#include "player.qh" #include "../triggers/include.qh" #include "../viewloc.qh" #ifdef SVQC #include #include "../triggers/trigger/viewloc.qh" // client side physics bool Physics_Valid(string thecvar) { return autocvar_g_physics_clientselect && strhasword(autocvar_g_physics_clientselect_options, thecvar); } float Physics_ClientOption(entity this, string option, float defaultval) { if(Physics_Valid(this.cvar_cl_physics)) { string s = sprintf("g_physics_%s_%s", this.cvar_cl_physics, option); if(cvar_type(s) & CVAR_TYPEFLAG_EXISTS) return cvar(s); } if(autocvar_g_physics_clientselect && autocvar_g_physics_clientselect_default) { string s = sprintf("g_physics_%s_%s", autocvar_g_physics_clientselect_default, option); if(cvar_type(s) & CVAR_TYPEFLAG_EXISTS) return cvar(s); } return defaultval; } void Physics_UpdateStats(entity this, float maxspd_mod) { STAT(MOVEVARS_AIRACCEL_QW, this) = AdjustAirAccelQW(Physics_ClientOption(this, "airaccel_qw", autocvar_sv_airaccel_qw), maxspd_mod); STAT(MOVEVARS_AIRSTRAFEACCEL_QW, this) = (Physics_ClientOption(this, "airstrafeaccel_qw", autocvar_sv_airstrafeaccel_qw)) ? AdjustAirAccelQW(Physics_ClientOption(this, "airstrafeaccel_qw", autocvar_sv_airstrafeaccel_qw), maxspd_mod) : 0; STAT(MOVEVARS_AIRSPEEDLIMIT_NONQW, this) = Physics_ClientOption(this, "airspeedlimit_nonqw", autocvar_sv_airspeedlimit_nonqw) * maxspd_mod; STAT(MOVEVARS_MAXSPEED, this) = Physics_ClientOption(this, "maxspeed", autocvar_sv_maxspeed) * maxspd_mod; // also slow walking // old stats // fix some new settings STAT(MOVEVARS_AIRACCEL_QW_STRETCHFACTOR, this) = Physics_ClientOption(this, "airaccel_qw_stretchfactor", autocvar_sv_airaccel_qw_stretchfactor); STAT(MOVEVARS_MAXAIRSTRAFESPEED, this) = Physics_ClientOption(this, "maxairstrafespeed", autocvar_sv_maxairstrafespeed); STAT(MOVEVARS_MAXAIRSPEED, this) = Physics_ClientOption(this, "maxairspeed", autocvar_sv_maxairspeed); STAT(MOVEVARS_AIRSTRAFEACCELERATE, this) = Physics_ClientOption(this, "airstrafeaccelerate", autocvar_sv_airstrafeaccelerate); STAT(MOVEVARS_WARSOWBUNNY_TURNACCEL, this) = Physics_ClientOption(this, "warsowbunny_turnaccel", autocvar_sv_warsowbunny_turnaccel); STAT(MOVEVARS_AIRACCEL_SIDEWAYS_FRICTION, this) = Physics_ClientOption(this, "airaccel_sideways_friction", autocvar_sv_airaccel_sideways_friction); STAT(MOVEVARS_AIRCONTROL, this) = Physics_ClientOption(this, "aircontrol", autocvar_sv_aircontrol); STAT(MOVEVARS_AIRCONTROL_POWER, this) = Physics_ClientOption(this, "aircontrol_power", autocvar_sv_aircontrol_power); STAT(MOVEVARS_AIRCONTROL_PENALTY, this) = Physics_ClientOption(this, "aircontrol_penalty", autocvar_sv_aircontrol_penalty); STAT(MOVEVARS_WARSOWBUNNY_AIRFORWARDACCEL, this) = Physics_ClientOption(this, "warsowbunny_airforwardaccel", autocvar_sv_warsowbunny_airforwardaccel); STAT(MOVEVARS_WARSOWBUNNY_TOPSPEED, this) = Physics_ClientOption(this, "warsowbunny_topspeed", autocvar_sv_warsowbunny_topspeed); STAT(MOVEVARS_WARSOWBUNNY_ACCEL, this) = Physics_ClientOption(this, "warsowbunny_accel", autocvar_sv_warsowbunny_accel); STAT(MOVEVARS_WARSOWBUNNY_BACKTOSIDERATIO, this) = Physics_ClientOption(this, "warsowbunny_backtosideratio", autocvar_sv_warsowbunny_backtosideratio); STAT(MOVEVARS_FRICTION, this) = Physics_ClientOption(this, "friction", autocvar_sv_friction); STAT(MOVEVARS_ACCELERATE, this) = Physics_ClientOption(this, "accelerate", autocvar_sv_accelerate); STAT(MOVEVARS_STOPSPEED, this) = Physics_ClientOption(this, "stopspeed", autocvar_sv_stopspeed); STAT(MOVEVARS_AIRACCELERATE, this) = Physics_ClientOption(this, "airaccelerate", autocvar_sv_airaccelerate); STAT(MOVEVARS_AIRSTOPACCELERATE, this) = Physics_ClientOption(this, "airstopaccelerate", autocvar_sv_airstopaccelerate); STAT(MOVEVARS_JUMPVELOCITY, this) = Physics_ClientOption(this, "jumpvelocity", autocvar_sv_jumpvelocity); STAT(MOVEVARS_TRACK_CANJUMP, this) = Physics_ClientOption(this, "track_canjump", autocvar_sv_track_canjump); } #endif float IsMoveInDirection(vector mv, float ang) // key mix factor { if (mv_x == 0 && mv_y == 0) return 0; // avoid division by zero ang -= RAD2DEG * atan2(mv_y, mv_x); ang = remainder(ang, 360) / 45; return ang > 1 ? 0 : ang < -1 ? 0 : 1 - fabs(ang); } float GeomLerp(float a, float _lerp, float b) { return a == 0 ? (_lerp < 1 ? 0 : b) : b == 0 ? (_lerp > 0 ? 0 : a) : a * pow(fabs(b / a), _lerp); } #define unstick_offsets(X) \ /* 1 no nudge (just return the original if this test passes) */ \ X(' 0.000 0.000 0.000') \ /* 6 simple nudges */ \ X(' 0.000 0.000 0.125') X('0.000 0.000 -0.125') \ X('-0.125 0.000 0.000') X('0.125 0.000 0.000') \ X(' 0.000 -0.125 0.000') X('0.000 0.125 0.000') \ /* 4 diagonal flat nudges */ \ X('-0.125 -0.125 0.000') X('0.125 -0.125 0.000') \ X('-0.125 0.125 0.000') X('0.125 0.125 0.000') \ /* 8 diagonal upward nudges */ \ X('-0.125 0.000 0.125') X('0.125 0.000 0.125') \ X(' 0.000 -0.125 0.125') X('0.000 0.125 0.125') \ X('-0.125 -0.125 0.125') X('0.125 -0.125 0.125') \ X('-0.125 0.125 0.125') X('0.125 0.125 0.125') \ /* 8 diagonal downward nudges */ \ X('-0.125 0.000 -0.125') X('0.125 0.000 -0.125') \ X(' 0.000 -0.125 -0.125') X('0.000 0.125 -0.125') \ X('-0.125 -0.125 -0.125') X('0.125 -0.125 -0.125') \ X('-0.125 0.125 -0.125') X('0.125 0.125 -0.125') \ /**/ void PM_ClientMovement_Unstick(entity this) { #define X(unstick_offset) \ { \ vector neworigin = unstick_offset + this.origin; \ tracebox(neworigin, STAT(PL_CROUCH_MIN, NULL), STAT(PL_CROUCH_MAX, NULL), neworigin, MOVE_NORMAL, this); \ if (!trace_startsolid) \ { \ setorigin(this, neworigin); \ return; \ } \ } unstick_offsets(X); #undef X } void PM_ClientMovement_UpdateStatus(entity this) { #ifdef CSQC if(!IS_PLAYER(this)) return; // set crouched bool do_crouch = PHYS_INPUT_BUTTON_CROUCH(this); if(this.hook && !wasfreed(this.hook)) do_crouch = false; if(this.waterlevel >= WATERLEVEL_SWIMMING) do_crouch = false; if(hud != HUD_NORMAL) do_crouch = false; if(STAT(FROZEN, this)) do_crouch = false; if (do_crouch) { // wants to crouch, this always works if (!IS_DUCKED(this)) SET_DUCKED(this); } else { // wants to stand, if currently crouching we need to check for a low ceiling first if (IS_DUCKED(this)) { tracebox(this.origin, STAT(PL_MIN, NULL), STAT(PL_MAX, NULL), this.origin, MOVE_NORMAL, this); if (!trace_startsolid) UNSET_DUCKED(this); } } if (IS_ONGROUND(this) || this.velocity.z <= 0 || PHYS_WATERJUMP_TIME(this) <= 0) PHYS_WATERJUMP_TIME(this) = 0; #endif } void CPM_PM_Aircontrol(entity this, float dt, vector wishdir, float wishspeed) { float k = 32 * (2 * IsMoveInDirection(this.movement, 0) - 1); if (k <= 0) return; k *= bound(0, wishspeed / PHYS_MAXAIRSPEED(this), 1); float zspeed = this.velocity_z; this.velocity_z = 0; float xyspeed = vlen(this.velocity); this.velocity = normalize(this.velocity); float dot = this.velocity * wishdir; if (dot > 0) // we can't change direction while slowing down { k *= pow(dot, PHYS_AIRCONTROL_POWER(this)) * dt; xyspeed = max(0, xyspeed - PHYS_AIRCONTROL_PENALTY(this) * sqrt(max(0, 1 - dot*dot)) * k/32); k *= PHYS_AIRCONTROL(this); this.velocity = normalize(this.velocity * xyspeed + wishdir * k); } this.velocity = this.velocity * xyspeed; this.velocity_z = zspeed; } float AdjustAirAccelQW(float accelqw, float factor) { return copysign(bound(0.000001, 1 - (1 - fabs(accelqw)) * factor, 1), accelqw); } // example config for alternate speed clamping: // sv_airaccel_qw 0.8 // sv_airaccel_sideways_friction 0 // prvm_globalset server speedclamp_mode 1 // (or 2) void PM_Accelerate(entity this, float dt, vector wishdir, float wishspeed, float wishspeed0, float accel, float accelqw, float stretchfactor, float sidefric, float speedlimit) { float speedclamp = stretchfactor > 0 ? stretchfactor : accelqw < 0 ? 1 // full clamping, no stretch : -1; // no clamping accelqw = fabs(accelqw); if (GAMEPLAYFIX_Q2AIRACCELERATE) wishspeed0 = wishspeed; // don't need to emulate this Q1 bug float vel_straight = this.velocity * wishdir; float vel_z = this.velocity_z; vector vel_xy = vec2(this.velocity); vector vel_perpend = vel_xy - vel_straight * wishdir; float step = accel * dt * wishspeed0; float vel_xy_current = vlen(vel_xy); if (speedlimit) accelqw = AdjustAirAccelQW(accelqw, (speedlimit - bound(wishspeed, vel_xy_current, speedlimit)) / max(1, speedlimit - wishspeed)); float vel_xy_forward = vel_xy_current + bound(0, wishspeed - vel_xy_current, step) * accelqw + step * (1 - accelqw); float vel_xy_backward = vel_xy_current - bound(0, wishspeed + vel_xy_current, step) * accelqw - step * (1 - accelqw); vel_xy_backward = max(0, vel_xy_backward); // not that it REALLY occurs that this would cause wrong behaviour afterwards vel_straight = vel_straight + bound(0, wishspeed - vel_straight, step) * accelqw + step * (1 - accelqw); if (sidefric < 0 && (vel_perpend*vel_perpend)) // negative: only apply so much sideways friction to stay below the speed you could get by "braking" { float f = max(0, 1 + dt * wishspeed * sidefric); float themin = (vel_xy_backward * vel_xy_backward - vel_straight * vel_straight) / (vel_perpend * vel_perpend); // assume: themin > 1 // vel_xy_backward*vel_xy_backward - vel_straight*vel_straight > vel_perpend*vel_perpend // vel_xy_backward*vel_xy_backward > vel_straight*vel_straight + vel_perpend*vel_perpend // vel_xy_backward*vel_xy_backward > vel_xy * vel_xy // obviously, this cannot be if (themin <= 0) vel_perpend *= f; else { themin = sqrt(themin); vel_perpend *= max(themin, f); } } else vel_perpend *= max(0, 1 - dt * wishspeed * sidefric); vel_xy = vel_straight * wishdir + vel_perpend; if (speedclamp >= 0) { float vel_xy_preclamp; vel_xy_preclamp = vlen(vel_xy); if (vel_xy_preclamp > 0) // prevent division by zero { vel_xy_current += (vel_xy_forward - vel_xy_current) * speedclamp; if (vel_xy_current < vel_xy_preclamp) vel_xy *= (vel_xy_current / vel_xy_preclamp); } } this.velocity = vel_xy + vel_z * '0 0 1'; } void PM_AirAccelerate(entity this, float dt, vector wishdir, float wishspeed) { if (wishspeed == 0) return; vector curvel = this.velocity; curvel_z = 0; float curspeed = vlen(curvel); if (wishspeed > curspeed * 1.01) wishspeed = min(wishspeed, curspeed + PHYS_WARSOWBUNNY_AIRFORWARDACCEL(this) * PHYS_MAXSPEED(this) * dt); else { float f = max(0, (PHYS_WARSOWBUNNY_TOPSPEED(this) - curspeed) / (PHYS_WARSOWBUNNY_TOPSPEED(this) - PHYS_MAXSPEED(this))); wishspeed = max(curspeed, PHYS_MAXSPEED(this)) + PHYS_WARSOWBUNNY_ACCEL(this) * f * PHYS_MAXSPEED(this) * dt; } vector wishvel = wishdir * wishspeed; vector acceldir = wishvel - curvel; float addspeed = vlen(acceldir); acceldir = normalize(acceldir); float accelspeed = min(addspeed, PHYS_WARSOWBUNNY_TURNACCEL(this) * PHYS_MAXSPEED(this) * dt); if (PHYS_WARSOWBUNNY_BACKTOSIDERATIO(this) < 1) { vector curdir = normalize(curvel); float dot = acceldir * curdir; if (dot < 0) acceldir -= (1 - PHYS_WARSOWBUNNY_BACKTOSIDERATIO(this)) * dot * curdir; } this.velocity += accelspeed * acceldir; } /* ============= PlayerJump When you press the jump key returns true if handled ============= */ bool PlayerJump(entity this) { if (PHYS_FROZEN(this)) return true; // no jumping in freezetag when frozen #ifdef SVQC if (this.player_blocked) return true; // no jumping while blocked #endif bool doublejump = false; float mjumpheight = PHYS_JUMPVELOCITY(this); if (MUTATOR_CALLHOOK(PlayerJump, this, mjumpheight, doublejump)) return true; mjumpheight = M_ARGV(1, float); doublejump = M_ARGV(2, bool); if (this.waterlevel >= WATERLEVEL_SWIMMING) { if(this.viewloc) { doublejump = true; mjumpheight *= 0.7; } else { this.velocity_z = PHYS_MAXSPEED(this) * 0.7; return true; } } if (!doublejump) if (!IS_ONGROUND(this)) return IS_JUMP_HELD(this); bool track_jump = PHYS_CL_TRACK_CANJUMP(this); if(PHYS_TRACK_CANJUMP(this)) track_jump = true; if (track_jump) if (IS_JUMP_HELD(this)) return true; // sv_jumpspeedcap_min/sv_jumpspeedcap_max act as baseline // velocity bounds. Final velocity is bound between (jumpheight * // min + jumpheight) and (jumpheight * max + jumpheight); if(PHYS_JUMPSPEEDCAP_MIN != "") { float minjumpspeed = mjumpheight * stof(PHYS_JUMPSPEEDCAP_MIN); if (this.velocity_z < minjumpspeed) mjumpheight += minjumpspeed - this.velocity_z; } if(PHYS_JUMPSPEEDCAP_MAX != "") { // don't do jump speedcaps on ramps to preserve old xonotic ramjump style tracebox(this.origin + '0 0 0.01', this.mins, this.maxs, this.origin - '0 0 0.01', MOVE_NORMAL, this); if (!(trace_fraction < 1 && trace_plane_normal_z < 0.98 && PHYS_JUMPSPEEDCAP_DISABLE_ONRAMPS(this))) { float maxjumpspeed = mjumpheight * stof(PHYS_JUMPSPEEDCAP_MAX); if (this.velocity_z > maxjumpspeed) mjumpheight -= this.velocity_z - maxjumpspeed; } } if (!WAS_ONGROUND(this)) { #ifdef SVQC if(autocvar_speedmeter) LOG_TRACE(strcat("landing velocity: ", vtos(this.velocity), " (abs: ", ftos(vlen(this.velocity)), ")\n")); #endif if(this.lastground < time - 0.3) { float f = (1 - PHYS_FRICTION_ONLAND(this)); this.velocity_x *= f; this.velocity_y *= f; } #ifdef SVQC if(this.jumppadcount > 1) LOG_TRACE(strcat(ftos(this.jumppadcount), "x jumppad combo\n")); this.jumppadcount = 0; #endif } this.velocity_z += mjumpheight; UNSET_ONGROUND(this); SET_JUMP_HELD(this); #ifdef SVQC this.oldvelocity_z = this.velocity_z; animdecide_setaction(this, ANIMACTION_JUMP, true); if (autocvar_g_jump_grunt) PlayerSound(this, playersound_jump, CH_PLAYER, VOL_BASE, VOICETYPE_PLAYERSOUND); #endif return true; } void CheckWaterJump(entity this) { // check for a jump-out-of-water makevectors(this.v_angle); vector start = this.origin; start_z += 8; v_forward_z = 0; normalize(v_forward); vector end = start + v_forward*24; traceline (start, end, true, this); if (trace_fraction < 1) { // solid at waist start_z = start_z + this.maxs_z - 8; end = start + v_forward*24; this.movedir = trace_plane_normal * -50; traceline(start, end, true, this); if (trace_fraction == 1) { // open at eye level this.velocity_z = 225; this.flags |= FL_WATERJUMP; SET_JUMP_HELD(this); #ifdef SVQC PHYS_TELEPORT_TIME(this) = time + 2; // safety net #elif defined(CSQC) PHYS_WATERJUMP_TIME(this) = 2; #endif } } } #ifdef SVQC #define JETPACK_JUMP(s) s.cvar_cl_jetpack_jump #elif defined(CSQC) float autocvar_cl_jetpack_jump; #define JETPACK_JUMP(s) autocvar_cl_jetpack_jump #endif .float jetpack_stopped; void CheckPlayerJump(entity this) { #ifdef SVQC bool was_flying = boolean(ITEMS_STAT(this) & IT_USING_JETPACK); #endif if (JETPACK_JUMP(this) < 2) ITEMS_STAT(this) &= ~IT_USING_JETPACK; if(PHYS_INPUT_BUTTON_JUMP(this) || PHYS_INPUT_BUTTON_JETPACK(this)) { bool playerjump = PlayerJump(this); // required bool air_jump = !playerjump || M_ARGV(2, bool); bool activate = JETPACK_JUMP(this) && air_jump && PHYS_INPUT_BUTTON_JUMP(this) || PHYS_INPUT_BUTTON_JETPACK(this); bool has_fuel = !PHYS_JETPACK_FUEL(this) || PHYS_AMMO_FUEL(this) || (ITEMS_STAT(this) & IT_UNLIMITED_WEAPON_AMMO); if (!(ITEMS_STAT(this) & ITEM_Jetpack.m_itemid)) { } else if (this.jetpack_stopped) { } else if (!has_fuel) { #ifdef SVQC if (was_flying) // TODO: ran out of fuel message Send_Notification(NOTIF_ONE, this, MSG_INFO, INFO_JETPACK_NOFUEL); else if (activate) Send_Notification(NOTIF_ONE, this, MSG_INFO, INFO_JETPACK_NOFUEL); #endif this.jetpack_stopped = true; ITEMS_STAT(this) &= ~IT_USING_JETPACK; } else if (activate && !PHYS_FROZEN(this)) ITEMS_STAT(this) |= IT_USING_JETPACK; } else { this.jetpack_stopped = false; ITEMS_STAT(this) &= ~IT_USING_JETPACK; } if (!PHYS_INPUT_BUTTON_JUMP(this)) UNSET_JUMP_HELD(this); if (this.waterlevel == WATERLEVEL_SWIMMING) CheckWaterJump(this); } float racecar_angle(float forward, float down) { if (forward < 0) { forward = -forward; down = -down; } float ret = vectoyaw('0 1 0' * down + '1 0 0' * forward); float angle_mult = forward / (800 + forward); if (ret > 180) return ret * angle_mult + 360 * (1 - angle_mult); else return ret * angle_mult; } string specialcommand = "xwxwxsxsxaxdxaxdx1x "; .float specialcommand_pos; void SpecialCommand(entity this) { #ifdef SVQC if (!CheatImpulse(this, CHIMPULSE_GIVE_ALL.impulse)) LOG_INFO("A hollow voice says \"Plugh\".\n"); #endif } bool PM_check_specialcommand(entity this, int buttons) { #ifdef SVQC string c; if (!buttons) c = "x"; else if (buttons == 1) c = "1"; else if (buttons == 2) c = " "; else if (buttons == 128) c = "s"; else if (buttons == 256) c = "w"; else if (buttons == 512) c = "a"; else if (buttons == 1024) c = "d"; else c = "?"; if (c == substring(specialcommand, this.specialcommand_pos, 1)) { this.specialcommand_pos += 1; if (this.specialcommand_pos >= strlen(specialcommand)) { this.specialcommand_pos = 0; SpecialCommand(this); return true; } } else if (this.specialcommand_pos && (c != substring(specialcommand, this.specialcommand_pos - 1, 1))) this.specialcommand_pos = 0; #endif return false; } void PM_check_nickspam(entity this) { #ifdef SVQC if (time >= this.nickspamtime) return; if (this.nickspamcount >= autocvar_g_nick_flood_penalty_yellow) { // slight annoyance for nick change scripts this.movement = -1 * this.movement; PHYS_INPUT_BUTTON_ATCK(this) = PHYS_INPUT_BUTTON_JUMP(this) = PHYS_INPUT_BUTTON_ATCK2(this) = PHYS_INPUT_BUTTON_ZOOM(this) = PHYS_INPUT_BUTTON_CROUCH(this) = PHYS_INPUT_BUTTON_HOOK(this) = PHYS_INPUT_BUTTON_USE(this) = false; if (this.nickspamcount >= autocvar_g_nick_flood_penalty_red) // if you are persistent and the slight annoyance above does not stop you, I'll show you! { this.v_angle_x = random() * 360; this.v_angle_y = random() * 360; // at least I'm not forcing retardedview by also assigning to angles_z this.fixangle = true; } } #endif } void PM_check_punch(entity this, float dt) { #ifdef SVQC if (this.punchangle != '0 0 0') { float f = vlen(this.punchangle) - 10 * dt; if (f > 0) this.punchangle = normalize(this.punchangle) * f; else this.punchangle = '0 0 0'; } if (this.punchvector != '0 0 0') { float f = vlen(this.punchvector) - 30 * dt; if (f > 0) this.punchvector = normalize(this.punchvector) * f; else this.punchvector = '0 0 0'; } #endif } // predict frozen movement, as frozen players CAN move in some cases void PM_check_frozen(entity this) { if (!PHYS_FROZEN(this)) return; if (PHYS_DODGING_FROZEN(this) #ifdef SVQC && IS_REAL_CLIENT(this) #endif ) { this.movement_x = bound(-5, this.movement.x, 5); this.movement_y = bound(-5, this.movement.y, 5); this.movement_z = bound(-5, this.movement.z, 5); } else this.movement = '0 0 0'; vector midpoint = ((this.absmin + this.absmax) * 0.5); if (pointcontents(midpoint) == CONTENT_WATER) { this.velocity = this.velocity * 0.5; if (pointcontents(midpoint + '0 0 16') == CONTENT_WATER) this.velocity_z = 200; } } void PM_check_hitground(entity this) { #ifdef SVQC if (!this.wasFlying) return; this.wasFlying = false; if (this.waterlevel >= WATERLEVEL_SWIMMING) return; if (time < this.ladder_time) return; if (this.hook) return; this.nextstep = time + 0.3 + random() * 0.1; trace_dphitq3surfaceflags = 0; tracebox(this.origin, this.mins, this.maxs, this.origin - '0 0 1', MOVE_NOMONSTERS, this); if (trace_dphitq3surfaceflags & Q3SURFACEFLAG_NOSTEPS) return; entity gs = (trace_dphitq3surfaceflags & Q3SURFACEFLAG_METALSTEPS) ? GS_FALL_METAL : GS_FALL; float vol = ((IS_DUCKED(this)) ? VOL_MUFFLED : VOL_BASE); GlobalSound(this, gs, CH_PLAYER, vol, VOICETYPE_PLAYERSOUND); #endif } void PM_Footsteps(entity this) { #ifdef SVQC if (!g_footsteps) return; if (IS_DUCKED(this)) return; if (time >= this.lastground + 0.2) return; if (vdist(this.velocity, <=, autocvar_sv_maxspeed * 0.6)) return; if ((time > this.nextstep) || (time < (this.nextstep - 10.0))) { this.nextstep = time + 0.3 + random() * 0.1; trace_dphitq3surfaceflags = 0; tracebox(this.origin, this.mins, this.maxs, this.origin - '0 0 1', MOVE_NOMONSTERS, this); if (trace_dphitq3surfaceflags & Q3SURFACEFLAG_NOSTEPS) return; entity gs = (trace_dphitq3surfaceflags & Q3SURFACEFLAG_METALSTEPS) ? GS_STEP_METAL : GS_STEP; GlobalSound(this, gs, CH_PLAYER, VOL_BASE, VOICETYPE_PLAYERSOUND); } #endif } void PM_check_blocked(entity this) { #ifdef SVQC if (!this.player_blocked) return; this.movement = '0 0 0'; this.disableclientprediction = 1; #endif } .vector oldmovement; void PM_jetpack(entity this, float maxspd_mod, float dt) { //makevectors(this.v_angle.y * '0 1 0'); makevectors(this.v_angle); vector wishvel = v_forward * this.movement_x + v_right * this.movement_y; // add remaining speed as Z component float maxairspd = PHYS_MAXAIRSPEED(this) * max(1, maxspd_mod); // fix speedhacks :P wishvel = normalize(wishvel) * min(1, vlen(wishvel) / maxairspd); // add the unused velocity as up component wishvel_z = 0; // if (PHYS_INPUT_BUTTON_JUMP(this)) wishvel_z = sqrt(max(0, 1 - wishvel * wishvel)); // it is now normalized, so... float a_side = PHYS_JETPACK_ACCEL_SIDE(this); float a_up = PHYS_JETPACK_ACCEL_UP(this); float a_add = PHYS_JETPACK_ANTIGRAVITY(this) * PHYS_GRAVITY(this); if(PHYS_JETPACK_REVERSE_THRUST(this) && PHYS_INPUT_BUTTON_CROUCH(self)) { a_up = PHYS_JETPACK_REVERSE_THRUST(this); } wishvel_x *= a_side; wishvel_y *= a_side; wishvel_z *= a_up; wishvel_z += a_add; if(PHYS_JETPACK_REVERSE_THRUST(this) && PHYS_INPUT_BUTTON_CROUCH(self)) { wishvel_z *= -1; } float best = 0; ////////////////////////////////////////////////////////////////////////////////////// // finding the maximum over all vectors of above form // with wishvel having an absolute value of 1 ////////////////////////////////////////////////////////////////////////////////////// // we're finding the maximum over // f(a_side, a_up, a_add, z) := a_side * (1 - z^2) + (a_add + a_up * z)^2; // for z in the range from -1 to 1 ////////////////////////////////////////////////////////////////////////////////////// // maximum is EITHER attained at the single extreme point: float a_diff = a_side * a_side - a_up * a_up; float f; if (a_diff != 0) { f = a_add * a_up / a_diff; // this is the zero of diff(f(a_side, a_up, a_add, z), z) if (f > -1 && f < 1) // can it be attained? { best = (a_diff + a_add * a_add) * (a_diff + a_up * a_up) / a_diff; //print("middle\n"); } } // OR attained at z = 1: f = (a_up + a_add) * (a_up + a_add); if (f > best) { best = f; //print("top\n"); } // OR attained at z = -1: f = (a_up - a_add) * (a_up - a_add); if (f > best) { best = f; //print("bottom\n"); } best = sqrt(best); ////////////////////////////////////////////////////////////////////////////////////// //print("best possible acceleration: ", ftos(best), "\n"); float fxy, fz; fxy = bound(0, 1 - (this.velocity * normalize(wishvel_x * '1 0 0' + wishvel_y * '0 1 0')) / PHYS_JETPACK_MAXSPEED_SIDE(this), 1); if (wishvel_z - PHYS_GRAVITY(this) > 0) fz = bound(0, 1 - this.velocity_z / PHYS_JETPACK_MAXSPEED_UP(this), 1); else fz = bound(0, 1 + this.velocity_z / PHYS_JETPACK_MAXSPEED_UP(this), 1); float fvel; fvel = vlen(wishvel); wishvel_x *= fxy; wishvel_y *= fxy; wishvel_z = (wishvel_z - PHYS_GRAVITY(this)) * fz + PHYS_GRAVITY(this); fvel = min(1, vlen(wishvel) / best); if (PHYS_JETPACK_FUEL(this) && !(ITEMS_STAT(this) & IT_UNLIMITED_WEAPON_AMMO)) f = min(1, PHYS_AMMO_FUEL(this) / (PHYS_JETPACK_FUEL(this) * dt * fvel)); else f = 1; //print("this acceleration: ", ftos(vlen(wishvel) * f), "\n"); if (f > 0 && wishvel != '0 0 0') { this.velocity = this.velocity + wishvel * f * dt; UNSET_ONGROUND(this); #ifdef SVQC if (!(ITEMS_STAT(this) & IT_UNLIMITED_WEAPON_AMMO)) this.ammo_fuel -= PHYS_JETPACK_FUEL(this) * dt * fvel * f; ITEMS_STAT(this) |= IT_USING_JETPACK; // jetpack also inhibits health regeneration, but only for 1 second this.pauseregen_finished = max(this.pauseregen_finished, time + autocvar_g_balance_pause_fuel_regen); #endif } } // used for calculating airshots bool IsFlying(entity this) { if(IS_ONGROUND(this)) return false; if(this.waterlevel >= WATERLEVEL_SWIMMING) return false; traceline(this.origin, this.origin - '0 0 48', MOVE_NORMAL, this); if(trace_fraction < 1) return false; return true; } void sys_phys_update(entity this, float dt); #if defined(SVQC) void SV_PlayerPhysics(entity this) #elif defined(CSQC) void CSQC_ClientMovement_PlayerMove_Frame(entity this) #endif { sys_phys_update(this, PHYS_INPUT_TIMELENGTH); #ifdef SVQC this.pm_frametime = frametime; #endif }