X-Git-Url: https://de.git.xonotic.org/?a=blobdiff_plain;f=radiant%2Fbrush_primit.cpp;h=2b11807e548721443ecb88748c62410a40f51d13;hb=aa8c5aec5c7f578b977abb4322e2322df8edd662;hp=3ca213526765d978adee04bf7c06f81d9a5091ce;hpb=9fa4db610e29d9bd00f61a053301797b3897b023;p=xonotic%2Fnetradiant.git diff --git a/radiant/brush_primit.cpp b/radiant/brush_primit.cpp index 3ca21352..2b11807e 100644 --- a/radiant/brush_primit.cpp +++ b/radiant/brush_primit.cpp @@ -1,33 +1,421 @@ /* -Copyright (C) 1999-2007 id Software, Inc. and contributors. -For a list of contributors, see the accompanying CONTRIBUTORS file. + Copyright (C) 1999-2006 Id Software, Inc. and contributors. + For a list of contributors, see the accompanying CONTRIBUTORS file. -This file is part of GtkRadiant. + This file is part of GtkRadiant. -GtkRadiant is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. + GtkRadiant is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. -GtkRadiant is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + GtkRadiant is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. -You should have received a copy of the GNU General Public License -along with GtkRadiant; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -*/ + You should have received a copy of the GNU General Public License + along with GtkRadiant; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ -#include "stdafx.h" +#include "brush_primit.h" +#include "globaldefs.h" + +#include "debugging/debugging.h" + +#include "itexdef.h" +#include "itextures.h" + +#include + +#include "stringio.h" +#include "texturelib.h" +#include "math/matrix.h" +#include "math/plane.h" +#include "math/aabb.h" + +#include "winding.h" +#include "preferences.h" + + +/*! + \brief Construct a transform from XYZ space to ST space (3d to 2d). + This will be one of three axis-aligned spaces, depending on the surface normal. + NOTE: could also be done by swapping values. + */ +void Normal_GetTransform( const Vector3& normal, Matrix4& transform ){ + switch ( projectionaxis_for_normal( normal ) ) + { + case eProjectionAxisZ: + transform[0] = 1; + transform[1] = 0; + transform[2] = 0; + + transform[4] = 0; + transform[5] = 1; + transform[6] = 0; + + transform[8] = 0; + transform[9] = 0; + transform[10] = 1; + break; + case eProjectionAxisY: + transform[0] = 1; + transform[1] = 0; + transform[2] = 0; + + transform[4] = 0; + transform[5] = 0; + transform[6] = -1; + + transform[8] = 0; + transform[9] = 1; + transform[10] = 0; + break; + case eProjectionAxisX: + transform[0] = 0; + transform[1] = 0; + transform[2] = 1; + + transform[4] = 1; + transform[5] = 0; + transform[6] = 0; + + transform[8] = 0; + transform[9] = 1; + transform[10] = 0; + break; + } + transform[3] = transform[7] = transform[11] = transform[12] = transform[13] = transform[14] = 0; + transform[15] = 1; +} + +/*! + \brief Construct a transform in ST space from the texdef. + Transforms constructed from quake's texdef format are (-shift)*(1/scale)*(-rotate) with x translation sign flipped. + This would really make more sense if it was inverseof(shift*rotate*scale).. oh well. + */ +inline void Texdef_toTransform( const texdef_t& texdef, float width, float height, Matrix4& transform ){ + double inverse_scale[2]; + + // transform to texdef shift/scale/rotate + inverse_scale[0] = 1 / ( texdef.scale[0] * width ); + inverse_scale[1] = 1 / ( texdef.scale[1] * -height ); + transform[12] = texdef.shift[0] / width; + transform[13] = -texdef.shift[1] / -height; + double c = cos( degrees_to_radians( -texdef.rotate ) ); + double s = sin( degrees_to_radians( -texdef.rotate ) ); + transform[0] = static_cast( c * inverse_scale[0] ); + transform[1] = static_cast( s * inverse_scale[1] ); + transform[4] = static_cast( -s * inverse_scale[0] ); + transform[5] = static_cast( c * inverse_scale[1] ); + transform[2] = transform[3] = transform[6] = transform[7] = transform[8] = transform[9] = transform[11] = transform[14] = 0; + transform[10] = transform[15] = 1; +} + +inline void BPTexdef_toTransform( const brushprimit_texdef_t& bp_texdef, Matrix4& transform ){ + transform = g_matrix4_identity; + transform.xx() = bp_texdef.coords[0][0]; + transform.yx() = bp_texdef.coords[0][1]; + transform.tx() = bp_texdef.coords[0][2]; + transform.xy() = bp_texdef.coords[1][0]; + transform.yy() = bp_texdef.coords[1][1]; + transform.ty() = bp_texdef.coords[1][2]; +} + +inline void Texdef_toTransform( const TextureProjection& projection, float width, float height, Matrix4& transform ){ + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + BPTexdef_toTransform( projection.m_brushprimit_texdef, transform ); + } + else + { + Texdef_toTransform( projection.m_texdef, width, height, transform ); + } +} + +// handles degenerate cases, just in case library atan2 doesn't +inline double arctangent_yx( double y, double x ){ + if ( fabs( x ) > 1.0E-6 ) { + return atan2( y, x ); + } + else if ( y > 0 ) { + return c_half_pi; + } + else + { + return -c_half_pi; + } +} + +inline void Texdef_fromTransform( texdef_t& texdef, float width, float height, const Matrix4& transform ){ + texdef.scale[0] = static_cast( ( 1.0 / vector2_length( Vector2( transform[0], transform[4] ) ) ) / width ); + texdef.scale[1] = static_cast( ( 1.0 / vector2_length( Vector2( transform[1], transform[5] ) ) ) / height ); + + texdef.rotate = static_cast( -radians_to_degrees( arctangent_yx( -transform[4], transform[0] ) ) ); + + if ( texdef.rotate == -180.0f ) { + texdef.rotate = 180.0f; + } + + texdef.shift[0] = transform[12] * width; + texdef.shift[1] = transform[13] * height; + + // If the 2d cross-product of the x and y axes is positive, one of the axes has a negative scale. + if ( vector2_cross( Vector2( transform[0], transform[4] ), Vector2( transform[1], transform[5] ) ) > 0 ) { + if ( texdef.rotate >= 180.0f ) { + texdef.rotate -= 180.0f; + texdef.scale[0] = -texdef.scale[0]; + } + else + { + texdef.scale[1] = -texdef.scale[1]; + } + } + //globalOutputStream() << "fromTransform: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n"; +} + +inline void BPTexdef_fromTransform( brushprimit_texdef_t& bp_texdef, const Matrix4& transform ){ + bp_texdef.coords[0][0] = transform.xx(); + bp_texdef.coords[0][1] = transform.yx(); + bp_texdef.coords[0][2] = transform.tx(); + bp_texdef.coords[1][0] = transform.xy(); + bp_texdef.coords[1][1] = transform.yy(); + bp_texdef.coords[1][2] = transform.ty(); +} + +inline void Texdef_fromTransform( TextureProjection& projection, float width, float height, const Matrix4& transform ){ + ASSERT_MESSAGE( ( transform[0] != 0 || transform[4] != 0 ) + && ( transform[1] != 0 || transform[5] != 0 ), "invalid texture matrix" ); + + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + BPTexdef_fromTransform( projection.m_brushprimit_texdef, transform ); + } + else + { + Texdef_fromTransform( projection.m_texdef, width, height, transform ); + } +} + +inline void Texdef_normalise( texdef_t& texdef, float width, float height ){ + // it may be useful to also normalise the rotation here, if this function is used elsewhere. + texdef.shift[0] = float_mod( texdef.shift[0], width ); + texdef.shift[1] = float_mod( texdef.shift[1], height ); + //globalOutputStream() << "normalise: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n"; +} + +inline void BPTexdef_normalise( brushprimit_texdef_t& bp_texdef, float width, float height ){ + bp_texdef.coords[0][2] = float_mod( bp_texdef.coords[0][2], width ); + bp_texdef.coords[1][2] = float_mod( bp_texdef.coords[1][2], height ); +} + +/// \brief Normalise \p projection for a given texture \p width and \p height. +/// +/// All texture-projection translation (shift) values are congruent modulo the dimensions of the texture. +/// This function normalises shift values to the smallest positive congruent values. +void Texdef_normalise( TextureProjection& projection, float width, float height ){ + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + BPTexdef_normalise( projection.m_brushprimit_texdef, width, height ); + } + else + { + Texdef_normalise( projection.m_texdef, width, height ); + } +} + +void ComputeAxisBase( const Vector3& normal, Vector3& texS, Vector3& texT ); + +inline void DebugAxisBase( const Vector3& normal ){ + Vector3 x, y; + ComputeAxisBase( normal, x, y ); + globalOutputStream() << "BP debug: " << x << y << normal << "\n"; +} + +void Texdef_basisForNormal( const TextureProjection& projection, const Vector3& normal, Matrix4& basis ){ + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + basis = g_matrix4_identity; + ComputeAxisBase( normal, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ); + vector4_to_vector3( basis.z() ) = normal; + matrix4_transpose( basis ); + //DebugAxisBase(normal); + } + else if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE ) { + basis = g_matrix4_identity; + vector4_to_vector3( basis.x() ) = projection.m_basis_s; + vector4_to_vector3( basis.y() ) = vector3_negated( projection.m_basis_t ); + vector4_to_vector3( basis.z() ) = vector3_normalised( vector3_cross( vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ) ); + matrix4_multiply_by_matrix4( basis, matrix4_rotation_for_z_degrees( -projection.m_texdef.rotate ) ); + //globalOutputStream() << "debug: " << projection.m_basis_s << projection.m_basis_t << normal << "\n"; + matrix4_transpose( basis ); + } + else + { + Normal_GetTransform( normal, basis ); + } +} + +void Texdef_EmitTextureCoordinates( const TextureProjection& projection, std::size_t width, std::size_t height, Winding& w, const Vector3& normal, const Matrix4& localToWorld ){ + if ( w.numpoints < 3 ) { + return; + } + //globalOutputStream() << "normal: " << normal << "\n"; + + Matrix4 local2tex; + Texdef_toTransform( projection, (float)width, (float)height, local2tex ); + //globalOutputStream() << "texdef: " << static_cast(local2tex.x()) << static_cast(local2tex.y()) << "\n"; + +#if 0 + { + TextureProjection tmp; + Texdef_fromTransform( tmp, (float)width, (float)height, local2tex ); + Matrix4 tmpTransform; + Texdef_toTransform( tmp, (float)width, (float)height, tmpTransform ); + ASSERT_MESSAGE( matrix4_equal_epsilon( local2tex, tmpTransform, 0.0001f ), "bleh" ); + } +#endif + + { + Matrix4 xyz2st; + // we don't care if it's not normalised... + Texdef_basisForNormal( projection, matrix4_transformed_direction( localToWorld, normal ), xyz2st ); + //globalOutputStream() << "basis: " << static_cast(xyz2st.x()) << static_cast(xyz2st.y()) << static_cast(xyz2st.z()) << "\n"; + matrix4_multiply_by_matrix4( local2tex, xyz2st ); + } + + Vector3 tangent( vector3_normalised( vector4_to_vector3( matrix4_transposed( local2tex ).x() ) ) ); + Vector3 bitangent( vector3_normalised( vector4_to_vector3( matrix4_transposed( local2tex ).y() ) ) ); + + matrix4_multiply_by_matrix4( local2tex, localToWorld ); + + for ( Winding::iterator i = w.begin(); i != w.end(); ++i ) + { + Vector3 texcoord = matrix4_transformed_point( local2tex, ( *i ).vertex ); + ( *i ).texcoord[0] = texcoord[0]; + ( *i ).texcoord[1] = texcoord[1]; + + ( *i ).tangent = tangent; + ( *i ).bitangent = bitangent; + } +} + +/*! + \brief Provides the axis-base of the texture ST space for this normal, + as they had been transformed to world XYZ space. + */ +void TextureAxisFromNormal( const Vector3& normal, Vector3& s, Vector3& t ){ + switch ( projectionaxis_for_normal( normal ) ) + { + case eProjectionAxisZ: + s[0] = 1; + s[1] = 0; + s[2] = 0; + + t[0] = 0; + t[1] = -1; + t[2] = 0; + + break; + case eProjectionAxisY: + s[0] = 1; + s[1] = 0; + s[2] = 0; + + t[0] = 0; + t[1] = 0; + t[2] = -1; + + break; + case eProjectionAxisX: + s[0] = 0; + s[1] = 1; + s[2] = 0; + + t[0] = 0; + t[1] = 0; + t[2] = -1; + + break; + } +} + +void Texdef_Assign( texdef_t& td, const texdef_t& other ){ + td = other; +} + +void Texdef_Shift( texdef_t& td, float s, float t ){ + td.shift[0] += s; + td.shift[1] += t; +} + +void Texdef_Scale( texdef_t& td, float s, float t ){ + td.scale[0] += s; + td.scale[1] += t; +} + +void Texdef_Rotate( texdef_t& td, float angle ){ + td.rotate += angle; + td.rotate = static_cast( float_to_integer( td.rotate ) % 360 ); +} + +// NOTE: added these from Ritual's Q3Radiant +void ClearBounds( Vector3& mins, Vector3& maxs ){ + mins[0] = mins[1] = mins[2] = 99999; + maxs[0] = maxs[1] = maxs[2] = -99999; +} + +void AddPointToBounds( const Vector3& v, Vector3& mins, Vector3& maxs ){ + int i; + float val; + + for ( i = 0 ; i < 3 ; i++ ) + { + val = v[i]; + if ( val < mins[i] ) { + mins[i] = val; + } + if ( val > maxs[i] ) { + maxs[i] = val; + } + } +} + +template +inline BasicVector3 vector3_inverse( const BasicVector3& self ){ + return BasicVector3( + Element( 1.0 / self.x() ), + Element( 1.0 / self.y() ), + Element( 1.0 / self.z() ) + ); +} + +// low level functions .. put in mathlib? +#define BPMatCopy( a,b ) {b[0][0] = a[0][0]; b[0][1] = a[0][1]; b[0][2] = a[0][2]; b[1][0] = a[1][0]; b[1][1] = a[1][1]; b[1][2] = a[1][2]; } +// apply a scale transformation to the BP matrix +#define BPMatScale( m,sS,sT ) {m[0][0] *= sS; m[1][0] *= sS; m[0][1] *= sT; m[1][1] *= sT; } +// apply a translation transformation to a BP matrix +#define BPMatTranslate( m,s,t ) {m[0][2] += m[0][0] * s + m[0][1] * t; m[1][2] += m[1][0] * s + m[1][1] * t; } +// 2D homogeneous matrix product C = A*B +void BPMatMul( float A[2][3], float B[2][3], float C[2][3] ); +// apply a rotation (degrees) +void BPMatRotate( float A[2][3], float theta ); +#if GDEF_DEBUG +void BPMatDump( float A[2][3] ); +#endif + +#if GDEF_DEBUG +//#define DBG_BP +#endif + + +bp_globals_t g_bp_globals; +float g_texdef_default_scale; // compute a determinant using Sarrus rule //++timo "inline" this with a macro -// NOTE : the three vec3_t are understood as columns of the matrix -vec_t SarrusDet(vec3_t a, vec3_t b, vec3_t c) -{ - return a[0]*b[1]*c[2]+b[0]*c[1]*a[2]+c[0]*a[1]*b[2] - -c[0]*b[1]*a[2]-a[1]*b[0]*c[2]-a[0]*b[2]*c[1]; +// NOTE : the three vectors are understood as columns of the matrix +inline float SarrusDet( const Vector3& a, const Vector3& b, const Vector3& c ){ + return a[0] * b[1] * c[2] + b[0] * c[1] * a[2] + c[0] * a[1] * b[2] + - c[0] * b[1] * a[2] - a[1] * b[0] * c[2] - a[0] * b[2] * c[1]; } // in many case we know three points A,B,C in two axis base B1 and B2 @@ -37,23 +425,22 @@ vec_t SarrusDet(vec3_t a, vec3_t b, vec3_t c) // NOTE: the third coord of the A,B,C point is ignored // NOTE: see the commented out section to fill M and D //++timo TODO: update the other members to use this when possible -void MatrixForPoints( vec3_t M[3], vec3_t D[2], brushprimit_texdef_t *T ) -{ -// vec3_t M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way) - vec_t det; -// vec3_t D[2]; - M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; +void MatrixForPoints( Vector3 M[3], Vector3 D[2], brushprimit_texdef_t *T ){ +// Vector3 M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way) + float det; +// Vector3 D[2]; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; #if 0 // fill the data vectors - M[0][0]=A2[0]; M[0][1]=B2[0]; M[0][2]=C2[0]; - M[1][0]=A2[1]; M[1][1]=B2[1]; M[1][2]=C2[1]; - M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; - D[0][0]=A1[0]; - D[0][1]=B1[0]; - D[0][2]=C1[0]; - D[1][0]=A1[1]; - D[1][1]=B1[1]; - D[1][2]=C1[1]; + M[0][0] = A2[0]; M[0][1] = B2[0]; M[0][2] = C2[0]; + M[1][0] = A2[1]; M[1][1] = B2[1]; M[1][2] = C2[1]; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; + D[0][0] = A1[0]; + D[0][1] = B1[0]; + D[0][2] = C1[0]; + D[1][0] = A1[1]; + D[1][1] = B1[1]; + D[1][2] = C1[1]; #endif // solve det = SarrusDet( M[0], M[1], M[2] ); @@ -69,208 +456,247 @@ void MatrixForPoints( vec3_t M[3], vec3_t D[2], brushprimit_texdef_t *T ) // NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME ! // WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0 // rotation by (0,RotY,RotZ) assigns X to normal -void ComputeAxisBase(vec3_t normal,vec3_t texS,vec3_t texT ) -{ - vec_t RotY,RotZ; +void ComputeAxisBase( const Vector3& normal, Vector3& texS, Vector3& texT ){ +#if 1 + const Vector3 up( 0, 0, 1 ); + const Vector3 down( 0, 0, -1 ); + + if ( vector3_equal_epsilon( normal, up, float(1e-6) ) ) { + texS = Vector3( 0, 1, 0 ); + texT = Vector3( 1, 0, 0 ); + } + else if ( vector3_equal_epsilon( normal, down, float(1e-6) ) ) { + texS = Vector3( 0, 1, 0 ); + texT = Vector3( -1, 0, 0 ); + } + else + { + texS = vector3_normalised( vector3_cross( normal, up ) ); + texT = vector3_normalised( vector3_cross( normal, texS ) ); + vector3_negate( texS ); + } + +#else + float RotY,RotZ; // do some cleaning - if (fabs(normal[0])<1e-6) - normal[0]=0.0f; - if (fabs(normal[1])<1e-6) - normal[1]=0.0f; - if (fabs(normal[2])<1e-6) - normal[2]=0.0f; - RotY=-atan2(normal[2],sqrt(normal[1]*normal[1]+normal[0]*normal[0])); - RotZ=atan2(normal[1],normal[0]); + /* + if (fabs(normal[0])<1e-6) + normal[0]=0.0f; + if (fabs(normal[1])<1e-6) + normal[1]=0.0f; + if (fabs(normal[2])<1e-6) + normal[2]=0.0f; + */ + RotY = -atan2( normal[2],sqrt( normal[1] * normal[1] + normal[0] * normal[0] ) ); + RotZ = atan2( normal[1],normal[0] ); // rotate (0,1,0) and (0,0,1) to compute texS and texT - texS[0]=-sin(RotZ); - texS[1]=cos(RotZ); - texS[2]=0; + texS[0] = -sin( RotZ ); + texS[1] = cos( RotZ ); + texS[2] = 0; // the texT vector is along -Z ( T texture coorinates axis ) - texT[0]=-sin(RotY)*cos(RotZ); - texT[1]=-sin(RotY)*sin(RotZ); - texT[2]=-cos(RotY); + texT[0] = -sin( RotY ) * cos( RotZ ); + texT[1] = -sin( RotY ) * sin( RotZ ); + texT[2] = -cos( RotY ); +#endif } -void FaceToBrushPrimitFace(face_t *f) -{ - vec3_t texX,texY; - vec3_t proj; +#if 0 // texdef conversion +void FaceToBrushPrimitFace( face_t *f ){ + Vector3 texX,texY; + Vector3 proj; // ST of (0,0) (1,0) (0,1) - vec_t ST[3][5]; // [ point index ] [ xyz ST ] + float ST[3][5]; // [ point index ] [ xyz ST ] //++timo not used as long as brushprimit_texdef and texdef are static /* f->brushprimit_texdef.contents=f->texdef.contents; - f->brushprimit_texdef.flags=f->texdef.flags; - f->brushprimit_texdef.value=f->texdef.value; - strcpy(f->brushprimit_texdef.name,f->texdef.name); */ + f->brushprimit_texdef.flags=f->texdef.flags; + f->brushprimit_texdef.value=f->texdef.value; + strcpy(f->brushprimit_texdef.name,f->texdef.name); */ #ifdef DBG_BP - if ( f->plane.normal[0]==0.0f && f->plane.normal[1]==0.0f && f->plane.normal[2]==0.0f ) - { - Sys_Printf("Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n"); + if ( f->plane.normal[0] == 0.0f && f->plane.normal[1] == 0.0f && f->plane.normal[2] == 0.0f ) { + globalOutputStream() << "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n"; } // check d_texture - if (!f->d_texture) - { - Sys_Printf("Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n"); + if ( !f->d_texture ) { + globalOutputStream() << "Warning : f.d_texture is 0 in FaceToBrushPrimitFace\n"; return; } #endif // compute axis base - ComputeAxisBase(f->plane.normal,texX,texY); + ComputeAxisBase( f->plane.normal,texX,texY ); // compute projection vector - VectorCopy(f->plane.normal,proj); - VectorScale(proj,f->plane.dist,proj); + VectorCopy( f->plane.normal,proj ); + VectorScale( proj,f->plane.dist,proj ); // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane // use old texture code to compute the ST coords of these points - VectorCopy(proj,ST[0]); - EmitTextureCoordinates(ST[0], f->d_texture, f); - VectorCopy(texX,ST[1]); - VectorAdd(ST[1],proj,ST[1]); - EmitTextureCoordinates(ST[1], f->d_texture, f); - VectorCopy(texY,ST[2]); - VectorAdd(ST[2],proj,ST[2]); - EmitTextureCoordinates(ST[2], f->d_texture, f); + VectorCopy( proj,ST[0] ); + EmitTextureCoordinates( ST[0], f->pShader->getTexture(), f ); + VectorCopy( texX,ST[1] ); + VectorAdd( ST[1],proj,ST[1] ); + EmitTextureCoordinates( ST[1], f->pShader->getTexture(), f ); + VectorCopy( texY,ST[2] ); + VectorAdd( ST[2],proj,ST[2] ); + EmitTextureCoordinates( ST[2], f->pShader->getTexture(), f ); // compute texture matrix - f->brushprimit_texdef.coords[0][2]=ST[0][3]; - f->brushprimit_texdef.coords[1][2]=ST[0][4]; - f->brushprimit_texdef.coords[0][0]=ST[1][3]-f->brushprimit_texdef.coords[0][2]; - f->brushprimit_texdef.coords[1][0]=ST[1][4]-f->brushprimit_texdef.coords[1][2]; - f->brushprimit_texdef.coords[0][1]=ST[2][3]-f->brushprimit_texdef.coords[0][2]; - f->brushprimit_texdef.coords[1][1]=ST[2][4]-f->brushprimit_texdef.coords[1][2]; + f->brushprimit_texdef.coords[0][2] = ST[0][3]; + f->brushprimit_texdef.coords[1][2] = ST[0][4]; + f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2]; + f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2]; + f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2]; + f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2]; } // compute texture coordinates for the winding points -void EmitBrushPrimitTextureCoordinates(face_t * f, winding_t * w) -{ - vec3_t texX,texY; - vec_t x,y; +void EmitBrushPrimitTextureCoordinates( face_t * f, Winding * w ){ + Vector3 texX,texY; + float x,y; // compute axis base - ComputeAxisBase(f->plane.normal,texX,texY); + ComputeAxisBase( f->plane.normal,texX,texY ); // in case the texcoords matrix is empty, build a default one // same behaviour as if scale[0]==0 && scale[1]==0 in old code - if (f->brushprimit_texdef.coords[0][0]==0 && f->brushprimit_texdef.coords[1][0]==0 && f->brushprimit_texdef.coords[0][1]==0 && f->brushprimit_texdef.coords[1][1]==0) - { + if ( f->brushprimit_texdef.coords[0][0] == 0 && f->brushprimit_texdef.coords[1][0] == 0 && f->brushprimit_texdef.coords[0][1] == 0 && f->brushprimit_texdef.coords[1][1] == 0 ) { f->brushprimit_texdef.coords[0][0] = 1.0f; f->brushprimit_texdef.coords[1][1] = 1.0f; - ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); + ConvertTexMatWithQTexture( &f->brushprimit_texdef, 0, &f->brushprimit_texdef, f->pShader->getTexture() ); } int i; - for (i=0 ; inumpoints ; i++) + for ( i = 0 ; i < w.numpoints ; i++ ) { - x=DotProduct(w->points[i],texX); - y=DotProduct(w->points[i],texY); + x = vector3_dot( w.point_at( i ),texX ); + y = vector3_dot( w.point_at( i ),texY ); +#if 0 #ifdef DBG_BP - if (g_qeglobals.bNeedConvert) - { + if ( g_bp_globals.bNeedConvert ) { // check we compute the same ST as the traditional texture computation used before - vec_t S=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2]; - vec_t T=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2]; - if ( fabs(S-w->points[i][3])>1e-2 || fabs(T-w->points[i][4])>1e-2 ) - { - if ( fabs(S-w->points[i][3])>1e-4 || fabs(T-w->points[i][4])>1e-4 ) - Sys_Printf("Warning : precision loss in brush -> brush primitive texture computation\n"); - else - Sys_Printf("Warning : brush -> brush primitive texture computation bug detected\n"); + float S = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; + float T = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; + if ( fabs( S - w.point_at( i )[3] ) > 1e-2 || fabs( T - w.point_at( i )[4] ) > 1e-2 ) { + if ( fabs( S - w.point_at( i )[3] ) > 1e-4 || fabs( T - w.point_at( i )[4] ) > 1e-4 ) { + globalOutputStream() << "Warning : precision loss in brush -> brush primitive texture computation\n"; + } + else{ + globalOutputStream() << "Warning : brush -> brush primitive texture computation bug detected\n"; + } } } #endif - w->points[i][3]=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2]; - w->points[i][4]=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2]; +#endif + w.point_at( i )[3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; + w.point_at( i )[4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; } } - -// compute a fake shift scale rot representation from the texture matrix -// these shift scale rot values are to be understood in the local axis base -void TexMatToFakeTexCoords( vec_t texMat[2][3], float shift[2], float *rot, float scale[2] ) -{ -#ifdef DBG_BP - // check this matrix is orthogonal - if (fabs(texMat[0][0]*texMat[0][1]+texMat[1][0]*texMat[1][1])>ZERO_EPSILON) - Sys_Printf("Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n"); #endif - scale[0]=sqrt(texMat[0][0]*texMat[0][0]+texMat[1][0]*texMat[1][0]); - scale[1]=sqrt(texMat[0][1]*texMat[0][1]+texMat[1][1]*texMat[1][1]); -#ifdef DBG_BP - if (scale[0]0) - *rot=90.0f; - else - *rot=-90.0f; - } - else - *rot = RAD2DEG( atan2( texMat[1][0], texMat[0][0] ) ); - shift[0] = -texMat[0][2]; - shift[1] = texMat[1][2]; + +typedef float texmat_t[2][3]; + +void TexMat_Scale( texmat_t texmat, float s, float t ){ + texmat[0][0] *= s; + texmat[0][1] *= s; + texmat[0][2] *= s; + texmat[1][0] *= t; + texmat[1][1] *= t; + texmat[1][2] *= t; } -// compute back the texture matrix from fake shift scale rot -// the matrix returned must be understood as a qtexture_t with width=2 height=2 ( the default one ) -void FakeTexCoordsToTexMat( float shift[2], float rot, float scale[2], vec_t texMat[2][3] ) -{ - texMat[0][0] = scale[0] * cos( DEG2RAD( rot ) ); - texMat[1][0] = scale[0] * sin( DEG2RAD( rot ) ); - texMat[0][1] = -1.0f * scale[1] * sin( DEG2RAD( rot ) ); - texMat[1][1] = scale[1] * cos( DEG2RAD( rot ) ); - texMat[0][2] = -shift[0]; - texMat[1][2] = shift[1]; +void TexMat_Assign( texmat_t texmat, const texmat_t other ){ + texmat[0][0] = other[0][0]; + texmat[0][1] = other[0][1]; + texmat[0][2] = other[0][2]; + texmat[1][0] = other[1][0]; + texmat[1][1] = other[1][1]; + texmat[1][2] = other[1][2]; } +void ConvertTexMatWithDimensions( const texmat_t texmat1, std::size_t w1, std::size_t h1, + texmat_t texmat2, std::size_t w2, std::size_t h2 ){ + TexMat_Assign( texmat2, texmat1 ); + TexMat_Scale( texmat2, static_cast( w1 ) / static_cast( w2 ), static_cast( h1 ) / static_cast( h2 ) ); +} + +#if 0 // convert a texture matrix between two qtexture_t -// if NULL for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates ) -void ConvertTexMatWithQTexture( vec_t texMat1[2][3], qtexture_t *qtex1, vec_t texMat2[2][3], qtexture_t *qtex2 ) -{ - float s1,s2; - s1 = ( qtex1 ? static_cast( qtex1->width ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->width ) : 2.0f ); - s2 = ( qtex1 ? static_cast( qtex1->height ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->height ) : 2.0f ); - texMat2[0][0]=s1*texMat1[0][0]; - texMat2[0][1]=s1*texMat1[0][1]; - texMat2[0][2]=s1*texMat1[0][2]; - texMat2[1][0]=s2*texMat1[1][0]; - texMat2[1][1]=s2*texMat1[1][1]; - texMat2[1][2]=s2*texMat1[1][2]; +// if 0 for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates ) +void ConvertTexMatWithQTexture( const float texMat1[2][3], const qtexture_t *qtex1, float texMat2[2][3], const qtexture_t *qtex2 ){ + ConvertTexMatWithDimensions( texMat1, ( qtex1 ) ? qtex1->width : 2, ( qtex1 ) ? qtex1->height : 2, + texMat2, ( qtex2 ) ? qtex2->width : 2, ( qtex2 ) ? qtex2->height : 2 ); +} + +void ConvertTexMatWithQTexture( const brushprimit_texdef_t *texMat1, const qtexture_t *qtex1, brushprimit_texdef_t *texMat2, const qtexture_t *qtex2 ){ + ConvertTexMatWithQTexture( texMat1->coords, qtex1, texMat2->coords, qtex2 ); +} +#endif + +// compute a fake shift scale rot representation from the texture matrix +// these shift scale rot values are to be understood in the local axis base +// Note: this code looks similar to Texdef_fromTransform, but the algorithm is slightly different. + +void TexMatToFakeTexCoords( const brushprimit_texdef_t& bp_texdef, texdef_t& texdef ){ + texdef.scale[0] = static_cast( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[1][0] ) ) ); + texdef.scale[1] = static_cast( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][1], bp_texdef.coords[1][1] ) ) ); + + texdef.rotate = -static_cast( radians_to_degrees( arctangent_yx( bp_texdef.coords[1][0], bp_texdef.coords[0][0] ) ) ); + + texdef.shift[0] = -bp_texdef.coords[0][2]; + texdef.shift[1] = bp_texdef.coords[1][2]; + + // determine whether or not an axis is flipped using a 2d cross-product + double cross = vector2_cross( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[0][1] ), Vector2( bp_texdef.coords[1][0], bp_texdef.coords[1][1] ) ); + if ( cross < 0 ) { + // This is a bit of a compromise when using BPs--since we don't know *which* axis was flipped, + // we pick one (rather arbitrarily) using the following convention: If the X-axis is between + // 0 and 180, we assume it's the Y-axis that flipped, otherwise we assume it's the X-axis and + // subtract out 180 degrees to compensate. + if ( texdef.rotate >= 180.0f ) { + texdef.rotate -= 180.0f; + texdef.scale[0] = -texdef.scale[0]; + } + else + { + texdef.scale[1] = -texdef.scale[1]; + } + } } -void ConvertTexMatWithQTexture( brushprimit_texdef_t *texMat1, qtexture_t *qtex1, brushprimit_texdef_t *texMat2, qtexture_t *qtex2 ) -{ - ConvertTexMatWithQTexture(texMat1->coords, qtex1, texMat2->coords, qtex2); +// compute back the texture matrix from fake shift scale rot +void FakeTexCoordsToTexMat( const texdef_t& texdef, brushprimit_texdef_t& bp_texdef ){ + double r = degrees_to_radians( -texdef.rotate ); + double c = cos( r ); + double s = sin( r ); + double x = 1.0f / texdef.scale[0]; + double y = 1.0f / texdef.scale[1]; + bp_texdef.coords[0][0] = static_cast( x * c ); + bp_texdef.coords[1][0] = static_cast( x * s ); + bp_texdef.coords[0][1] = static_cast( y * -s ); + bp_texdef.coords[1][1] = static_cast( y * c ); + bp_texdef.coords[0][2] = -texdef.shift[0]; + bp_texdef.coords[1][2] = texdef.shift[1]; } +#if 0 // texture locking (brush primit) // used for texture locking // will move the texture according to a geometric vector -void ShiftTextureGeometric_BrushPrimit(face_t *f, vec3_t delta) -{ - vec3_t texS,texT; - vec_t tx,ty; - vec3_t M[3]; // columns of the matrix .. easier that way - vec_t det; - vec3_t D[2]; +void ShiftTextureGeometric_BrushPrimit( face_t *f, Vector3& delta ){ + Vector3 texS,texT; + float tx,ty; + Vector3 M[3]; // columns of the matrix .. easier that way + float det; + Vector3 D[2]; // compute plane axis base ( doesn't change with translation ) ComputeAxisBase( f->plane.normal, texS, texT ); // compute translation vector in plane axis base - tx = DotProduct( delta, texS ); - ty = DotProduct( delta, texT ); + tx = vector3_dot( delta, texS ); + ty = vector3_dot( delta, texT ); // fill the data vectors - M[0][0]=tx; M[0][1]=1.0f+tx; M[0][2]=tx; - M[1][0]=ty; M[1][1]=ty; M[1][2]=1.0f+ty; - M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; - D[0][0]=f->brushprimit_texdef.coords[0][2]; - D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2]; - D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2]; - D[1][0]=f->brushprimit_texdef.coords[1][2]; - D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2]; - D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2]; + M[0][0] = tx; M[0][1] = 1.0f + tx; M[0][2] = tx; + M[1][0] = ty; M[1][1] = ty; M[1][2] = 1.0f + ty; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; + D[0][0] = f->brushprimit_texdef.coords[0][2]; + D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; + D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; + D[1][0] = f->brushprimit_texdef.coords[1][2]; + D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; + D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; @@ -284,148 +710,62 @@ void ShiftTextureGeometric_BrushPrimit(face_t *f, vec3_t delta) // shift a texture (texture adjustments) along it's current texture axes // x and y are geometric values, which we must compute as ST increments // this depends on the texture size and the pixel/texel ratio -void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y) -{ - float s,t; - // as a ratio against texture size - // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) - s = (x * 2.0) / (float)f->d_texture->width; - t = (y * 2.0) / (float)f->d_texture->height; - f->brushprimit_texdef.coords[0][2] -= s; - f->brushprimit_texdef.coords[1][2] -= t; +void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y ){ + float s,t; + // as a ratio against texture size + // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) + s = ( x * 2.0 ) / (float)f->pShader->getTexture().width; + t = ( y * 2.0 ) / (float)f->pShader->getTexture().height; + f->brushprimit_texdef.coords[0][2] -= s; + f->brushprimit_texdef.coords[1][2] -= t; } +#endif // TTimo: FIXME: I don't like that, it feels broken // (and it's likely that it's not used anymore) // best fitted 2D vector is x.X+y.Y -void ComputeBest2DVector( vec3_t v, vec3_t X, vec3_t Y, int &x, int &y ) -{ +void ComputeBest2DVector( Vector3& v, Vector3& X, Vector3& Y, int &x, int &y ){ double sx,sy; - sx = DotProduct( v, X ); - sy = DotProduct( v, Y ); - if ( fabs(sy) > fabs(sx) ) - { + sx = vector3_dot( v, X ); + sy = vector3_dot( v, Y ); + if ( fabs( sy ) > fabs( sx ) ) { x = 0; - if ( sy > 0.0 ) + if ( sy > 0.0 ) { y = 1; - else + } + else{ y = -1; + } } else { y = 0; - if ( sx > 0.0 ) + if ( sx > 0.0 ) { x = 1; - else + } + else{ x = -1; - } -} - -//++timo FIXME quick'n dirty hack, doesn't care about current texture settings (angle) -// can be improved .. bug #107311 -// mins and maxs are the face bounding box -//++timo fixme: we use the face info, mins and maxs are irrelevant -void Face_FitTexture_BrushPrimit( face_t *f, vec3_t mins, vec3_t maxs, int nHeight, int nWidth ) -{ - vec3_t BBoxSTMin, BBoxSTMax; - winding_t *w; - int i,j; - vec_t val; - vec3_t M[3],D[2]; -// vec3_t N[2],Mf[2]; - brushprimit_texdef_t N; - vec3_t Mf[2]; - - - // we'll be working on a standardized texture size -// ConvertTexMatWithQTexture( &f->brushprimit_texdef, f->d_texture, &f->brushprimit_texdef, NULL ); - // compute the BBox in ST coords - EmitBrushPrimitTextureCoordinates( f, f->face_winding ); - ClearBounds( BBoxSTMin, BBoxSTMax ); - w = f->face_winding; - for (i=0 ; inumpoints ; i++) - { - // AddPointToBounds in 2D on (S,T) coordinates - for (j=0 ; j<2 ; j++) - { - val = w->points[i][j+3]; - if (val < BBoxSTMin[j]) - BBoxSTMin[j] = val; - if (val > BBoxSTMax[j]) - BBoxSTMax[j] = val; } } - // we have the three points of the BBox (BBoxSTMin[0].BBoxSTMin[1]) (BBoxSTMax[0],BBoxSTMin[1]) (BBoxSTMin[0],BBoxSTMax[1]) in ST space - // the BP matrix we are looking for gives (0,0) (nwidth,0) (0,nHeight) coordinates in (Sfit,Tfit) space to these three points - // we have A(Sfit,Tfit) = (0,0) = Mf * A(TexS,TexT) = N * M * A(TexS,TexT) = N * A(S,T) - // so we solve the system for N and then Mf = N * M - M[0][0] = BBoxSTMin[0]; M[0][1] = BBoxSTMax[0]; M[0][2] = BBoxSTMin[0]; - M[1][0] = BBoxSTMin[1]; M[1][1] = BBoxSTMin[1]; M[1][2] = BBoxSTMax[1]; - D[0][0] = 0.0f; D[0][1] = nWidth; D[0][2] = 0.0f; - D[1][0] = 0.0f; D[1][1] = 0.0f; D[1][2] = nHeight; - MatrixForPoints( M, D, &N ); +} -#if 0 - // FIT operation gives coordinates of three points of the bounding box in (S',T'), our target axis base - // A(S',T')=(0,0) B(S',T')=(nWidth,0) C(S',T')=(0,nHeight) - // and we have them in (S,T) axis base: A(S,T)=(BBoxSTMin[0],BBoxSTMin[1]) B(S,T)=(BBoxSTMax[0],BBoxSTMin[1]) C(S,T)=(BBoxSTMin[0],BBoxSTMax[1]) - // we compute the N transformation so that: A(S',T') = N * A(S,T) - VectorSet( N[0], (BBoxSTMax[0]-BBoxSTMin[0])/(float)nWidth, 0.0f, BBoxSTMin[0] ); - VectorSet( N[1], 0.0f, (BBoxSTMax[1]-BBoxSTMin[1])/(float)nHeight, BBoxSTMin[1] ); -#endif - // the final matrix is the product (Mf stands for Mfit) - Mf[0][0] = N.coords[0][0] * f->brushprimit_texdef.coords[0][0] + N.coords[0][1] * f->brushprimit_texdef.coords[1][0]; - Mf[0][1] = N.coords[0][0] * f->brushprimit_texdef.coords[0][1] + N.coords[0][1] * f->brushprimit_texdef.coords[1][1]; - Mf[0][2] = N.coords[0][0] * f->brushprimit_texdef.coords[0][2] + N.coords[0][1] * f->brushprimit_texdef.coords[1][2] + N.coords[0][2]; - Mf[1][0] = N.coords[1][0] * f->brushprimit_texdef.coords[0][0] + N.coords[1][1] * f->brushprimit_texdef.coords[1][0]; - Mf[1][1] = N.coords[1][0] * f->brushprimit_texdef.coords[0][1] + N.coords[1][1] * f->brushprimit_texdef.coords[1][1]; - Mf[1][2] = N.coords[1][0] * f->brushprimit_texdef.coords[0][2] + N.coords[1][1] * f->brushprimit_texdef.coords[1][2] + N.coords[1][2]; - // copy back - VectorCopy( Mf[0], f->brushprimit_texdef.coords[0] ); - VectorCopy( Mf[1], f->brushprimit_texdef.coords[1] ); - // handle the texture size -// ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); -} - -void BrushPrimitFaceToFace(face_t *f) -{ -#if 0 +#if 0 // texdef conversion +void BrushPrimitFaceToFace( face_t *face ){ // we have parsed brush primitives and need conversion back to standard format // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it // FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling // I tried various tweaks, no luck .. seems shifting is lost brushprimit_texdef_t aux; - ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->d_texture, &aux, NULL ); + ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->pShader->getTexture(), &aux, 0 ); TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale ); - face->texdef.scale[0]/=2.0; - face->texdef.scale[1]/=2.0; -#else - // new method by divVerent@alientrap.org: Shift and scale no longer get lost when opening a BP map in texdef mode. - vec3_t texX,texY; - vec3_t proj; - vec_t ST[3][5]; - - ComputeAxisBase(f->plane.normal,texX,texY); - VectorCopy(f->plane.normal,proj); - VectorScale(proj,f->plane.dist,proj); - VectorCopy(proj,ST[0]); - VectorCopy(texX,ST[1]); - VectorAdd(ST[1],proj,ST[1]); - VectorCopy(texY,ST[2]); - VectorAdd(ST[2],proj,ST[2]); - - ST[0][3] = f->brushprimit_texdef.coords[0][2]; - ST[0][4] = f->brushprimit_texdef.coords[1][2]; - ST[1][3] = f->brushprimit_texdef.coords[0][0] + ST[0][3]; - ST[1][4] = f->brushprimit_texdef.coords[1][0] + ST[0][4]; - ST[2][3] = f->brushprimit_texdef.coords[0][1] + ST[0][3]; - ST[2][4] = f->brushprimit_texdef.coords[1][1] + ST[0][4]; - - Face_TexdefFromTextureCoordinates(ST[0], ST[1], ST[2], f->d_texture, f); -#endif + face->texdef.scale[0] /= 2.0; + face->texdef.scale[1] /= 2.0; } +#endif + +#if 0 // texture locking (brush primit) // TEXTURE LOCKING ----------------------------------------------------------------------------------------------------- // (Relevant to the editor only?) @@ -435,84 +775,80 @@ void BrushPrimitFaceToFace(face_t *f) // if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best // (but right now I want to keep brush_primit.cpp striclty C) -qboolean txlock_bRotation; +bool txlock_bRotation; // rotation locking params int txl_nAxis; float txl_fDeg; -vec3_t txl_vOrigin; +Vector3 txl_vOrigin; // flip locking params -vec3_t txl_matrix[3]; -vec3_t txl_origin; +Vector3 txl_matrix[3]; +Vector3 txl_origin; -void TextureLockTransformation_BrushPrimit(face_t *f) -{ - vec3_t Orig,texS,texT; // axis base of initial plane +void TextureLockTransformation_BrushPrimit( face_t *f ){ + Vector3 Orig,texS,texT; // axis base of initial plane // used by transformation algo - vec3_t temp; int j; - vec3_t vRotate; // rotation vector + Vector3 temp; int j; + Vector3 vRotate; // rotation vector - vec3_t rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base } - vec3_t rNormal,rtexS,rtexT; // axis base for the transformed plane - vec3_t lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) - vec3_t M[3]; - vec_t det; - vec3_t D[2]; + Vector3 rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base } + Vector3 rNormal,rtexS,rtexT; // axis base for the transformed plane + Vector3 lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) + Vector3 M[3]; + float det; + Vector3 D[2]; // compute plane axis base ComputeAxisBase( f->plane.normal, texS, texT ); - VectorSet(Orig, 0.0f, 0.0f, 0.0f); + VectorSet( Orig, 0.0f, 0.0f, 0.0f ); // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base ) // input: Orig, texS, texT (and the global locking params) // ouput: rOrig, rvecS, rvecT, rNormal - if (txlock_bRotation) { + if ( txlock_bRotation ) { // rotation vector VectorSet( vRotate, 0.0f, 0.0f, 0.0f ); - vRotate[txl_nAxis]=txl_fDeg; - VectorRotateOrigin ( Orig, vRotate, txl_vOrigin, rOrig ); - VectorRotateOrigin ( texS, vRotate, txl_vOrigin, rvecS ); - VectorRotateOrigin ( texT, vRotate, txl_vOrigin, rvecT ); + vRotate[txl_nAxis] = txl_fDeg; + VectorRotateOrigin( Orig, vRotate, txl_vOrigin, rOrig ); + VectorRotateOrigin( texS, vRotate, txl_vOrigin, rvecS ); + VectorRotateOrigin( texT, vRotate, txl_vOrigin, rvecT ); // compute normal of plane after rotation - VectorRotate ( f->plane.normal, vRotate, rNormal ); + VectorRotate( f->plane.normal, vRotate, rNormal ); } else { - VectorSubtract (Orig, txl_origin, temp); - for (j=0 ; j<3 ; j++) - rOrig[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j]; - VectorSubtract (texS, txl_origin, temp); - for (j=0 ; j<3 ; j++) - rvecS[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j]; - VectorSubtract (texT, txl_origin, temp); - for (j=0 ; j<3 ; j++) - rvecT[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j]; + for ( j = 0 ; j < 3 ; j++ ) + rOrig[j] = vector3_dot( vector3_subtracted( Orig, txl_origin ), txl_matrix[j] ) + txl_origin[j]; + for ( j = 0 ; j < 3 ; j++ ) + rvecS[j] = vector3_dot( vector3_subtracted( texS, txl_origin ), txl_matrix[j] ) + txl_origin[j]; + for ( j = 0 ; j < 3 ; j++ ) + rvecT[j] = vector3_dot( vector3_subtracted( texT, txl_origin ), txl_matrix[j] ) + txl_origin[j]; // we also need the axis base of the target plane, apply the transformation matrix to the normal too.. - for (j=0 ; j<3 ; j++) - rNormal[j] = DotProduct(f->plane.normal, txl_matrix[j]); + for ( j = 0 ; j < 3 ; j++ ) + rNormal[j] = vector3_dot( f->plane.normal, txl_matrix[j] ); } // compute rotated plane axis base ComputeAxisBase( rNormal, rtexS, rtexT ); // compute S/T coordinates of the three points in rotated axis base ( in M matrix ) - lOrig[0] = DotProduct( rOrig, rtexS ); - lOrig[1] = DotProduct( rOrig, rtexT ); - lvecS[0] = DotProduct( rvecS, rtexS ); - lvecS[1] = DotProduct( rvecS, rtexT ); - lvecT[0] = DotProduct( rvecT, rtexS ); - lvecT[1] = DotProduct( rvecT, rtexT ); + lOrig[0] = vector3_dot( rOrig, rtexS ); + lOrig[1] = vector3_dot( rOrig, rtexT ); + lvecS[0] = vector3_dot( rvecS, rtexS ); + lvecS[1] = vector3_dot( rvecS, rtexT ); + lvecT[0] = vector3_dot( rvecT, rtexS ); + lvecT[1] = vector3_dot( rvecT, rtexT ); M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f; M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f; M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f; // fill data vector - D[0][0]=f->brushprimit_texdef.coords[0][2]; - D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2]; - D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2]; - D[1][0]=f->brushprimit_texdef.coords[1][2]; - D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2]; - D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2]; + D[0][0] = f->brushprimit_texdef.coords[0][2]; + D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; + D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; + D[1][0] = f->brushprimit_texdef.coords[1][2]; + D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; + D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; @@ -525,101 +861,503 @@ void TextureLockTransformation_BrushPrimit(face_t *f) // texture locking // called before the points on the face are actually rotated -void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, vec3_t vOrigin ) -{ +void RotateFaceTexture_BrushPrimit( face_t *f, int nAxis, float fDeg, Vector3& vOrigin ){ // this is a placeholder to call the general texture locking algorithm txlock_bRotation = true; txl_nAxis = nAxis; txl_fDeg = fDeg; - VectorCopy(vOrigin, txl_vOrigin); - TextureLockTransformation_BrushPrimit(f); + VectorCopy( vOrigin, txl_vOrigin ); + TextureLockTransformation_BrushPrimit( f ); } // compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation) // this matches the select_matrix algo used in select.cpp // this needs to be called on the face BEFORE any geometric transformation // it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done -void ApplyMatrix_BrushPrimit(face_t *f, vec3_t matrix[3], vec3_t origin) -{ - // this is a placeholder to call the general texture locking algorithm - txlock_bRotation = false; - VectorCopy(matrix[0], txl_matrix[0]); - VectorCopy(matrix[1], txl_matrix[1]); - VectorCopy(matrix[2], txl_matrix[2]); - VectorCopy(origin, txl_origin); - TextureLockTransformation_BrushPrimit(f); +void ApplyMatrix_BrushPrimit( face_t *f, Vector3 matrix[3], Vector3& origin ){ + // this is a placeholder to call the general texture locking algorithm + txlock_bRotation = false; + VectorCopy( matrix[0], txl_matrix[0] ); + VectorCopy( matrix[1], txl_matrix[1] ); + VectorCopy( matrix[2], txl_matrix[2] ); + VectorCopy( origin, txl_origin ); + TextureLockTransformation_BrushPrimit( f ); } +#endif // don't do C==A! -void BPMatMul(vec_t A[2][3], vec_t B[2][3], vec_t C[2][3]) -{ - C[0][0] = A[0][0]*B[0][0]+A[0][1]*B[1][0]; - C[1][0] = A[1][0]*B[0][0]+A[1][1]*B[1][0]; - C[0][1] = A[0][0]*B[0][1]+A[0][1]*B[1][1]; - C[1][1] = A[1][0]*B[0][1]+A[1][1]*B[1][1]; - C[0][2] = A[0][0]*B[0][2]+A[0][1]*B[1][2]+A[0][2]; - C[1][2] = A[1][0]*B[0][2]+A[1][1]*B[1][2]+A[1][2]; -} - -void BPMatDump(vec_t A[2][3]) -{ - Sys_Printf("%g %g %g\n%g %g %g\n0 0 1\n", A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2]); -} - -void BPMatRotate(vec_t A[2][3], float theta) -{ - vec_t m[2][3]; - vec_t aux[2][3]; - memset(&m, 0, sizeof(vec_t)*6); - m[0][0] = cos(theta*Q_PI/180.0); - m[0][1] = -sin(theta*Q_PI/180.0); - m[1][0] = -m[0][1]; - m[1][1] = m[0][0]; - BPMatMul(A, m, aux); - BPMatCopy(aux,A); +void BPMatMul( float A[2][3], float B[2][3], float C[2][3] ){ + C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0]; + C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0]; + C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1]; + C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1]; + C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2]; + C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2]; +} + +void BPMatDump( float A[2][3] ){ + globalOutputStream() << "" << A[0][0] + << " " << A[0][1] + << " " << A[0][2] + << "\n" << A[1][0] + << " " << A[1][2] + << " " << A[1][2] + << "\n0 0 1\n"; +} + +void BPMatRotate( float A[2][3], float theta ){ + float m[2][3]; + float aux[2][3]; + memset( &m, 0, sizeof( float ) * 6 ); + m[0][0] = static_cast( cos( degrees_to_radians( theta ) ) ); + m[0][1] = static_cast( -sin( degrees_to_radians( theta ) ) ); + m[1][0] = -m[0][1]; + m[1][1] = m[0][0]; + BPMatMul( A, m, aux ); + BPMatCopy( aux,A ); } +#if 0 // camera-relative texture shift // get the relative axes of the current texturing -void BrushPrimit_GetRelativeAxes(face_t *f, vec3_t vecS, vec3_t vecT) -{ - vec_t vS[2],vT[2]; - // first we compute them as expressed in plane axis base - // BP matrix has coordinates of plane axis base expressed in geometric axis base - // so we use the line vectors - vS[0] = f->brushprimit_texdef.coords[0][0]; - vS[1] = f->brushprimit_texdef.coords[0][1]; - vT[0] = f->brushprimit_texdef.coords[1][0]; - vT[1] = f->brushprimit_texdef.coords[1][1]; - // now compute those vectors in geometric space - vec3_t texS, texT; // axis base of the plane (geometric) - ComputeAxisBase(f->plane.normal, texS, texT); - // vecS[] = vS[0].texS[] + vS[1].texT[] - // vecT[] = vT[0].texS[] + vT[1].texT[] - vecS[0] = vS[0]*texS[0] + vS[1]*texT[0]; - vecS[1] = vS[0]*texS[1] + vS[1]*texT[1]; - vecS[2] = vS[0]*texS[2] + vS[1]*texT[2]; - vecT[0] = vT[0]*texS[0] + vT[1]*texT[0]; - vecT[1] = vT[0]*texS[1] + vT[1]*texT[1]; - vecT[2] = vT[0]*texS[2] + vT[1]*texT[2]; -} - -// GL matrix 4x4 product (3D homogeneous matrix) -// NOTE: the crappy thing is that GL doesn't follow the standard convention [line][column] -// otherwise it's all good -void GLMatMul(vec_t M[4][4], vec_t A[4], vec_t B[4]) -{ - unsigned short i,j; - for (i=0;i<4;i++) - { - B[i] = 0.0; - for (j=0;j<4;j++) - { - B[i] += M[j][i]*A[j]; - } - } -} - -qboolean IsBrushPrimitMode() -{ - return(g_qeglobals.m_bBrushPrimitMode); +void BrushPrimit_GetRelativeAxes( face_t *f, Vector3& vecS, Vector3& vecT ){ + float vS[2],vT[2]; + // first we compute them as expressed in plane axis base + // BP matrix has coordinates of plane axis base expressed in geometric axis base + // so we use the line vectors + vS[0] = f->brushprimit_texdef.coords[0][0]; + vS[1] = f->brushprimit_texdef.coords[0][1]; + vT[0] = f->brushprimit_texdef.coords[1][0]; + vT[1] = f->brushprimit_texdef.coords[1][1]; + // now compute those vectors in geometric space + Vector3 texS, texT; // axis base of the plane (geometric) + ComputeAxisBase( f->plane.normal, texS, texT ); + // vecS[] = vS[0].texS[] + vS[1].texT[] + // vecT[] = vT[0].texS[] + vT[1].texT[] + vecS[0] = vS[0] * texS[0] + vS[1] * texT[0]; + vecS[1] = vS[0] * texS[1] + vS[1] * texT[1]; + vecS[2] = vS[0] * texS[2] + vS[1] * texT[2]; + vecT[0] = vT[0] * texS[0] + vT[1] * texT[0]; + vecT[1] = vT[0] * texS[1] + vT[1] * texT[1]; + vecT[2] = vT[0] * texS[2] + vT[1] * texT[2]; +} + +// brush primitive texture adjustments, use the camera view to map adjustments +// ShiftTextureRelative_BrushPrimit ( s , t ) will shift relative to the texture +void ShiftTextureRelative_Camera( face_t *f, int x, int y ){ + Vector3 vecS, vecT; + float XY[2]; // the values we are going to send for translation + float sgn[2]; // +1 or -1 + int axis[2]; + CamWnd* pCam; + + // get the two relative texture axes for the current texturing + BrushPrimit_GetRelativeAxes( f, vecS, vecT ); + + // center point of the face, project it on the camera space + Vector3 C; + VectorClear( C ); + int i; + for ( i = 0; i < f->face_winding->numpoints; i++ ) + { + VectorAdd( C,f->face_winding->point_at( i ),C ); + } + VectorScale( C,1.0 / f->face_winding->numpoints,C ); + + pCam = g_pParentWnd->GetCamWnd(); + pCam->MatchViewAxes( C, vecS, axis[0], sgn[0] ); + pCam->MatchViewAxes( C, vecT, axis[1], sgn[1] ); + + // this happens when the two directions can't be mapped on two different directions on the screen + // then the move will occur against a single axis + // (i.e. the user is not positioned well enough to send understandable shift commands) + // NOTE: in most cases this warning is not very relevant because the user would use one of the two axes + // for which the solution is easy (the other one being unknown) + // so this warning could be removed + if ( axis[0] == axis[1] ) { + globalOutputStream() << "Warning: degenerate in ShiftTextureRelative_Camera\n"; + } + + // compute the X Y geometric increments + // those geometric increments will be applied along the texture axes (the ones we computed above) + XY[0] = 0; + XY[1] = 0; + if ( x != 0 ) { + // moving right/left + XY[axis[0]] += sgn[0] * x; + } + if ( y != 0 ) { + XY[axis[1]] += sgn[1] * y; + } + // we worked out a move along vecS vecT, and we now it's geometric amplitude + // apply it + ShiftTextureRelative_BrushPrimit( f, XY[0], XY[1] ); +} +#endif + + +void BPTexdef_Assign( brushprimit_texdef_t& bp_td, const brushprimit_texdef_t& bp_other ){ + bp_td = bp_other; +} + +void BPTexdef_Shift( brushprimit_texdef_t& bp_td, float s, float t ){ + // shift a texture (texture adjustments) along it's current texture axes + // x and y are geometric values, which we must compute as ST increments + // this depends on the texture size and the pixel/texel ratio + // as a ratio against texture size + // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) + bp_td.coords[0][2] -= s; + bp_td.coords[1][2] += t; +} + +void BPTexdef_Scale( brushprimit_texdef_t& bp_td, float s, float t ){ + // apply same scale as the spinner button of the surface inspector + texdef_t texdef; + // compute fake shift scale rot + TexMatToFakeTexCoords( bp_td, texdef ); + // update + texdef.scale[0] += s; + texdef.scale[1] += t; + // compute new normalized texture matrix + FakeTexCoordsToTexMat( texdef, bp_td ); +} + +void BPTexdef_Rotate( brushprimit_texdef_t& bp_td, float angle ){ + // apply same scale as the spinner button of the surface inspector + texdef_t texdef; + // compute fake shift scale rot + TexMatToFakeTexCoords( bp_td, texdef ); + // update + texdef.rotate += angle; + // compute new normalized texture matrix + FakeTexCoordsToTexMat( texdef, bp_td ); +} + +void BPTexdef_Construct( brushprimit_texdef_t& bp_td, std::size_t width, std::size_t height ){ + bp_td.coords[0][0] = 1.0f; + bp_td.coords[1][1] = 1.0f; + ConvertTexMatWithDimensions( bp_td.coords, 2, 2, bp_td.coords, width, height ); +} + +void Texdef_Assign( TextureProjection& projection, const TextureProjection& other ){ + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + BPTexdef_Assign( projection.m_brushprimit_texdef, other.m_brushprimit_texdef ); + } + else + { + Texdef_Assign( projection.m_texdef, other.m_texdef ); + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE ) { + projection.m_basis_s = other.m_basis_s; + projection.m_basis_t = other.m_basis_t; + } + } +} + +void Texdef_Shift( TextureProjection& projection, float s, float t ){ + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + BPTexdef_Shift( projection.m_brushprimit_texdef, s, t ); + } + else + { + Texdef_Shift( projection.m_texdef, s, t ); + } +} + +void Texdef_Scale( TextureProjection& projection, float s, float t ){ + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + BPTexdef_Scale( projection.m_brushprimit_texdef, s, t ); + } + else + { + Texdef_Scale( projection.m_texdef, s, t ); + } +} + +void Texdef_Rotate( TextureProjection& projection, float angle ){ + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + BPTexdef_Rotate( projection.m_brushprimit_texdef, angle ); + } + else + { + Texdef_Rotate( projection.m_texdef, angle ); + } +} + +void Texdef_FitTexture( TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat ){ + if ( w.numpoints < 3 ) { + return; + } + + Matrix4 st2tex; + Texdef_toTransform( projection, (float)width, (float)height, st2tex ); + + // the current texture transform + Matrix4 local2tex = st2tex; + { + Matrix4 xyz2st; + Texdef_basisForNormal( projection, normal, xyz2st ); + matrix4_multiply_by_matrix4( local2tex, xyz2st ); + } + + // the bounds of the current texture transform + AABB bounds; + for ( Winding::const_iterator i = w.begin(); i != w.end(); ++i ) + { + Vector3 texcoord = matrix4_transformed_point( local2tex, ( *i ).vertex ); + aabb_extend_by_point_safe( bounds, texcoord ); + } + bounds.origin.z() = 0; + bounds.extents.z() = 1; + + // the bounds of a perfectly fitted texture transform + AABB perfect( Vector3( s_repeat * 0.5, t_repeat * 0.5, 0 ), Vector3( s_repeat * 0.5, t_repeat * 0.5, 1 ) ); + + // the difference between the current texture transform and the perfectly fitted transform + Matrix4 matrix( matrix4_translation_for_vec3( bounds.origin - perfect.origin ) ); + matrix4_pivoted_scale_by_vec3( matrix, bounds.extents / perfect.extents, perfect.origin ); + matrix4_affine_invert( matrix ); + + // apply the difference to the current texture transform + matrix4_premultiply_by_matrix4( st2tex, matrix ); + + Texdef_fromTransform( projection, (float)width, (float)height, st2tex ); + Texdef_normalise( projection, (float)width, (float)height ); +} + +float Texdef_getDefaultTextureScale(){ + return g_texdef_default_scale; } + +void TexDef_Construct_Default( TextureProjection& projection ){ + projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale(); + projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale(); + + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + FakeTexCoordsToTexMat( projection.m_texdef, projection.m_brushprimit_texdef ); + } +} + + + +void ShiftScaleRotate_fromFace( texdef_t& shiftScaleRotate, const TextureProjection& projection ){ + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + TexMatToFakeTexCoords( projection.m_brushprimit_texdef, shiftScaleRotate ); + } + else + { + shiftScaleRotate = projection.m_texdef; + } +} + +void ShiftScaleRotate_toFace( const texdef_t& shiftScaleRotate, TextureProjection& projection ){ + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { + // compute texture matrix + // the matrix returned must be understood as a qtexture_t with width=2 height=2 + FakeTexCoordsToTexMat( shiftScaleRotate, projection.m_brushprimit_texdef ); + } + else + { + projection.m_texdef = shiftScaleRotate; + } +} + + +inline void print_vector3( const Vector3& v ){ + globalOutputStream() << "( " << v.x() << " " << v.y() << " " << v.z() << " )\n"; +} + +inline void print_3x3( const Matrix4& m ){ + globalOutputStream() << "( " << m.xx() << " " << m.xy() << " " << m.xz() << " ) " + << "( " << m.yx() << " " << m.yy() << " " << m.yz() << " ) " + << "( " << m.zx() << " " << m.zy() << " " << m.zz() << " )\n"; +} + + +inline Matrix4 matrix4_rotation_for_vector3( const Vector3& x, const Vector3& y, const Vector3& z ){ + return Matrix4( + x.x(), x.y(), x.z(), 0, + y.x(), y.y(), y.z(), 0, + z.x(), z.y(), z.z(), 0, + 0, 0, 0, 1 + ); +} + +inline Matrix4 matrix4_swap_axes( const Vector3& from, const Vector3& to ){ + if ( from.x() != 0 && to.y() != 0 ) { + return matrix4_rotation_for_vector3( to, from, g_vector3_axis_z ); + } + + if ( from.x() != 0 && to.z() != 0 ) { + return matrix4_rotation_for_vector3( to, g_vector3_axis_y, from ); + } + + if ( from.y() != 0 && to.z() != 0 ) { + return matrix4_rotation_for_vector3( g_vector3_axis_x, to, from ); + } + + if ( from.y() != 0 && to.x() != 0 ) { + return matrix4_rotation_for_vector3( from, to, g_vector3_axis_z ); + } + + if ( from.z() != 0 && to.x() != 0 ) { + return matrix4_rotation_for_vector3( from, g_vector3_axis_y, to ); + } + + if ( from.z() != 0 && to.y() != 0 ) { + return matrix4_rotation_for_vector3( g_vector3_axis_x, from, to ); + } + + ERROR_MESSAGE( "unhandled axis swap case" ); + + return g_matrix4_identity; +} + +inline Matrix4 matrix4_reflection_for_plane( const Plane3& plane ){ + return Matrix4( + static_cast( 1 - ( 2 * plane.a * plane.a ) ), + static_cast( -2 * plane.a * plane.b ), + static_cast( -2 * plane.a * plane.c ), + 0, + static_cast( -2 * plane.b * plane.a ), + static_cast( 1 - ( 2 * plane.b * plane.b ) ), + static_cast( -2 * plane.b * plane.c ), + 0, + static_cast( -2 * plane.c * plane.a ), + static_cast( -2 * plane.c * plane.b ), + static_cast( 1 - ( 2 * plane.c * plane.c ) ), + 0, + static_cast( -2 * plane.d * plane.a ), + static_cast( -2 * plane.d * plane.b ), + static_cast( -2 * plane.d * plane.c ), + 1 + ); +} + +inline Matrix4 matrix4_reflection_for_plane45( const Plane3& plane, const Vector3& from, const Vector3& to ){ + Vector3 first = from; + Vector3 second = to; + + if ( (vector3_dot( from, plane.normal() ) > 0) == (vector3_dot( to, plane.normal() ) > 0) ) { + first = vector3_negated( first ); + second = vector3_negated( second ); + } + +#if 0 + globalOutputStream() << "normal: "; + print_vector3( plane.normal() ); + + globalOutputStream() << "from: "; + print_vector3( first ); + + globalOutputStream() << "to: "; + print_vector3( second ); +#endif + + Matrix4 swap = matrix4_swap_axes( first, second ); + + swap.tx() = -static_cast( -2 * plane.a * plane.d ); + swap.ty() = -static_cast( -2 * plane.b * plane.d ); + swap.tz() = -static_cast( -2 * plane.c * plane.d ); + + return swap; +} + +void Texdef_transformLocked( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed ){ + //globalOutputStream() << "identity2transformed: " << identity2transformed << "\n"; + + //globalOutputStream() << "plane.normal(): " << plane.normal() << "\n"; + + Vector3 normalTransformed( matrix4_transformed_direction( identity2transformed, plane.normal() ) ); + + //globalOutputStream() << "normalTransformed: " << normalTransformed << "\n"; + + // identity: identity space + // transformed: transformation + // stIdentity: base st projection space before transformation + // stTransformed: base st projection space after transformation + // stOriginal: original texdef space + + // stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal + + Matrix4 identity2stIdentity; + Texdef_basisForNormal( projection, plane.normal(), identity2stIdentity ); + //globalOutputStream() << "identity2stIdentity: " << identity2stIdentity << "\n"; + + if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE ) { + matrix4_transform_direction( identity2transformed, projection.m_basis_s ); + matrix4_transform_direction( identity2transformed, projection.m_basis_t ); + } + + Matrix4 transformed2stTransformed; + Texdef_basisForNormal( projection, normalTransformed, transformed2stTransformed ); + + Matrix4 stTransformed2identity( matrix4_affine_inverse( matrix4_multiplied_by_matrix4( transformed2stTransformed, identity2transformed ) ) ); + + Vector3 originalProjectionAxis( vector4_to_vector3( matrix4_affine_inverse( identity2stIdentity ).z() ) ); + + Vector3 transformedProjectionAxis( vector4_to_vector3( stTransformed2identity.z() ) ); + + Matrix4 stIdentity2stOriginal; + Texdef_toTransform( projection, (float)width, (float)height, stIdentity2stOriginal ); + Matrix4 identity2stOriginal( matrix4_multiplied_by_matrix4( stIdentity2stOriginal, identity2stIdentity ) ); + + //globalOutputStream() << "originalProj: " << originalProjectionAxis << "\n"; + //globalOutputStream() << "transformedProj: " << transformedProjectionAxis << "\n"; + double dot = vector3_dot( originalProjectionAxis, transformedProjectionAxis ); + //globalOutputStream() << "dot: " << dot << "\n"; + if ( dot == 0 ) { + // The projection axis chosen for the transformed normal is at 90 degrees + // to the transformed projection axis chosen for the original normal. + // This happens when the projection axis is ambiguous - e.g. for the plane + // 'X == Y' the projection axis could be either X or Y. + //globalOutputStream() << "flipped\n"; +#if 0 + globalOutputStream() << "projection off by 90\n"; + globalOutputStream() << "normal: "; + print_vector3( plane.normal() ); + globalOutputStream() << "original projection: "; + print_vector3( originalProjectionAxis ); + globalOutputStream() << "transformed projection: "; + print_vector3( transformedProjectionAxis ); +#endif + + Matrix4 identityCorrected = matrix4_reflection_for_plane45( plane, originalProjectionAxis, transformedProjectionAxis ); + + identity2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, identityCorrected ); + } + + Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, stTransformed2identity ); + + Texdef_fromTransform( projection, (float)width, (float)height, stTransformed2stOriginal ); + Texdef_normalise( projection, (float)width, (float)height ); +} + +#if 1 +void Q3_to_matrix( const texdef_t& texdef, float width, float height, const Vector3& normal, Matrix4& matrix ){ + Normal_GetTransform( normal, matrix ); + + Matrix4 transform; + + Texdef_toTransform( texdef, width, height, transform ); + + matrix4_multiply_by_matrix4( matrix, transform ); +} + +void BP_from_matrix( brushprimit_texdef_t& bp_texdef, const Vector3& normal, const Matrix4& transform ){ + Matrix4 basis; + basis = g_matrix4_identity; + ComputeAxisBase( normal, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ); + vector4_to_vector3( basis.z() ) = normal; + matrix4_transpose( basis ); + matrix4_affine_invert( basis ); + + Matrix4 basis2texture = matrix4_multiplied_by_matrix4( basis, transform ); + + BPTexdef_fromTransform( bp_texdef, basis2texture ); +} + +void Q3_to_BP( const texdef_t& texdef, float width, float height, const Vector3& normal, brushprimit_texdef_t& bp_texdef ){ + Matrix4 matrix; + Q3_to_matrix( texdef, width, height, normal, matrix ); + BP_from_matrix( bp_texdef, normal, matrix ); +} +#endif