X-Git-Url: http://de.git.xonotic.org/?p=xonotic%2Fnetradiant.git;a=blobdiff_plain;f=radiant%2Fbrush_primit.cpp;h=a7bae5449a8dc43e8fc642c25f2e5c08dd64c17a;hp=4ea73c0356a7572e168bc12dec3381d1044f4fbe;hb=6a7dedc09f1a4b72077e0012bf0499a0005973d6;hpb=7fc621fc78d0e040dc2c12f38dc53dd9048215dc diff --git a/radiant/brush_primit.cpp b/radiant/brush_primit.cpp index 4ea73c03..a7bae544 100644 --- a/radiant/brush_primit.cpp +++ b/radiant/brush_primit.cpp @@ -20,6 +20,7 @@ */ #include "brush_primit.h" +#include "globaldefs.h" #include "debugging/debugging.h" @@ -43,51 +44,51 @@ This will be one of three axis-aligned spaces, depending on the surface normal. NOTE: could also be done by swapping values. */ -void Normal_GetTransform( const Vector3& normal, Matrix4& transform ){ - switch ( projectionaxis_for_normal( normal ) ) - { - case eProjectionAxisZ: - transform[0] = 1; - transform[1] = 0; - transform[2] = 0; - - transform[4] = 0; - transform[5] = 1; - transform[6] = 0; - - transform[8] = 0; - transform[9] = 0; - transform[10] = 1; - break; - case eProjectionAxisY: - transform[0] = 1; - transform[1] = 0; - transform[2] = 0; - - transform[4] = 0; - transform[5] = 0; - transform[6] = -1; - - transform[8] = 0; - transform[9] = 1; - transform[10] = 0; - break; - case eProjectionAxisX: - transform[0] = 0; - transform[1] = 0; - transform[2] = 1; - - transform[4] = 1; - transform[5] = 0; - transform[6] = 0; - - transform[8] = 0; - transform[9] = 1; - transform[10] = 0; - break; - } - transform[3] = transform[7] = transform[11] = transform[12] = transform[13] = transform[14] = 0; - transform[15] = 1; +void Normal_GetTransform(const Vector3 &normal, Matrix4 &transform) +{ + switch (projectionaxis_for_normal(normal)) { + case eProjectionAxisZ: + transform[0] = 1; + transform[1] = 0; + transform[2] = 0; + + transform[4] = 0; + transform[5] = 1; + transform[6] = 0; + + transform[8] = 0; + transform[9] = 0; + transform[10] = 1; + break; + case eProjectionAxisY: + transform[0] = 1; + transform[1] = 0; + transform[2] = 0; + + transform[4] = 0; + transform[5] = 0; + transform[6] = -1; + + transform[8] = 0; + transform[9] = 1; + transform[10] = 0; + break; + case eProjectionAxisX: + transform[0] = 0; + transform[1] = 0; + transform[2] = 1; + + transform[4] = 1; + transform[5] = 0; + transform[6] = 0; + + transform[8] = 0; + transform[9] = 1; + transform[10] = 0; + break; + } + transform[3] = transform[7] = transform[11] = transform[12] = transform[13] = transform[14] = 0; + transform[15] = 1; } /*! @@ -95,313 +96,325 @@ void Normal_GetTransform( const Vector3& normal, Matrix4& transform ){ Transforms constructed from quake's texdef format are (-shift)*(1/scale)*(-rotate) with x translation sign flipped. This would really make more sense if it was inverseof(shift*rotate*scale).. oh well. */ -inline void Texdef_toTransform( const texdef_t& texdef, float width, float height, Matrix4& transform ){ - double inverse_scale[2]; - - // transform to texdef shift/scale/rotate - inverse_scale[0] = 1 / ( texdef.scale[0] * width ); - inverse_scale[1] = 1 / ( texdef.scale[1] * -height ); - transform[12] = texdef.shift[0] / width; - transform[13] = -texdef.shift[1] / -height; - double c = cos( degrees_to_radians( -texdef.rotate ) ); - double s = sin( degrees_to_radians( -texdef.rotate ) ); - transform[0] = static_cast( c * inverse_scale[0] ); - transform[1] = static_cast( s * inverse_scale[1] ); - transform[4] = static_cast( -s * inverse_scale[0] ); - transform[5] = static_cast( c * inverse_scale[1] ); - transform[2] = transform[3] = transform[6] = transform[7] = transform[8] = transform[9] = transform[11] = transform[14] = 0; - transform[10] = transform[15] = 1; -} - -inline void BPTexdef_toTransform( const brushprimit_texdef_t& bp_texdef, Matrix4& transform ){ - transform = g_matrix4_identity; - transform.xx() = bp_texdef.coords[0][0]; - transform.yx() = bp_texdef.coords[0][1]; - transform.tx() = bp_texdef.coords[0][2]; - transform.xy() = bp_texdef.coords[1][0]; - transform.yy() = bp_texdef.coords[1][1]; - transform.ty() = bp_texdef.coords[1][2]; -} - -inline void Texdef_toTransform( const TextureProjection& projection, float width, float height, Matrix4& transform ){ - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - BPTexdef_toTransform( projection.m_brushprimit_texdef, transform ); - } - else - { - Texdef_toTransform( projection.m_texdef, width, height, transform ); - } +inline void Texdef_toTransform(const texdef_t &texdef, float width, float height, Matrix4 &transform) +{ + double inverse_scale[2]; + + // transform to texdef shift/scale/rotate + inverse_scale[0] = 1 / (texdef.scale[0] * width); + inverse_scale[1] = 1 / (texdef.scale[1] * -height); + transform[12] = texdef.shift[0] / width; + transform[13] = -texdef.shift[1] / -height; + double c = cos(degrees_to_radians(-texdef.rotate)); + double s = sin(degrees_to_radians(-texdef.rotate)); + transform[0] = static_cast( c * inverse_scale[0] ); + transform[1] = static_cast( s * inverse_scale[1] ); + transform[4] = static_cast( -s * inverse_scale[0] ); + transform[5] = static_cast( c * inverse_scale[1] ); + transform[2] = transform[3] = transform[6] = transform[7] = transform[8] = transform[9] = transform[11] = transform[14] = 0; + transform[10] = transform[15] = 1; +} + +inline void BPTexdef_toTransform(const brushprimit_texdef_t &bp_texdef, Matrix4 &transform) +{ + transform = g_matrix4_identity; + transform.xx() = bp_texdef.coords[0][0]; + transform.yx() = bp_texdef.coords[0][1]; + transform.tx() = bp_texdef.coords[0][2]; + transform.xy() = bp_texdef.coords[1][0]; + transform.yy() = bp_texdef.coords[1][1]; + transform.ty() = bp_texdef.coords[1][2]; +} + +inline void Texdef_toTransform(const TextureProjection &projection, float width, float height, Matrix4 &transform) +{ + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + BPTexdef_toTransform(projection.m_brushprimit_texdef, transform); + } else { + Texdef_toTransform(projection.m_texdef, width, height, transform); + } } // handles degenerate cases, just in case library atan2 doesn't -inline double arctangent_yx( double y, double x ){ - if ( fabs( x ) > 1.0E-6 ) { - return atan2( y, x ); - } - else if ( y > 0 ) { - return c_half_pi; - } - else - { - return -c_half_pi; - } -} - -inline void Texdef_fromTransform( texdef_t& texdef, float width, float height, const Matrix4& transform ){ - texdef.scale[0] = static_cast( ( 1.0 / vector2_length( Vector2( transform[0], transform[4] ) ) ) / width ); - texdef.scale[1] = static_cast( ( 1.0 / vector2_length( Vector2( transform[1], transform[5] ) ) ) / height ); - - texdef.rotate = static_cast( -radians_to_degrees( arctangent_yx( -transform[4], transform[0] ) ) ); - - if ( texdef.rotate == -180.0f ) { - texdef.rotate = 180.0f; - } - - texdef.shift[0] = transform[12] * width; - texdef.shift[1] = transform[13] * height; - - // If the 2d cross-product of the x and y axes is positive, one of the axes has a negative scale. - if ( vector2_cross( Vector2( transform[0], transform[4] ), Vector2( transform[1], transform[5] ) ) > 0 ) { - if ( texdef.rotate >= 180.0f ) { - texdef.rotate -= 180.0f; - texdef.scale[0] = -texdef.scale[0]; - } - else - { - texdef.scale[1] = -texdef.scale[1]; - } - } - //globalOutputStream() << "fromTransform: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n"; -} - -inline void BPTexdef_fromTransform( brushprimit_texdef_t& bp_texdef, const Matrix4& transform ){ - bp_texdef.coords[0][0] = transform.xx(); - bp_texdef.coords[0][1] = transform.yx(); - bp_texdef.coords[0][2] = transform.tx(); - bp_texdef.coords[1][0] = transform.xy(); - bp_texdef.coords[1][1] = transform.yy(); - bp_texdef.coords[1][2] = transform.ty(); -} - -inline void Texdef_fromTransform( TextureProjection& projection, float width, float height, const Matrix4& transform ){ - ASSERT_MESSAGE( ( transform[0] != 0 || transform[4] != 0 ) - && ( transform[1] != 0 || transform[5] != 0 ), "invalid texture matrix" ); - - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - BPTexdef_fromTransform( projection.m_brushprimit_texdef, transform ); - } - else - { - Texdef_fromTransform( projection.m_texdef, width, height, transform ); - } -} - -inline void Texdef_normalise( texdef_t& texdef, float width, float height ){ - // it may be useful to also normalise the rotation here, if this function is used elsewhere. - texdef.shift[0] = float_mod( texdef.shift[0], width ); - texdef.shift[1] = float_mod( texdef.shift[1], height ); - //globalOutputStream() << "normalise: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n"; -} - -inline void BPTexdef_normalise( brushprimit_texdef_t& bp_texdef, float width, float height ){ - bp_texdef.coords[0][2] = float_mod( bp_texdef.coords[0][2], width ); - bp_texdef.coords[1][2] = float_mod( bp_texdef.coords[1][2], height ); +inline double arctangent_yx(double y, double x) +{ + if (fabs(x) > 1.0E-6) { + return atan2(y, x); + } else if (y > 0) { + return c_half_pi; + } else { + return -c_half_pi; + } +} + +inline void Texdef_fromTransform(texdef_t &texdef, float width, float height, const Matrix4 &transform) +{ + texdef.scale[0] = static_cast((1.0 / vector2_length(Vector2(transform[0], transform[4]))) / width ); + texdef.scale[1] = static_cast((1.0 / vector2_length(Vector2(transform[1], transform[5]))) / height ); + + texdef.rotate = static_cast( -radians_to_degrees(arctangent_yx(-transform[4], transform[0]))); + + if (texdef.rotate == -180.0f) { + texdef.rotate = 180.0f; + } + + texdef.shift[0] = transform[12] * width; + texdef.shift[1] = transform[13] * height; + + // If the 2d cross-product of the x and y axes is positive, one of the axes has a negative scale. + if (vector2_cross(Vector2(transform[0], transform[4]), Vector2(transform[1], transform[5])) > 0) { + if (texdef.rotate >= 180.0f) { + texdef.rotate -= 180.0f; + texdef.scale[0] = -texdef.scale[0]; + } else { + texdef.scale[1] = -texdef.scale[1]; + } + } + //globalOutputStream() << "fromTransform: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n"; +} + +inline void BPTexdef_fromTransform(brushprimit_texdef_t &bp_texdef, const Matrix4 &transform) +{ + bp_texdef.coords[0][0] = transform.xx(); + bp_texdef.coords[0][1] = transform.yx(); + bp_texdef.coords[0][2] = transform.tx(); + bp_texdef.coords[1][0] = transform.xy(); + bp_texdef.coords[1][1] = transform.yy(); + bp_texdef.coords[1][2] = transform.ty(); +} + +inline void Texdef_fromTransform(TextureProjection &projection, float width, float height, const Matrix4 &transform) +{ + ASSERT_MESSAGE((transform[0] != 0 || transform[4] != 0) + && (transform[1] != 0 || transform[5] != 0), "invalid texture matrix"); + + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + BPTexdef_fromTransform(projection.m_brushprimit_texdef, transform); + } else { + Texdef_fromTransform(projection.m_texdef, width, height, transform); + } +} + +inline void Texdef_normalise(texdef_t &texdef, float width, float height) +{ + // it may be useful to also normalise the rotation here, if this function is used elsewhere. + texdef.shift[0] = float_mod(texdef.shift[0], width); + texdef.shift[1] = float_mod(texdef.shift[1], height); + //globalOutputStream() << "normalise: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n"; +} + +inline void BPTexdef_normalise(brushprimit_texdef_t &bp_texdef, float width, float height) +{ + bp_texdef.coords[0][2] = float_mod(bp_texdef.coords[0][2], width); + bp_texdef.coords[1][2] = float_mod(bp_texdef.coords[1][2], height); } /// \brief Normalise \p projection for a given texture \p width and \p height. /// /// All texture-projection translation (shift) values are congruent modulo the dimensions of the texture. /// This function normalises shift values to the smallest positive congruent values. -void Texdef_normalise( TextureProjection& projection, float width, float height ){ - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - BPTexdef_normalise( projection.m_brushprimit_texdef, width, height ); - } - else - { - Texdef_normalise( projection.m_texdef, width, height ); - } -} - -void ComputeAxisBase( const Vector3& normal, Vector3& texS, Vector3& texT ); - -inline void DebugAxisBase( const Vector3& normal ){ - Vector3 x, y; - ComputeAxisBase( normal, x, y ); - globalOutputStream() << "BP debug: " << x << y << normal << "\n"; -} - -void Texdef_basisForNormal( const TextureProjection& projection, const Vector3& normal, Matrix4& basis ){ - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - basis = g_matrix4_identity; - ComputeAxisBase( normal, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ); - vector4_to_vector3( basis.z() ) = normal; - matrix4_transpose( basis ); - //DebugAxisBase(normal); - } - else if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE ) { - basis = g_matrix4_identity; - vector4_to_vector3( basis.x() ) = projection.m_basis_s; - vector4_to_vector3( basis.y() ) = vector3_negated( projection.m_basis_t ); - vector4_to_vector3( basis.z() ) = vector3_normalised( vector3_cross( vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ) ); - matrix4_multiply_by_matrix4( basis, matrix4_rotation_for_z_degrees( -projection.m_texdef.rotate ) ); - //globalOutputStream() << "debug: " << projection.m_basis_s << projection.m_basis_t << normal << "\n"; - matrix4_transpose( basis ); - } - else - { - Normal_GetTransform( normal, basis ); - } -} - -void Texdef_EmitTextureCoordinates( const TextureProjection& projection, std::size_t width, std::size_t height, Winding& w, const Vector3& normal, const Matrix4& localToWorld ){ - if ( w.numpoints < 3 ) { - return; - } - //globalOutputStream() << "normal: " << normal << "\n"; - - Matrix4 local2tex; - Texdef_toTransform( projection, (float)width, (float)height, local2tex ); - //globalOutputStream() << "texdef: " << static_cast(local2tex.x()) << static_cast(local2tex.y()) << "\n"; +void Texdef_normalise(TextureProjection &projection, float width, float height) +{ + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + BPTexdef_normalise(projection.m_brushprimit_texdef, width, height); + } else { + Texdef_normalise(projection.m_texdef, width, height); + } +} + +void ComputeAxisBase(const Vector3 &normal, Vector3 &texS, Vector3 &texT); + +inline void DebugAxisBase(const Vector3 &normal) +{ + Vector3 x, y; + ComputeAxisBase(normal, x, y); + globalOutputStream() << "BP debug: " << x << y << normal << "\n"; +} + +void Texdef_basisForNormal(const TextureProjection &projection, const Vector3 &normal, Matrix4 &basis) +{ + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + basis = g_matrix4_identity; + ComputeAxisBase(normal, vector4_to_vector3(basis.x()), vector4_to_vector3(basis.y())); + vector4_to_vector3(basis.z()) = normal; + matrix4_transpose(basis); + //DebugAxisBase(normal); + } else if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE) { + basis = g_matrix4_identity; + vector4_to_vector3(basis.x()) = projection.m_basis_s; + vector4_to_vector3(basis.y()) = vector3_negated(projection.m_basis_t); + vector4_to_vector3(basis.z()) = vector3_normalised( + vector3_cross(vector4_to_vector3(basis.x()), vector4_to_vector3(basis.y()))); + matrix4_multiply_by_matrix4(basis, matrix4_rotation_for_z_degrees(-projection.m_texdef.rotate)); + //globalOutputStream() << "debug: " << projection.m_basis_s << projection.m_basis_t << normal << "\n"; + matrix4_transpose(basis); + } else { + Normal_GetTransform(normal, basis); + } +} + +void +Texdef_EmitTextureCoordinates(const TextureProjection &projection, std::size_t width, std::size_t height, Winding &w, + const Vector3 &normal, const Matrix4 &localToWorld) +{ + if (w.numpoints < 3) { + return; + } + //globalOutputStream() << "normal: " << normal << "\n"; + + Matrix4 local2tex; + Texdef_toTransform(projection, (float) width, (float) height, local2tex); + //globalOutputStream() << "texdef: " << static_cast(local2tex.x()) << static_cast(local2tex.y()) << "\n"; #if 0 - { - TextureProjection tmp; - Texdef_fromTransform( tmp, (float)width, (float)height, local2tex ); - Matrix4 tmpTransform; - Texdef_toTransform( tmp, (float)width, (float)height, tmpTransform ); - ASSERT_MESSAGE( matrix4_equal_epsilon( local2tex, tmpTransform, 0.0001f ), "bleh" ); - } + { + TextureProjection tmp; + Texdef_fromTransform( tmp, (float)width, (float)height, local2tex ); + Matrix4 tmpTransform; + Texdef_toTransform( tmp, (float)width, (float)height, tmpTransform ); + ASSERT_MESSAGE( matrix4_equal_epsilon( local2tex, tmpTransform, 0.0001f ), "bleh" ); + } #endif - { - Matrix4 xyz2st; - // we don't care if it's not normalised... - Texdef_basisForNormal( projection, matrix4_transformed_direction( localToWorld, normal ), xyz2st ); - //globalOutputStream() << "basis: " << static_cast(xyz2st.x()) << static_cast(xyz2st.y()) << static_cast(xyz2st.z()) << "\n"; - matrix4_multiply_by_matrix4( local2tex, xyz2st ); - } + { + Matrix4 xyz2st; + // we don't care if it's not normalised... + Texdef_basisForNormal(projection, matrix4_transformed_direction(localToWorld, normal), xyz2st); + //globalOutputStream() << "basis: " << static_cast(xyz2st.x()) << static_cast(xyz2st.y()) << static_cast(xyz2st.z()) << "\n"; + matrix4_multiply_by_matrix4(local2tex, xyz2st); + } - Vector3 tangent( vector3_normalised( vector4_to_vector3( matrix4_transposed( local2tex ).x() ) ) ); - Vector3 bitangent( vector3_normalised( vector4_to_vector3( matrix4_transposed( local2tex ).y() ) ) ); + Vector3 tangent(vector3_normalised(vector4_to_vector3(matrix4_transposed(local2tex).x()))); + Vector3 bitangent(vector3_normalised(vector4_to_vector3(matrix4_transposed(local2tex).y()))); - matrix4_multiply_by_matrix4( local2tex, localToWorld ); + matrix4_multiply_by_matrix4(local2tex, localToWorld); - for ( Winding::iterator i = w.begin(); i != w.end(); ++i ) - { - Vector3 texcoord = matrix4_transformed_point( local2tex, ( *i ).vertex ); - ( *i ).texcoord[0] = texcoord[0]; - ( *i ).texcoord[1] = texcoord[1]; + for (Winding::iterator i = w.begin(); i != w.end(); ++i) { + Vector3 texcoord = matrix4_transformed_point(local2tex, (*i).vertex); + (*i).texcoord[0] = texcoord[0]; + (*i).texcoord[1] = texcoord[1]; - ( *i ).tangent = tangent; - ( *i ).bitangent = bitangent; - } + (*i).tangent = tangent; + (*i).bitangent = bitangent; + } } /*! \brief Provides the axis-base of the texture ST space for this normal, as they had been transformed to world XYZ space. */ -void TextureAxisFromNormal( const Vector3& normal, Vector3& s, Vector3& t ){ - switch ( projectionaxis_for_normal( normal ) ) - { - case eProjectionAxisZ: - s[0] = 1; - s[1] = 0; - s[2] = 0; +void TextureAxisFromNormal(const Vector3 &normal, Vector3 &s, Vector3 &t) +{ + switch (projectionaxis_for_normal(normal)) { + case eProjectionAxisZ: + s[0] = 1; + s[1] = 0; + s[2] = 0; - t[0] = 0; - t[1] = -1; - t[2] = 0; + t[0] = 0; + t[1] = -1; + t[2] = 0; - break; - case eProjectionAxisY: - s[0] = 1; - s[1] = 0; - s[2] = 0; + break; + case eProjectionAxisY: + s[0] = 1; + s[1] = 0; + s[2] = 0; - t[0] = 0; - t[1] = 0; - t[2] = -1; + t[0] = 0; + t[1] = 0; + t[2] = -1; - break; - case eProjectionAxisX: - s[0] = 0; - s[1] = 1; - s[2] = 0; + break; + case eProjectionAxisX: + s[0] = 0; + s[1] = 1; + s[2] = 0; - t[0] = 0; - t[1] = 0; - t[2] = -1; + t[0] = 0; + t[1] = 0; + t[2] = -1; - break; - } + break; + } } -void Texdef_Assign( texdef_t& td, const texdef_t& other ){ - td = other; +void Texdef_Assign(texdef_t &td, const texdef_t &other) +{ + td = other; } -void Texdef_Shift( texdef_t& td, float s, float t ){ - td.shift[0] += s; - td.shift[1] += t; +void Texdef_Shift(texdef_t &td, float s, float t) +{ + td.shift[0] += s; + td.shift[1] += t; } -void Texdef_Scale( texdef_t& td, float s, float t ){ - td.scale[0] += s; - td.scale[1] += t; +void Texdef_Scale(texdef_t &td, float s, float t) +{ + td.scale[0] += s; + td.scale[1] += t; } -void Texdef_Rotate( texdef_t& td, float angle ){ - td.rotate += angle; - td.rotate = static_cast( float_to_integer( td.rotate ) % 360 ); +void Texdef_Rotate(texdef_t &td, float angle) +{ + td.rotate += angle; + td.rotate = static_cast( float_to_integer(td.rotate) % 360 ); } // NOTE: added these from Ritual's Q3Radiant -void ClearBounds( Vector3& mins, Vector3& maxs ){ - mins[0] = mins[1] = mins[2] = 99999; - maxs[0] = maxs[1] = maxs[2] = -99999; +void ClearBounds(Vector3 &mins, Vector3 &maxs) +{ + mins[0] = mins[1] = mins[2] = 99999; + maxs[0] = maxs[1] = maxs[2] = -99999; } -void AddPointToBounds( const Vector3& v, Vector3& mins, Vector3& maxs ){ - int i; - float val; +void AddPointToBounds(const Vector3 &v, Vector3 &mins, Vector3 &maxs) +{ + int i; + float val; - for ( i = 0 ; i < 3 ; i++ ) - { - val = v[i]; - if ( val < mins[i] ) { - mins[i] = val; - } - if ( val > maxs[i] ) { - maxs[i] = val; - } - } + for (i = 0; i < 3; i++) { + val = v[i]; + if (val < mins[i]) { + mins[i] = val; + } + if (val > maxs[i]) { + maxs[i] = val; + } + } } template -inline BasicVector3 vector3_inverse( const BasicVector3& self ){ - return BasicVector3( - Element( 1.0 / self.x() ), - Element( 1.0 / self.y() ), - Element( 1.0 / self.z() ) - ); +inline BasicVector3 vector3_inverse(const BasicVector3 &self) +{ + return BasicVector3( + Element(1.0 / self.x()), + Element(1.0 / self.y()), + Element(1.0 / self.z()) + ); } // low level functions .. put in mathlib? -#define BPMatCopy( a,b ) {b[0][0] = a[0][0]; b[0][1] = a[0][1]; b[0][2] = a[0][2]; b[1][0] = a[1][0]; b[1][1] = a[1][1]; b[1][2] = a[1][2]; } +#define BPMatCopy(a, b) {b[0][0] = a[0][0]; b[0][1] = a[0][1]; b[0][2] = a[0][2]; b[1][0] = a[1][0]; b[1][1] = a[1][1]; b[1][2] = a[1][2]; } // apply a scale transformation to the BP matrix -#define BPMatScale( m,sS,sT ) {m[0][0] *= sS; m[1][0] *= sS; m[0][1] *= sT; m[1][1] *= sT; } +#define BPMatScale(m, sS, sT) {m[0][0] *= sS; m[1][0] *= sS; m[0][1] *= sT; m[1][1] *= sT; } // apply a translation transformation to a BP matrix -#define BPMatTranslate( m,s,t ) {m[0][2] += m[0][0] * s + m[0][1] * t; m[1][2] += m[1][0] * s + m[1][1] * t; } +#define BPMatTranslate(m, s, t) {m[0][2] += m[0][0] * s + m[0][1] * t; m[1][2] += m[1][0] * s + m[1][1] * t; } + // 2D homogeneous matrix product C = A*B -void BPMatMul( float A[2][3], float B[2][3], float C[2][3] ); +void BPMatMul(float A[2][3], float B[2][3], float C[2][3]); + // apply a rotation (degrees) -void BPMatRotate( float A[2][3], float theta ); -#ifdef _DEBUG -void BPMatDump( float A[2][3] ); +void BPMatRotate(float A[2][3], float theta); + +#if GDEF_DEBUG + +void BPMatDump(float A[2][3]); + #endif -#ifdef _DEBUG +#if GDEF_DEBUG //#define DBG_BP #endif @@ -412,9 +425,10 @@ float g_texdef_default_scale; // compute a determinant using Sarrus rule //++timo "inline" this with a macro // NOTE : the three vectors are understood as columns of the matrix -inline float SarrusDet( const Vector3& a, const Vector3& b, const Vector3& c ){ - return a[0] * b[1] * c[2] + b[0] * c[1] * a[2] + c[0] * a[1] * b[2] - - c[0] * b[1] * a[2] - a[1] * b[0] * c[2] - a[0] * b[2] * c[1]; +inline float SarrusDet(const Vector3 &a, const Vector3 &b, const Vector3 &c) +{ + return a[0] * b[1] * c[2] + b[0] * c[1] * a[2] + c[0] * a[1] * b[2] + - c[0] * b[1] * a[2] - a[1] * b[0] * c[2] - a[0] * b[2] * c[1]; } // in many case we know three points A,B,C in two axis base B1 and B2 @@ -424,205 +438,210 @@ inline float SarrusDet( const Vector3& a, const Vector3& b, const Vector3& c ){ // NOTE: the third coord of the A,B,C point is ignored // NOTE: see the commented out section to fill M and D //++timo TODO: update the other members to use this when possible -void MatrixForPoints( Vector3 M[3], Vector3 D[2], brushprimit_texdef_t *T ){ +void MatrixForPoints(Vector3 M[3], Vector3 D[2], brushprimit_texdef_t *T) +{ // Vector3 M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way) - float det; + float det; // Vector3 D[2]; - M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; + M[2][0] = 1.0f; + M[2][1] = 1.0f; + M[2][2] = 1.0f; #if 0 - // fill the data vectors - M[0][0] = A2[0]; M[0][1] = B2[0]; M[0][2] = C2[0]; - M[1][0] = A2[1]; M[1][1] = B2[1]; M[1][2] = C2[1]; - M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; - D[0][0] = A1[0]; - D[0][1] = B1[0]; - D[0][2] = C1[0]; - D[1][0] = A1[1]; - D[1][1] = B1[1]; - D[1][2] = C1[1]; + // fill the data vectors + M[0][0] = A2[0]; M[0][1] = B2[0]; M[0][2] = C2[0]; + M[1][0] = A2[1]; M[1][1] = B2[1]; M[1][2] = C2[1]; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; + D[0][0] = A1[0]; + D[0][1] = B1[0]; + D[0][2] = C1[0]; + D[1][0] = A1[1]; + D[1][1] = B1[1]; + D[1][2] = C1[1]; #endif - // solve - det = SarrusDet( M[0], M[1], M[2] ); - T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; - T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; - T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; - T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; - T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; - T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; + // solve + det = SarrusDet(M[0], M[1], M[2]); + T->coords[0][0] = SarrusDet(D[0], M[1], M[2]) / det; + T->coords[0][1] = SarrusDet(M[0], D[0], M[2]) / det; + T->coords[0][2] = SarrusDet(M[0], M[1], D[0]) / det; + T->coords[1][0] = SarrusDet(D[1], M[1], M[2]) / det; + T->coords[1][1] = SarrusDet(M[0], D[1], M[2]) / det; + T->coords[1][2] = SarrusDet(M[0], M[1], D[1]) / det; } //++timo replace everywhere texX by texS etc. ( ----> and in q3map !) // NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME ! // WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0 // rotation by (0,RotY,RotZ) assigns X to normal -void ComputeAxisBase( const Vector3& normal, Vector3& texS, Vector3& texT ){ +void ComputeAxisBase(const Vector3 &normal, Vector3 &texS, Vector3 &texT) +{ #if 1 - const Vector3 up( 0, 0, 1 ); - const Vector3 down( 0, 0, -1 ); - - if ( vector3_equal_epsilon( normal, up, float(1e-6) ) ) { - texS = Vector3( 0, 1, 0 ); - texT = Vector3( 1, 0, 0 ); - } - else if ( vector3_equal_epsilon( normal, down, float(1e-6) ) ) { - texS = Vector3( 0, 1, 0 ); - texT = Vector3( -1, 0, 0 ); - } - else - { - texS = vector3_normalised( vector3_cross( normal, up ) ); - texT = vector3_normalised( vector3_cross( normal, texS ) ); - vector3_negate( texS ); - } + const Vector3 up(0, 0, 1); + const Vector3 down(0, 0, -1); + + if (vector3_equal_epsilon(normal, up, float(1e-6))) { + texS = Vector3(0, 1, 0); + texT = Vector3(1, 0, 0); + } else if (vector3_equal_epsilon(normal, down, float(1e-6))) { + texS = Vector3(0, 1, 0); + texT = Vector3(-1, 0, 0); + } else { + texS = vector3_normalised(vector3_cross(normal, up)); + texT = vector3_normalised(vector3_cross(normal, texS)); + vector3_negate(texS); + } #else - float RotY,RotZ; - // do some cleaning - /* - if (fabs(normal[0])<1e-6) - normal[0]=0.0f; - if (fabs(normal[1])<1e-6) - normal[1]=0.0f; - if (fabs(normal[2])<1e-6) - normal[2]=0.0f; - */ - RotY = -atan2( normal[2],sqrt( normal[1] * normal[1] + normal[0] * normal[0] ) ); - RotZ = atan2( normal[1],normal[0] ); - // rotate (0,1,0) and (0,0,1) to compute texS and texT - texS[0] = -sin( RotZ ); - texS[1] = cos( RotZ ); - texS[2] = 0; - // the texT vector is along -Z ( T texture coorinates axis ) - texT[0] = -sin( RotY ) * cos( RotZ ); - texT[1] = -sin( RotY ) * sin( RotZ ); - texT[2] = -cos( RotY ); + float RotY,RotZ; + // do some cleaning + /* + if (fabs(normal[0])<1e-6) + normal[0]=0.0f; + if (fabs(normal[1])<1e-6) + normal[1]=0.0f; + if (fabs(normal[2])<1e-6) + normal[2]=0.0f; + */ + RotY = -atan2( normal[2],sqrt( normal[1] * normal[1] + normal[0] * normal[0] ) ); + RotZ = atan2( normal[1],normal[0] ); + // rotate (0,1,0) and (0,0,1) to compute texS and texT + texS[0] = -sin( RotZ ); + texS[1] = cos( RotZ ); + texS[2] = 0; + // the texT vector is along -Z ( T texture coorinates axis ) + texT[0] = -sin( RotY ) * cos( RotZ ); + texT[1] = -sin( RotY ) * sin( RotZ ); + texT[2] = -cos( RotY ); #endif } #if 0 // texdef conversion void FaceToBrushPrimitFace( face_t *f ){ - Vector3 texX,texY; - Vector3 proj; - // ST of (0,0) (1,0) (0,1) - float ST[3][5]; // [ point index ] [ xyz ST ] - //++timo not used as long as brushprimit_texdef and texdef are static + Vector3 texX,texY; + Vector3 proj; + // ST of (0,0) (1,0) (0,1) + float ST[3][5]; // [ point index ] [ xyz ST ] + //++timo not used as long as brushprimit_texdef and texdef are static /* f->brushprimit_texdef.contents=f->texdef.contents; f->brushprimit_texdef.flags=f->texdef.flags; f->brushprimit_texdef.value=f->texdef.value; strcpy(f->brushprimit_texdef.name,f->texdef.name); */ #ifdef DBG_BP - if ( f->plane.normal[0] == 0.0f && f->plane.normal[1] == 0.0f && f->plane.normal[2] == 0.0f ) { - globalOutputStream() << "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n"; - } - // check d_texture - if ( !f->d_texture ) { - globalOutputStream() << "Warning : f.d_texture is 0 in FaceToBrushPrimitFace\n"; - return; - } + if ( f->plane.normal[0] == 0.0f && f->plane.normal[1] == 0.0f && f->plane.normal[2] == 0.0f ) { + globalOutputStream() << "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n"; + } + // check d_texture + if ( !f->d_texture ) { + globalOutputStream() << "Warning : f.d_texture is 0 in FaceToBrushPrimitFace\n"; + return; + } #endif - // compute axis base - ComputeAxisBase( f->plane.normal,texX,texY ); - // compute projection vector - VectorCopy( f->plane.normal,proj ); - VectorScale( proj,f->plane.dist,proj ); - // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane - // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane - // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane - // use old texture code to compute the ST coords of these points - VectorCopy( proj,ST[0] ); - EmitTextureCoordinates( ST[0], f->pShader->getTexture(), f ); - VectorCopy( texX,ST[1] ); - VectorAdd( ST[1],proj,ST[1] ); - EmitTextureCoordinates( ST[1], f->pShader->getTexture(), f ); - VectorCopy( texY,ST[2] ); - VectorAdd( ST[2],proj,ST[2] ); - EmitTextureCoordinates( ST[2], f->pShader->getTexture(), f ); - // compute texture matrix - f->brushprimit_texdef.coords[0][2] = ST[0][3]; - f->brushprimit_texdef.coords[1][2] = ST[0][4]; - f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2]; - f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2]; - f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2]; - f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2]; + // compute axis base + ComputeAxisBase( f->plane.normal,texX,texY ); + // compute projection vector + VectorCopy( f->plane.normal,proj ); + VectorScale( proj,f->plane.dist,proj ); + // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane + // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane + // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane + // use old texture code to compute the ST coords of these points + VectorCopy( proj,ST[0] ); + EmitTextureCoordinates( ST[0], f->pShader->getTexture(), f ); + VectorCopy( texX,ST[1] ); + VectorAdd( ST[1],proj,ST[1] ); + EmitTextureCoordinates( ST[1], f->pShader->getTexture(), f ); + VectorCopy( texY,ST[2] ); + VectorAdd( ST[2],proj,ST[2] ); + EmitTextureCoordinates( ST[2], f->pShader->getTexture(), f ); + // compute texture matrix + f->brushprimit_texdef.coords[0][2] = ST[0][3]; + f->brushprimit_texdef.coords[1][2] = ST[0][4]; + f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2]; + f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2]; + f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2]; + f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2]; } // compute texture coordinates for the winding points void EmitBrushPrimitTextureCoordinates( face_t * f, Winding * w ){ - Vector3 texX,texY; - float x,y; - // compute axis base - ComputeAxisBase( f->plane.normal,texX,texY ); - // in case the texcoords matrix is empty, build a default one - // same behaviour as if scale[0]==0 && scale[1]==0 in old code - if ( f->brushprimit_texdef.coords[0][0] == 0 && f->brushprimit_texdef.coords[1][0] == 0 && f->brushprimit_texdef.coords[0][1] == 0 && f->brushprimit_texdef.coords[1][1] == 0 ) { - f->brushprimit_texdef.coords[0][0] = 1.0f; - f->brushprimit_texdef.coords[1][1] = 1.0f; - ConvertTexMatWithQTexture( &f->brushprimit_texdef, 0, &f->brushprimit_texdef, f->pShader->getTexture() ); - } - int i; - for ( i = 0 ; i < w.numpoints ; i++ ) - { - x = vector3_dot( w.point_at( i ),texX ); - y = vector3_dot( w.point_at( i ),texY ); + Vector3 texX,texY; + float x,y; + // compute axis base + ComputeAxisBase( f->plane.normal,texX,texY ); + // in case the texcoords matrix is empty, build a default one + // same behaviour as if scale[0]==0 && scale[1]==0 in old code + if ( f->brushprimit_texdef.coords[0][0] == 0 && f->brushprimit_texdef.coords[1][0] == 0 && f->brushprimit_texdef.coords[0][1] == 0 && f->brushprimit_texdef.coords[1][1] == 0 ) { + f->brushprimit_texdef.coords[0][0] = 1.0f; + f->brushprimit_texdef.coords[1][1] = 1.0f; + ConvertTexMatWithQTexture( &f->brushprimit_texdef, 0, &f->brushprimit_texdef, f->pShader->getTexture() ); + } + int i; + for ( i = 0 ; i < w.numpoints ; i++ ) + { + x = vector3_dot( w.point_at( i ),texX ); + y = vector3_dot( w.point_at( i ),texY ); #if 0 #ifdef DBG_BP - if ( g_bp_globals.bNeedConvert ) { - // check we compute the same ST as the traditional texture computation used before - float S = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; - float T = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; - if ( fabs( S - w.point_at( i )[3] ) > 1e-2 || fabs( T - w.point_at( i )[4] ) > 1e-2 ) { - if ( fabs( S - w.point_at( i )[3] ) > 1e-4 || fabs( T - w.point_at( i )[4] ) > 1e-4 ) { - globalOutputStream() << "Warning : precision loss in brush -> brush primitive texture computation\n"; - } - else{ - globalOutputStream() << "Warning : brush -> brush primitive texture computation bug detected\n"; - } - } - } + if ( g_bp_globals.bNeedConvert ) { + // check we compute the same ST as the traditional texture computation used before + float S = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; + float T = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; + if ( fabs( S - w.point_at( i )[3] ) > 1e-2 || fabs( T - w.point_at( i )[4] ) > 1e-2 ) { + if ( fabs( S - w.point_at( i )[3] ) > 1e-4 || fabs( T - w.point_at( i )[4] ) > 1e-4 ) { + globalOutputStream() << "Warning : precision loss in brush -> brush primitive texture computation\n"; + } + else{ + globalOutputStream() << "Warning : brush -> brush primitive texture computation bug detected\n"; + } + } + } #endif #endif - w.point_at( i )[3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; - w.point_at( i )[4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; - } + w.point_at( i )[3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; + w.point_at( i )[4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; + } } #endif typedef float texmat_t[2][3]; -void TexMat_Scale( texmat_t texmat, float s, float t ){ - texmat[0][0] *= s; - texmat[0][1] *= s; - texmat[0][2] *= s; - texmat[1][0] *= t; - texmat[1][1] *= t; - texmat[1][2] *= t; +void TexMat_Scale(texmat_t texmat, float s, float t) +{ + texmat[0][0] *= s; + texmat[0][1] *= s; + texmat[0][2] *= s; + texmat[1][0] *= t; + texmat[1][1] *= t; + texmat[1][2] *= t; } -void TexMat_Assign( texmat_t texmat, const texmat_t other ){ - texmat[0][0] = other[0][0]; - texmat[0][1] = other[0][1]; - texmat[0][2] = other[0][2]; - texmat[1][0] = other[1][0]; - texmat[1][1] = other[1][1]; - texmat[1][2] = other[1][2]; +void TexMat_Assign(texmat_t texmat, const texmat_t other) +{ + texmat[0][0] = other[0][0]; + texmat[0][1] = other[0][1]; + texmat[0][2] = other[0][2]; + texmat[1][0] = other[1][0]; + texmat[1][1] = other[1][1]; + texmat[1][2] = other[1][2]; } -void ConvertTexMatWithDimensions( const texmat_t texmat1, std::size_t w1, std::size_t h1, - texmat_t texmat2, std::size_t w2, std::size_t h2 ){ - TexMat_Assign( texmat2, texmat1 ); - TexMat_Scale( texmat2, static_cast( w1 ) / static_cast( w2 ), static_cast( h1 ) / static_cast( h2 ) ); +void ConvertTexMatWithDimensions(const texmat_t texmat1, std::size_t w1, std::size_t h1, + texmat_t texmat2, std::size_t w2, std::size_t h2) +{ + TexMat_Assign(texmat2, texmat1); + TexMat_Scale(texmat2, static_cast( w1 ) / static_cast( w2 ), + static_cast( h1 ) / static_cast( h2 )); } #if 0 // convert a texture matrix between two qtexture_t // if 0 for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates ) void ConvertTexMatWithQTexture( const float texMat1[2][3], const qtexture_t *qtex1, float texMat2[2][3], const qtexture_t *qtex2 ){ - ConvertTexMatWithDimensions( texMat1, ( qtex1 ) ? qtex1->width : 2, ( qtex1 ) ? qtex1->height : 2, - texMat2, ( qtex2 ) ? qtex2->width : 2, ( qtex2 ) ? qtex2->height : 2 ); + ConvertTexMatWithDimensions( texMat1, ( qtex1 ) ? qtex1->width : 2, ( qtex1 ) ? qtex1->height : 2, + texMat2, ( qtex2 ) ? qtex2->width : 2, ( qtex2 ) ? qtex2->height : 2 ); } void ConvertTexMatWithQTexture( const brushprimit_texdef_t *texMat1, const qtexture_t *qtex1, brushprimit_texdef_t *texMat2, const qtexture_t *qtex2 ){ - ConvertTexMatWithQTexture( texMat1->coords, qtex1, texMat2->coords, qtex2 ); + ConvertTexMatWithQTexture( texMat1->coords, qtex1, texMat2->coords, qtex2 ); } #endif @@ -630,136 +649,137 @@ void ConvertTexMatWithQTexture( const brushprimit_texdef_t *texMat1, const qtext // these shift scale rot values are to be understood in the local axis base // Note: this code looks similar to Texdef_fromTransform, but the algorithm is slightly different. -void TexMatToFakeTexCoords( const brushprimit_texdef_t& bp_texdef, texdef_t& texdef ){ - texdef.scale[0] = static_cast( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[1][0] ) ) ); - texdef.scale[1] = static_cast( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][1], bp_texdef.coords[1][1] ) ) ); - - texdef.rotate = -static_cast( radians_to_degrees( arctangent_yx( bp_texdef.coords[1][0], bp_texdef.coords[0][0] ) ) ); - - texdef.shift[0] = -bp_texdef.coords[0][2]; - texdef.shift[1] = bp_texdef.coords[1][2]; - - // determine whether or not an axis is flipped using a 2d cross-product - double cross = vector2_cross( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[0][1] ), Vector2( bp_texdef.coords[1][0], bp_texdef.coords[1][1] ) ); - if ( cross < 0 ) { - // This is a bit of a compromise when using BPs--since we don't know *which* axis was flipped, - // we pick one (rather arbitrarily) using the following convention: If the X-axis is between - // 0 and 180, we assume it's the Y-axis that flipped, otherwise we assume it's the X-axis and - // subtract out 180 degrees to compensate. - if ( texdef.rotate >= 180.0f ) { - texdef.rotate -= 180.0f; - texdef.scale[0] = -texdef.scale[0]; - } - else - { - texdef.scale[1] = -texdef.scale[1]; - } - } +void TexMatToFakeTexCoords(const brushprimit_texdef_t &bp_texdef, texdef_t &texdef) +{ + texdef.scale[0] = static_cast( 1.0 / + vector2_length(Vector2(bp_texdef.coords[0][0], bp_texdef.coords[1][0]))); + texdef.scale[1] = static_cast( 1.0 / + vector2_length(Vector2(bp_texdef.coords[0][1], bp_texdef.coords[1][1]))); + + texdef.rotate = -static_cast( radians_to_degrees( + arctangent_yx(bp_texdef.coords[1][0], bp_texdef.coords[0][0]))); + + texdef.shift[0] = -bp_texdef.coords[0][2]; + texdef.shift[1] = bp_texdef.coords[1][2]; + + // determine whether or not an axis is flipped using a 2d cross-product + double cross = vector2_cross(Vector2(bp_texdef.coords[0][0], bp_texdef.coords[0][1]), + Vector2(bp_texdef.coords[1][0], bp_texdef.coords[1][1])); + if (cross < 0) { + // This is a bit of a compromise when using BPs--since we don't know *which* axis was flipped, + // we pick one (rather arbitrarily) using the following convention: If the X-axis is between + // 0 and 180, we assume it's the Y-axis that flipped, otherwise we assume it's the X-axis and + // subtract out 180 degrees to compensate. + if (texdef.rotate >= 180.0f) { + texdef.rotate -= 180.0f; + texdef.scale[0] = -texdef.scale[0]; + } else { + texdef.scale[1] = -texdef.scale[1]; + } + } } // compute back the texture matrix from fake shift scale rot -void FakeTexCoordsToTexMat( const texdef_t& texdef, brushprimit_texdef_t& bp_texdef ){ - double r = degrees_to_radians( -texdef.rotate ); - double c = cos( r ); - double s = sin( r ); - double x = 1.0f / texdef.scale[0]; - double y = 1.0f / texdef.scale[1]; - bp_texdef.coords[0][0] = static_cast( x * c ); - bp_texdef.coords[1][0] = static_cast( x * s ); - bp_texdef.coords[0][1] = static_cast( y * -s ); - bp_texdef.coords[1][1] = static_cast( y * c ); - bp_texdef.coords[0][2] = -texdef.shift[0]; - bp_texdef.coords[1][2] = texdef.shift[1]; +void FakeTexCoordsToTexMat(const texdef_t &texdef, brushprimit_texdef_t &bp_texdef) +{ + double r = degrees_to_radians(-texdef.rotate); + double c = cos(r); + double s = sin(r); + double x = 1.0f / texdef.scale[0]; + double y = 1.0f / texdef.scale[1]; + bp_texdef.coords[0][0] = static_cast( x * c ); + bp_texdef.coords[1][0] = static_cast( x * s ); + bp_texdef.coords[0][1] = static_cast( y * -s ); + bp_texdef.coords[1][1] = static_cast( y * c ); + bp_texdef.coords[0][2] = -texdef.shift[0]; + bp_texdef.coords[1][2] = texdef.shift[1]; } #if 0 // texture locking (brush primit) // used for texture locking // will move the texture according to a geometric vector void ShiftTextureGeometric_BrushPrimit( face_t *f, Vector3& delta ){ - Vector3 texS,texT; - float tx,ty; - Vector3 M[3]; // columns of the matrix .. easier that way - float det; - Vector3 D[2]; - // compute plane axis base ( doesn't change with translation ) - ComputeAxisBase( f->plane.normal, texS, texT ); - // compute translation vector in plane axis base - tx = vector3_dot( delta, texS ); - ty = vector3_dot( delta, texT ); - // fill the data vectors - M[0][0] = tx; M[0][1] = 1.0f + tx; M[0][2] = tx; - M[1][0] = ty; M[1][1] = ty; M[1][2] = 1.0f + ty; - M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; - D[0][0] = f->brushprimit_texdef.coords[0][2]; - D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; - D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; - D[1][0] = f->brushprimit_texdef.coords[1][2]; - D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; - D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; - // solve - det = SarrusDet( M[0], M[1], M[2] ); - f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; - f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; - f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; - f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; - f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; - f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; + Vector3 texS,texT; + float tx,ty; + Vector3 M[3]; // columns of the matrix .. easier that way + float det; + Vector3 D[2]; + // compute plane axis base ( doesn't change with translation ) + ComputeAxisBase( f->plane.normal, texS, texT ); + // compute translation vector in plane axis base + tx = vector3_dot( delta, texS ); + ty = vector3_dot( delta, texT ); + // fill the data vectors + M[0][0] = tx; M[0][1] = 1.0f + tx; M[0][2] = tx; + M[1][0] = ty; M[1][1] = ty; M[1][2] = 1.0f + ty; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; + D[0][0] = f->brushprimit_texdef.coords[0][2]; + D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; + D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; + D[1][0] = f->brushprimit_texdef.coords[1][2]; + D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; + D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; + // solve + det = SarrusDet( M[0], M[1], M[2] ); + f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; + f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; + f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; + f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; + f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; + f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } // shift a texture (texture adjustments) along it's current texture axes // x and y are geometric values, which we must compute as ST increments // this depends on the texture size and the pixel/texel ratio void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y ){ - float s,t; - // as a ratio against texture size - // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) - s = ( x * 2.0 ) / (float)f->pShader->getTexture().width; - t = ( y * 2.0 ) / (float)f->pShader->getTexture().height; - f->brushprimit_texdef.coords[0][2] -= s; - f->brushprimit_texdef.coords[1][2] -= t; + float s,t; + // as a ratio against texture size + // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) + s = ( x * 2.0 ) / (float)f->pShader->getTexture().width; + t = ( y * 2.0 ) / (float)f->pShader->getTexture().height; + f->brushprimit_texdef.coords[0][2] -= s; + f->brushprimit_texdef.coords[1][2] -= t; } #endif // TTimo: FIXME: I don't like that, it feels broken // (and it's likely that it's not used anymore) // best fitted 2D vector is x.X+y.Y -void ComputeBest2DVector( Vector3& v, Vector3& X, Vector3& Y, int &x, int &y ){ - double sx,sy; - sx = vector3_dot( v, X ); - sy = vector3_dot( v, Y ); - if ( fabs( sy ) > fabs( sx ) ) { - x = 0; - if ( sy > 0.0 ) { - y = 1; - } - else{ - y = -1; - } - } - else - { - y = 0; - if ( sx > 0.0 ) { - x = 1; - } - else{ - x = -1; - } - } +void ComputeBest2DVector(Vector3 &v, Vector3 &X, Vector3 &Y, int &x, int &y) +{ + double sx, sy; + sx = vector3_dot(v, X); + sy = vector3_dot(v, Y); + if (fabs(sy) > fabs(sx)) { + x = 0; + if (sy > 0.0) { + y = 1; + } else { + y = -1; + } + } else { + y = 0; + if (sx > 0.0) { + x = 1; + } else { + x = -1; + } + } } #if 0 // texdef conversion void BrushPrimitFaceToFace( face_t *face ){ - // we have parsed brush primitives and need conversion back to standard format - // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it - // FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling - // I tried various tweaks, no luck .. seems shifting is lost - brushprimit_texdef_t aux; - ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->pShader->getTexture(), &aux, 0 ); - TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale ); - face->texdef.scale[0] /= 2.0; - face->texdef.scale[1] /= 2.0; + // we have parsed brush primitives and need conversion back to standard format + // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it + // FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling + // I tried various tweaks, no luck .. seems shifting is lost + brushprimit_texdef_t aux; + ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->pShader->getTexture(), &aux, 0 ); + TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale ); + face->texdef.scale[0] /= 2.0; + face->texdef.scale[1] /= 2.0; } #endif @@ -786,87 +806,87 @@ Vector3 txl_matrix[3]; Vector3 txl_origin; void TextureLockTransformation_BrushPrimit( face_t *f ){ - Vector3 Orig,texS,texT; // axis base of initial plane - // used by transformation algo - Vector3 temp; int j; - Vector3 vRotate; // rotation vector - - Vector3 rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base } - Vector3 rNormal,rtexS,rtexT; // axis base for the transformed plane - Vector3 lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) - Vector3 M[3]; - float det; - Vector3 D[2]; - - // compute plane axis base - ComputeAxisBase( f->plane.normal, texS, texT ); - VectorSet( Orig, 0.0f, 0.0f, 0.0f ); - - // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation - // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base ) - // input: Orig, texS, texT (and the global locking params) - // ouput: rOrig, rvecS, rvecT, rNormal - if ( txlock_bRotation ) { - // rotation vector - VectorSet( vRotate, 0.0f, 0.0f, 0.0f ); - vRotate[txl_nAxis] = txl_fDeg; - VectorRotateOrigin( Orig, vRotate, txl_vOrigin, rOrig ); - VectorRotateOrigin( texS, vRotate, txl_vOrigin, rvecS ); - VectorRotateOrigin( texT, vRotate, txl_vOrigin, rvecT ); - // compute normal of plane after rotation - VectorRotate( f->plane.normal, vRotate, rNormal ); - } - else - { - for ( j = 0 ; j < 3 ; j++ ) - rOrig[j] = vector3_dot( vector3_subtracted( Orig, txl_origin ), txl_matrix[j] ) + txl_origin[j]; - for ( j = 0 ; j < 3 ; j++ ) - rvecS[j] = vector3_dot( vector3_subtracted( texS, txl_origin ), txl_matrix[j] ) + txl_origin[j]; - for ( j = 0 ; j < 3 ; j++ ) - rvecT[j] = vector3_dot( vector3_subtracted( texT, txl_origin ), txl_matrix[j] ) + txl_origin[j]; - // we also need the axis base of the target plane, apply the transformation matrix to the normal too.. - for ( j = 0 ; j < 3 ; j++ ) - rNormal[j] = vector3_dot( f->plane.normal, txl_matrix[j] ); - } - - // compute rotated plane axis base - ComputeAxisBase( rNormal, rtexS, rtexT ); - // compute S/T coordinates of the three points in rotated axis base ( in M matrix ) - lOrig[0] = vector3_dot( rOrig, rtexS ); - lOrig[1] = vector3_dot( rOrig, rtexT ); - lvecS[0] = vector3_dot( rvecS, rtexS ); - lvecS[1] = vector3_dot( rvecS, rtexT ); - lvecT[0] = vector3_dot( rvecT, rtexS ); - lvecT[1] = vector3_dot( rvecT, rtexT ); - M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f; - M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f; - M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f; - // fill data vector - D[0][0] = f->brushprimit_texdef.coords[0][2]; - D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; - D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; - D[1][0] = f->brushprimit_texdef.coords[1][2]; - D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; - D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; - // solve - det = SarrusDet( M[0], M[1], M[2] ); - f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; - f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; - f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; - f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; - f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; - f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; + Vector3 Orig,texS,texT; // axis base of initial plane + // used by transformation algo + Vector3 temp; int j; + Vector3 vRotate; // rotation vector + + Vector3 rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base } + Vector3 rNormal,rtexS,rtexT; // axis base for the transformed plane + Vector3 lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) + Vector3 M[3]; + float det; + Vector3 D[2]; + + // compute plane axis base + ComputeAxisBase( f->plane.normal, texS, texT ); + VectorSet( Orig, 0.0f, 0.0f, 0.0f ); + + // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation + // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base ) + // input: Orig, texS, texT (and the global locking params) + // ouput: rOrig, rvecS, rvecT, rNormal + if ( txlock_bRotation ) { + // rotation vector + VectorSet( vRotate, 0.0f, 0.0f, 0.0f ); + vRotate[txl_nAxis] = txl_fDeg; + VectorRotateOrigin( Orig, vRotate, txl_vOrigin, rOrig ); + VectorRotateOrigin( texS, vRotate, txl_vOrigin, rvecS ); + VectorRotateOrigin( texT, vRotate, txl_vOrigin, rvecT ); + // compute normal of plane after rotation + VectorRotate( f->plane.normal, vRotate, rNormal ); + } + else + { + for ( j = 0 ; j < 3 ; j++ ) + rOrig[j] = vector3_dot( vector3_subtracted( Orig, txl_origin ), txl_matrix[j] ) + txl_origin[j]; + for ( j = 0 ; j < 3 ; j++ ) + rvecS[j] = vector3_dot( vector3_subtracted( texS, txl_origin ), txl_matrix[j] ) + txl_origin[j]; + for ( j = 0 ; j < 3 ; j++ ) + rvecT[j] = vector3_dot( vector3_subtracted( texT, txl_origin ), txl_matrix[j] ) + txl_origin[j]; + // we also need the axis base of the target plane, apply the transformation matrix to the normal too.. + for ( j = 0 ; j < 3 ; j++ ) + rNormal[j] = vector3_dot( f->plane.normal, txl_matrix[j] ); + } + + // compute rotated plane axis base + ComputeAxisBase( rNormal, rtexS, rtexT ); + // compute S/T coordinates of the three points in rotated axis base ( in M matrix ) + lOrig[0] = vector3_dot( rOrig, rtexS ); + lOrig[1] = vector3_dot( rOrig, rtexT ); + lvecS[0] = vector3_dot( rvecS, rtexS ); + lvecS[1] = vector3_dot( rvecS, rtexT ); + lvecT[0] = vector3_dot( rvecT, rtexS ); + lvecT[1] = vector3_dot( rvecT, rtexT ); + M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f; + M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f; + M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f; + // fill data vector + D[0][0] = f->brushprimit_texdef.coords[0][2]; + D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; + D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; + D[1][0] = f->brushprimit_texdef.coords[1][2]; + D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; + D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; + // solve + det = SarrusDet( M[0], M[1], M[2] ); + f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; + f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; + f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; + f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; + f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; + f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } // texture locking // called before the points on the face are actually rotated void RotateFaceTexture_BrushPrimit( face_t *f, int nAxis, float fDeg, Vector3& vOrigin ){ - // this is a placeholder to call the general texture locking algorithm - txlock_bRotation = true; - txl_nAxis = nAxis; - txl_fDeg = fDeg; - VectorCopy( vOrigin, txl_vOrigin ); - TextureLockTransformation_BrushPrimit( f ); + // this is a placeholder to call the general texture locking algorithm + txlock_bRotation = true; + txl_nAxis = nAxis; + txl_fDeg = fDeg; + VectorCopy( vOrigin, txl_vOrigin ); + TextureLockTransformation_BrushPrimit( f ); } // compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation) @@ -874,491 +894,508 @@ void RotateFaceTexture_BrushPrimit( face_t *f, int nAxis, float fDeg, Vector3& v // this needs to be called on the face BEFORE any geometric transformation // it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done void ApplyMatrix_BrushPrimit( face_t *f, Vector3 matrix[3], Vector3& origin ){ - // this is a placeholder to call the general texture locking algorithm - txlock_bRotation = false; - VectorCopy( matrix[0], txl_matrix[0] ); - VectorCopy( matrix[1], txl_matrix[1] ); - VectorCopy( matrix[2], txl_matrix[2] ); - VectorCopy( origin, txl_origin ); - TextureLockTransformation_BrushPrimit( f ); + // this is a placeholder to call the general texture locking algorithm + txlock_bRotation = false; + VectorCopy( matrix[0], txl_matrix[0] ); + VectorCopy( matrix[1], txl_matrix[1] ); + VectorCopy( matrix[2], txl_matrix[2] ); + VectorCopy( origin, txl_origin ); + TextureLockTransformation_BrushPrimit( f ); } #endif // don't do C==A! -void BPMatMul( float A[2][3], float B[2][3], float C[2][3] ){ - C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0]; - C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0]; - C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1]; - C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1]; - C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2]; - C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2]; -} - -void BPMatDump( float A[2][3] ){ - globalOutputStream() << "" << A[0][0] - << " " << A[0][1] - << " " << A[0][2] - << "\n" << A[1][0] - << " " << A[1][2] - << " " << A[1][2] - << "\n0 0 1\n"; -} - -void BPMatRotate( float A[2][3], float theta ){ - float m[2][3]; - float aux[2][3]; - memset( &m, 0, sizeof( float ) * 6 ); - m[0][0] = static_cast( cos( degrees_to_radians( theta ) ) ); - m[0][1] = static_cast( -sin( degrees_to_radians( theta ) ) ); - m[1][0] = -m[0][1]; - m[1][1] = m[0][0]; - BPMatMul( A, m, aux ); - BPMatCopy( aux,A ); +void BPMatMul(float A[2][3], float B[2][3], float C[2][3]) +{ + C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0]; + C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0]; + C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1]; + C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1]; + C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2]; + C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2]; +} + +void BPMatDump(float A[2][3]) +{ + globalOutputStream() << "" << A[0][0] + << " " << A[0][1] + << " " << A[0][2] + << "\n" << A[1][0] + << " " << A[1][2] + << " " << A[1][2] + << "\n0 0 1\n"; +} + +void BPMatRotate(float A[2][3], float theta) +{ + float m[2][3]; + float aux[2][3]; + memset(&m, 0, sizeof(float) * 6); + m[0][0] = static_cast( cos(degrees_to_radians(theta))); + m[0][1] = static_cast( -sin(degrees_to_radians(theta))); + m[1][0] = -m[0][1]; + m[1][1] = m[0][0]; + BPMatMul(A, m, aux); + BPMatCopy(aux, A); } #if 0 // camera-relative texture shift // get the relative axes of the current texturing void BrushPrimit_GetRelativeAxes( face_t *f, Vector3& vecS, Vector3& vecT ){ - float vS[2],vT[2]; - // first we compute them as expressed in plane axis base - // BP matrix has coordinates of plane axis base expressed in geometric axis base - // so we use the line vectors - vS[0] = f->brushprimit_texdef.coords[0][0]; - vS[1] = f->brushprimit_texdef.coords[0][1]; - vT[0] = f->brushprimit_texdef.coords[1][0]; - vT[1] = f->brushprimit_texdef.coords[1][1]; - // now compute those vectors in geometric space - Vector3 texS, texT; // axis base of the plane (geometric) - ComputeAxisBase( f->plane.normal, texS, texT ); - // vecS[] = vS[0].texS[] + vS[1].texT[] - // vecT[] = vT[0].texS[] + vT[1].texT[] - vecS[0] = vS[0] * texS[0] + vS[1] * texT[0]; - vecS[1] = vS[0] * texS[1] + vS[1] * texT[1]; - vecS[2] = vS[0] * texS[2] + vS[1] * texT[2]; - vecT[0] = vT[0] * texS[0] + vT[1] * texT[0]; - vecT[1] = vT[0] * texS[1] + vT[1] * texT[1]; - vecT[2] = vT[0] * texS[2] + vT[1] * texT[2]; + float vS[2],vT[2]; + // first we compute them as expressed in plane axis base + // BP matrix has coordinates of plane axis base expressed in geometric axis base + // so we use the line vectors + vS[0] = f->brushprimit_texdef.coords[0][0]; + vS[1] = f->brushprimit_texdef.coords[0][1]; + vT[0] = f->brushprimit_texdef.coords[1][0]; + vT[1] = f->brushprimit_texdef.coords[1][1]; + // now compute those vectors in geometric space + Vector3 texS, texT; // axis base of the plane (geometric) + ComputeAxisBase( f->plane.normal, texS, texT ); + // vecS[] = vS[0].texS[] + vS[1].texT[] + // vecT[] = vT[0].texS[] + vT[1].texT[] + vecS[0] = vS[0] * texS[0] + vS[1] * texT[0]; + vecS[1] = vS[0] * texS[1] + vS[1] * texT[1]; + vecS[2] = vS[0] * texS[2] + vS[1] * texT[2]; + vecT[0] = vT[0] * texS[0] + vT[1] * texT[0]; + vecT[1] = vT[0] * texS[1] + vT[1] * texT[1]; + vecT[2] = vT[0] * texS[2] + vT[1] * texT[2]; } // brush primitive texture adjustments, use the camera view to map adjustments // ShiftTextureRelative_BrushPrimit ( s , t ) will shift relative to the texture void ShiftTextureRelative_Camera( face_t *f, int x, int y ){ - Vector3 vecS, vecT; - float XY[2]; // the values we are going to send for translation - float sgn[2]; // +1 or -1 - int axis[2]; - CamWnd* pCam; - - // get the two relative texture axes for the current texturing - BrushPrimit_GetRelativeAxes( f, vecS, vecT ); - - // center point of the face, project it on the camera space - Vector3 C; - VectorClear( C ); - int i; - for ( i = 0; i < f->face_winding->numpoints; i++ ) - { - VectorAdd( C,f->face_winding->point_at( i ),C ); - } - VectorScale( C,1.0 / f->face_winding->numpoints,C ); - - pCam = g_pParentWnd->GetCamWnd(); - pCam->MatchViewAxes( C, vecS, axis[0], sgn[0] ); - pCam->MatchViewAxes( C, vecT, axis[1], sgn[1] ); - - // this happens when the two directions can't be mapped on two different directions on the screen - // then the move will occur against a single axis - // (i.e. the user is not positioned well enough to send understandable shift commands) - // NOTE: in most cases this warning is not very relevant because the user would use one of the two axes - // for which the solution is easy (the other one being unknown) - // so this warning could be removed - if ( axis[0] == axis[1] ) { - globalOutputStream() << "Warning: degenerate in ShiftTextureRelative_Camera\n"; - } - - // compute the X Y geometric increments - // those geometric increments will be applied along the texture axes (the ones we computed above) - XY[0] = 0; - XY[1] = 0; - if ( x != 0 ) { - // moving right/left - XY[axis[0]] += sgn[0] * x; - } - if ( y != 0 ) { - XY[axis[1]] += sgn[1] * y; - } - // we worked out a move along vecS vecT, and we now it's geometric amplitude - // apply it - ShiftTextureRelative_BrushPrimit( f, XY[0], XY[1] ); + Vector3 vecS, vecT; + float XY[2]; // the values we are going to send for translation + float sgn[2]; // +1 or -1 + int axis[2]; + CamWnd* pCam; + + // get the two relative texture axes for the current texturing + BrushPrimit_GetRelativeAxes( f, vecS, vecT ); + + // center point of the face, project it on the camera space + Vector3 C; + VectorClear( C ); + int i; + for ( i = 0; i < f->face_winding->numpoints; i++ ) + { + VectorAdd( C,f->face_winding->point_at( i ),C ); + } + VectorScale( C,1.0 / f->face_winding->numpoints,C ); + + pCam = g_pParentWnd->GetCamWnd(); + pCam->MatchViewAxes( C, vecS, axis[0], sgn[0] ); + pCam->MatchViewAxes( C, vecT, axis[1], sgn[1] ); + + // this happens when the two directions can't be mapped on two different directions on the screen + // then the move will occur against a single axis + // (i.e. the user is not positioned well enough to send understandable shift commands) + // NOTE: in most cases this warning is not very relevant because the user would use one of the two axes + // for which the solution is easy (the other one being unknown) + // so this warning could be removed + if ( axis[0] == axis[1] ) { + globalOutputStream() << "Warning: degenerate in ShiftTextureRelative_Camera\n"; + } + + // compute the X Y geometric increments + // those geometric increments will be applied along the texture axes (the ones we computed above) + XY[0] = 0; + XY[1] = 0; + if ( x != 0 ) { + // moving right/left + XY[axis[0]] += sgn[0] * x; + } + if ( y != 0 ) { + XY[axis[1]] += sgn[1] * y; + } + // we worked out a move along vecS vecT, and we now it's geometric amplitude + // apply it + ShiftTextureRelative_BrushPrimit( f, XY[0], XY[1] ); } #endif -void BPTexdef_Assign( brushprimit_texdef_t& bp_td, const brushprimit_texdef_t& bp_other ){ - bp_td = bp_other; -} - -void BPTexdef_Shift( brushprimit_texdef_t& bp_td, float s, float t ){ - // shift a texture (texture adjustments) along it's current texture axes - // x and y are geometric values, which we must compute as ST increments - // this depends on the texture size and the pixel/texel ratio - // as a ratio against texture size - // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) - bp_td.coords[0][2] -= s; - bp_td.coords[1][2] += t; -} - -void BPTexdef_Scale( brushprimit_texdef_t& bp_td, float s, float t ){ - // apply same scale as the spinner button of the surface inspector - texdef_t texdef; - // compute fake shift scale rot - TexMatToFakeTexCoords( bp_td, texdef ); - // update - texdef.scale[0] += s; - texdef.scale[1] += t; - // compute new normalized texture matrix - FakeTexCoordsToTexMat( texdef, bp_td ); -} - -void BPTexdef_Rotate( brushprimit_texdef_t& bp_td, float angle ){ - // apply same scale as the spinner button of the surface inspector - texdef_t texdef; - // compute fake shift scale rot - TexMatToFakeTexCoords( bp_td, texdef ); - // update - texdef.rotate += angle; - // compute new normalized texture matrix - FakeTexCoordsToTexMat( texdef, bp_td ); -} - -void BPTexdef_Construct( brushprimit_texdef_t& bp_td, std::size_t width, std::size_t height ){ - bp_td.coords[0][0] = 1.0f; - bp_td.coords[1][1] = 1.0f; - ConvertTexMatWithDimensions( bp_td.coords, 2, 2, bp_td.coords, width, height ); -} - -void Texdef_Assign( TextureProjection& projection, const TextureProjection& other ){ - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - BPTexdef_Assign( projection.m_brushprimit_texdef, other.m_brushprimit_texdef ); - } - else - { - Texdef_Assign( projection.m_texdef, other.m_texdef ); - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE ) { - projection.m_basis_s = other.m_basis_s; - projection.m_basis_t = other.m_basis_t; - } - } -} - -void Texdef_Shift( TextureProjection& projection, float s, float t ){ - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - BPTexdef_Shift( projection.m_brushprimit_texdef, s, t ); - } - else - { - Texdef_Shift( projection.m_texdef, s, t ); - } -} - -void Texdef_Scale( TextureProjection& projection, float s, float t ){ - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - BPTexdef_Scale( projection.m_brushprimit_texdef, s, t ); - } - else - { - Texdef_Scale( projection.m_texdef, s, t ); - } -} - -void Texdef_Rotate( TextureProjection& projection, float angle ){ - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - BPTexdef_Rotate( projection.m_brushprimit_texdef, angle ); - } - else - { - Texdef_Rotate( projection.m_texdef, angle ); - } -} - -void Texdef_FitTexture( TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat ){ - if ( w.numpoints < 3 ) { - return; - } - - Matrix4 st2tex; - Texdef_toTransform( projection, (float)width, (float)height, st2tex ); - - // the current texture transform - Matrix4 local2tex = st2tex; - { - Matrix4 xyz2st; - Texdef_basisForNormal( projection, normal, xyz2st ); - matrix4_multiply_by_matrix4( local2tex, xyz2st ); - } - - // the bounds of the current texture transform - AABB bounds; - for ( Winding::const_iterator i = w.begin(); i != w.end(); ++i ) - { - Vector3 texcoord = matrix4_transformed_point( local2tex, ( *i ).vertex ); - aabb_extend_by_point_safe( bounds, texcoord ); - } - bounds.origin.z() = 0; - bounds.extents.z() = 1; - - // the bounds of a perfectly fitted texture transform - AABB perfect( Vector3( s_repeat * 0.5, t_repeat * 0.5, 0 ), Vector3( s_repeat * 0.5, t_repeat * 0.5, 1 ) ); - - // the difference between the current texture transform and the perfectly fitted transform - Matrix4 matrix( matrix4_translation_for_vec3( bounds.origin - perfect.origin ) ); - matrix4_pivoted_scale_by_vec3( matrix, bounds.extents / perfect.extents, perfect.origin ); - matrix4_affine_invert( matrix ); - - // apply the difference to the current texture transform - matrix4_premultiply_by_matrix4( st2tex, matrix ); +void BPTexdef_Assign(brushprimit_texdef_t &bp_td, const brushprimit_texdef_t &bp_other) +{ + bp_td = bp_other; +} + +void BPTexdef_Shift(brushprimit_texdef_t &bp_td, float s, float t) +{ + // shift a texture (texture adjustments) along it's current texture axes + // x and y are geometric values, which we must compute as ST increments + // this depends on the texture size and the pixel/texel ratio + // as a ratio against texture size + // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) + bp_td.coords[0][2] -= s; + bp_td.coords[1][2] += t; +} + +void BPTexdef_Scale(brushprimit_texdef_t &bp_td, float s, float t) +{ + // apply same scale as the spinner button of the surface inspector + texdef_t texdef; + // compute fake shift scale rot + TexMatToFakeTexCoords(bp_td, texdef); + // update + texdef.scale[0] += s; + texdef.scale[1] += t; + // compute new normalized texture matrix + FakeTexCoordsToTexMat(texdef, bp_td); +} + +void BPTexdef_Rotate(brushprimit_texdef_t &bp_td, float angle) +{ + // apply same scale as the spinner button of the surface inspector + texdef_t texdef; + // compute fake shift scale rot + TexMatToFakeTexCoords(bp_td, texdef); + // update + texdef.rotate += angle; + // compute new normalized texture matrix + FakeTexCoordsToTexMat(texdef, bp_td); +} + +void BPTexdef_Construct(brushprimit_texdef_t &bp_td, std::size_t width, std::size_t height) +{ + bp_td.coords[0][0] = 1.0f; + bp_td.coords[1][1] = 1.0f; + ConvertTexMatWithDimensions(bp_td.coords, 2, 2, bp_td.coords, width, height); +} + +void Texdef_Assign(TextureProjection &projection, const TextureProjection &other) +{ + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + BPTexdef_Assign(projection.m_brushprimit_texdef, other.m_brushprimit_texdef); + } else { + Texdef_Assign(projection.m_texdef, other.m_texdef); + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE) { + projection.m_basis_s = other.m_basis_s; + projection.m_basis_t = other.m_basis_t; + } + } +} + +void Texdef_Shift(TextureProjection &projection, float s, float t) +{ + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + BPTexdef_Shift(projection.m_brushprimit_texdef, s, t); + } else { + Texdef_Shift(projection.m_texdef, s, t); + } +} + +void Texdef_Scale(TextureProjection &projection, float s, float t) +{ + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + BPTexdef_Scale(projection.m_brushprimit_texdef, s, t); + } else { + Texdef_Scale(projection.m_texdef, s, t); + } +} + +void Texdef_Rotate(TextureProjection &projection, float angle) +{ + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + BPTexdef_Rotate(projection.m_brushprimit_texdef, angle); + } else { + Texdef_Rotate(projection.m_texdef, angle); + } +} + +void Texdef_FitTexture(TextureProjection &projection, std::size_t width, std::size_t height, const Vector3 &normal, + const Winding &w, float s_repeat, float t_repeat) +{ + if (w.numpoints < 3) { + return; + } + + Matrix4 st2tex; + Texdef_toTransform(projection, (float) width, (float) height, st2tex); + + // the current texture transform + Matrix4 local2tex = st2tex; + { + Matrix4 xyz2st; + Texdef_basisForNormal(projection, normal, xyz2st); + matrix4_multiply_by_matrix4(local2tex, xyz2st); + } + + // the bounds of the current texture transform + AABB bounds; + for (Winding::const_iterator i = w.begin(); i != w.end(); ++i) { + Vector3 texcoord = matrix4_transformed_point(local2tex, (*i).vertex); + aabb_extend_by_point_safe(bounds, texcoord); + } + bounds.origin.z() = 0; + bounds.extents.z() = 1; + + // the bounds of a perfectly fitted texture transform + AABB perfect(Vector3(s_repeat * 0.5, t_repeat * 0.5, 0), Vector3(s_repeat * 0.5, t_repeat * 0.5, 1)); + + // the difference between the current texture transform and the perfectly fitted transform + Matrix4 matrix(matrix4_translation_for_vec3(bounds.origin - perfect.origin)); + matrix4_pivoted_scale_by_vec3(matrix, bounds.extents / perfect.extents, perfect.origin); + matrix4_affine_invert(matrix); - Texdef_fromTransform( projection, (float)width, (float)height, st2tex ); - Texdef_normalise( projection, (float)width, (float)height ); -} - -float Texdef_getDefaultTextureScale(){ - return g_texdef_default_scale; -} - -void TexDef_Construct_Default( TextureProjection& projection ){ - projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale(); - projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale(); + // apply the difference to the current texture transform + matrix4_premultiply_by_matrix4(st2tex, matrix); + + Texdef_fromTransform(projection, (float) width, (float) height, st2tex); + Texdef_normalise(projection, (float) width, (float) height); +} + +float Texdef_getDefaultTextureScale() +{ + return g_texdef_default_scale; +} + +void TexDef_Construct_Default(TextureProjection &projection) +{ + projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale(); + projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale(); + + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + FakeTexCoordsToTexMat(projection.m_texdef, projection.m_brushprimit_texdef); + } +} + + +void ShiftScaleRotate_fromFace(texdef_t &shiftScaleRotate, const TextureProjection &projection) +{ + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + TexMatToFakeTexCoords(projection.m_brushprimit_texdef, shiftScaleRotate); + } else { + shiftScaleRotate = projection.m_texdef; + } +} + +void ShiftScaleRotate_toFace(const texdef_t &shiftScaleRotate, TextureProjection &projection) +{ + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES) { + // compute texture matrix + // the matrix returned must be understood as a qtexture_t with width=2 height=2 + FakeTexCoordsToTexMat(shiftScaleRotate, projection.m_brushprimit_texdef); + } else { + projection.m_texdef = shiftScaleRotate; + } +} - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - FakeTexCoordsToTexMat( projection.m_texdef, projection.m_brushprimit_texdef ); - } -} - - -void ShiftScaleRotate_fromFace( texdef_t& shiftScaleRotate, const TextureProjection& projection ){ - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - TexMatToFakeTexCoords( projection.m_brushprimit_texdef, shiftScaleRotate ); - } - else - { - shiftScaleRotate = projection.m_texdef; - } -} - -void ShiftScaleRotate_toFace( const texdef_t& shiftScaleRotate, TextureProjection& projection ){ - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { - // compute texture matrix - // the matrix returned must be understood as a qtexture_t with width=2 height=2 - FakeTexCoordsToTexMat( shiftScaleRotate, projection.m_brushprimit_texdef ); - } - else - { - projection.m_texdef = shiftScaleRotate; - } -} - - -inline void print_vector3( const Vector3& v ){ - globalOutputStream() << "( " << v.x() << " " << v.y() << " " << v.z() << " )\n"; +inline void print_vector3(const Vector3 &v) +{ + globalOutputStream() << "( " << v.x() << " " << v.y() << " " << v.z() << " )\n"; +} + +inline void print_3x3(const Matrix4 &m) +{ + globalOutputStream() << "( " << m.xx() << " " << m.xy() << " " << m.xz() << " ) " + << "( " << m.yx() << " " << m.yy() << " " << m.yz() << " ) " + << "( " << m.zx() << " " << m.zy() << " " << m.zz() << " )\n"; } -inline void print_3x3( const Matrix4& m ){ - globalOutputStream() << "( " << m.xx() << " " << m.xy() << " " << m.xz() << " ) " - << "( " << m.yx() << " " << m.yy() << " " << m.yz() << " ) " - << "( " << m.zx() << " " << m.zy() << " " << m.zz() << " )\n"; -} +inline Matrix4 matrix4_rotation_for_vector3(const Vector3 &x, const Vector3 &y, const Vector3 &z) +{ + return Matrix4( + x.x(), x.y(), x.z(), 0, + y.x(), y.y(), y.z(), 0, + z.x(), z.y(), z.z(), 0, + 0, 0, 0, 1 + ); +} + +inline Matrix4 matrix4_swap_axes(const Vector3 &from, const Vector3 &to) +{ + if (from.x() != 0 && to.y() != 0) { + return matrix4_rotation_for_vector3(to, from, g_vector3_axis_z); + } + + if (from.x() != 0 && to.z() != 0) { + return matrix4_rotation_for_vector3(to, g_vector3_axis_y, from); + } -inline Matrix4 matrix4_rotation_for_vector3( const Vector3& x, const Vector3& y, const Vector3& z ){ - return Matrix4( - x.x(), x.y(), x.z(), 0, - y.x(), y.y(), y.z(), 0, - z.x(), z.y(), z.z(), 0, - 0, 0, 0, 1 - ); -} + if (from.y() != 0 && to.z() != 0) { + return matrix4_rotation_for_vector3(g_vector3_axis_x, to, from); + } -inline Matrix4 matrix4_swap_axes( const Vector3& from, const Vector3& to ){ - if ( from.x() != 0 && to.y() != 0 ) { - return matrix4_rotation_for_vector3( to, from, g_vector3_axis_z ); - } + if (from.y() != 0 && to.x() != 0) { + return matrix4_rotation_for_vector3(from, to, g_vector3_axis_z); + } - if ( from.x() != 0 && to.z() != 0 ) { - return matrix4_rotation_for_vector3( to, g_vector3_axis_y, from ); - } + if (from.z() != 0 && to.x() != 0) { + return matrix4_rotation_for_vector3(from, g_vector3_axis_y, to); + } - if ( from.y() != 0 && to.z() != 0 ) { - return matrix4_rotation_for_vector3( g_vector3_axis_x, to, from ); - } + if (from.z() != 0 && to.y() != 0) { + return matrix4_rotation_for_vector3(g_vector3_axis_x, from, to); + } - if ( from.y() != 0 && to.x() != 0 ) { - return matrix4_rotation_for_vector3( from, to, g_vector3_axis_z ); - } + ERROR_MESSAGE("unhandled axis swap case"); - if ( from.z() != 0 && to.x() != 0 ) { - return matrix4_rotation_for_vector3( from, g_vector3_axis_y, to ); - } - - if ( from.z() != 0 && to.y() != 0 ) { - return matrix4_rotation_for_vector3( g_vector3_axis_x, from, to ); - } - - ERROR_MESSAGE( "unhandled axis swap case" ); - - return g_matrix4_identity; + return g_matrix4_identity; } -inline Matrix4 matrix4_reflection_for_plane( const Plane3& plane ){ - return Matrix4( - static_cast( 1 - ( 2 * plane.a * plane.a ) ), - static_cast( -2 * plane.a * plane.b ), - static_cast( -2 * plane.a * plane.c ), - 0, - static_cast( -2 * plane.b * plane.a ), - static_cast( 1 - ( 2 * plane.b * plane.b ) ), - static_cast( -2 * plane.b * plane.c ), - 0, - static_cast( -2 * plane.c * plane.a ), - static_cast( -2 * plane.c * plane.b ), - static_cast( 1 - ( 2 * plane.c * plane.c ) ), - 0, - static_cast( -2 * plane.d * plane.a ), - static_cast( -2 * plane.d * plane.b ), - static_cast( -2 * plane.d * plane.c ), - 1 - ); +inline Matrix4 matrix4_reflection_for_plane(const Plane3 &plane) +{ + return Matrix4( + static_cast( 1 - (2 * plane.a * plane.a)), + static_cast( -2 * plane.a * plane.b ), + static_cast( -2 * plane.a * plane.c ), + 0, + static_cast( -2 * plane.b * plane.a ), + static_cast( 1 - (2 * plane.b * plane.b)), + static_cast( -2 * plane.b * plane.c ), + 0, + static_cast( -2 * plane.c * plane.a ), + static_cast( -2 * plane.c * plane.b ), + static_cast( 1 - (2 * plane.c * plane.c)), + 0, + static_cast( -2 * plane.d * plane.a ), + static_cast( -2 * plane.d * plane.b ), + static_cast( -2 * plane.d * plane.c ), + 1 + ); } -inline Matrix4 matrix4_reflection_for_plane45( const Plane3& plane, const Vector3& from, const Vector3& to ){ - Vector3 first = from; - Vector3 second = to; - - if ( vector3_dot( from, plane.normal() ) > 0 == vector3_dot( to, plane.normal() ) > 0 ) { - first = vector3_negated( first ); - second = vector3_negated( second ); - } +inline Matrix4 matrix4_reflection_for_plane45(const Plane3 &plane, const Vector3 &from, const Vector3 &to) +{ + Vector3 first = from; + Vector3 second = to; + + if ((vector3_dot(from, plane.normal()) > 0) == (vector3_dot(to, plane.normal()) > 0)) { + first = vector3_negated(first); + second = vector3_negated(second); + } #if 0 - globalOutputStream() << "normal: "; - print_vector3( plane.normal() ); + globalOutputStream() << "normal: "; + print_vector3( plane.normal() ); - globalOutputStream() << "from: "; - print_vector3( first ); + globalOutputStream() << "from: "; + print_vector3( first ); - globalOutputStream() << "to: "; - print_vector3( second ); + globalOutputStream() << "to: "; + print_vector3( second ); #endif - Matrix4 swap = matrix4_swap_axes( first, second ); + Matrix4 swap = matrix4_swap_axes(first, second); - Matrix4 tmp = matrix4_reflection_for_plane( plane ); + swap.tx() = -static_cast( -2 * plane.a * plane.d ); + swap.ty() = -static_cast( -2 * plane.b * plane.d ); + swap.tz() = -static_cast( -2 * plane.c * plane.d ); - swap.tx() = -static_cast( -2 * plane.a * plane.d ); - swap.ty() = -static_cast( -2 * plane.b * plane.d ); - swap.tz() = -static_cast( -2 * plane.c * plane.d ); - - return swap; + return swap; } -void Texdef_transformLocked( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed ){ - //globalOutputStream() << "identity2transformed: " << identity2transformed << "\n"; +void Texdef_transformLocked(TextureProjection &projection, std::size_t width, std::size_t height, const Plane3 &plane, + const Matrix4 &identity2transformed) +{ + //globalOutputStream() << "identity2transformed: " << identity2transformed << "\n"; - //globalOutputStream() << "plane.normal(): " << plane.normal() << "\n"; + //globalOutputStream() << "plane.normal(): " << plane.normal() << "\n"; - Vector3 normalTransformed( matrix4_transformed_direction( identity2transformed, plane.normal() ) ); + Vector3 normalTransformed(matrix4_transformed_direction(identity2transformed, plane.normal())); - //globalOutputStream() << "normalTransformed: " << normalTransformed << "\n"; + //globalOutputStream() << "normalTransformed: " << normalTransformed << "\n"; - // identity: identity space - // transformed: transformation - // stIdentity: base st projection space before transformation - // stTransformed: base st projection space after transformation - // stOriginal: original texdef space + // identity: identity space + // transformed: transformation + // stIdentity: base st projection space before transformation + // stTransformed: base st projection space after transformation + // stOriginal: original texdef space - // stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal + // stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal - Matrix4 identity2stIdentity; - Texdef_basisForNormal( projection, plane.normal(), identity2stIdentity ); - //globalOutputStream() << "identity2stIdentity: " << identity2stIdentity << "\n"; + Matrix4 identity2stIdentity; + Texdef_basisForNormal(projection, plane.normal(), identity2stIdentity); + //globalOutputStream() << "identity2stIdentity: " << identity2stIdentity << "\n"; - if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE ) { - matrix4_transform_direction( identity2transformed, projection.m_basis_s ); - matrix4_transform_direction( identity2transformed, projection.m_basis_t ); - } + if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE) { + matrix4_transform_direction(identity2transformed, projection.m_basis_s); + matrix4_transform_direction(identity2transformed, projection.m_basis_t); + } - Matrix4 transformed2stTransformed; - Texdef_basisForNormal( projection, normalTransformed, transformed2stTransformed ); + Matrix4 transformed2stTransformed; + Texdef_basisForNormal(projection, normalTransformed, transformed2stTransformed); - Matrix4 stTransformed2identity( matrix4_affine_inverse( matrix4_multiplied_by_matrix4( transformed2stTransformed, identity2transformed ) ) ); + Matrix4 stTransformed2identity( + matrix4_affine_inverse(matrix4_multiplied_by_matrix4(transformed2stTransformed, identity2transformed))); - Vector3 originalProjectionAxis( vector4_to_vector3( matrix4_affine_inverse( identity2stIdentity ).z() ) ); + Vector3 originalProjectionAxis(vector4_to_vector3(matrix4_affine_inverse(identity2stIdentity).z())); - Vector3 transformedProjectionAxis( vector4_to_vector3( stTransformed2identity.z() ) ); + Vector3 transformedProjectionAxis(vector4_to_vector3(stTransformed2identity.z())); - Matrix4 stIdentity2stOriginal; - Texdef_toTransform( projection, (float)width, (float)height, stIdentity2stOriginal ); - Matrix4 identity2stOriginal( matrix4_multiplied_by_matrix4( stIdentity2stOriginal, identity2stIdentity ) ); + Matrix4 stIdentity2stOriginal; + Texdef_toTransform(projection, (float) width, (float) height, stIdentity2stOriginal); + Matrix4 identity2stOriginal(matrix4_multiplied_by_matrix4(stIdentity2stOriginal, identity2stIdentity)); - //globalOutputStream() << "originalProj: " << originalProjectionAxis << "\n"; - //globalOutputStream() << "transformedProj: " << transformedProjectionAxis << "\n"; - double dot = vector3_dot( originalProjectionAxis, transformedProjectionAxis ); - //globalOutputStream() << "dot: " << dot << "\n"; - if ( dot == 0 ) { - // The projection axis chosen for the transformed normal is at 90 degrees - // to the transformed projection axis chosen for the original normal. - // This happens when the projection axis is ambiguous - e.g. for the plane - // 'X == Y' the projection axis could be either X or Y. - //globalOutputStream() << "flipped\n"; + //globalOutputStream() << "originalProj: " << originalProjectionAxis << "\n"; + //globalOutputStream() << "transformedProj: " << transformedProjectionAxis << "\n"; + double dot = vector3_dot(originalProjectionAxis, transformedProjectionAxis); + //globalOutputStream() << "dot: " << dot << "\n"; + if (dot == 0) { + // The projection axis chosen for the transformed normal is at 90 degrees + // to the transformed projection axis chosen for the original normal. + // This happens when the projection axis is ambiguous - e.g. for the plane + // 'X == Y' the projection axis could be either X or Y. + //globalOutputStream() << "flipped\n"; #if 0 - globalOutputStream() << "projection off by 90\n"; - globalOutputStream() << "normal: "; - print_vector3( plane.normal() ); - globalOutputStream() << "original projection: "; - print_vector3( originalProjectionAxis ); - globalOutputStream() << "transformed projection: "; - print_vector3( transformedProjectionAxis ); + globalOutputStream() << "projection off by 90\n"; + globalOutputStream() << "normal: "; + print_vector3( plane.normal() ); + globalOutputStream() << "original projection: "; + print_vector3( originalProjectionAxis ); + globalOutputStream() << "transformed projection: "; + print_vector3( transformedProjectionAxis ); #endif - Matrix4 identityCorrected = matrix4_reflection_for_plane45( plane, originalProjectionAxis, transformedProjectionAxis ); + Matrix4 identityCorrected = matrix4_reflection_for_plane45(plane, originalProjectionAxis, + transformedProjectionAxis); - identity2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, identityCorrected ); - } + identity2stOriginal = matrix4_multiplied_by_matrix4(identity2stOriginal, identityCorrected); + } - Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, stTransformed2identity ); + Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4(identity2stOriginal, stTransformed2identity); - Texdef_fromTransform( projection, (float)width, (float)height, stTransformed2stOriginal ); - Texdef_normalise( projection, (float)width, (float)height ); + Texdef_fromTransform(projection, (float) width, (float) height, stTransformed2stOriginal); + Texdef_normalise(projection, (float) width, (float) height); } #if 1 -void Q3_to_matrix( const texdef_t& texdef, float width, float height, const Vector3& normal, Matrix4& matrix ){ - Normal_GetTransform( normal, matrix ); - Matrix4 transform; +void Q3_to_matrix(const texdef_t &texdef, float width, float height, const Vector3 &normal, Matrix4 &matrix) +{ + Normal_GetTransform(normal, matrix); + + Matrix4 transform; - Texdef_toTransform( texdef, width, height, transform ); + Texdef_toTransform(texdef, width, height, transform); - matrix4_multiply_by_matrix4( matrix, transform ); + matrix4_multiply_by_matrix4(matrix, transform); } -void BP_from_matrix( brushprimit_texdef_t& bp_texdef, const Vector3& normal, const Matrix4& transform ){ - Matrix4 basis; - basis = g_matrix4_identity; - ComputeAxisBase( normal, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ); - vector4_to_vector3( basis.z() ) = normal; - matrix4_transpose( basis ); - matrix4_affine_invert( basis ); +void BP_from_matrix(brushprimit_texdef_t &bp_texdef, const Vector3 &normal, const Matrix4 &transform) +{ + Matrix4 basis; + basis = g_matrix4_identity; + ComputeAxisBase(normal, vector4_to_vector3(basis.x()), vector4_to_vector3(basis.y())); + vector4_to_vector3(basis.z()) = normal; + matrix4_transpose(basis); + matrix4_affine_invert(basis); - Matrix4 basis2texture = matrix4_multiplied_by_matrix4( basis, transform ); + Matrix4 basis2texture = matrix4_multiplied_by_matrix4(basis, transform); - BPTexdef_fromTransform( bp_texdef, basis2texture ); + BPTexdef_fromTransform(bp_texdef, basis2texture); } -void Q3_to_BP( const texdef_t& texdef, float width, float height, const Vector3& normal, brushprimit_texdef_t& bp_texdef ){ - Matrix4 matrix; - Q3_to_matrix( texdef, width, height, normal, matrix ); - BP_from_matrix( bp_texdef, normal, matrix ); +void Q3_to_BP(const texdef_t &texdef, float width, float height, const Vector3 &normal, brushprimit_texdef_t &bp_texdef) +{ + Matrix4 matrix; + Q3_to_matrix(texdef, width, height, normal, matrix); + BP_from_matrix(bp_texdef, normal, matrix); } + #endif