]> de.git.xonotic.org Git - xonotic/netradiant.git/blobdiff - tools/quake2/q2map/flow.c
threading: [partial] Working NetRadiant and q3map2 on MSYS2 (both x86, x86_64)
[xonotic/netradiant.git] / tools / quake2 / q2map / flow.c
index 8bd8022a209aa2ae7c1d4c657288dd6d0c99666e..4a4cac053d49bf0e7dc00af7891dd07cfb9edd0e 100644 (file)
 /*
-Copyright (C) 1999-2006 Id Software, Inc. and contributors.
-For a list of contributors, see the accompanying CONTRIBUTORS file.
+   Copyright (C) 1999-2007 id Software, Inc. and contributors.
+   For a list of contributors, see the accompanying CONTRIBUTORS file.
 
-This file is part of GtkRadiant.
+   This file is part of GtkRadiant.
 
-GtkRadiant is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
+   GtkRadiant is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2 of the License, or
+   (at your option) any later version.
 
-GtkRadiant is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-GNU General Public License for more details.
+   GtkRadiant is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
 
-You should have received a copy of the GNU General Public License
-along with GtkRadiant; if not, write to the Free Software
-Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
-*/
+   You should have received a copy of the GNU General Public License
+   along with GtkRadiant; if not, write to the Free Software
+   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ */
 #include "qvis.h"
 
 /*
 
-  each portal will have a list of all possible to see from first portal
+   each portal will have a list of all possible to see from first portal
 
-  if (!thread->portalmightsee[portalnum])
+   if (!thread->portalmightsee[portalnum])
 
-  portal mightsee
+   portal mightsee
 
-  for p2 = all other portals in leaf
-       get sperating planes
-       for all portals that might be seen by p2
-               mark as unseen if not present in seperating plane
-       flood fill a new mightsee
-       save as passagemightsee
+   for p2 = all other portals in leaf
+    get sperating planes
+    for all portals that might be seen by p2
+        mark as unseen if not present in seperating plane
+    flood fill a new mightsee
+    save as passagemightsee
 
 
-  void CalcMightSee (leaf_t *leaf, 
-*/
+   void CalcMightSee (leaf_t *leaf,
+ */
 
-int CountBits (byte *bits, int numbits)
-{
-       int             i;
-       int             c;
+int CountBits( byte *bits, int numbits ){
+       int i;
+       int c;
 
        c = 0;
-       for (i=0 ; i<numbits ; i++)
-               if (bits[i>>3] & (1<<(i&7)) )
+       for ( i = 0 ; i < numbits ; i++ )
+               if ( bits[i >> 3] & ( 1 << ( i & 7 ) ) ) {
                        c++;
+               }
 
        return c;
 }
 
-int            c_fullskip;
-int            c_portalskip, c_leafskip;
-int            c_vistest, c_mighttest;
+int c_fullskip;
+int c_portalskip, c_leafskip;
+int c_vistest, c_mighttest;
 
-int            c_chop, c_nochop;
+int c_chop, c_nochop;
 
-int            active;
+int active;
 
-void CheckStack (leaf_t *leaf, threaddata_t *thread)
-{
-       pstack_t        *p, *p2;
+void CheckStack( leaf_t *leaf, threaddata_t *thread ){
+       pstack_t    *p, *p2;
 
-       for (p=thread->pstack_head.next ; p ; p=p->next)
+       for ( p = thread->pstack_head.next ; p ; p = p->next )
        {
 //             printf ("=");
-               if (p->leaf == leaf)
-                       Error ("CheckStack: leaf recursion");
-               for (p2=thread->pstack_head.next ; p2 != p ; p2=p2->next)
-                       if (p2->leaf == p->leaf)
-                               Error ("CheckStack: late leaf recursion");
+               if ( p->leaf == leaf ) {
+                       Error( "CheckStack: leaf recursion" );
+               }
+               for ( p2 = thread->pstack_head.next ; p2 != p ; p2 = p2->next )
+                       if ( p2->leaf == p->leaf ) {
+                               Error( "CheckStack: late leaf recursion" );
+                       }
        }
 //     printf ("\n");
 }
 
 
-winding_t *AllocStackWinding (pstack_t *stack)
-{
-       int             i;
+winding_t *AllocStackWinding( pstack_t *stack ){
+       int i;
 
-       for (i=0 ; i<3 ; i++)
+       for ( i = 0 ; i < 3 ; i++ )
        {
-               if (stack->freewindings[i])
-               {
+               if ( stack->freewindings[i] ) {
                        stack->freewindings[i] = 0;
                        return &stack->windings[i];
                }
        }
 
-       Error ("AllocStackWinding: failed");
+       Error( "AllocStackWinding: failed" );
 
        return NULL;
 }
 
-void FreeStackWinding (winding_t *w, pstack_t *stack)
-{
-       int             i;
+void FreeStackWinding( winding_t *w, pstack_t *stack ){
+       int i;
 
        i = w - stack->windings;
 
-       if (i<0 || i>2)
-               return;         // not from local
+       if ( i < 0 || i > 2 ) {
+               return;     // not from local
 
-       if (stack->freewindings[i])
-               Error ("FreeStackWinding: allready free");
+       }
+       if ( stack->freewindings[i] ) {
+               Error( "FreeStackWinding: allready free" );
+       }
        stack->freewindings[i] = 1;
 }
 
 /*
-==============
-Vis_ChopWinding
-
-==============
-*/
-winding_t      *Vis_ChopWinding (winding_t *in, pstack_t *stack, plane_t *split)
-{
-       vec_t   dists[128];
-       int             sides[128];
-       int             counts[3];
-       vec_t   dot;
-       int             i, j;
-       vec_t   *p1, *p2;
-       vec3_t  mid;
-       winding_t       *neww;
+   ==============
+   Vis_ChopWinding
+
+   ==============
+ */
+winding_t   *Vis_ChopWinding( winding_t *in, pstack_t *stack, plane_t *split ){
+       vec_t dists[128];
+       int sides[128];
+       int counts[3];
+       vec_t dot;
+       int i, j;
+       vec_t   *p1, *p2;
+       vec3_t mid;
+       winding_t   *neww;
 
        counts[0] = counts[1] = counts[2] = 0;
 
 // determine sides for each point
-       for (i=0 ; i<in->numpoints ; i++)
+       for ( i = 0 ; i < in->numpoints ; i++ )
        {
-               dot = DotProduct (in->points[i], split->normal);
+               dot = DotProduct( in->points[i], split->normal );
                dot -= split->dist;
                dists[i] = dot;
-               if (dot > ON_EPSILON)
+               if ( dot > ON_EPSILON ) {
                        sides[i] = SIDE_FRONT;
-               else if (dot < -ON_EPSILON)
+               }
+               else if ( dot < -ON_EPSILON ) {
                        sides[i] = SIDE_BACK;
+               }
                else
                {
                        sides[i] = SIDE_ON;
@@ -145,249 +146,255 @@ winding_t       *Vis_ChopWinding (winding_t *in, pstack_t *stack, plane_t *split)
                counts[sides[i]]++;
        }
 
-       if (!counts[1])
-               return in;              // completely on front side
-       
-       if (!counts[0])
-       {
-               FreeStackWinding (in, stack);
+       if ( !counts[1] ) {
+               return in;      // completely on front side
+
+       }
+       if ( !counts[0] ) {
+               FreeStackWinding( in, stack );
                return NULL;
        }
 
        sides[i] = sides[0];
        dists[i] = dists[0];
-       
-       neww = AllocStackWinding (stack);
+
+       neww = AllocStackWinding( stack );
 
        neww->numpoints = 0;
 
-       for (i=0 ; i<in->numpoints ; i++)
+       for ( i = 0 ; i < in->numpoints ; i++ )
        {
                p1 = in->points[i];
 
-               if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING)
-               {
-                       FreeStackWinding (neww, stack);
-                       return in;              // can't chop -- fall back to original
+               if ( neww->numpoints == MAX_POINTS_ON_FIXED_WINDING ) {
+                       FreeStackWinding( neww, stack );
+                       return in;      // can't chop -- fall back to original
                }
 
-               if (sides[i] == SIDE_ON)
-               {
-                       VectorCopy (p1, neww->points[neww->numpoints]);
+               if ( sides[i] == SIDE_ON ) {
+                       VectorCopy( p1, neww->points[neww->numpoints] );
                        neww->numpoints++;
                        continue;
                }
-       
-               if (sides[i] == SIDE_FRONT)
-               {
-                       VectorCopy (p1, neww->points[neww->numpoints]);
+
+               if ( sides[i] == SIDE_FRONT ) {
+                       VectorCopy( p1, neww->points[neww->numpoints] );
                        neww->numpoints++;
                }
-               
-               if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
+
+               if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
                        continue;
-                       
-               if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING)
-               {
-                       FreeStackWinding (neww, stack);
-                       return in;              // can't chop -- fall back to original
                }
 
-       // generate a split point
-               p2 = in->points[(i+1)%in->numpoints];
-               
-               dot = dists[i] / (dists[i]-dists[i+1]);
-               for (j=0 ; j<3 ; j++)
-               {       // avoid round off error when possible
-                       if (split->normal[j] == 1)
+               if ( neww->numpoints == MAX_POINTS_ON_FIXED_WINDING ) {
+                       FreeStackWinding( neww, stack );
+                       return in;      // can't chop -- fall back to original
+               }
+
+               // generate a split point
+               p2 = in->points[( i + 1 ) % in->numpoints];
+
+               dot = dists[i] / ( dists[i] - dists[i + 1] );
+               for ( j = 0 ; j < 3 ; j++ )
+               {   // avoid round off error when possible
+                       if ( split->normal[j] == 1 ) {
                                mid[j] = split->dist;
-                       else if (split->normal[j] == -1)
+                       }
+                       else if ( split->normal[j] == -1 ) {
                                mid[j] = -split->dist;
-                       else
-                               mid[j] = p1[j] + dot*(p2[j]-p1[j]);
+                       }
+                       else{
+                               mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
+                       }
                }
-                       
-               VectorCopy (mid, neww->points[neww->numpoints]);
+
+               VectorCopy( mid, neww->points[neww->numpoints] );
                neww->numpoints++;
        }
-       
+
 // free the original winding
-       FreeStackWinding (in, stack);
-       
+       FreeStackWinding( in, stack );
+
        return neww;
 }
 
 
 /*
-==============
-ClipToSeperators
-
-Source, pass, and target are an ordering of portals.
-
-Generates seperating planes canidates by taking two points from source and one
-point from pass, and clips target by them.
-
-If target is totally clipped away, that portal can not be seen through.
-
-Normal clip keeps target on the same side as pass, which is correct if the
-order goes source, pass, target.  If the order goes pass, source, target then
-flipclip should be set.
-==============
-*/
-winding_t      *ClipToSeperators (winding_t *source, winding_t *pass, winding_t *target, qboolean flipclip, pstack_t *stack)
-{
-       int                     i, j, k, l;
-       plane_t         plane;
-       vec3_t          v1, v2;
-       float           d;
-       vec_t           length;
-       int                     counts[3];
-       qboolean                fliptest;
-
-// check all combinations      
-       for (i=0 ; i<source->numpoints ; i++)
+   ==============
+   ClipToSeperators
+
+   Source, pass, and target are an ordering of portals.
+
+   Generates seperating planes canidates by taking two points from source and one
+   point from pass, and clips target by them.
+
+   If target is totally clipped away, that portal can not be seen through.
+
+   Normal clip keeps target on the same side as pass, which is correct if the
+   order goes source, pass, target.  If the order goes pass, source, target then
+   flipclip should be set.
+   ==============
+ */
+winding_t   *ClipToSeperators( winding_t *source, winding_t *pass, winding_t *target, qboolean flipclip, pstack_t *stack ){
+       int i, j, k, l;
+       plane_t plane;
+       vec3_t v1, v2;
+       float d;
+       vec_t length;
+       int counts[3];
+       qboolean fliptest;
+
+// check all combinations
+       for ( i = 0 ; i < source->numpoints ; i++ )
        {
-               l = (i+1)%source->numpoints;
-               VectorSubtract (source->points[l] , source->points[i], v1);
+               l = ( i + 1 ) % source->numpoints;
+               VectorSubtract( source->points[l], source->points[i], v1 );
 
-       // fing a vertex of pass that makes a plane that puts all of the
-       // vertexes of pass on the front side and all of the vertexes of
-       // source on the back side
-               for (j=0 ; j<pass->numpoints ; j++)
+               // fing a vertex of pass that makes a plane that puts all of the
+               // vertexes of pass on the front side and all of the vertexes of
+               // source on the back side
+               for ( j = 0 ; j < pass->numpoints ; j++ )
                {
-                       VectorSubtract (pass->points[j], source->points[i], v2);
+                       VectorSubtract( pass->points[j], source->points[i], v2 );
 
-                       plane.normal[0] = v1[1]*v2[2] - v1[2]*v2[1];
-                       plane.normal[1] = v1[2]*v2[0] - v1[0]*v2[2];
-                       plane.normal[2] = v1[0]*v2[1] - v1[1]*v2[0];
-                       
-               // if points don't make a valid plane, skip it
+                       plane.normal[0] = v1[1] * v2[2] - v1[2] * v2[1];
+                       plane.normal[1] = v1[2] * v2[0] - v1[0] * v2[2];
+                       plane.normal[2] = v1[0] * v2[1] - v1[1] * v2[0];
+
+                       // if points don't make a valid plane, skip it
 
                        length = plane.normal[0] * plane.normal[0]
-                       + plane.normal[1] * plane.normal[1]
-                       + plane.normal[2] * plane.normal[2];
-                       
-                       if (length < ON_EPSILON)
+                                        + plane.normal[1] * plane.normal[1]
+                                        + plane.normal[2] * plane.normal[2];
+
+                       if ( length < ON_EPSILON ) {
                                continue;
+                       }
+
+                       length = 1 / sqrt( length );
 
-                       length = 1/sqrt(length);
-                       
                        plane.normal[0] *= length;
                        plane.normal[1] *= length;
                        plane.normal[2] *= length;
 
-                       plane.dist = DotProduct (pass->points[j], plane.normal);
+                       plane.dist = DotProduct( pass->points[j], plane.normal );
 
-               //
-               // find out which side of the generated seperating plane has the
-               // source portal
-               //
+                       //
+                       // find out which side of the generated seperating plane has the
+                       // source portal
+                       //
 #if 1
                        fliptest = false;
-                       for (k=0 ; k<source->numpoints ; k++)
+                       for ( k = 0 ; k < source->numpoints ; k++ )
                        {
-                               if (k == i || k == l)
+                               if ( k == i || k == l ) {
                                        continue;
-                               d = DotProduct (source->points[k], plane.normal) - plane.dist;
-                               if (d < -ON_EPSILON)
-                               {       // source is on the negative side, so we want all
-                                       // pass and target on the positive side
+                               }
+                               d = DotProduct( source->points[k], plane.normal ) - plane.dist;
+                               if ( d < -ON_EPSILON ) { // source is on the negative side, so we want all
+                                                           // pass and target on the positive side
                                        fliptest = false;
                                        break;
                                }
-                               else if (d > ON_EPSILON)
-                               {       // source is on the positive side, so we want all
-                                       // pass and target on the negative side
+                               else if ( d > ON_EPSILON ) { // source is on the positive side, so we want all
+                                                               // pass and target on the negative side
                                        fliptest = true;
                                        break;
                                }
                        }
-                       if (k == source->numpoints)
-                               continue;               // planar with source portal
+                       if ( k == source->numpoints ) {
+                               continue;       // planar with source portal
+                       }
 #else
                        fliptest = flipclip;
 #endif
-               //
-               // flip the normal if the source portal is backwards
-               //
-                       if (fliptest)
-                       {
-                               VectorSubtract (vec3_origin, plane.normal, plane.normal);
+                       //
+                       // flip the normal if the source portal is backwards
+                       //
+                       if ( fliptest ) {
+                               VectorSubtract( vec3_origin, plane.normal, plane.normal );
                                plane.dist = -plane.dist;
                        }
 #if 1
-               //
-               // if all of the pass portal points are now on the positive side,
-               // this is the seperating plane
-               //
+                       //
+                       // if all of the pass portal points are now on the positive side,
+                       // this is the seperating plane
+                       //
                        counts[0] = counts[1] = counts[2] = 0;
-                       for (k=0 ; k<pass->numpoints ; k++)
+                       for ( k = 0 ; k < pass->numpoints ; k++ )
                        {
-                               if (k==j)
+                               if ( k == j ) {
                                        continue;
-                               d = DotProduct (pass->points[k], plane.normal) - plane.dist;
-                               if (d < -ON_EPSILON)
+                               }
+                               d = DotProduct( pass->points[k], plane.normal ) - plane.dist;
+                               if ( d < -ON_EPSILON ) {
                                        break;
-                               else if (d > ON_EPSILON)
+                               }
+                               else if ( d > ON_EPSILON ) {
                                        counts[0]++;
-                               else
+                               }
+                               else{
                                        counts[2]++;
+                               }
+                       }
+                       if ( k != pass->numpoints ) {
+                               continue;   // points on negative side, not a seperating plane
+
+                       }
+                       if ( !counts[0] ) {
+                               continue;   // planar with seperating plane
                        }
-                       if (k != pass->numpoints)
-                               continue;       // points on negative side, not a seperating plane
-                               
-                       if (!counts[0])
-                               continue;       // planar with seperating plane
 #else
-                       k = (j+1)%pass->numpoints;
-                       d = DotProduct (pass->points[k], plane.normal) - plane.dist;
-                       if (d < -ON_EPSILON)
+                       k = ( j + 1 ) % pass->numpoints;
+                       d = DotProduct( pass->points[k], plane.normal ) - plane.dist;
+                       if ( d < -ON_EPSILON ) {
                                continue;
-                       k = (j+pass->numpoints-1)%pass->numpoints;
-                       d = DotProduct (pass->points[k], plane.normal) - plane.dist;
-                       if (d < -ON_EPSILON)
-                               continue;                       
+                       }
+                       k = ( j + pass->numpoints - 1 ) % pass->numpoints;
+                       d = DotProduct( pass->points[k], plane.normal ) - plane.dist;
+                       if ( d < -ON_EPSILON ) {
+                               continue;
+                       }
 #endif
-               //
-               // flip the normal if we want the back side
-               //
-                       if (flipclip)
-                       {
-                               VectorSubtract (vec3_origin, plane.normal, plane.normal);
+                       //
+                       // flip the normal if we want the back side
+                       //
+                       if ( flipclip ) {
+                               VectorSubtract( vec3_origin, plane.normal, plane.normal );
                                plane.dist = -plane.dist;
                        }
-                       
-               //
-               // clip target by the seperating plane
-               //
-                       target = Vis_ChopWinding (target, stack, &plane);
-                       if (!target)
-                               return NULL;            // target is not visible
+
+                       //
+                       // clip target by the seperating plane
+                       //
+                       target = Vis_ChopWinding( target, stack, &plane );
+                       if ( !target ) {
+                               return NULL;        // target is not visible
+                       }
                }
        }
-       
+
        return target;
 }
 
 
 
 /*
-==================
-RecursiveLeafFlow
-
-Flood fill through the leafs
-If src_portal is NULL, this is the originating leaf
-==================
-*/
-void RecursiveLeafFlow (int leafnum, threaddata_t *thread, pstack_t *prevstack)
-{
-       pstack_t        stack;
-       portal_t        *p;
-       plane_t         backplane;
-       leaf_t          *leaf;
-       int                     i, j;
-       long            *test, *might, *vis, more;
-       int                     pnum;
+   ==================
+   RecursiveLeafFlow
+
+   Flood fill through the leafs
+   If src_portal is NULL, this is the originating leaf
+   ==================
+ */
+void RecursiveLeafFlow( int leafnum, threaddata_t *thread, pstack_t *prevstack ){
+       pstack_t stack;
+       portal_t    *p;
+       plane_t backplane;
+       leaf_t      *leaf;
+       int i, j;
+       long        *test, *might, *vis, more;
+       int pnum;
 
        thread->c_chains++;
 
@@ -402,21 +409,19 @@ void RecursiveLeafFlow (int leafnum, threaddata_t *thread, pstack_t *prevstack)
 
        might = (long *)stack.mightsee;
        vis = (long *)thread->base->portalvis;
-       
-// check all portals for flowing into other leafs      
-       for (i=0 ; i<leaf->numportals ; i++)
+
+// check all portals for flowing into other leafs
+       for ( i = 0 ; i < leaf->numportals ; i++ )
        {
                p = leaf->portals[i];
                pnum = p - portals;
 
-               if ( ! (prevstack->mightsee[pnum >> 3] & (1<<(pnum&7)) ) )
-               {
-                       continue;       // can't possibly see it
+               if ( !( prevstack->mightsee[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) {
+                       continue;   // can't possibly see it
                }
 
-       // if the portal can't see anything we haven't allready seen, skip it
-               if (p->status == stat_done)
-               {
+               // if the portal can't see anything we haven't allready seen, skip it
+               if ( p->status == stat_done ) {
                        test = (long *)p->portalvis;
                }
                else
@@ -425,282 +430,286 @@ void RecursiveLeafFlow (int leafnum, threaddata_t *thread, pstack_t *prevstack)
                }
 
                more = 0;
-               for (j=0 ; j<portallongs ; j++)
+               for ( j = 0 ; j < portallongs ; j++ )
                {
-                       might[j] = ((long *)prevstack->mightsee)[j] & test[j];
-                       more |= (might[j] & ~vis[j]);
+                       might[j] = ( (long *)prevstack->mightsee )[j] & test[j];
+                       more |= ( might[j] & ~vis[j] );
                }
-               
-               if (!more && 
-                       (thread->base->portalvis[pnum>>3] & (1<<(pnum&7))) )
-               {       // can't see anything new
+
+               if ( !more &&
+                        ( thread->base->portalvis[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) { // can't see anything new
                        continue;
                }
 
                // get plane of portal, point normal into the neighbor leaf
                stack.portalplane = p->plane;
-               VectorSubtract (vec3_origin, p->plane.normal, backplane.normal);
+               VectorSubtract( vec3_origin, p->plane.normal, backplane.normal );
                backplane.dist = -p->plane.dist;
-               
+
 //             c_portalcheck++;
-               
+
                stack.portal = p;
                stack.next = NULL;
                stack.freewindings[0] = 1;
                stack.freewindings[1] = 1;
                stack.freewindings[2] = 1;
-               
+
 #if 1
-{
-float d;
+               {
+                       float d;
 
-       d = DotProduct (p->origin, thread->pstack_head.portalplane.normal);
-       d -= thread->pstack_head.portalplane.dist;
-       if (d < -p->radius)
-       {
-               continue;
-       }
-       else if (d > p->radius)
-       {
-               stack.pass = p->winding;
-       }
-       else    
-       {
-               stack.pass = Vis_ChopWinding (p->winding, &stack, &thread->pstack_head.portalplane);
-               if (!stack.pass)
-                       continue;
-       }
-}
+                       d = DotProduct( p->origin, thread->pstack_head.portalplane.normal );
+                       d -= thread->pstack_head.portalplane.dist;
+                       if ( d < -p->radius ) {
+                               continue;
+                       }
+                       else if ( d > p->radius ) {
+                               stack.pass = p->winding;
+                       }
+                       else
+                       {
+                               stack.pass = Vis_ChopWinding( p->winding, &stack, &thread->pstack_head.portalplane );
+                               if ( !stack.pass ) {
+                                       continue;
+                               }
+                       }
+               }
 #else
-               stack.pass = Vis_ChopWinding (p->winding, &stack, &thread->pstack_head.portalplane);
-               if (!stack.pass)
+               stack.pass = Vis_ChopWinding( p->winding, &stack, &thread->pstack_head.portalplane );
+               if ( !stack.pass ) {
                        continue;
+               }
 #endif
 
-       
+
 #if 1
-{
-float d;
+               {
+                       float d;
 
-       d = DotProduct (thread->base->origin, p->plane.normal);
-       d -= p->plane.dist;
-       if (d > p->radius)
-       {
-               continue;
-       }
-       else if (d < -p->radius)
-       {
-               stack.source = prevstack->source;
-       }
-       else    
-       {
-               stack.source = Vis_ChopWinding (prevstack->source, &stack, &backplane);
-               if (!stack.source)
-                       continue;
-       }
-}
+                       d = DotProduct( thread->base->origin, p->plane.normal );
+                       d -= p->plane.dist;
+                       if ( d > p->radius ) {
+                               continue;
+                       }
+                       else if ( d < -p->radius ) {
+                               stack.source = prevstack->source;
+                       }
+                       else
+                       {
+                               stack.source = Vis_ChopWinding( prevstack->source, &stack, &backplane );
+                               if ( !stack.source ) {
+                                       continue;
+                               }
+                       }
+               }
 #else
-               stack.source = Vis_ChopWinding (prevstack->source, &stack, &backplane);
-               if (!stack.source)
+               stack.source = Vis_ChopWinding( prevstack->source, &stack, &backplane );
+               if ( !stack.source ) {
                        continue;
+               }
 #endif
 
-               if (!prevstack->pass)
-               {       // the second leaf can only be blocked if coplanar
+               if ( !prevstack->pass ) { // the second leaf can only be blocked if coplanar
 
                        // mark the portal as visible
-                       thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));
+                       thread->base->portalvis[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
 
-                       RecursiveLeafFlow (p->leaf, thread, &stack);
+                       RecursiveLeafFlow( p->leaf, thread, &stack );
                        continue;
                }
 
-               stack.pass = ClipToSeperators (stack.source, prevstack->pass, stack.pass, false, &stack);
-               if (!stack.pass)
+               stack.pass = ClipToSeperators( stack.source, prevstack->pass, stack.pass, false, &stack );
+               if ( !stack.pass ) {
                        continue;
-               
-               stack.pass = ClipToSeperators (prevstack->pass, stack.source, stack.pass, true, &stack);
-               if (!stack.pass)
+               }
+
+               stack.pass = ClipToSeperators( prevstack->pass, stack.source, stack.pass, true, &stack );
+               if ( !stack.pass ) {
                        continue;
+               }
 
                // mark the portal as visible
-               thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));
+               thread->base->portalvis[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
 
                // flow through it for real
-               RecursiveLeafFlow (p->leaf, thread, &stack);
-       }       
+               RecursiveLeafFlow( p->leaf, thread, &stack );
+       }
 }
 
 
 /*
-===============
-PortalFlow
-
-generates the portalvis bit vector
-===============
-*/
-void PortalFlow (int portalnum)
-{
-       threaddata_t    data;
-       int                             i;
-       portal_t                *p;
-       int                             c_might, c_can;
+   ===============
+   PortalFlow
+
+   generates the portalvis bit vector
+   ===============
+ */
+void PortalFlow( int portalnum ){
+       threaddata_t data;
+       int i;
+       portal_t        *p;
+       int c_might, c_can;
 
        p = sorted_portals[portalnum];
        p->status = stat_working;
 
-       c_might = CountBits (p->portalflood, numportals*2);
+       c_might = CountBits( p->portalflood, numportals * 2 );
 
-       memset (&data, 0, sizeof(data));
+       memset( &data, 0, sizeof( data ) );
        data.base = p;
-       
+
        data.pstack_head.portal = p;
        data.pstack_head.source = p->winding;
        data.pstack_head.portalplane = p->plane;
-       for (i=0 ; i<portallongs ; i++)
-               ((long *)data.pstack_head.mightsee)[i] = ((long *)p->portalflood)[i];
-       RecursiveLeafFlow (p->leaf, &data, &data.pstack_head);
+       for ( i = 0 ; i < portallongs ; i++ )
+               ( (long *)data.pstack_head.mightsee )[i] = ( (long *)p->portalflood )[i];
+       RecursiveLeafFlow( p->leaf, &data, &data.pstack_head );
 
        p->status = stat_done;
 
-       c_can = CountBits (p->portalvis, numportals*2);
+       c_can = CountBits( p->portalvis, numportals * 2 );
 
-       Sys_FPrintf ( SYS_VRB, "portal:%4i  mightsee:%4i  cansee:%4i (%i chains)\n", 
-               (int)(p - portals),     c_might, c_can, data.c_chains);
+       Sys_FPrintf( SYS_VRB, "portal:%4i  mightsee:%4i  cansee:%4i (%i chains)\n",
+                                (int)( p - portals ), c_might, c_can, data.c_chains );
 }
 
 
 /*
-===============================================================================
+   ===============================================================================
 
-This is a rough first-order aproximation that is used to trivially reject some
-of the final calculations.
+   This is a rough first-order aproximation that is used to trivially reject some
+   of the final calculations.
 
 
-Calculates portalfront and portalflood bit vectors
+   Calculates portalfront and portalflood bit vectors
 
-thinking about:
+   thinking about:
 
-typedef struct passage_s
-{
-       struct passage_s        *next;
-       struct portal_s         *to;
-       stryct sep_s            *seperators;
-       byte                            *mightsee;
-} passage_t;
+   typedef struct passage_s
+   {
+    struct passage_s   *next;
+    struct portal_s            *to;
+    stryct sep_s               *seperators;
+    byte                               *mightsee;
+   } passage_t;
 
-typedef struct portal_s
-{
-       struct passage_s        *passages;
-       int                                     leaf;           // leaf portal faces into
-} portal_s;
+   typedef struct portal_s
+   {
+    struct passage_s   *passages;
+    int                                        leaf;           // leaf portal faces into
+   } portal_s;
 
-leaf = portal->leaf
-clear 
-for all portals
+   leaf = portal->leaf
+   clear
+   for all portals
 
 
-calc portal visibility
-       clear bit vector
-       for all passages
-               passage visibility
+   calc portal visibility
+    clear bit vector
+    for all passages
+        passage visibility
 
 
-for a portal to be visible to a passage, it must be on the front of
-all seperating planes, and both portals must be behind the mew portal
+   for a portal to be visible to a passage, it must be on the front of
+   all seperating planes, and both portals must be behind the mew portal
 
-===============================================================================
-*/
+   ===============================================================================
+ */
 
-int            c_flood, c_vis;
+int c_flood, c_vis;
 
 
 /*
-==================
-SimpleFlood
-
-==================
-*/
-void SimpleFlood (portal_t *srcportal, int leafnum)
-{
-       int             i;
-       leaf_t  *leaf;
-       portal_t        *p;
-       int             pnum;
+   ==================
+   SimpleFlood
+
+   ==================
+ */
+void SimpleFlood( portal_t *srcportal, int leafnum ){
+       int i;
+       leaf_t  *leaf;
+       portal_t    *p;
+       int pnum;
 
        leaf = &leafs[leafnum];
-       
-       for (i=0 ; i<leaf->numportals ; i++)
+
+       for ( i = 0 ; i < leaf->numportals ; i++ )
        {
                p = leaf->portals[i];
                pnum = p - portals;
-               if ( ! (srcportal->portalfront[pnum>>3] & (1<<(pnum&7)) ) )
+               if ( !( srcportal->portalfront[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) {
                        continue;
+               }
 
-               if (srcportal->portalflood[pnum>>3] & (1<<(pnum&7)) )
+               if ( srcportal->portalflood[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) {
                        continue;
+               }
 
-               srcportal->portalflood[pnum>>3] |= (1<<(pnum&7));
-               
-               SimpleFlood (srcportal, p->leaf);
+               srcportal->portalflood[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
+
+               SimpleFlood( srcportal, p->leaf );
        }
 }
 
 /*
-==============
-BasePortalVis
-==============
-*/
-void BasePortalVis (int portalnum)
-{
-       int                     j, k;
-       portal_t        *tp, *p;
-       float           d;
-       winding_t       *w;
-
-       p = portals+portalnum;
-
-       p->portalfront = malloc (portalbytes);
-       memset (p->portalfront, 0, portalbytes);
-
-       p->portalflood = malloc (portalbytes);
-       memset (p->portalflood, 0, portalbytes);
-       
-       p->portalvis = malloc (portalbytes);
-       memset (p->portalvis, 0, portalbytes);
-       
-       for (j=0, tp = portals ; j<numportals*2 ; j++, tp++)
+   ==============
+   BasePortalVis
+   ==============
+ */
+void BasePortalVis( int portalnum ){
+       int j, k;
+       portal_t    *tp, *p;
+       float d;
+       winding_t   *w;
+
+       p = portals + portalnum;
+
+       p->portalfront = malloc( portalbytes );
+       memset( p->portalfront, 0, portalbytes );
+
+       p->portalflood = malloc( portalbytes );
+       memset( p->portalflood, 0, portalbytes );
+
+       p->portalvis = malloc( portalbytes );
+       memset( p->portalvis, 0, portalbytes );
+
+       for ( j = 0, tp = portals ; j < numportals * 2 ; j++, tp++ )
        {
-               if (j == portalnum)
+               if ( j == portalnum ) {
                        continue;
+               }
                w = tp->winding;
-               for (k=0 ; k<w->numpoints ; k++)
+               for ( k = 0 ; k < w->numpoints ; k++ )
                {
-                       d = DotProduct (w->points[k], p->plane.normal)
+                       d = DotProduct( w->points[k], p->plane.normal )
                                - p->plane.dist;
-                       if (d > ON_EPSILON)
+                       if ( d > ON_EPSILON ) {
                                break;
+                       }
                }
-               if (k == w->numpoints)
-                       continue;       // no points on front
+               if ( k == w->numpoints ) {
+                       continue;   // no points on front
 
+               }
                w = p->winding;
-               for (k=0 ; k<w->numpoints ; k++)
+               for ( k = 0 ; k < w->numpoints ; k++ )
                {
-                       d = DotProduct (w->points[k], tp->plane.normal)
+                       d = DotProduct( w->points[k], tp->plane.normal )
                                - tp->plane.dist;
-                       if (d < -ON_EPSILON)
+                       if ( d < -ON_EPSILON ) {
                                break;
+                       }
                }
-               if (k == w->numpoints)
-                       continue;       // no points on front
+               if ( k == w->numpoints ) {
+                       continue;   // no points on front
 
-               p->portalfront[j>>3] |= (1<<(j&7));
+               }
+               p->portalfront[j >> 3] |= ( 1 << ( j & 7 ) );
        }
-       
-       SimpleFlood (p, p->leaf);
 
-       p->nummightsee = CountBits (p->portalflood, numportals*2);
+       SimpleFlood( p, p->leaf );
+
+       p->nummightsee = CountBits( p->portalflood, numportals * 2 );
 //     printf ("portal %i: %i mightsee\n", portalnum, p->nummightsee);
        c_flood += p->nummightsee;
 }
@@ -710,78 +719,76 @@ void BasePortalVis (int portalnum)
 
 
 /*
-===============================================================================
+   ===============================================================================
 
-This is a second order aproximation 
+   This is a second order aproximation
 
-Calculates portalvis bit vector
+   Calculates portalvis bit vector
 
-WAAAAAAY too slow.
+   WAAAAAAY too slow.
 
-===============================================================================
-*/
+   ===============================================================================
+ */
 
 /*
-==================
-RecursiveLeafBitFlow
-
-==================
-*/
-void RecursiveLeafBitFlow (int leafnum, byte *mightsee, byte *cansee)
-{
-       portal_t        *p;
-       leaf_t          *leaf;
-       int                     i, j;
-       long            more;
-       int                     pnum;
-       byte            newmight[MAX_PORTALS/8];
+   ==================
+   RecursiveLeafBitFlow
+
+   ==================
+ */
+void RecursiveLeafBitFlow( int leafnum, byte *mightsee, byte *cansee ){
+       portal_t    *p;
+       leaf_t      *leaf;
+       int i, j;
+       long more;
+       int pnum;
+       byte newmight[MAX_PORTALS / 8];
 
        leaf = &leafs[leafnum];
-       
-// check all portals for flowing into other leafs      
-       for (i=0 ; i<leaf->numportals ; i++)
+
+// check all portals for flowing into other leafs
+       for ( i = 0 ; i < leaf->numportals ; i++ )
        {
                p = leaf->portals[i];
                pnum = p - portals;
 
                // if some previous portal can't see it, skip
-               if (! (mightsee[pnum>>3] & (1<<(pnum&7)) ) )
+               if ( !( mightsee[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) {
                        continue;
+               }
 
                // if this portal can see some portals we mightsee, recurse
                more = 0;
-               for (j=0 ; j<portallongs ; j++)
+               for ( j = 0 ; j < portallongs ; j++ )
                {
-                       ((long *)newmight)[j] = ((long *)mightsee)[j] 
-                               & ((long *)p->portalflood)[j];
-                       more |= ((long *)newmight)[j] & ~((long *)cansee)[j];
+                       ( (long *)newmight )[j] = ( (long *)mightsee )[j]
+                                                                         & ( (long *)p->portalflood )[j];
+                       more |= ( (long *)newmight )[j] & ~( (long *)cansee )[j];
                }
 
-               if (!more)
-                       continue;       // can't see anything new
+               if ( !more ) {
+                       continue;   // can't see anything new
 
-               cansee[pnum>>3] |= (1<<(pnum&7));
+               }
+               cansee[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
 
-               RecursiveLeafBitFlow (p->leaf, newmight, cansee);
-       }       
+               RecursiveLeafBitFlow( p->leaf, newmight, cansee );
+       }
 }
 
 /*
-==============
-BetterPortalVis
-==============
-*/
-void BetterPortalVis (int portalnum)
-{
-       portal_t        *p;
+   ==============
+   BetterPortalVis
+   ==============
+ */
+void BetterPortalVis( int portalnum ){
+       portal_t    *p;
 
-       p = portals+portalnum;
+       p = portals + portalnum;
 
-       RecursiveLeafBitFlow (p->leaf, p->portalflood, p->portalvis);
+       RecursiveLeafBitFlow( p->leaf, p->portalflood, p->portalvis );
 
        // build leaf vis information
-       p->nummightsee = CountBits (p->portalvis, numportals*2);
+       p->nummightsee = CountBits( p->portalvis, numportals * 2 );
        c_vis += p->nummightsee;
 }
-
-