#pragma once noref vector _vlen2; #define vlen2(v) (_vlen2 = (v), dotproduct(_vlen2, _vlen2)) #if 1 noref float _vdist_f; /** Vector distance comparison, avoids sqrt() */ #define vdist(v, cmp, f) (vlen2(v) cmp (_vdist_f = (f), _vdist_f * _vdist_f)) #else #define vdist(v, cmp, f) (vlen(v) cmp (f)) #endif #if 1 #define dotproduct(a, b) ((a) * (b)) #else noref vector _dotproduct_a, _dotproduct_b; #define dotproduct(a, b) \ (_dotproduct_a = (a), _dotproduct_b = (b), \ _dotproduct_a.x * _dotproduct_b.x \ + _dotproduct_a.y * _dotproduct_b.y \ + _dotproduct_a.z * _dotproduct_b.z) #endif #if 1 #define cross(a, b) ((a) >< (b)) #else vector cross(vector a, vector b) { return '1 0 0' * (a.y * b.z - a.z * b.y) + '0 1 0' * (a.z * b.x - a.x * b.z) + '0 0 1' * (a.x * b.y - a.y * b.x); } #endif noref vector _vmul_a, _vmul_b; #define vmul(a, b) \ (_vmul_a = (a), _vmul_b = (b), \ '1 0 0' * (_vmul_a.x * _vmul_b.x) \ + '0 1 0' * (_vmul_a.y * _vmul_b.y) \ + '0 0 1' * (_vmul_a.z * _vmul_b.z)) const vector eX = '1 0 0'; const vector eY = '0 1 0'; const vector eZ = '0 0 1'; vector randompos(vector m1, vector m2) { vector v; m2 = m2 - m1; v_x = m2_x * random() + m1_x; v_y = m2_y * random() + m1_y; v_z = m2_z * random() + m1_z; return v; } float vlen_maxnorm2d(vector v) { return max(v.x, v.y, -v.x, -v.y); } float vlen_minnorm2d(vector v) { return min(max(v.x, -v.x), max(v.y, -v.y)); } float dist_point_line(vector p, vector l0, vector ldir) { ldir = normalize(ldir); // remove the component in line direction p = p - (p * ldir) * ldir; // vlen of the remaining vector return vlen(p); } /** requires that m2>m1 in all coordinates, and that m4>m3 */ float boxesoverlap(vector m1, vector m2, vector m3, vector m4) { return m2_x >= m3_x && m1_x <= m4_x && m2_y >= m3_y && m1_y <= m4_y && m2_z >= m3_z && m1_z <= m4_z; } /** requires the same as boxesoverlap, but is a stronger condition */ float boxinsidebox(vector smins, vector smaxs, vector bmins, vector bmaxs) { return smins.x >= bmins.x && smaxs.x <= bmaxs.x && smins.y >= bmins.y && smaxs.y <= bmaxs.y && smins.z >= bmins.z && smaxs.z <= bmaxs.z; } #define PITCH(v) ((v).x) #define YAW(v) ((v).y) #define ROLL(v) ((v).z) #define MAKEVECTORS(f, angles, forward, right, up) MACRO_BEGIN { \ f(angles); \ forward = v_forward; \ right = v_right; \ up = v_up; \ } MACRO_END noref vector _vec2; #define vec2(...) EVAL(OVERLOAD(vec2, __VA_ARGS__)) #define vec2_1(v) (_vec2 = (v), _vec2.z = 0, _vec2) #define vec2_2(x, y) (_vec2_x = (x), _vec2_y = (y), _vec2) noref vector _vec3; #define vec3(_x, _y, _z) (_vec3.x = (_x), _vec3.y = (_y), _vec3.z = (_z), _vec3) vector Rotate(vector v, float a) { float a_sin = sin(a), a_cos = cos(a); return vec2(v.x * a_cos + v.y * a_sin, -v.x * a_sin + v.y * a_cos); } noref vector _yinvert; #define yinvert(v) (_yinvert = (v), _yinvert.y = 1 - _yinvert.y, _yinvert) /** * @param dir the directional vector * @param norm the normalized normal * @returns dir reflected by norm */ vector reflect(vector dir, vector norm) { return dir - 2 * (dir * norm) * norm; } /** * clip vel along the plane defined by norm (assuming 0 distance away), bounciness determined by bounce 0..1 */ vector vec_reflect(vector vel, vector norm, float bounce) { return vel - (1 + bounce) * (vel * norm) * norm; } vector vec_epsilon(vector this, float eps) { if (this.x > -eps && this.x < eps) this.x = 0; if (this.y > -eps && this.y < eps) this.y = 0; if (this.z > -eps && this.z < eps) this.z = 0; return this; } #define ClipVelocity(in, normal, out, overbounce) \ (out = vec_epsilon(vec_reflect(in, normal, (overbounce) - 1), 0.1)) #ifdef GAMEQC vector get_corner_position(entity box, int corner) { switch (corner) { case 1: return vec3(box.absmin.x, box.absmin.y, box.absmin.z); case 2: return vec3(box.absmax.x, box.absmin.y, box.absmin.z); case 3: return vec3(box.absmin.x, box.absmax.y, box.absmin.z); case 4: return vec3(box.absmin.x, box.absmin.y, box.absmax.z); case 5: return vec3(box.absmax.x, box.absmax.y, box.absmin.z); case 6: return vec3(box.absmin.x, box.absmax.y, box.absmax.z); case 7: return vec3(box.absmax.x, box.absmin.y, box.absmax.z); case 8: return vec3(box.absmax.x, box.absmax.y, box.absmax.z); default: return '0 0 0'; } } vector NearestPointOnBox(entity box, vector org) { vector m1 = box.mins + box.origin; vector m2 = box.maxs + box.origin; return vec3( bound(m1.x, org.x, m2.x), bound(m1.y, org.y, m2.y), bound(m1.z, org.z, m2.z) ); } #endif