/* Copyright (C) 1999-2006 Id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "qd_skeletons.h" #include "skeletons.h" #include "qd_fmodel.h" #include "angles.h" #include "token.h" #include "qdata.h" #include "reference.h" #include #include #include // We're assuming no more than 16 reference points, with no more than 32 characters in the name char RefPointNameList[REF_MAX_POINTS][REF_MAX_STRLEN]; int RefPointNum = 0; Skeletalfmheader_t g_skelModel; void ClearSkeletalModel() { g_skelModel.type = SKEL_NULL; g_skelModel.clustered = false; g_skelModel.references = REF_NULL; } //========================================================================== // // LoadHRCClustered // //========================================================================== // Places the null terminated src string into the dest string less any trailing digits or underscores void StripTrailingDigits(char *src, char *dest) { #ifndef NDEBUG int max = SKELETAL_NAME_MAX; // should be sufficient for inteded use on names from hrc files #endif int i = 0; while(src[i] != '\0') { ++i; #ifndef NDEBUG assert(i < max); #endif } while((src[--i] >= '0' && src[i] <= '9') || src[i] == '_') { } memcpy(dest, src, ++i); dest[i] = '\0'; } static void LoadHRCClustered(char *fileName, int **clusterList, int *num_verts, int skelType) { extern void HandleHRCModel(triangle_t **triList, int *triangleCount, mesh_node_t **nodesList, int *num_mesh_nodes, int ActiveNode, int Depth); extern mesh_node_t *pmnodes; triangle_t *triList; // mesh_node_t *nodesList; int num_mesh_nodes = 0, triangleCount = 0; #if 0 int i; int j, numVerts; char stripped[SKELETAL_NAME_MAX]; for( i = 1; i < numJointsInSkeleton[skelType] + 1; ++i) { num_verts[i] = 0; } TK_OpenSource(fileName); TK_FetchRequire(TK_HRCH); TK_FetchRequire(TK_COLON); TK_FetchRequire(TK_SOFTIMAGE); TK_Beyond(TK_CLUSTERS); while(TK_Search(TK_CLUSTER_NAME) != TK_EOF) { TK_Require(TK_STRING); StripTrailingDigits(tk_String, stripped); for( i = 0; i < numJointsInSkeleton[skelType]; ++i) { if(stricmp(stripped, skeletonJointNames[skeletonNameOffsets[skelType]+i]) == 0) { i = -i + numJointsInSkeleton[skelType] - 1; TK_BeyondRequire(TK_NUM_CLUSTER_VERTICES, TK_INTNUMBER); numVerts = tk_IntNumber; if(!num_verts[i+1]) // first set of verts for cluster { clusterList[i] = SafeMalloc(numVerts*sizeof(int), "LoadHRCClustered"); assert(clusterList[i]); } else // any later sets of verts need to copy current { int *temp; temp = SafeMalloc((num_verts[i+1]+numVerts)*sizeof(int), "LoadHRCClustered"); assert(temp); memcpy(temp + numVerts, clusterList[i], num_verts[i+1]*sizeof(int)); free(clusterList[i]); clusterList[i] = temp; } // currently this function is only called by LoadModelClusters. // Apparently the matching free has disappeared, // should probably be free at the end of FMCmd_Base TK_Beyond(TK_LBRACE); for(j = 0; j < numVerts; ++j) { TK_Require(TK_INTNUMBER); clusterList[i][j] = tk_IntNumber; TK_Fetch(); } num_verts[i+1] += numVerts; break; } } } num_verts[0] = numJointsInSkeleton[skelType]; #endif #if 1 // get the index number localized to the root // for( i = 1; i < numJointsInSkeleton[skelType] + 1; ++i) // { // g_skelModel.num_verts[i] = 0; // } TK_OpenSource(fileName); TK_FetchRequire(TK_HRCH); TK_FetchRequire(TK_COLON); TK_FetchRequire(TK_SOFTIMAGE); // prime it TK_Beyond(TK_MODEL); triList = (triangle_t *) SafeMalloc(MAXTRIANGLES*sizeof(triangle_t), "Triangle list"); memset(triList,0,MAXTRIANGLES*sizeof(triangle_t)); // nodesList = SafeMalloc(MAX_FM_MESH_NODES * sizeof(mesh_node_t), "Mesh Node List"); pmnodes = (mesh_node_t *) SafeMalloc(MAX_FM_MESH_NODES * sizeof(mesh_node_t), "Mesh Node List"); memset(pmnodes, 0, MAX_FM_MESH_NODES * sizeof(mesh_node_t)); // this should eventually use a stripped down version of this HandleHRCModel(&triList, &triangleCount, &pmnodes, &num_mesh_nodes, 0, 0); // free(nodesList); free(triList); num_verts[0] = numJointsInSkeleton[skelType]; #endif } void ReadHRCClusterList(mesh_node_t *meshNode, int baseIndex) { int i, j, numVerts; tokenType_t nextToken; char stripped[SKELETAL_NAME_MAX]; meshNode->clustered = true; nextToken = TK_Get(TK_CLUSTER_NAME); while (nextToken == TK_CLUSTER_NAME) { TK_FetchRequire(TK_STRING); StripTrailingDigits(tk_String, stripped); for( i = 0; i < numJointsInSkeleton[g_skelModel.type]; ++i) { if(stricmp(stripped, skeletonJointNames[skeletonNameOffsets[g_skelModel.type]+i]) == 0) { i = -i + numJointsInSkeleton[g_skelModel.type] - 1; TK_BeyondRequire(TK_NUM_CLUSTER_VERTICES, TK_INTNUMBER); numVerts = tk_IntNumber; if(!baseIndex) { meshNode->clusters[i] = (int *) SafeMalloc(numVerts*sizeof(int), "ReadHRCClusterList"); assert(meshNode->clusters[i]); } else { int *temp; temp = meshNode->clusters[i]; meshNode->clusters[i] = (int *) SafeMalloc((meshNode->num_verts[i+1]+numVerts)*sizeof(int), "ReadHRCClusterList"); assert(meshNode->clusters[i]); memcpy(meshNode->clusters[i], temp, meshNode->num_verts[i+1]*sizeof(int)); free(temp); } // currently this function is only called by LoadModelClusters. // Apparently the matching free has disappeared, // should probably be free at the end of FMCmd_Base TK_Beyond(TK_LBRACE); for(j = 0; j < numVerts; ++j) { TK_Require(TK_INTNUMBER); meshNode->clusters[i][baseIndex+j] = tk_IntNumber+baseIndex; TK_Fetch(); } if(baseIndex) { meshNode->num_verts[i+1] += numVerts; } else { meshNode->num_verts[i+1] = numVerts; } break; } } TK_BeyondRequire(TK_CLUSTER_STATE, TK_INTNUMBER); nextToken = TK_Fetch(); } } static void LoadHRCGlobals(char *fileName) { int i; TK_OpenSource(fileName); TK_FetchRequire(TK_HRCH); TK_FetchRequire(TK_COLON); TK_FetchRequire(TK_SOFTIMAGE); TK_Beyond(TK_MODEL); TK_Beyond(TK_SCALING); for(i = 0; i < 3; i++) { TK_Require(TK_FLOATNUMBER); g_skelModel.scaling[i] = tk_FloatNumber; TK_Fetch(); } TK_Beyond(TK_ROTATION); for(i = 0; i < 3; i++) { TK_Require(TK_FLOATNUMBER); g_skelModel.rotation[i] = tk_FloatNumber; TK_Fetch(); } TK_Beyond(TK_TRANSLATION); for(i = 0; i < 3; i++) { TK_Require(TK_FLOATNUMBER); g_skelModel.translation[i] = tk_FloatNumber; TK_Fetch(); } } static void ParseVec3(vec3_t in) { TK_Require(TK_FLOATNUMBER); in[1] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[2] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[0] = tk_FloatNumber; } static void ParseVec3d(vec3d_t in) { TK_Require(TK_FLOATNUMBER); in[1] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[2] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[0] = tk_FloatNumber; } static void ParseRotation3(vec3_t in) { TK_Require(TK_FLOATNUMBER); in[1] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[2] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[0] = tk_FloatNumber; } static void ParseRotation3d(vec3d_t in) { TK_Require(TK_FLOATNUMBER); in[1] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[2] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[0] = tk_FloatNumber; } static void ParseTranslation3(vec3_t in) { TK_Require(TK_FLOATNUMBER); in[1] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[2] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[0] = tk_FloatNumber; } static void ParseTranslation3d(vec3d_t in) { TK_Require(TK_FLOATNUMBER); in[1] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[2] = tk_FloatNumber; TK_FetchRequire(TK_FLOATNUMBER); in[0] = tk_FloatNumber; } static void LoadHRCJointList(char *fileName, QD_SkeletalJoint_t *jointList, int skelType) { #define MAX_STACK 64 int i, j; vec3d_t curTranslation[MAX_STACK], curRotation[MAX_STACK], curScale[MAX_STACK]; int curCorrespondingJoint[MAX_STACK]; int currentStack = 0, stackSize; double cx, sx, cy, sy, cz, sz; double rx, ry, rz; double x2, y2, z2; char stripped[SKELETAL_NAME_MAX]; Placement_d_t *placement; TK_OpenSource(fileName); TK_FetchRequire(TK_HRCH); TK_FetchRequire(TK_COLON); TK_FetchRequire(TK_SOFTIMAGE); TK_Beyond(TK_MODEL); while(TK_Search(TK_NAME) != TK_EOF) { TK_Require(TK_STRING); StripTrailingDigits(tk_String, stripped); if(stricmp(stripped, skeletonRootNames[skeletonRNameOffsets[skelType]]) == 0) { break; } } if(tk_Token == TK_EOF) { Error("Bone Chain Root: %s not found\n", skeletonRootNames[skeletonRNameOffsets[skelType]]); return; } TK_Beyond(TK_SCALING); ParseVec3d(curScale[currentStack]); TK_Beyond(TK_ROTATION); ParseRotation3d(curRotation[currentStack]); TK_Beyond(TK_TRANSLATION); ParseVec3d(curTranslation[currentStack]); // account for global model translation curTranslation[currentStack][1] += g_skelModel.translation[0]; curTranslation[currentStack][2] += g_skelModel.translation[1]; curTranslation[currentStack][0] += g_skelModel.translation[2]; curCorrespondingJoint[currentStack] = -1; ++currentStack; for(i = 0; i < numJointsInSkeleton[skelType]; ++i) { while(1) { TK_Beyond(TK_MODEL); TK_BeyondRequire(TK_NAME, TK_STRING); StripTrailingDigits(tk_String, stripped); if(stricmp(stripped, skeletonJointNames[skeletonNameOffsets[skelType]+i]) == 0) break; TK_Beyond(TK_SCALING); ParseVec3d(curScale[currentStack]); TK_Beyond(TK_ROTATION); ParseRotation3d(curRotation[currentStack]); TK_Beyond(TK_TRANSLATION); ParseVec3d(curTranslation[currentStack]); curCorrespondingJoint[currentStack] = -1; ++currentStack; } TK_Beyond(TK_SCALING); ParseVec3d(curScale[currentStack]); TK_Beyond(TK_ROTATION); ParseRotation3d(curRotation[currentStack]); jointList[i].rotation[1] = curRotation[currentStack][1]; jointList[i].rotation[2] = curRotation[currentStack][2]; jointList[i].rotation[0] = curRotation[currentStack][0]; TK_Beyond(TK_TRANSLATION); ParseVec3d(curTranslation[currentStack]); // jointList[i].placement.origin[1] = curTranslation[currentStack][1]; // jointList[i].placement.origin[2] = curTranslation[currentStack][2]; // jointList[i].placement.origin[0] = curTranslation[currentStack][0]; jointList[i].placement.origin[1] = 0.0; jointList[i].placement.origin[2] = 0.0; jointList[i].placement.origin[0] = 0.0; jointList[i].placement.direction[1] = 20.0; jointList[i].placement.direction[2] = 0.0; jointList[i].placement.direction[0] = 0.0; jointList[i].placement.up[1] = 0.0; jointList[i].placement.up[2] = 20.0; jointList[i].placement.up[0] = 0.0; curCorrespondingJoint[currentStack] = i; ++currentStack; } stackSize = currentStack; #if 0 // rotate the direction and up vectors to correspond to the rotation for(i = 0; i < numJointsInSkeleton[skelType]; ++i) { rx = jointList[i].rotation[0]*ANGLE_TO_RAD; ry = jointList[i].rotation[1]*ANGLE_TO_RAD; rz = jointList[i].rotation[2]*ANGLE_TO_RAD; cx = cos(rx); sx = sin(rx); cy = cos(ry); sy = sin(ry); cz = cos(rz); sz = sin(rz); // y-axis rotation for direction x2 = jointList[i].placement.direction[0]*cy+jointList[i].placement.direction[2]*sy; z2 = -jointList[i].placement.direction[0]*sy+jointList[i].placement.direction[2]*cy; jointList[i].placement.direction[0] = x2; jointList[i].placement.direction[2] = z2; // y-axis rotation for up x2 = jointList[i].placement.up[0]*cy+jointList[i].placement.up[2]*sy; z2 = -jointList[i].placement.up[0]*sy+jointList[i].placement.up[2]*cy; jointList[i].placement.up[0] = x2; jointList[i].placement.up[2] = z2; // z-axis rotation for direction x2 = jointList[i].placement.direction[0]*cz-jointList[i].placement.direction[1]*sz; y2 = jointList[i].placement.direction[0]*sz+jointList[i].placement.direction[1]*cz; jointList[i].placement.direction[0] = x2; jointList[i].placement.direction[1] = y2; // z-axis rotation for up x2 = jointList[i].placement.up[0]*cz-jointList[i].placement.up[1]*sz; y2 = jointList[i].placement.up[0]*sz+jointList[i].placement.up[1]*cz; jointList[i].placement.up[0] = x2; jointList[i].placement.up[1] = y2; // x-axis rotation for direction vector y2 = jointList[i].placement.direction[1]*cx-jointList[i].placement.direction[2]*sx; z2 = jointList[i].placement.direction[1]*sx+jointList[i].placement.direction[2]*cx; jointList[i].placement.direction[1] = y2; jointList[i].placement.direction[2] = z2; // x-axis rotation for up vector y2 = jointList[i].placement.up[1]*cx-jointList[i].placement.up[2]*sx; z2 = jointList[i].placement.up[1]*sx+jointList[i].placement.up[2]*cx; jointList[i].placement.up[1] = y2; jointList[i].placement.up[2] = z2; // translate direction to a point in the model jointList[i].placement.direction[0] += jointList[i].placement.origin[0]; jointList[i].placement.direction[1] += jointList[i].placement.origin[1]; jointList[i].placement.direction[2] += jointList[i].placement.origin[2]; // translate up to a point in the model jointList[i].placement.up[0] += jointList[i].placement.origin[0]; jointList[i].placement.up[1] += jointList[i].placement.origin[1]; jointList[i].placement.up[2] += jointList[i].placement.origin[2]; } #endif for(i = stackSize - 1; i >= 0; --i) { rx = curRotation[i][0]*ANGLE_TO_RAD; ry = curRotation[i][1]*ANGLE_TO_RAD; rz = curRotation[i][2]*ANGLE_TO_RAD; cx = cos(rx); sx = sin(rx); cy = cos(ry); sy = sin(ry); cz = cos(rz); sz = sin(rz); #if 1 for(j = i; j < stackSize; ++j) { if(curCorrespondingJoint[j] != -1) { placement = &jointList[curCorrespondingJoint[j]].placement; // y-axis rotation for origin x2 = placement->origin[0]*cy+placement->origin[2]*sy; z2 = -placement->origin[0]*sy+placement->origin[2]*cy; placement->origin[0] = x2; placement->origin[2] = z2; // y-axis rotation for direction x2 = placement->direction[0]*cy+placement->direction[2]*sy; z2 = -placement->direction[0]*sy+placement->direction[2]*cy; placement->direction[0] = x2; placement->direction[2] = z2; // y-axis rotation for up x2 = placement->up[0]*cy+placement->up[2]*sy; z2 = -placement->up[0]*sy+placement->up[2]*cy; placement->up[0] = x2; placement->up[2] = z2; // z-axis rotation for origin x2 = placement->origin[0]*cz-placement->origin[1]*sz; y2 = placement->origin[0]*sz+placement->origin[1]*cz; placement->origin[0] = x2; placement->origin[1] = y2; // z-axis rotation for direction x2 = placement->direction[0]*cz-placement->direction[1]*sz; y2 = placement->direction[0]*sz+placement->direction[1]*cz; placement->direction[0] = x2; placement->direction[1] = y2; // z-axis rotation for up x2 = placement->up[0]*cz-placement->up[1]*sz; y2 = placement->up[0]*sz+placement->up[1]*cz; placement->up[0] = x2; placement->up[1] = y2; // x-axis rotation for origin y2 = placement->origin[1]*cx-placement->origin[2]*sx; z2 = placement->origin[1]*sx+placement->origin[2]*cx; placement->origin[1] = y2; placement->origin[2] = z2; // x-axis rotation for direction vector y2 = placement->direction[1]*cx-placement->direction[2]*sx; z2 = placement->direction[1]*sx+placement->direction[2]*cx; placement->direction[1] = y2; placement->direction[2] = z2; // x-axis rotation for up vector y2 = placement->up[1]*cx-placement->up[2]*sx; z2 = placement->up[1]*sx+placement->up[2]*cx; placement->up[1] = y2; placement->up[2] = z2; // translate origin placement->origin[0] += curTranslation[i][0]; placement->origin[1] += curTranslation[i][1]; placement->origin[2] += curTranslation[i][2]; // translate back to local coord placement->direction[0] += curTranslation[i][0]; placement->direction[1] += curTranslation[i][1]; placement->direction[2] += curTranslation[i][2]; // translate back to local coord placement->up[0] += curTranslation[i][0]; placement->up[1] += curTranslation[i][1]; placement->up[2] += curTranslation[i][2]; } } #else // This screwed up and needs to be sorted out!!! // The stack info needs to be written too instead of the jointList for j > numJoints for Skeleton for(j = i-1; j < stackSize-1; ++j) { // y-axis rotation for origin x2 = jointList[j].placement.origin[0]*cy+jointList[j].placement.origin[2]*sy; z2 = -jointList[j].placement.origin[0]*sy+jointList[j].placement.origin[2]*cy; jointList[j].placement.origin[0] = x2; jointList[j].placement.origin[2] = z2; // y-axis rotation for direction x2 = jointList[j].placement.direction[0]*cy+jointList[j].placement.direction[2]*sy; z2 = -jointList[j].placement.direction[0]*sy+jointList[j].placement.direction[2]*cy; jointList[j].placement.direction[0] = x2; jointList[j].placement.direction[2] = z2; // y-axis rotation for up x2 = jointList[j].placement.up[0]*cy+jointList[j].placement.up[2]*sy; z2 = -jointList[j].placement.up[0]*sy+jointList[j].placement.up[2]*cy; jointList[j].placement.up[0] = x2; jointList[j].placement.up[2] = z2; // z-axis rotation for origin x2 = jointList[j].placement.origin[0]*cz-jointList[j].placement.origin[1]*sz; y2 = jointList[j].placement.origin[0]*sz+jointList[j].placement.origin[1]*cz; jointList[j].placement.origin[0] = x2; jointList[j].placement.origin[1] = y2; // z-axis rotation for direction x2 = jointList[j].placement.direction[0]*cz-jointList[j].placement.direction[1]*sz; y2 = jointList[j].placement.direction[0]*sz+jointList[j].placement.direction[1]*cz; jointList[j].placement.direction[0] = x2; jointList[j].placement.direction[1] = y2; // z-axis rotation for up x2 = jointList[j].placement.up[0]*cz-jointList[j].placement.up[1]*sz; y2 = jointList[j].placement.up[0]*sz+jointList[j].placement.up[1]*cz; jointList[j].placement.up[0] = x2; jointList[j].placement.up[1] = y2; // x-axis rotation for origin y2 = jointList[j].placement.origin[1]*cx-jointList[j].placement.origin[2]*sx; z2 = jointList[j].placement.origin[1]*sx+jointList[j].placement.origin[2]*cx; jointList[j].placement.origin[1] = y2; jointList[j].placement.origin[2] = z2; // x-axis rotation for direction vector y2 = jointList[j].placement.direction[1]*cx-jointList[j].placement.direction[2]*sx; z2 = jointList[j].placement.direction[1]*sx+jointList[j].placement.direction[2]*cx; jointList[j].placement.direction[1] = y2; jointList[j].placement.direction[2] = z2; // x-axis rotation for up vector y2 = jointList[j].placement.up[1]*cx-jointList[j].placement.up[2]*sx; z2 = jointList[j].placement.up[1]*sx+jointList[j].placement.up[2]*cx; jointList[j].placement.up[1] = y2; jointList[j].placement.up[2] = z2; if(curCorrespondingJoint[j+1] != -1) { // translate origin jointList[j].placement.origin[0] += curTranslation[i-1][0]; jointList[j].placement.origin[1] += curTranslation[i-1][1]; jointList[j].placement.origin[2] += curTranslation[i-1][2]; // translate back to local coord jointList[j].placement.direction[0] += curTranslation[i-1][0]; jointList[j].placement.direction[1] += curTranslation[i-1][1]; jointList[j].placement.direction[2] += curTranslation[i-1][2]; // translate back to local coord jointList[j].placement.up[0] += curTranslation[i-1][0]; jointList[j].placement.up[1] += curTranslation[i-1][1]; jointList[j].placement.up[2] += curTranslation[i-1][2]; } } #endif } } void LoadModelTransform(char *fileName) { FILE *file1; int dot = '.'; char *dotstart; char InputFileName[256]; dotstart = strrchr(fileName,dot); // Does it already have an extension on the file name? if (!dotstart) { strcpy(InputFileName, fileName); strcat(InputFileName, ".hrc"); if((file1 = fopen(InputFileName, "rb")) != NULL) { fclose(file1); LoadHRCGlobals(InputFileName); printf(" - assuming .HRC\n"); return; } Error("\n Could not open file '%s':\n" "No HRC match.\n", fileName); } else { if((file1 = fopen(fileName, "rb")) != NULL) { // printf("\n"); fclose(file1); if (strcmp(dotstart,".hrc") == 0 || strcmp(dotstart,".HRC") == 0) { LoadHRCGlobals(fileName); return; } } Error("Could not open file '%s':\n",fileName); } } void LoadModelClusters(char *fileName, int **clusterList, int *num_verts, int skelType) { FILE *file1; int dot = '.'; char *dotstart; char InputFileName[256]; dotstart = strrchr(fileName,dot); // Does it already have an extension on the file name? if (!dotstart) { strcpy(InputFileName, fileName); strcat(InputFileName, ".hrc"); if((file1 = fopen(InputFileName, "rb")) != NULL) { fclose(file1); LoadHRCClustered(InputFileName, clusterList, num_verts, skelType); printf(" - assuming .HRC\n"); return; } Error("\n Could not open file '%s':\n" "No HRC match.\n", fileName); } else { if((file1 = fopen(fileName, "rb")) != NULL) { // printf("\n"); fclose(file1); if (strcmp(dotstart,".hrc") == 0 || strcmp(dotstart,".HRC") == 0) { LoadHRCClustered(fileName, clusterList, num_verts, skelType); return; } } Error("Could not open file '%s':\n",fileName); } } void LoadSkeleton(char *fileName, QD_SkeletalJoint_t *jointList, int skelType) { FILE *file1; int dot = '.'; char *dotstart; char InputFileName[256]; dotstart = strrchr(fileName,dot); // Does it already have an extension on the file name? if (!dotstart) { strcpy(InputFileName, fileName); strcat(InputFileName, ".hrc"); if((file1 = fopen(InputFileName, "rb")) != NULL) { fclose(file1); LoadHRCJointList(InputFileName, jointList, skelType); printf(" - assuming .HRC\n"); return; } Error("\n Could not open file '%s':\n" "No HRC.\n", fileName); } else { if((file1 = fopen(fileName, "rb")) != NULL) { // printf("\n"); fclose(file1); if (strcmp(dotstart,".hrc") == 0 || strcmp(dotstart,".HRC") == 0) { LoadHRCJointList(fileName, jointList, skelType); return; } } Error("Could not open file '%s':\n",fileName); } } /* =============== GrabSkeletalFrame =============== */ void GrabSkeletalFrame(char *frame) { char file1[1024]; char *framefile; fmframe_t *fr; framefile = FindFrameFile (frame); sprintf (file1, "%s/%s", cdarchive, framefile); ExpandPathAndArchive (file1); sprintf (file1, "%s/%s",cddir, framefile); printf ("Grabbing Skeletal Frame %s\n", file1); fr = &g_frames[fmheader.num_frames - 1]; // last frame read in LoadSkeleton(file1, fr->joints, g_skelModel.type); } /* =============== GrabModelTransform =============== */ void GrabModelTransform(char *frame) { char file1[1024]; char *framefile; fmframe_t *fr; framefile = FindFrameFile (frame); sprintf (file1, "%s/%s", cdarchive, framefile); ExpandPathAndArchive (file1); sprintf (file1, "%s/%s",cddir, framefile); // printf ("grabbing %s\n", file1); fr = &g_frames[fmheader.num_frames - 1]; // last frame read in LoadModelTransform(file1); } void Cmd_FMCluster() { char file1[1024]; GetScriptToken (false); printf ("---------------------\n"); sprintf (file1, "%s/%s", cdpartial, token); printf ("%s\n", file1); ExpandPathAndArchive (file1); sprintf (file1, "%s/%s", cddir, token); g_skelModel.clustered = -1; LoadModelClusters(file1, (int **)&g_skelModel.clusters, (int *)&g_skelModel.num_verts, g_skelModel.type); g_skelModel.new_num_verts[0] = g_skelModel.num_verts[0]; g_skelModel.clustered = true; } void Cmd_FMSkeleton() { GetScriptToken (false); g_skelModel.type = atoi(token); } void Cmd_FMSkeletalFrame() { while (ScriptTokenAvailable()) { GetScriptToken (false); if (g_skipmodel) { GetScriptToken (false); continue; } if (g_release || g_archive) { fmheader.num_frames = 1; // don't skip the writeout GetScriptToken (false); continue; } H_printf("#define FRAME_%-16s\t%i\n", token, fmheader.num_frames); GrabModelTransform (token); GrabFrame (token); GrabSkeletalFrame (token); // need to add the up and dir points to the frame bounds here // using AddPointToBounds (ptrivert[index_xyz].v, fr->mins, fr->maxs); // then remove fudge in determining scale on frame write out } } static void LoadHRCReferences(char *fileName, fmframe_t *fr) { #define MAX_STACK 64 int i, j, k; vec3d_t curTranslation[MAX_STACK], curRotation[MAX_STACK]; int curCorrespondingJoint[MAX_STACK]; int currentStack, stackSize; double cx, sx, cy, sy, cz, sz; double rx, ry, rz; double x2, y2, z2; char stripped[SKELETAL_NAME_MAX]; Placement_d_t *placement; int refnum; TK_OpenSource(fileName); TK_FetchRequire(TK_HRCH); TK_FetchRequire(TK_COLON); TK_FetchRequire(TK_SOFTIMAGE); if (RefPointNum <= 0) { // There were no labels indicated in the QDT, so use the hard-coded stuff. refnum = numReferences[g_skelModel.references]; } else { refnum = RefPointNum; } for(k = 0; k < refnum; ++k) { currentStack = 0; // Load the root to get translation and initial rotation // TK_Beyond(TK_MODEL); while(TK_Search(TK_NAME) != TK_EOF) { TK_Require(TK_STRING); StripTrailingDigits(tk_String, stripped); if (RefPointNum == 0) { // Hard coded refpoint labels if(stricmp(stripped, referenceRootNames[referenceRootNameOffsets[g_skelModel.references]+k]) == 0) { break; } } else { // labels indicated by the QDT if(stricmp(stripped, RefPointNameList[k]) == 0) { break; } } } if(tk_Token == TK_EOF) { if (RefPointNum == 0) { // Hard coded refpoint labels Error("Bone Chain Root: %s not found\n", referenceRootNames[referenceRootNameOffsets[g_skelModel.references]]); } else { // labels indicated by the QDT Error("Bone Chain Root: %s not found\n", RefPointNameList[k]); } return; } // TK_Beyond(TK_SCALING); // ParseVec3d(curScale[currentStack]); TK_Beyond(TK_ROTATION); ParseRotation3d(curRotation[currentStack]); TK_Beyond(TK_TRANSLATION); ParseVec3d(curTranslation[currentStack]); // account for global model translation curTranslation[currentStack][1] += g_skelModel.translation[0]; curTranslation[currentStack][2] += g_skelModel.translation[1]; curTranslation[currentStack][0] += g_skelModel.translation[2]; curCorrespondingJoint[currentStack] = -1; // rjr - this one not needed, as there is also a stack increment 20 lines below??? // ++currentStack; // Load the joint to get orientation TK_Beyond(TK_MODEL); // TK_Beyond(TK_SCALING); // ParseVec3d(curScale[currentStack]); TK_Beyond(TK_ROTATION); ParseRotation3d(curRotation[currentStack]); // TK_Beyond(TK_TRANSLATION); // ParseVec3d(curTranslation[currentStack]); fr->references[k].placement.origin[1] = 0.0; fr->references[k].placement.origin[2] = 0.0; fr->references[k].placement.origin[0] = 0.0; fr->references[k].placement.direction[1] = 20.0; fr->references[k].placement.direction[2] = 0.0; fr->references[k].placement.direction[0] = 0.0; fr->references[k].placement.up[1] = 0.0; fr->references[k].placement.up[2] = 20.0; fr->references[k].placement.up[0] = 0.0; curCorrespondingJoint[currentStack] = k; ++currentStack; stackSize = currentStack; for(i = stackSize - 1; i >= 0; --i) { rx = curRotation[i][0]*ANGLE_TO_RAD; ry = curRotation[i][1]*ANGLE_TO_RAD; rz = curRotation[i][2]*ANGLE_TO_RAD; cx = cos(rx); sx = sin(rx); cy = cos(ry); sy = sin(ry); cz = cos(rz); sz = sin(rz); for(j = i; j < stackSize; ++j) { if(curCorrespondingJoint[j] != -1) { placement = &fr->references[curCorrespondingJoint[j]].placement; // y-axis rotation for origin x2 = placement->origin[0]*cy+placement->origin[2]*sy; z2 = -placement->origin[0]*sy+placement->origin[2]*cy; placement->origin[0] = x2; placement->origin[2] = z2; // y-axis rotation for direction x2 = placement->direction[0]*cy+placement->direction[2]*sy; z2 = -placement->direction[0]*sy+placement->direction[2]*cy; placement->direction[0] = x2; placement->direction[2] = z2; // y-axis rotation for up x2 = placement->up[0]*cy+placement->up[2]*sy; z2 = -placement->up[0]*sy+placement->up[2]*cy; placement->up[0] = x2; placement->up[2] = z2; // z-axis rotation for origin x2 = placement->origin[0]*cz-placement->origin[1]*sz; y2 = placement->origin[0]*sz+placement->origin[1]*cz; placement->origin[0] = x2; placement->origin[1] = y2; // z-axis rotation for direction x2 = placement->direction[0]*cz-placement->direction[1]*sz; y2 = placement->direction[0]*sz+placement->direction[1]*cz; placement->direction[0] = x2; placement->direction[1] = y2; // z-axis rotation for up x2 = placement->up[0]*cz-placement->up[1]*sz; y2 = placement->up[0]*sz+placement->up[1]*cz; placement->up[0] = x2; placement->up[1] = y2; // x-axis rotation for origin y2 = placement->origin[1]*cx-placement->origin[2]*sx; z2 = placement->origin[1]*sx+placement->origin[2]*cx; placement->origin[1] = y2; placement->origin[2] = z2; // x-axis rotation for direction vector y2 = placement->direction[1]*cx-placement->direction[2]*sx; z2 = placement->direction[1]*sx+placement->direction[2]*cx; placement->direction[1] = y2; placement->direction[2] = z2; // x-axis rotation for up vector y2 = placement->up[1]*cx-placement->up[2]*sx; z2 = placement->up[1]*sx+placement->up[2]*cx; placement->up[1] = y2; placement->up[2] = z2; // translate origin placement->origin[0] += curTranslation[i][0]; placement->origin[1] += curTranslation[i][1]; placement->origin[2] += curTranslation[i][2]; // translate back to local coord placement->direction[0] += curTranslation[i][0]; placement->direction[1] += curTranslation[i][1]; placement->direction[2] += curTranslation[i][2]; // translate back to local coord placement->up[0] += curTranslation[i][0]; placement->up[1] += curTranslation[i][1]; placement->up[2] += curTranslation[i][2]; } } } printf("%f, %f, %f\n", placement->origin[0], placement->origin[1], placement->origin[2]); } printf("\n"); } void Cmd_FMReferenced() { int i; GetScriptToken (false); g_skelModel.references = atoi(token); // Guess what? Now, we now want a list of strings to look for here instead of a hard-coded list for (i=0; i 0) { printf("Searching for %d different reference points.\n", RefPointNum); } else { printf("Using built-in reference points.\n"); } } void LoadReferences(char *fileName, fmframe_t *fr) { FILE *file1; int dot = '.'; char *dotstart; char InputFileName[256]; dotstart = strrchr(fileName,dot); // Does it already have an extension on the file name? if (!dotstart) { strcpy(InputFileName, fileName); strcat(InputFileName, ".hrc"); if((file1 = fopen(InputFileName, "rb")) != NULL) { fclose(file1); LoadHRCReferences(InputFileName, fr); printf(" - assuming .HRC\n"); return; } Error("\n Could not open file '%s':\n" "No HRC.\n", fileName); } else { if((file1 = fopen(fileName, "rb")) != NULL) { printf("\n"); fclose(file1); if (strcmp(dotstart,".hrc") == 0 || strcmp(dotstart,".HRC") == 0) { LoadHRCReferences(fileName, fr); return; } } Error("Could not open file '%s':\n",fileName); } } void GrabReferencedFrame(char *frame) { char file1[1024]; char *framefile; fmframe_t *fr; framefile = FindFrameFile (frame); sprintf (file1, "%s/%s", cdarchive, framefile); ExpandPathAndArchive (file1); sprintf (file1, "%s/%s",cddir, framefile); printf ("Grabbing Referenced %s\n", file1); fr = &g_frames[fmheader.num_frames - 1]; // last frame read in LoadReferences(file1, fr); }