON; #define WINDING_DEBUG 0 /// \brief Clip \p winding which lies on \p plane by \p clipPlane, resulting in \p clipped. /// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding. /// If \p winding is completely in back of the plane, \p clipped will be empty. /// If \p winding intersects the plane, the edge of \p clipped which lies on \p clipPlane will store the value of \p adjacent. void Winding_Clip(const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped) { PlaneClassification classification = Winding_ClassifyDistance(plane3_distance_to_point(clipPlane, winding.back().vertex), ON_EPSILON); PlaneClassification nextClassification; // for each edge for(std::size_t next = 0, i = winding.size()-1; next != winding.size(); i = next, ++next, classification = nextClassification) { nextClassification = Winding_ClassifyDistance(plane3_distance_to_point(clipPlane, winding[next].vertex), ON_EPSILON); const FixedWindingVertex& vertex = winding[i]; // if first vertex of edge is ON if(classification == ePlaneOn) { // append first vertex to output winding if(nextClassification == ePlaneBack) { // this edge lies on the clip plane clipped.push_back(FixedWindingVertex(vertex.vertex, plane3_intersect_plane3(plane, clipPlane), adjacent)); } else { clipped.push_back(vertex); } continue; } // if first vertex of edge is FRONT if(classification == ePlaneFront) { // add first vertex to output winding clipped.push_back(vertex); } // if second vertex of edge is ON if(nextClassification == ePlaneOn) { continue; } // else if second vertex of edge is same as first else if(nextClassification == classification) { continue; } // else if first vertex of edge is FRONT and there are only two edges else if(classification == ePlaneFront && winding.size() == 2) { continue; } // else first vertex is FRONT and second is BACK or vice versa else { // append intersection point of line and plane to output winding DoubleVector3 mid(line_intersect_plane(vertex.edge, clipPlane)); if(classification == ePlaneFront) { // this edge lies on the clip plane clipped.push_back(FixedWindingVertex(mid, plane3_intersect_plane3(plane, clipPlane), adjacent)); } else { clipped.push_back(FixedWindingVertex(mid, vertex.edge, vertex.adjacent)); } } } } std::size_t Winding_FindAdjacent(const Winding& winding, std::size_t face) { for(std::size_t i=0; i dist_best) { dist_best = dist_squared; index_best = i; } } return index_best; } std::size_t Winding_Opposite(const Winding& winding, const std::size_t index) { return Winding_Opposite(winding, index, Winding_next(winding, index)); } /// \brief Calculate the \p centroid of the polygon defined by \p winding which lies on plane \p plane. void Winding_Centroid(const Winding& winding, const Plane3& plane, Vector3& centroid) { double area2 = 0, x_sum = 0, y_sum = 0; const ProjectionAxis axis = projectionaxis_for_normal(plane.normal()); const indexremap_t remap = indexremap_for_projectionaxis(axis); for(std::size_t i = winding.numpoints-1, j = 0; j < winding.numpoints; i = j, ++j) { const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] - winding[j].vertex[remap.x] * winding[i].vertex[remap.y]; area2 += ai; x_sum += (winding[j].vertex[remap.x] + winding[i].vertex[remap.x]) * ai; y_sum += (winding[j].vertex[remap.y] + winding[i].vertex[remap.y]) * ai; } centroid[remap.x] = static_cast(x_sum / (3 * area2)); centroid[remap.y] = static_cast(y_sum / (3 * area2)); { Ray ray(Vector3(0, 0, 0), Vector3(0, 0, 0)); ray.origin[remap.x] = centroid[remap.x]; ray.origin[remap.y] = centroid[remap.y]; ray.direction[remap.z] = 1; centroid[remap.z] = static_cast(ray_distance_to_plane(ray, plane)); } }