From: bones_was_here Date: Mon, 25 Dec 2023 09:27:21 +0000 (+1000) Subject: Remove builddeps: linux64/d0_blind_id linux64/gmp linux64/ode X-Git-Url: https://de.git.xonotic.org/?a=commitdiff_plain;h=e74832499f46b05c3c000ae317adc513096d752f;p=xonotic%2Fxonotic.git Remove builddeps: linux64/d0_blind_id linux64/gmp linux64/ode We're building libd0, obtaining libgmp from the system, and will build and ship libode if people want it. --- diff --git a/misc/builddeps/linux64/d0_blind_id/bin/blind_id b/misc/builddeps/linux64/d0_blind_id/bin/blind_id deleted file mode 100755 index 453c8aef..00000000 Binary files a/misc/builddeps/linux64/d0_blind_id/bin/blind_id and /dev/null differ diff --git a/misc/builddeps/linux64/d0_blind_id/include/d0_blind_id/d0.h b/misc/builddeps/linux64/d0_blind_id/include/d0_blind_id/d0.h deleted file mode 100644 index 4c8708e3..00000000 --- a/misc/builddeps/linux64/d0_blind_id/include/d0_blind_id/d0.h +++ /dev/null @@ -1,66 +0,0 @@ -/* - * FILE: d0.h - * AUTHOR: Rudolf Polzer - divVerent@xonotic.org - * - * Copyright (c) 2010, Rudolf Polzer - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. Neither the name of the copyright holder nor the names of contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * $Format:commit %H$ - * $Id: 6c55afeb50f24bd316079ae46582e65f8020b19b $ - */ - -#ifndef __D0_H__ -#define __D0_H__ - -#include // size_t - -#define D0_EXPORT __attribute__((__visibility__("default"))) -#define D0_USED __attribute__((used)) -#define D0_WARN_UNUSED_RESULT __attribute__((warn_unused_result)) -#define D0_BOOL int - -typedef void *(d0_malloc_t)(size_t len); -typedef void (d0_free_t)(void *p); -typedef void *(d0_createmutex_t)(void); -typedef void (d0_destroymutex_t)(void *); -typedef int (d0_lockmutex_t)(void *); // zero on success -typedef int (d0_unlockmutex_t)(void *); // zero on success - -extern d0_malloc_t *d0_malloc; -extern d0_free_t *d0_free; -extern d0_createmutex_t *d0_createmutex; -extern d0_destroymutex_t *d0_destroymutex; -extern d0_lockmutex_t *d0_lockmutex; -extern d0_unlockmutex_t *d0_unlockmutex; - -void d0_setmallocfuncs(d0_malloc_t *m, d0_free_t *f); -void d0_setmutexfuncs(d0_createmutex_t *c, d0_destroymutex_t *d, d0_lockmutex_t *l, d0_unlockmutex_t *u); -void d0_initfuncs(void); // initializes them, this needs to be only called internally once - -extern const char *d0_bsd_license_notice; - -#endif diff --git a/misc/builddeps/linux64/d0_blind_id/include/d0_blind_id/d0_blind_id.h b/misc/builddeps/linux64/d0_blind_id/include/d0_blind_id/d0_blind_id.h deleted file mode 100644 index f546b679..00000000 --- a/misc/builddeps/linux64/d0_blind_id/include/d0_blind_id/d0_blind_id.h +++ /dev/null @@ -1,91 +0,0 @@ -/* - * FILE: d0_blind_id.h - * AUTHOR: Rudolf Polzer - divVerent@xonotic.org - * - * Copyright (c) 2010, Rudolf Polzer - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. Neither the name of the copyright holder nor the names of contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * $Format:commit %H$ - * $Id: bf838f43093aceadcd2d20071684f1e7148a4332 $ - */ - -#ifndef __D0_BLIND_ID_H__ -#define __D0_BLIND_ID_H__ - -#include "d0.h" - -typedef struct d0_blind_id_s d0_blind_id_t; -typedef D0_BOOL (*d0_fastreject_function) (const d0_blind_id_t *ctx, void *pass); - -D0_EXPORT D0_WARN_UNUSED_RESULT d0_blind_id_t *d0_blind_id_new(void); -D0_EXPORT void d0_blind_id_free(d0_blind_id_t *a); -D0_EXPORT void d0_blind_id_clear(d0_blind_id_t *ctx); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_copy(d0_blind_id_t *ctx, const d0_blind_id_t *src); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_generate_private_key(d0_blind_id_t *ctx, int k); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_generate_private_key_fastreject(d0_blind_id_t *ctx, int k, d0_fastreject_function reject, void *pass); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_read_private_key(d0_blind_id_t *ctx, const char *inbuf, size_t inbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_read_public_key(d0_blind_id_t *ctx, const char *inbuf, size_t inbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_write_private_key(const d0_blind_id_t *ctx, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_write_public_key(const d0_blind_id_t *ctx, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_fingerprint64_public_key(const d0_blind_id_t *ctx, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_generate_private_id_modulus(d0_blind_id_t *ctx); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_read_private_id_modulus(d0_blind_id_t *ctx, const char *inbuf, size_t inbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_write_private_id_modulus(const d0_blind_id_t *ctx, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_generate_private_id_start(d0_blind_id_t *ctx); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_generate_private_id_request(d0_blind_id_t *ctx, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_answer_private_id_request(const d0_blind_id_t *ctx, const char *inbuf, size_t inbuflen, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_finish_private_id_request(d0_blind_id_t *ctx, const char *inbuf, size_t inbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_read_private_id_request_camouflage(d0_blind_id_t *ctx, const char *inbuf, size_t inbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_write_private_id_request_camouflage(const d0_blind_id_t *ctx, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_read_private_id(d0_blind_id_t *ctx, const char *inbuf, size_t inbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_read_public_id(d0_blind_id_t *ctx, const char *inbuf, size_t inbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_write_private_id(const d0_blind_id_t *ctx, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_write_public_id(const d0_blind_id_t *ctx, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_authenticate_with_private_id_start(d0_blind_id_t *ctx, D0_BOOL is_first, D0_BOOL send_modulus, const char *message, size_t msglen, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_authenticate_with_private_id_challenge(d0_blind_id_t *ctx, D0_BOOL is_first, D0_BOOL recv_modulus, const char *inbuf, size_t inbuflen, char *outbuf, size_t *outbuflen, D0_BOOL *status); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_authenticate_with_private_id_response(d0_blind_id_t *ctx, const char *inbuf, size_t inbuflen, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_authenticate_with_private_id_verify(d0_blind_id_t *ctx, const char *inbuf, size_t inbuflen, char *msg, size_t *msglen, D0_BOOL *status); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_authenticate_with_private_id_generate_missing_signature(d0_blind_id_t *ctx); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_sign_with_private_id_sign(d0_blind_id_t *ctx, D0_BOOL is_first, D0_BOOL send_modulus, const char *message, size_t msglen, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_sign_with_private_id_sign_detached(d0_blind_id_t *ctx, D0_BOOL is_first, D0_BOOL send_modulus, const char *message, size_t msglen, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_sign_with_private_id_verify(d0_blind_id_t *ctx, D0_BOOL is_first, D0_BOOL recv_modulus, const char *inbuf, size_t inbuflen, char *msg, size_t *msglen, D0_BOOL *status); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_sign_with_private_id_verify_detached(d0_blind_id_t *ctx, D0_BOOL is_first, D0_BOOL recv_modulus, const char *inbuf, size_t inbuflen, const char *msg, size_t msglen, D0_BOOL *status); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_fingerprint64_public_id(const d0_blind_id_t *ctx, char *outbuf, size_t *outbuflen); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_verify_public_id(const d0_blind_id_t *ctx, D0_BOOL *status); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_verify_private_id(const d0_blind_id_t *ctx); -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_sessionkey_public_id(const d0_blind_id_t *ctx, char *outbuf, size_t *outbuflen); // can only be done after successful key exchange, this performs a modpow; key length is limited by SHA_DIGESTSIZE for now; also ONLY valid after successful d0_blind_id_authenticate_with_private_id_verify/d0_blind_id_fingerprint64_public_id - -D0_EXPORT D0_WARN_UNUSED_RESULT D0_BOOL d0_blind_id_INITIALIZE(void); -D0_EXPORT void d0_blind_id_SHUTDOWN(void); - -D0_EXPORT void d0_blind_id_util_sha256(char *out, const char *in, size_t n); - -// for exporting -D0_EXPORT void d0_blind_id_setmallocfuncs(d0_malloc_t *m, d0_free_t *f); -D0_EXPORT void d0_blind_id_setmutexfuncs(d0_createmutex_t *c, d0_destroymutex_t *d, d0_lockmutex_t *l, d0_unlockmutex_t *u); - -#endif diff --git a/misc/builddeps/linux64/d0_blind_id/include/d0_blind_id/d0_rijndael.h b/misc/builddeps/linux64/d0_blind_id/include/d0_blind_id/d0_rijndael.h deleted file mode 100644 index e1c8f71b..00000000 --- a/misc/builddeps/linux64/d0_blind_id/include/d0_blind_id/d0_rijndael.h +++ /dev/null @@ -1,21 +0,0 @@ -// from http://www.efgh.com/software/rijndael.htm (public domain) - -#ifndef H__RIJNDAEL -#define H__RIJNDAEL - -#include "d0.h" - -D0_EXPORT int d0_rijndael_setup_encrypt(unsigned long *rk, const unsigned char *key, - int keybits); -D0_EXPORT int d0_rijndael_setup_decrypt(unsigned long *rk, const unsigned char *key, - int keybits); -D0_EXPORT void d0_rijndael_encrypt(const unsigned long *rk, int nrounds, - const unsigned char plaintext[16], unsigned char ciphertext[16]); -D0_EXPORT void d0_rijndael_decrypt(const unsigned long *rk, int nrounds, - const unsigned char ciphertext[16], unsigned char plaintext[16]); - -#define D0_RIJNDAEL_KEYLENGTH(keybits) ((keybits)/8) -#define D0_RIJNDAEL_RKLENGTH(keybits) ((keybits)/8+28) -#define D0_RIJNDAEL_NROUNDS(keybits) ((keybits)/32+6) - -#endif diff --git a/misc/builddeps/linux64/d0_blind_id/lib/libd0_blind_id.a b/misc/builddeps/linux64/d0_blind_id/lib/libd0_blind_id.a deleted file mode 100644 index 558a8e53..00000000 Binary files a/misc/builddeps/linux64/d0_blind_id/lib/libd0_blind_id.a and /dev/null differ diff --git a/misc/builddeps/linux64/d0_blind_id/lib/libd0_blind_id.la b/misc/builddeps/linux64/d0_blind_id/lib/libd0_blind_id.la deleted file mode 100755 index 7232b220..00000000 --- a/misc/builddeps/linux64/d0_blind_id/lib/libd0_blind_id.la +++ /dev/null @@ -1,41 +0,0 @@ -# libd0_blind_id.la - a libtool library file -# Generated by libtool (GNU libtool) 2.4.6 Debian-2.4.6-15 -# -# Please DO NOT delete this file! -# It is necessary for linking the library. - -# The name that we can dlopen(3). -dlname='' - -# Names of this library. -library_names='' - -# The name of the static archive. -old_library='libd0_blind_id.a' - -# Linker flags that cannot go in dependency_libs. -inherited_linker_flags='' - -# Libraries that this one depends upon. -dependency_libs=' -L/home/rpolzer/Games/xonotic/misc/builddeps/linux64/gmp/lib /home/rpolzer/Games/xonotic/misc/builddeps/linux64/gmp/lib/libgmp.la' - -# Names of additional weak libraries provided by this library -weak_library_names='' - -# Version information for libd0_blind_id. -current=7 -age=7 -revision=1 - -# Is this an already installed library? -installed=yes - -# Should we warn about portability when linking against -modules? -shouldnotlink=no - -# Files to dlopen/dlpreopen -dlopen='' -dlpreopen='' - -# Directory that this library needs to be installed in: -libdir='/home/rpolzer/Games/xonotic/misc/builddeps/linux64/d0_blind_id/lib' diff --git a/misc/builddeps/linux64/d0_blind_id/lib/libd0_rijndael.a b/misc/builddeps/linux64/d0_blind_id/lib/libd0_rijndael.a deleted file mode 100644 index 4ccbd740..00000000 Binary files a/misc/builddeps/linux64/d0_blind_id/lib/libd0_rijndael.a and /dev/null differ diff --git a/misc/builddeps/linux64/d0_blind_id/lib/libd0_rijndael.la b/misc/builddeps/linux64/d0_blind_id/lib/libd0_rijndael.la deleted file mode 100755 index 7b7bffed..00000000 --- a/misc/builddeps/linux64/d0_blind_id/lib/libd0_rijndael.la +++ /dev/null @@ -1,41 +0,0 @@ -# libd0_rijndael.la - a libtool library file -# Generated by libtool (GNU libtool) 2.4.6 Debian-2.4.6-15 -# -# Please DO NOT delete this file! -# It is necessary for linking the library. - -# The name that we can dlopen(3). -dlname='' - -# Names of this library. -library_names='' - -# The name of the static archive. -old_library='libd0_rijndael.a' - -# Linker flags that cannot go in dependency_libs. -inherited_linker_flags='' - -# Libraries that this one depends upon. -dependency_libs=' -L/home/rpolzer/Games/xonotic/misc/builddeps/linux64/gmp/lib /home/rpolzer/Games/xonotic/misc/builddeps/linux64/gmp/lib/libgmp.la' - -# Names of additional weak libraries provided by this library -weak_library_names='' - -# Version information for libd0_rijndael. -current=0 -age=0 -revision=0 - -# Is this an already installed library? -installed=yes - -# Should we warn about portability when linking against -modules? -shouldnotlink=no - -# Files to dlopen/dlpreopen -dlopen='' -dlpreopen='' - -# Directory that this library needs to be installed in: -libdir='/home/rpolzer/Games/xonotic/misc/builddeps/linux64/d0_blind_id/lib' diff --git a/misc/builddeps/linux64/d0_blind_id/lib/pkgconfig/d0_blind_id.pc b/misc/builddeps/linux64/d0_blind_id/lib/pkgconfig/d0_blind_id.pc deleted file mode 100644 index 56268ea3..00000000 --- a/misc/builddeps/linux64/d0_blind_id/lib/pkgconfig/d0_blind_id.pc +++ /dev/null @@ -1,11 +0,0 @@ -prefix=/home/rpolzer/Games/xonotic/misc/builddeps/linux64/d0_blind_id -exec_prefix=${prefix} -libdir=${exec_prefix}/lib -includedir=${prefix}/include - -Name: Blind-ID -Description: Library for user identification using RSA blind signatures -Requires: -Version: 0.5 -Libs: -L${libdir} -ld0_blind_id -Cflags: -I${includedir}/d0_blind_id diff --git a/misc/builddeps/linux64/d0_blind_id/lib/pkgconfig/d0_rijndael.pc b/misc/builddeps/linux64/d0_blind_id/lib/pkgconfig/d0_rijndael.pc deleted file mode 100644 index e6039a7b..00000000 --- a/misc/builddeps/linux64/d0_blind_id/lib/pkgconfig/d0_rijndael.pc +++ /dev/null @@ -1,11 +0,0 @@ -prefix=/home/rpolzer/Games/xonotic/misc/builddeps/linux64/d0_blind_id -exec_prefix=${prefix} -libdir=${exec_prefix}/lib -includedir=${prefix}/include - -Name: Rijndael -Description: Library for Rijndael encryption -Requires: -Version: 0.5 -Libs: -L${libdir} -ld0_rijndael -Cflags: -I${includedir}/d0_blind_id diff --git a/misc/builddeps/linux64/gmp/include/gmp.h b/misc/builddeps/linux64/gmp/include/gmp.h deleted file mode 100644 index c535f950..00000000 --- a/misc/builddeps/linux64/gmp/include/gmp.h +++ /dev/null @@ -1,2336 +0,0 @@ -/* Definitions for GNU multiple precision functions. -*- mode: c -*- - -Copyright 1991, 1993-1997, 1999-2016, 2020 Free Software Foundation, Inc. - -This file is part of the GNU MP Library. - -The GNU MP Library is free software; you can redistribute it and/or modify -it under the terms of either: - - * the GNU Lesser General Public License as published by the Free - Software Foundation; either version 3 of the License, or (at your - option) any later version. - -or - - * the GNU General Public License as published by the Free Software - Foundation; either version 2 of the License, or (at your option) any - later version. - -or both in parallel, as here. - -The GNU MP Library is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -for more details. - -You should have received copies of the GNU General Public License and the -GNU Lesser General Public License along with the GNU MP Library. If not, -see https://www.gnu.org/licenses/. */ - -#ifndef __GMP_H__ - -#if defined (__cplusplus) -#include /* for std::istream, std::ostream, std::string */ -#include -#endif - - -/* Instantiated by configure. */ -#if ! defined (__GMP_WITHIN_CONFIGURE) -#define __GMP_HAVE_HOST_CPU_FAMILY_power 0 -#define __GMP_HAVE_HOST_CPU_FAMILY_powerpc 0 -#define GMP_LIMB_BITS 64 -#define GMP_NAIL_BITS 0 -#endif -#define GMP_NUMB_BITS (GMP_LIMB_BITS - GMP_NAIL_BITS) -#define GMP_NUMB_MASK ((~ __GMP_CAST (mp_limb_t, 0)) >> GMP_NAIL_BITS) -#define GMP_NUMB_MAX GMP_NUMB_MASK -#define GMP_NAIL_MASK (~ GMP_NUMB_MASK) - - -#ifndef __GNU_MP__ -#define __GNU_MP__ 6 - -#include /* for size_t */ -#include - -/* Instantiated by configure. */ -#if ! defined (__GMP_WITHIN_CONFIGURE) -/* #undef _LONG_LONG_LIMB */ -#define __GMP_LIBGMP_DLL 0 -#endif - - -/* __GMP_DECLSPEC supports Windows DLL versions of libgmp, and is empty in - all other circumstances. - - When compiling objects for libgmp, __GMP_DECLSPEC is an export directive, - or when compiling for an application it's an import directive. The two - cases are differentiated by __GMP_WITHIN_GMP defined by the GMP Makefiles - (and not defined from an application). - - __GMP_DECLSPEC_XX is similarly used for libgmpxx. __GMP_WITHIN_GMPXX - indicates when building libgmpxx, and in that case libgmpxx functions are - exports, but libgmp functions which might get called are imports. - - Libtool DLL_EXPORT define is not used. - - There's no attempt to support GMP built both static and DLL. Doing so - would mean applications would have to tell us which of the two is going - to be used when linking, and that seems very tedious and error prone if - using GMP by hand, and equally tedious from a package since autoconf and - automake don't give much help. - - __GMP_DECLSPEC is required on all documented global functions and - variables, the various internals in gmp-impl.h etc can be left unadorned. - But internals used by the test programs or speed measuring programs - should have __GMP_DECLSPEC, and certainly constants or variables must - have it or the wrong address will be resolved. - - In gcc __declspec can go at either the start or end of a prototype. - - In Microsoft C __declspec must go at the start, or after the type like - void __declspec(...) *foo()". There's no __dllexport or anything to - guard against someone foolish #defining dllexport. _export used to be - available, but no longer. - - In Borland C _export still exists, but needs to go after the type, like - "void _export foo();". Would have to change the __GMP_DECLSPEC syntax to - make use of that. Probably more trouble than it's worth. */ - -#if defined (__GNUC__) -#define __GMP_DECLSPEC_EXPORT __declspec(__dllexport__) -#define __GMP_DECLSPEC_IMPORT __declspec(__dllimport__) -#endif -#if defined (_MSC_VER) || defined (__BORLANDC__) -#define __GMP_DECLSPEC_EXPORT __declspec(dllexport) -#define __GMP_DECLSPEC_IMPORT __declspec(dllimport) -#endif -#ifdef __WATCOMC__ -#define __GMP_DECLSPEC_EXPORT __export -#define __GMP_DECLSPEC_IMPORT __import -#endif -#ifdef __IBMC__ -#define __GMP_DECLSPEC_EXPORT _Export -#define __GMP_DECLSPEC_IMPORT _Import -#endif - -#if __GMP_LIBGMP_DLL -#ifdef __GMP_WITHIN_GMP -/* compiling to go into a DLL libgmp */ -#define __GMP_DECLSPEC __GMP_DECLSPEC_EXPORT -#else -/* compiling to go into an application which will link to a DLL libgmp */ -#define __GMP_DECLSPEC __GMP_DECLSPEC_IMPORT -#endif -#else -/* all other cases */ -#define __GMP_DECLSPEC -#endif - - -#ifdef __GMP_SHORT_LIMB -typedef unsigned int mp_limb_t; -typedef int mp_limb_signed_t; -#else -#ifdef _LONG_LONG_LIMB -typedef unsigned long long int mp_limb_t; -typedef long long int mp_limb_signed_t; -#else -typedef unsigned long int mp_limb_t; -typedef long int mp_limb_signed_t; -#endif -#endif -typedef unsigned long int mp_bitcnt_t; - -/* For reference, note that the name __mpz_struct gets into C++ mangled - function names, which means although the "__" suggests an internal, we - must leave this name for binary compatibility. */ -typedef struct -{ - int _mp_alloc; /* Number of *limbs* allocated and pointed - to by the _mp_d field. */ - int _mp_size; /* abs(_mp_size) is the number of limbs the - last field points to. If _mp_size is - negative this is a negative number. */ - mp_limb_t *_mp_d; /* Pointer to the limbs. */ -} __mpz_struct; - -#endif /* __GNU_MP__ */ - - -typedef __mpz_struct MP_INT; /* gmp 1 source compatibility */ -typedef __mpz_struct mpz_t[1]; - -typedef mp_limb_t * mp_ptr; -typedef const mp_limb_t * mp_srcptr; -#if defined (_CRAY) && ! defined (_CRAYMPP) -/* plain `int' is much faster (48 bits) */ -#define __GMP_MP_SIZE_T_INT 1 -typedef int mp_size_t; -typedef int mp_exp_t; -#else -#define __GMP_MP_SIZE_T_INT 0 -typedef long int mp_size_t; -typedef long int mp_exp_t; -#endif - -typedef struct -{ - __mpz_struct _mp_num; - __mpz_struct _mp_den; -} __mpq_struct; - -typedef __mpq_struct MP_RAT; /* gmp 1 source compatibility */ -typedef __mpq_struct mpq_t[1]; - -typedef struct -{ - int _mp_prec; /* Max precision, in number of `mp_limb_t's. - Set by mpf_init and modified by - mpf_set_prec. The area pointed to by the - _mp_d field contains `prec' + 1 limbs. */ - int _mp_size; /* abs(_mp_size) is the number of limbs the - last field points to. If _mp_size is - negative this is a negative number. */ - mp_exp_t _mp_exp; /* Exponent, in the base of `mp_limb_t'. */ - mp_limb_t *_mp_d; /* Pointer to the limbs. */ -} __mpf_struct; - -/* typedef __mpf_struct MP_FLOAT; */ -typedef __mpf_struct mpf_t[1]; - -/* Available random number generation algorithms. */ -typedef enum -{ - GMP_RAND_ALG_DEFAULT = 0, - GMP_RAND_ALG_LC = GMP_RAND_ALG_DEFAULT /* Linear congruential. */ -} gmp_randalg_t; - -/* Random state struct. */ -typedef struct -{ - mpz_t _mp_seed; /* _mp_d member points to state of the generator. */ - gmp_randalg_t _mp_alg; /* Currently unused. */ - union { - void *_mp_lc; /* Pointer to function pointers structure. */ - } _mp_algdata; -} __gmp_randstate_struct; -typedef __gmp_randstate_struct gmp_randstate_t[1]; - -/* Types for function declarations in gmp files. */ -/* ??? Should not pollute user name space with these ??? */ -typedef const __mpz_struct *mpz_srcptr; -typedef __mpz_struct *mpz_ptr; -typedef const __mpf_struct *mpf_srcptr; -typedef __mpf_struct *mpf_ptr; -typedef const __mpq_struct *mpq_srcptr; -typedef __mpq_struct *mpq_ptr; - - -#if __GMP_LIBGMP_DLL -#ifdef __GMP_WITHIN_GMPXX -/* compiling to go into a DLL libgmpxx */ -#define __GMP_DECLSPEC_XX __GMP_DECLSPEC_EXPORT -#else -/* compiling to go into a application which will link to a DLL libgmpxx */ -#define __GMP_DECLSPEC_XX __GMP_DECLSPEC_IMPORT -#endif -#else -/* all other cases */ -#define __GMP_DECLSPEC_XX -#endif - - -#ifndef __MPN -#define __MPN(x) __gmpn_##x -#endif - -/* For reference, "defined(EOF)" cannot be used here. In g++ 2.95.4, - defines EOF but not FILE. */ -#if defined (FILE) \ - || defined (H_STDIO) \ - || defined (_H_STDIO) /* AIX */ \ - || defined (_STDIO_H) /* glibc, Sun, SCO */ \ - || defined (_STDIO_H_) /* BSD, OSF */ \ - || defined (__STDIO_H) /* Borland */ \ - || defined (__STDIO_H__) /* IRIX */ \ - || defined (_STDIO_INCLUDED) /* HPUX */ \ - || defined (__dj_include_stdio_h_) /* DJGPP */ \ - || defined (_FILE_DEFINED) /* Microsoft */ \ - || defined (__STDIO__) /* Apple MPW MrC */ \ - || defined (_MSL_STDIO_H) /* Metrowerks */ \ - || defined (_STDIO_H_INCLUDED) /* QNX4 */ \ - || defined (_ISO_STDIO_ISO_H) /* Sun C++ */ \ - || defined (__STDIO_LOADED) /* VMS */ \ - || defined (__DEFINED_FILE) /* musl */ -#define _GMP_H_HAVE_FILE 1 -#endif - -/* In ISO C, if a prototype involving "struct obstack *" is given without - that structure defined, then the struct is scoped down to just the - prototype, causing a conflict if it's subsequently defined for real. So - only give prototypes if we've got obstack.h. */ -#if defined (_OBSTACK_H) /* glibc */ -#define _GMP_H_HAVE_OBSTACK 1 -#endif - -/* The prototypes for gmp_vprintf etc are provided only if va_list is defined, - via an application having included . Usually va_list is a typedef - so can't be tested directly, but C99 specifies that va_start is a macro. - - will define some sort of va_list for vprintf and vfprintf, but - let's not bother trying to use that since it's not standard and since - application uses for gmp_vprintf etc will almost certainly require the - whole anyway. */ - -#ifdef va_start -#define _GMP_H_HAVE_VA_LIST 1 -#endif - -/* Test for gcc >= maj.min, as per __GNUC_PREREQ in glibc */ -#if defined (__GNUC__) && defined (__GNUC_MINOR__) -#define __GMP_GNUC_PREREQ(maj, min) \ - ((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min)) -#else -#define __GMP_GNUC_PREREQ(maj, min) 0 -#endif - -/* "pure" is in gcc 2.96 and up, see "(gcc)Function Attributes". Basically - it means a function does nothing but examine its arguments and memory - (global or via arguments) to generate a return value, but changes nothing - and has no side-effects. __GMP_NO_ATTRIBUTE_CONST_PURE lets - tune/common.c etc turn this off when trying to write timing loops. */ -#if __GMP_GNUC_PREREQ (2,96) && ! defined (__GMP_NO_ATTRIBUTE_CONST_PURE) -#define __GMP_ATTRIBUTE_PURE __attribute__ ((__pure__)) -#else -#define __GMP_ATTRIBUTE_PURE -#endif - - -/* __GMP_CAST allows us to use static_cast in C++, so our macros are clean - to "g++ -Wold-style-cast". - - Casts in "extern inline" code within an extern "C" block don't induce - these warnings, so __GMP_CAST only needs to be used on documented - macros. */ - -#ifdef __cplusplus -#define __GMP_CAST(type, expr) (static_cast (expr)) -#else -#define __GMP_CAST(type, expr) ((type) (expr)) -#endif - - -/* An empty "throw ()" means the function doesn't throw any C++ exceptions, - this can save some stack frame info in applications. - - Currently it's given only on functions which never divide-by-zero etc, - don't allocate memory, and are expected to never need to allocate memory. - This leaves open the possibility of a C++ throw from a future GMP - exceptions scheme. - - mpz_set_ui etc are omitted to leave open the lazy allocation scheme - described in doc/tasks.html. mpz_get_d etc are omitted to leave open - exceptions for float overflows. - - Note that __GMP_NOTHROW must be given on any inlines the same as on their - prototypes (for g++ at least, where they're used together). Note also - that g++ 3.0 demands that __GMP_NOTHROW is before other attributes like - __GMP_ATTRIBUTE_PURE. */ - -#if defined (__cplusplus) -#if __cplusplus >= 201103L -#define __GMP_NOTHROW noexcept -#else -#define __GMP_NOTHROW throw () -#endif -#else -#define __GMP_NOTHROW -#endif - - -/* PORTME: What other compilers have a useful "extern inline"? "static - inline" would be an acceptable substitute if the compiler (or linker) - discards unused statics. */ - - /* gcc has __inline__ in all modes, including strict ansi. Give a prototype - for an inline too, so as to correctly specify "dllimport" on windows, in - case the function is called rather than inlined. - GCC 4.3 and above with -std=c99 or -std=gnu99 implements ISO C99 - inline semantics, unless -fgnu89-inline is used. */ -#ifdef __GNUC__ -#if (defined __GNUC_STDC_INLINE__) || (__GNUC__ == 4 && __GNUC_MINOR__ == 2) \ - || (defined __GNUC_GNU_INLINE__ && defined __cplusplus) -#define __GMP_EXTERN_INLINE extern __inline__ __attribute__ ((__gnu_inline__)) -#else -#define __GMP_EXTERN_INLINE extern __inline__ -#endif -#define __GMP_INLINE_PROTOTYPES 1 -#endif - -/* DEC C (eg. version 5.9) supports "static __inline foo()", even in -std1 - strict ANSI mode. Inlining is done even when not optimizing (ie. -O0 - mode, which is the default), but an unnecessary local copy of foo is - emitted unless -O is used. "extern __inline" is accepted, but the - "extern" appears to be ignored, ie. it becomes a plain global function - but which is inlined within its file. Don't know if all old versions of - DEC C supported __inline, but as a start let's do the right thing for - current versions. */ -#ifdef __DECC -#define __GMP_EXTERN_INLINE static __inline -#endif - -/* SCO OpenUNIX 8 cc supports "static inline foo()" but not in -Xc strict - ANSI mode (__STDC__ is 1 in that mode). Inlining only actually takes - place under -O. Without -O "foo" seems to be emitted whether it's used - or not, which is wasteful. "extern inline foo()" isn't useful, the - "extern" is apparently ignored, so foo is inlined if possible but also - emitted as a global, which causes multiple definition errors when - building a shared libgmp. */ -#ifdef __SCO_VERSION__ -#if __SCO_VERSION__ > 400000000 && __STDC__ != 1 \ - && ! defined (__GMP_EXTERN_INLINE) -#define __GMP_EXTERN_INLINE static inline -#endif -#endif - -/* Microsoft's C compiler accepts __inline */ -#ifdef _MSC_VER -#define __GMP_EXTERN_INLINE __inline -#endif - -/* Recent enough Sun C compilers want "inline" */ -#if defined (__SUNPRO_C) && __SUNPRO_C >= 0x560 \ - && ! defined (__GMP_EXTERN_INLINE) -#define __GMP_EXTERN_INLINE inline -#endif - -/* Somewhat older Sun C compilers want "static inline" */ -#if defined (__SUNPRO_C) && __SUNPRO_C >= 0x540 \ - && ! defined (__GMP_EXTERN_INLINE) -#define __GMP_EXTERN_INLINE static inline -#endif - - -/* C++ always has "inline" and since it's a normal feature the linker should - discard duplicate non-inlined copies, or if it doesn't then that's a - problem for everyone, not just GMP. */ -#if defined (__cplusplus) && ! defined (__GMP_EXTERN_INLINE) -#define __GMP_EXTERN_INLINE inline -#endif - -/* Don't do any inlining within a configure run, since if the compiler ends - up emitting copies of the code into the object file it can end up - demanding the various support routines (like mpn_popcount) for linking, - making the "alloca" test and perhaps others fail. And on hppa ia64 a - pre-release gcc 3.2 was seen not respecting the "extern" in "extern - __inline__", triggering this problem too. */ -#if defined (__GMP_WITHIN_CONFIGURE) && ! __GMP_WITHIN_CONFIGURE_INLINE -#undef __GMP_EXTERN_INLINE -#endif - -/* By default, don't give a prototype when there's going to be an inline - version. Note in particular that Cray C++ objects to the combination of - prototype and inline. */ -#ifdef __GMP_EXTERN_INLINE -#ifndef __GMP_INLINE_PROTOTYPES -#define __GMP_INLINE_PROTOTYPES 0 -#endif -#else -#define __GMP_INLINE_PROTOTYPES 1 -#endif - - -#define __GMP_ABS(x) ((x) >= 0 ? (x) : -(x)) -#define __GMP_MAX(h,i) ((h) > (i) ? (h) : (i)) - - -/* __builtin_expect is in gcc 3.0, and not in 2.95. */ -#if __GMP_GNUC_PREREQ (3,0) -#define __GMP_LIKELY(cond) __builtin_expect ((cond) != 0, 1) -#define __GMP_UNLIKELY(cond) __builtin_expect ((cond) != 0, 0) -#else -#define __GMP_LIKELY(cond) (cond) -#define __GMP_UNLIKELY(cond) (cond) -#endif - -#ifdef _CRAY -#define __GMP_CRAY_Pragma(str) _Pragma (str) -#else -#define __GMP_CRAY_Pragma(str) -#endif - - -/* Allow direct user access to numerator and denominator of an mpq_t object. */ -#define mpq_numref(Q) (&((Q)->_mp_num)) -#define mpq_denref(Q) (&((Q)->_mp_den)) - - -#if defined (__cplusplus) -extern "C" { -using std::FILE; -#endif - -#define mp_set_memory_functions __gmp_set_memory_functions -__GMP_DECLSPEC void mp_set_memory_functions (void *(*) (size_t), - void *(*) (void *, size_t, size_t), - void (*) (void *, size_t)) __GMP_NOTHROW; - -#define mp_get_memory_functions __gmp_get_memory_functions -__GMP_DECLSPEC void mp_get_memory_functions (void *(**) (size_t), - void *(**) (void *, size_t, size_t), - void (**) (void *, size_t)) __GMP_NOTHROW; - -#define mp_bits_per_limb __gmp_bits_per_limb -__GMP_DECLSPEC extern const int mp_bits_per_limb; - -#define gmp_errno __gmp_errno -__GMP_DECLSPEC extern int gmp_errno; - -#define gmp_version __gmp_version -__GMP_DECLSPEC extern const char * const gmp_version; - - -/**************** Random number routines. ****************/ - -/* obsolete */ -#define gmp_randinit __gmp_randinit -__GMP_DECLSPEC void gmp_randinit (gmp_randstate_t, gmp_randalg_t, ...); - -#define gmp_randinit_default __gmp_randinit_default -__GMP_DECLSPEC void gmp_randinit_default (gmp_randstate_t); - -#define gmp_randinit_lc_2exp __gmp_randinit_lc_2exp -__GMP_DECLSPEC void gmp_randinit_lc_2exp (gmp_randstate_t, mpz_srcptr, unsigned long int, mp_bitcnt_t); - -#define gmp_randinit_lc_2exp_size __gmp_randinit_lc_2exp_size -__GMP_DECLSPEC int gmp_randinit_lc_2exp_size (gmp_randstate_t, mp_bitcnt_t); - -#define gmp_randinit_mt __gmp_randinit_mt -__GMP_DECLSPEC void gmp_randinit_mt (gmp_randstate_t); - -#define gmp_randinit_set __gmp_randinit_set -__GMP_DECLSPEC void gmp_randinit_set (gmp_randstate_t, const __gmp_randstate_struct *); - -#define gmp_randseed __gmp_randseed -__GMP_DECLSPEC void gmp_randseed (gmp_randstate_t, mpz_srcptr); - -#define gmp_randseed_ui __gmp_randseed_ui -__GMP_DECLSPEC void gmp_randseed_ui (gmp_randstate_t, unsigned long int); - -#define gmp_randclear __gmp_randclear -__GMP_DECLSPEC void gmp_randclear (gmp_randstate_t); - -#define gmp_urandomb_ui __gmp_urandomb_ui -__GMP_DECLSPEC unsigned long gmp_urandomb_ui (gmp_randstate_t, unsigned long); - -#define gmp_urandomm_ui __gmp_urandomm_ui -__GMP_DECLSPEC unsigned long gmp_urandomm_ui (gmp_randstate_t, unsigned long); - - -/**************** Formatted output routines. ****************/ - -#define gmp_asprintf __gmp_asprintf -__GMP_DECLSPEC int gmp_asprintf (char **, const char *, ...); - -#define gmp_fprintf __gmp_fprintf -#ifdef _GMP_H_HAVE_FILE -__GMP_DECLSPEC int gmp_fprintf (FILE *, const char *, ...); -#endif - -#define gmp_obstack_printf __gmp_obstack_printf -#if defined (_GMP_H_HAVE_OBSTACK) -__GMP_DECLSPEC int gmp_obstack_printf (struct obstack *, const char *, ...); -#endif - -#define gmp_obstack_vprintf __gmp_obstack_vprintf -#if defined (_GMP_H_HAVE_OBSTACK) && defined (_GMP_H_HAVE_VA_LIST) -__GMP_DECLSPEC int gmp_obstack_vprintf (struct obstack *, const char *, va_list); -#endif - -#define gmp_printf __gmp_printf -__GMP_DECLSPEC int gmp_printf (const char *, ...); - -#define gmp_snprintf __gmp_snprintf -__GMP_DECLSPEC int gmp_snprintf (char *, size_t, const char *, ...); - -#define gmp_sprintf __gmp_sprintf -__GMP_DECLSPEC int gmp_sprintf (char *, const char *, ...); - -#define gmp_vasprintf __gmp_vasprintf -#if defined (_GMP_H_HAVE_VA_LIST) -__GMP_DECLSPEC int gmp_vasprintf (char **, const char *, va_list); -#endif - -#define gmp_vfprintf __gmp_vfprintf -#if defined (_GMP_H_HAVE_FILE) && defined (_GMP_H_HAVE_VA_LIST) -__GMP_DECLSPEC int gmp_vfprintf (FILE *, const char *, va_list); -#endif - -#define gmp_vprintf __gmp_vprintf -#if defined (_GMP_H_HAVE_VA_LIST) -__GMP_DECLSPEC int gmp_vprintf (const char *, va_list); -#endif - -#define gmp_vsnprintf __gmp_vsnprintf -#if defined (_GMP_H_HAVE_VA_LIST) -__GMP_DECLSPEC int gmp_vsnprintf (char *, size_t, const char *, va_list); -#endif - -#define gmp_vsprintf __gmp_vsprintf -#if defined (_GMP_H_HAVE_VA_LIST) -__GMP_DECLSPEC int gmp_vsprintf (char *, const char *, va_list); -#endif - - -/**************** Formatted input routines. ****************/ - -#define gmp_fscanf __gmp_fscanf -#ifdef _GMP_H_HAVE_FILE -__GMP_DECLSPEC int gmp_fscanf (FILE *, const char *, ...); -#endif - -#define gmp_scanf __gmp_scanf -__GMP_DECLSPEC int gmp_scanf (const char *, ...); - -#define gmp_sscanf __gmp_sscanf -__GMP_DECLSPEC int gmp_sscanf (const char *, const char *, ...); - -#define gmp_vfscanf __gmp_vfscanf -#if defined (_GMP_H_HAVE_FILE) && defined (_GMP_H_HAVE_VA_LIST) -__GMP_DECLSPEC int gmp_vfscanf (FILE *, const char *, va_list); -#endif - -#define gmp_vscanf __gmp_vscanf -#if defined (_GMP_H_HAVE_VA_LIST) -__GMP_DECLSPEC int gmp_vscanf (const char *, va_list); -#endif - -#define gmp_vsscanf __gmp_vsscanf -#if defined (_GMP_H_HAVE_VA_LIST) -__GMP_DECLSPEC int gmp_vsscanf (const char *, const char *, va_list); -#endif - - -/**************** Integer (i.e. Z) routines. ****************/ - -#define _mpz_realloc __gmpz_realloc -#define mpz_realloc __gmpz_realloc -__GMP_DECLSPEC void *_mpz_realloc (mpz_ptr, mp_size_t); - -#define mpz_abs __gmpz_abs -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_abs) -__GMP_DECLSPEC void mpz_abs (mpz_ptr, mpz_srcptr); -#endif - -#define mpz_add __gmpz_add -__GMP_DECLSPEC void mpz_add (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_add_ui __gmpz_add_ui -__GMP_DECLSPEC void mpz_add_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_addmul __gmpz_addmul -__GMP_DECLSPEC void mpz_addmul (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_addmul_ui __gmpz_addmul_ui -__GMP_DECLSPEC void mpz_addmul_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_and __gmpz_and -__GMP_DECLSPEC void mpz_and (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_array_init __gmpz_array_init -__GMP_DECLSPEC void mpz_array_init (mpz_ptr, mp_size_t, mp_size_t); - -#define mpz_bin_ui __gmpz_bin_ui -__GMP_DECLSPEC void mpz_bin_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_bin_uiui __gmpz_bin_uiui -__GMP_DECLSPEC void mpz_bin_uiui (mpz_ptr, unsigned long int, unsigned long int); - -#define mpz_cdiv_q __gmpz_cdiv_q -__GMP_DECLSPEC void mpz_cdiv_q (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_cdiv_q_2exp __gmpz_cdiv_q_2exp -__GMP_DECLSPEC void mpz_cdiv_q_2exp (mpz_ptr, mpz_srcptr, mp_bitcnt_t); - -#define mpz_cdiv_q_ui __gmpz_cdiv_q_ui -__GMP_DECLSPEC unsigned long int mpz_cdiv_q_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_cdiv_qr __gmpz_cdiv_qr -__GMP_DECLSPEC void mpz_cdiv_qr (mpz_ptr, mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_cdiv_qr_ui __gmpz_cdiv_qr_ui -__GMP_DECLSPEC unsigned long int mpz_cdiv_qr_ui (mpz_ptr, mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_cdiv_r __gmpz_cdiv_r -__GMP_DECLSPEC void mpz_cdiv_r (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_cdiv_r_2exp __gmpz_cdiv_r_2exp -__GMP_DECLSPEC void mpz_cdiv_r_2exp (mpz_ptr, mpz_srcptr, mp_bitcnt_t); - -#define mpz_cdiv_r_ui __gmpz_cdiv_r_ui -__GMP_DECLSPEC unsigned long int mpz_cdiv_r_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_cdiv_ui __gmpz_cdiv_ui -__GMP_DECLSPEC unsigned long int mpz_cdiv_ui (mpz_srcptr, unsigned long int) __GMP_ATTRIBUTE_PURE; - -#define mpz_clear __gmpz_clear -__GMP_DECLSPEC void mpz_clear (mpz_ptr); - -#define mpz_clears __gmpz_clears -__GMP_DECLSPEC void mpz_clears (mpz_ptr, ...); - -#define mpz_clrbit __gmpz_clrbit -__GMP_DECLSPEC void mpz_clrbit (mpz_ptr, mp_bitcnt_t); - -#define mpz_cmp __gmpz_cmp -__GMP_DECLSPEC int mpz_cmp (mpz_srcptr, mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_cmp_d __gmpz_cmp_d -__GMP_DECLSPEC int mpz_cmp_d (mpz_srcptr, double) __GMP_ATTRIBUTE_PURE; - -#define _mpz_cmp_si __gmpz_cmp_si -__GMP_DECLSPEC int _mpz_cmp_si (mpz_srcptr, signed long int) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define _mpz_cmp_ui __gmpz_cmp_ui -__GMP_DECLSPEC int _mpz_cmp_ui (mpz_srcptr, unsigned long int) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_cmpabs __gmpz_cmpabs -__GMP_DECLSPEC int mpz_cmpabs (mpz_srcptr, mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_cmpabs_d __gmpz_cmpabs_d -__GMP_DECLSPEC int mpz_cmpabs_d (mpz_srcptr, double) __GMP_ATTRIBUTE_PURE; - -#define mpz_cmpabs_ui __gmpz_cmpabs_ui -__GMP_DECLSPEC int mpz_cmpabs_ui (mpz_srcptr, unsigned long int) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_com __gmpz_com -__GMP_DECLSPEC void mpz_com (mpz_ptr, mpz_srcptr); - -#define mpz_combit __gmpz_combit -__GMP_DECLSPEC void mpz_combit (mpz_ptr, mp_bitcnt_t); - -#define mpz_congruent_p __gmpz_congruent_p -__GMP_DECLSPEC int mpz_congruent_p (mpz_srcptr, mpz_srcptr, mpz_srcptr) __GMP_ATTRIBUTE_PURE; - -#define mpz_congruent_2exp_p __gmpz_congruent_2exp_p -__GMP_DECLSPEC int mpz_congruent_2exp_p (mpz_srcptr, mpz_srcptr, mp_bitcnt_t) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_congruent_ui_p __gmpz_congruent_ui_p -__GMP_DECLSPEC int mpz_congruent_ui_p (mpz_srcptr, unsigned long, unsigned long) __GMP_ATTRIBUTE_PURE; - -#define mpz_divexact __gmpz_divexact -__GMP_DECLSPEC void mpz_divexact (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_divexact_ui __gmpz_divexact_ui -__GMP_DECLSPEC void mpz_divexact_ui (mpz_ptr, mpz_srcptr, unsigned long); - -#define mpz_divisible_p __gmpz_divisible_p -__GMP_DECLSPEC int mpz_divisible_p (mpz_srcptr, mpz_srcptr) __GMP_ATTRIBUTE_PURE; - -#define mpz_divisible_ui_p __gmpz_divisible_ui_p -__GMP_DECLSPEC int mpz_divisible_ui_p (mpz_srcptr, unsigned long) __GMP_ATTRIBUTE_PURE; - -#define mpz_divisible_2exp_p __gmpz_divisible_2exp_p -__GMP_DECLSPEC int mpz_divisible_2exp_p (mpz_srcptr, mp_bitcnt_t) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_dump __gmpz_dump -__GMP_DECLSPEC void mpz_dump (mpz_srcptr); - -#define mpz_export __gmpz_export -__GMP_DECLSPEC void *mpz_export (void *, size_t *, int, size_t, int, size_t, mpz_srcptr); - -#define mpz_fac_ui __gmpz_fac_ui -__GMP_DECLSPEC void mpz_fac_ui (mpz_ptr, unsigned long int); - -#define mpz_2fac_ui __gmpz_2fac_ui -__GMP_DECLSPEC void mpz_2fac_ui (mpz_ptr, unsigned long int); - -#define mpz_mfac_uiui __gmpz_mfac_uiui -__GMP_DECLSPEC void mpz_mfac_uiui (mpz_ptr, unsigned long int, unsigned long int); - -#define mpz_primorial_ui __gmpz_primorial_ui -__GMP_DECLSPEC void mpz_primorial_ui (mpz_ptr, unsigned long int); - -#define mpz_fdiv_q __gmpz_fdiv_q -__GMP_DECLSPEC void mpz_fdiv_q (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_fdiv_q_2exp __gmpz_fdiv_q_2exp -__GMP_DECLSPEC void mpz_fdiv_q_2exp (mpz_ptr, mpz_srcptr, mp_bitcnt_t); - -#define mpz_fdiv_q_ui __gmpz_fdiv_q_ui -__GMP_DECLSPEC unsigned long int mpz_fdiv_q_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_fdiv_qr __gmpz_fdiv_qr -__GMP_DECLSPEC void mpz_fdiv_qr (mpz_ptr, mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_fdiv_qr_ui __gmpz_fdiv_qr_ui -__GMP_DECLSPEC unsigned long int mpz_fdiv_qr_ui (mpz_ptr, mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_fdiv_r __gmpz_fdiv_r -__GMP_DECLSPEC void mpz_fdiv_r (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_fdiv_r_2exp __gmpz_fdiv_r_2exp -__GMP_DECLSPEC void mpz_fdiv_r_2exp (mpz_ptr, mpz_srcptr, mp_bitcnt_t); - -#define mpz_fdiv_r_ui __gmpz_fdiv_r_ui -__GMP_DECLSPEC unsigned long int mpz_fdiv_r_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_fdiv_ui __gmpz_fdiv_ui -__GMP_DECLSPEC unsigned long int mpz_fdiv_ui (mpz_srcptr, unsigned long int) __GMP_ATTRIBUTE_PURE; - -#define mpz_fib_ui __gmpz_fib_ui -__GMP_DECLSPEC void mpz_fib_ui (mpz_ptr, unsigned long int); - -#define mpz_fib2_ui __gmpz_fib2_ui -__GMP_DECLSPEC void mpz_fib2_ui (mpz_ptr, mpz_ptr, unsigned long int); - -#define mpz_fits_sint_p __gmpz_fits_sint_p -__GMP_DECLSPEC int mpz_fits_sint_p (mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_fits_slong_p __gmpz_fits_slong_p -__GMP_DECLSPEC int mpz_fits_slong_p (mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_fits_sshort_p __gmpz_fits_sshort_p -__GMP_DECLSPEC int mpz_fits_sshort_p (mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_fits_uint_p __gmpz_fits_uint_p -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_fits_uint_p) -__GMP_DECLSPEC int mpz_fits_uint_p (mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; -#endif - -#define mpz_fits_ulong_p __gmpz_fits_ulong_p -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_fits_ulong_p) -__GMP_DECLSPEC int mpz_fits_ulong_p (mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; -#endif - -#define mpz_fits_ushort_p __gmpz_fits_ushort_p -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_fits_ushort_p) -__GMP_DECLSPEC int mpz_fits_ushort_p (mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; -#endif - -#define mpz_gcd __gmpz_gcd -__GMP_DECLSPEC void mpz_gcd (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_gcd_ui __gmpz_gcd_ui -__GMP_DECLSPEC unsigned long int mpz_gcd_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_gcdext __gmpz_gcdext -__GMP_DECLSPEC void mpz_gcdext (mpz_ptr, mpz_ptr, mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_get_d __gmpz_get_d -__GMP_DECLSPEC double mpz_get_d (mpz_srcptr) __GMP_ATTRIBUTE_PURE; - -#define mpz_get_d_2exp __gmpz_get_d_2exp -__GMP_DECLSPEC double mpz_get_d_2exp (signed long int *, mpz_srcptr); - -#define mpz_get_si __gmpz_get_si -__GMP_DECLSPEC /* signed */ long int mpz_get_si (mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_get_str __gmpz_get_str -__GMP_DECLSPEC char *mpz_get_str (char *, int, mpz_srcptr); - -#define mpz_get_ui __gmpz_get_ui -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_get_ui) -__GMP_DECLSPEC unsigned long int mpz_get_ui (mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; -#endif - -#define mpz_getlimbn __gmpz_getlimbn -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_getlimbn) -__GMP_DECLSPEC mp_limb_t mpz_getlimbn (mpz_srcptr, mp_size_t) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; -#endif - -#define mpz_hamdist __gmpz_hamdist -__GMP_DECLSPEC mp_bitcnt_t mpz_hamdist (mpz_srcptr, mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_import __gmpz_import -__GMP_DECLSPEC void mpz_import (mpz_ptr, size_t, int, size_t, int, size_t, const void *); - -#define mpz_init __gmpz_init -__GMP_DECLSPEC void mpz_init (mpz_ptr) __GMP_NOTHROW; - -#define mpz_init2 __gmpz_init2 -__GMP_DECLSPEC void mpz_init2 (mpz_ptr, mp_bitcnt_t); - -#define mpz_inits __gmpz_inits -__GMP_DECLSPEC void mpz_inits (mpz_ptr, ...) __GMP_NOTHROW; - -#define mpz_init_set __gmpz_init_set -__GMP_DECLSPEC void mpz_init_set (mpz_ptr, mpz_srcptr); - -#define mpz_init_set_d __gmpz_init_set_d -__GMP_DECLSPEC void mpz_init_set_d (mpz_ptr, double); - -#define mpz_init_set_si __gmpz_init_set_si -__GMP_DECLSPEC void mpz_init_set_si (mpz_ptr, signed long int); - -#define mpz_init_set_str __gmpz_init_set_str -__GMP_DECLSPEC int mpz_init_set_str (mpz_ptr, const char *, int); - -#define mpz_init_set_ui __gmpz_init_set_ui -__GMP_DECLSPEC void mpz_init_set_ui (mpz_ptr, unsigned long int); - -#define mpz_inp_raw __gmpz_inp_raw -#ifdef _GMP_H_HAVE_FILE -__GMP_DECLSPEC size_t mpz_inp_raw (mpz_ptr, FILE *); -#endif - -#define mpz_inp_str __gmpz_inp_str -#ifdef _GMP_H_HAVE_FILE -__GMP_DECLSPEC size_t mpz_inp_str (mpz_ptr, FILE *, int); -#endif - -#define mpz_invert __gmpz_invert -__GMP_DECLSPEC int mpz_invert (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_ior __gmpz_ior -__GMP_DECLSPEC void mpz_ior (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_jacobi __gmpz_jacobi -__GMP_DECLSPEC int mpz_jacobi (mpz_srcptr, mpz_srcptr) __GMP_ATTRIBUTE_PURE; - -#define mpz_kronecker mpz_jacobi /* alias */ - -#define mpz_kronecker_si __gmpz_kronecker_si -__GMP_DECLSPEC int mpz_kronecker_si (mpz_srcptr, long) __GMP_ATTRIBUTE_PURE; - -#define mpz_kronecker_ui __gmpz_kronecker_ui -__GMP_DECLSPEC int mpz_kronecker_ui (mpz_srcptr, unsigned long) __GMP_ATTRIBUTE_PURE; - -#define mpz_si_kronecker __gmpz_si_kronecker -__GMP_DECLSPEC int mpz_si_kronecker (long, mpz_srcptr) __GMP_ATTRIBUTE_PURE; - -#define mpz_ui_kronecker __gmpz_ui_kronecker -__GMP_DECLSPEC int mpz_ui_kronecker (unsigned long, mpz_srcptr) __GMP_ATTRIBUTE_PURE; - -#define mpz_lcm __gmpz_lcm -__GMP_DECLSPEC void mpz_lcm (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_lcm_ui __gmpz_lcm_ui -__GMP_DECLSPEC void mpz_lcm_ui (mpz_ptr, mpz_srcptr, unsigned long); - -#define mpz_legendre mpz_jacobi /* alias */ - -#define mpz_lucnum_ui __gmpz_lucnum_ui -__GMP_DECLSPEC void mpz_lucnum_ui (mpz_ptr, unsigned long int); - -#define mpz_lucnum2_ui __gmpz_lucnum2_ui -__GMP_DECLSPEC void mpz_lucnum2_ui (mpz_ptr, mpz_ptr, unsigned long int); - -#define mpz_millerrabin __gmpz_millerrabin -__GMP_DECLSPEC int mpz_millerrabin (mpz_srcptr, int) __GMP_ATTRIBUTE_PURE; - -#define mpz_mod __gmpz_mod -__GMP_DECLSPEC void mpz_mod (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_mod_ui mpz_fdiv_r_ui /* same as fdiv_r because divisor unsigned */ - -#define mpz_mul __gmpz_mul -__GMP_DECLSPEC void mpz_mul (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_mul_2exp __gmpz_mul_2exp -__GMP_DECLSPEC void mpz_mul_2exp (mpz_ptr, mpz_srcptr, mp_bitcnt_t); - -#define mpz_mul_si __gmpz_mul_si -__GMP_DECLSPEC void mpz_mul_si (mpz_ptr, mpz_srcptr, long int); - -#define mpz_mul_ui __gmpz_mul_ui -__GMP_DECLSPEC void mpz_mul_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_neg __gmpz_neg -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_neg) -__GMP_DECLSPEC void mpz_neg (mpz_ptr, mpz_srcptr); -#endif - -#define mpz_nextprime __gmpz_nextprime -__GMP_DECLSPEC void mpz_nextprime (mpz_ptr, mpz_srcptr); - -#define mpz_out_raw __gmpz_out_raw -#ifdef _GMP_H_HAVE_FILE -__GMP_DECLSPEC size_t mpz_out_raw (FILE *, mpz_srcptr); -#endif - -#define mpz_out_str __gmpz_out_str -#ifdef _GMP_H_HAVE_FILE -__GMP_DECLSPEC size_t mpz_out_str (FILE *, int, mpz_srcptr); -#endif - -#define mpz_perfect_power_p __gmpz_perfect_power_p -__GMP_DECLSPEC int mpz_perfect_power_p (mpz_srcptr) __GMP_ATTRIBUTE_PURE; - -#define mpz_perfect_square_p __gmpz_perfect_square_p -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_perfect_square_p) -__GMP_DECLSPEC int mpz_perfect_square_p (mpz_srcptr) __GMP_ATTRIBUTE_PURE; -#endif - -#define mpz_popcount __gmpz_popcount -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_popcount) -__GMP_DECLSPEC mp_bitcnt_t mpz_popcount (mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; -#endif - -#define mpz_pow_ui __gmpz_pow_ui -__GMP_DECLSPEC void mpz_pow_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_powm __gmpz_powm -__GMP_DECLSPEC void mpz_powm (mpz_ptr, mpz_srcptr, mpz_srcptr, mpz_srcptr); - -#define mpz_powm_sec __gmpz_powm_sec -__GMP_DECLSPEC void mpz_powm_sec (mpz_ptr, mpz_srcptr, mpz_srcptr, mpz_srcptr); - -#define mpz_powm_ui __gmpz_powm_ui -__GMP_DECLSPEC void mpz_powm_ui (mpz_ptr, mpz_srcptr, unsigned long int, mpz_srcptr); - -#define mpz_probab_prime_p __gmpz_probab_prime_p -__GMP_DECLSPEC int mpz_probab_prime_p (mpz_srcptr, int) __GMP_ATTRIBUTE_PURE; - -#define mpz_random __gmpz_random -__GMP_DECLSPEC void mpz_random (mpz_ptr, mp_size_t); - -#define mpz_random2 __gmpz_random2 -__GMP_DECLSPEC void mpz_random2 (mpz_ptr, mp_size_t); - -#define mpz_realloc2 __gmpz_realloc2 -__GMP_DECLSPEC void mpz_realloc2 (mpz_ptr, mp_bitcnt_t); - -#define mpz_remove __gmpz_remove -__GMP_DECLSPEC mp_bitcnt_t mpz_remove (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_root __gmpz_root -__GMP_DECLSPEC int mpz_root (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_rootrem __gmpz_rootrem -__GMP_DECLSPEC void mpz_rootrem (mpz_ptr, mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_rrandomb __gmpz_rrandomb -__GMP_DECLSPEC void mpz_rrandomb (mpz_ptr, gmp_randstate_t, mp_bitcnt_t); - -#define mpz_scan0 __gmpz_scan0 -__GMP_DECLSPEC mp_bitcnt_t mpz_scan0 (mpz_srcptr, mp_bitcnt_t) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_scan1 __gmpz_scan1 -__GMP_DECLSPEC mp_bitcnt_t mpz_scan1 (mpz_srcptr, mp_bitcnt_t) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_set __gmpz_set -__GMP_DECLSPEC void mpz_set (mpz_ptr, mpz_srcptr); - -#define mpz_set_d __gmpz_set_d -__GMP_DECLSPEC void mpz_set_d (mpz_ptr, double); - -#define mpz_set_f __gmpz_set_f -__GMP_DECLSPEC void mpz_set_f (mpz_ptr, mpf_srcptr); - -#define mpz_set_q __gmpz_set_q -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_set_q) -__GMP_DECLSPEC void mpz_set_q (mpz_ptr, mpq_srcptr); -#endif - -#define mpz_set_si __gmpz_set_si -__GMP_DECLSPEC void mpz_set_si (mpz_ptr, signed long int); - -#define mpz_set_str __gmpz_set_str -__GMP_DECLSPEC int mpz_set_str (mpz_ptr, const char *, int); - -#define mpz_set_ui __gmpz_set_ui -__GMP_DECLSPEC void mpz_set_ui (mpz_ptr, unsigned long int); - -#define mpz_setbit __gmpz_setbit -__GMP_DECLSPEC void mpz_setbit (mpz_ptr, mp_bitcnt_t); - -#define mpz_size __gmpz_size -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpz_size) -__GMP_DECLSPEC size_t mpz_size (mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; -#endif - -#define mpz_sizeinbase __gmpz_sizeinbase -__GMP_DECLSPEC size_t mpz_sizeinbase (mpz_srcptr, int) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_sqrt __gmpz_sqrt -__GMP_DECLSPEC void mpz_sqrt (mpz_ptr, mpz_srcptr); - -#define mpz_sqrtrem __gmpz_sqrtrem -__GMP_DECLSPEC void mpz_sqrtrem (mpz_ptr, mpz_ptr, mpz_srcptr); - -#define mpz_sub __gmpz_sub -__GMP_DECLSPEC void mpz_sub (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_sub_ui __gmpz_sub_ui -__GMP_DECLSPEC void mpz_sub_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_ui_sub __gmpz_ui_sub -__GMP_DECLSPEC void mpz_ui_sub (mpz_ptr, unsigned long int, mpz_srcptr); - -#define mpz_submul __gmpz_submul -__GMP_DECLSPEC void mpz_submul (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_submul_ui __gmpz_submul_ui -__GMP_DECLSPEC void mpz_submul_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_swap __gmpz_swap -__GMP_DECLSPEC void mpz_swap (mpz_ptr, mpz_ptr) __GMP_NOTHROW; - -#define mpz_tdiv_ui __gmpz_tdiv_ui -__GMP_DECLSPEC unsigned long int mpz_tdiv_ui (mpz_srcptr, unsigned long int) __GMP_ATTRIBUTE_PURE; - -#define mpz_tdiv_q __gmpz_tdiv_q -__GMP_DECLSPEC void mpz_tdiv_q (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_tdiv_q_2exp __gmpz_tdiv_q_2exp -__GMP_DECLSPEC void mpz_tdiv_q_2exp (mpz_ptr, mpz_srcptr, mp_bitcnt_t); - -#define mpz_tdiv_q_ui __gmpz_tdiv_q_ui -__GMP_DECLSPEC unsigned long int mpz_tdiv_q_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_tdiv_qr __gmpz_tdiv_qr -__GMP_DECLSPEC void mpz_tdiv_qr (mpz_ptr, mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_tdiv_qr_ui __gmpz_tdiv_qr_ui -__GMP_DECLSPEC unsigned long int mpz_tdiv_qr_ui (mpz_ptr, mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_tdiv_r __gmpz_tdiv_r -__GMP_DECLSPEC void mpz_tdiv_r (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_tdiv_r_2exp __gmpz_tdiv_r_2exp -__GMP_DECLSPEC void mpz_tdiv_r_2exp (mpz_ptr, mpz_srcptr, mp_bitcnt_t); - -#define mpz_tdiv_r_ui __gmpz_tdiv_r_ui -__GMP_DECLSPEC unsigned long int mpz_tdiv_r_ui (mpz_ptr, mpz_srcptr, unsigned long int); - -#define mpz_tstbit __gmpz_tstbit -__GMP_DECLSPEC int mpz_tstbit (mpz_srcptr, mp_bitcnt_t) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpz_ui_pow_ui __gmpz_ui_pow_ui -__GMP_DECLSPEC void mpz_ui_pow_ui (mpz_ptr, unsigned long int, unsigned long int); - -#define mpz_urandomb __gmpz_urandomb -__GMP_DECLSPEC void mpz_urandomb (mpz_ptr, gmp_randstate_t, mp_bitcnt_t); - -#define mpz_urandomm __gmpz_urandomm -__GMP_DECLSPEC void mpz_urandomm (mpz_ptr, gmp_randstate_t, mpz_srcptr); - -#define mpz_xor __gmpz_xor -#define mpz_eor __gmpz_xor -__GMP_DECLSPEC void mpz_xor (mpz_ptr, mpz_srcptr, mpz_srcptr); - -#define mpz_limbs_read __gmpz_limbs_read -__GMP_DECLSPEC mp_srcptr mpz_limbs_read (mpz_srcptr); - -#define mpz_limbs_write __gmpz_limbs_write -__GMP_DECLSPEC mp_ptr mpz_limbs_write (mpz_ptr, mp_size_t); - -#define mpz_limbs_modify __gmpz_limbs_modify -__GMP_DECLSPEC mp_ptr mpz_limbs_modify (mpz_ptr, mp_size_t); - -#define mpz_limbs_finish __gmpz_limbs_finish -__GMP_DECLSPEC void mpz_limbs_finish (mpz_ptr, mp_size_t); - -#define mpz_roinit_n __gmpz_roinit_n -__GMP_DECLSPEC mpz_srcptr mpz_roinit_n (mpz_ptr, mp_srcptr, mp_size_t); - -#define MPZ_ROINIT_N(xp, xs) {{0, (xs),(xp) }} - -/**************** Rational (i.e. Q) routines. ****************/ - -#define mpq_abs __gmpq_abs -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpq_abs) -__GMP_DECLSPEC void mpq_abs (mpq_ptr, mpq_srcptr); -#endif - -#define mpq_add __gmpq_add -__GMP_DECLSPEC void mpq_add (mpq_ptr, mpq_srcptr, mpq_srcptr); - -#define mpq_canonicalize __gmpq_canonicalize -__GMP_DECLSPEC void mpq_canonicalize (mpq_ptr); - -#define mpq_clear __gmpq_clear -__GMP_DECLSPEC void mpq_clear (mpq_ptr); - -#define mpq_clears __gmpq_clears -__GMP_DECLSPEC void mpq_clears (mpq_ptr, ...); - -#define mpq_cmp __gmpq_cmp -__GMP_DECLSPEC int mpq_cmp (mpq_srcptr, mpq_srcptr) __GMP_ATTRIBUTE_PURE; - -#define _mpq_cmp_si __gmpq_cmp_si -__GMP_DECLSPEC int _mpq_cmp_si (mpq_srcptr, long, unsigned long) __GMP_ATTRIBUTE_PURE; - -#define _mpq_cmp_ui __gmpq_cmp_ui -__GMP_DECLSPEC int _mpq_cmp_ui (mpq_srcptr, unsigned long int, unsigned long int) __GMP_ATTRIBUTE_PURE; - -#define mpq_cmp_z __gmpq_cmp_z -__GMP_DECLSPEC int mpq_cmp_z (mpq_srcptr, mpz_srcptr) __GMP_ATTRIBUTE_PURE; - -#define mpq_div __gmpq_div -__GMP_DECLSPEC void mpq_div (mpq_ptr, mpq_srcptr, mpq_srcptr); - -#define mpq_div_2exp __gmpq_div_2exp -__GMP_DECLSPEC void mpq_div_2exp (mpq_ptr, mpq_srcptr, mp_bitcnt_t); - -#define mpq_equal __gmpq_equal -__GMP_DECLSPEC int mpq_equal (mpq_srcptr, mpq_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpq_get_num __gmpq_get_num -__GMP_DECLSPEC void mpq_get_num (mpz_ptr, mpq_srcptr); - -#define mpq_get_den __gmpq_get_den -__GMP_DECLSPEC void mpq_get_den (mpz_ptr, mpq_srcptr); - -#define mpq_get_d __gmpq_get_d -__GMP_DECLSPEC double mpq_get_d (mpq_srcptr) __GMP_ATTRIBUTE_PURE; - -#define mpq_get_str __gmpq_get_str -__GMP_DECLSPEC char *mpq_get_str (char *, int, mpq_srcptr); - -#define mpq_init __gmpq_init -__GMP_DECLSPEC void mpq_init (mpq_ptr); - -#define mpq_inits __gmpq_inits -__GMP_DECLSPEC void mpq_inits (mpq_ptr, ...); - -#define mpq_inp_str __gmpq_inp_str -#ifdef _GMP_H_HAVE_FILE -__GMP_DECLSPEC size_t mpq_inp_str (mpq_ptr, FILE *, int); -#endif - -#define mpq_inv __gmpq_inv -__GMP_DECLSPEC void mpq_inv (mpq_ptr, mpq_srcptr); - -#define mpq_mul __gmpq_mul -__GMP_DECLSPEC void mpq_mul (mpq_ptr, mpq_srcptr, mpq_srcptr); - -#define mpq_mul_2exp __gmpq_mul_2exp -__GMP_DECLSPEC void mpq_mul_2exp (mpq_ptr, mpq_srcptr, mp_bitcnt_t); - -#define mpq_neg __gmpq_neg -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpq_neg) -__GMP_DECLSPEC void mpq_neg (mpq_ptr, mpq_srcptr); -#endif - -#define mpq_out_str __gmpq_out_str -#ifdef _GMP_H_HAVE_FILE -__GMP_DECLSPEC size_t mpq_out_str (FILE *, int, mpq_srcptr); -#endif - -#define mpq_set __gmpq_set -__GMP_DECLSPEC void mpq_set (mpq_ptr, mpq_srcptr); - -#define mpq_set_d __gmpq_set_d -__GMP_DECLSPEC void mpq_set_d (mpq_ptr, double); - -#define mpq_set_den __gmpq_set_den -__GMP_DECLSPEC void mpq_set_den (mpq_ptr, mpz_srcptr); - -#define mpq_set_f __gmpq_set_f -__GMP_DECLSPEC void mpq_set_f (mpq_ptr, mpf_srcptr); - -#define mpq_set_num __gmpq_set_num -__GMP_DECLSPEC void mpq_set_num (mpq_ptr, mpz_srcptr); - -#define mpq_set_si __gmpq_set_si -__GMP_DECLSPEC void mpq_set_si (mpq_ptr, signed long int, unsigned long int); - -#define mpq_set_str __gmpq_set_str -__GMP_DECLSPEC int mpq_set_str (mpq_ptr, const char *, int); - -#define mpq_set_ui __gmpq_set_ui -__GMP_DECLSPEC void mpq_set_ui (mpq_ptr, unsigned long int, unsigned long int); - -#define mpq_set_z __gmpq_set_z -__GMP_DECLSPEC void mpq_set_z (mpq_ptr, mpz_srcptr); - -#define mpq_sub __gmpq_sub -__GMP_DECLSPEC void mpq_sub (mpq_ptr, mpq_srcptr, mpq_srcptr); - -#define mpq_swap __gmpq_swap -__GMP_DECLSPEC void mpq_swap (mpq_ptr, mpq_ptr) __GMP_NOTHROW; - - -/**************** Float (i.e. F) routines. ****************/ - -#define mpf_abs __gmpf_abs -__GMP_DECLSPEC void mpf_abs (mpf_ptr, mpf_srcptr); - -#define mpf_add __gmpf_add -__GMP_DECLSPEC void mpf_add (mpf_ptr, mpf_srcptr, mpf_srcptr); - -#define mpf_add_ui __gmpf_add_ui -__GMP_DECLSPEC void mpf_add_ui (mpf_ptr, mpf_srcptr, unsigned long int); -#define mpf_ceil __gmpf_ceil -__GMP_DECLSPEC void mpf_ceil (mpf_ptr, mpf_srcptr); - -#define mpf_clear __gmpf_clear -__GMP_DECLSPEC void mpf_clear (mpf_ptr); - -#define mpf_clears __gmpf_clears -__GMP_DECLSPEC void mpf_clears (mpf_ptr, ...); - -#define mpf_cmp __gmpf_cmp -__GMP_DECLSPEC int mpf_cmp (mpf_srcptr, mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_cmp_z __gmpf_cmp_z -__GMP_DECLSPEC int mpf_cmp_z (mpf_srcptr, mpz_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_cmp_d __gmpf_cmp_d -__GMP_DECLSPEC int mpf_cmp_d (mpf_srcptr, double) __GMP_ATTRIBUTE_PURE; - -#define mpf_cmp_si __gmpf_cmp_si -__GMP_DECLSPEC int mpf_cmp_si (mpf_srcptr, signed long int) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_cmp_ui __gmpf_cmp_ui -__GMP_DECLSPEC int mpf_cmp_ui (mpf_srcptr, unsigned long int) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_div __gmpf_div -__GMP_DECLSPEC void mpf_div (mpf_ptr, mpf_srcptr, mpf_srcptr); - -#define mpf_div_2exp __gmpf_div_2exp -__GMP_DECLSPEC void mpf_div_2exp (mpf_ptr, mpf_srcptr, mp_bitcnt_t); - -#define mpf_div_ui __gmpf_div_ui -__GMP_DECLSPEC void mpf_div_ui (mpf_ptr, mpf_srcptr, unsigned long int); - -#define mpf_dump __gmpf_dump -__GMP_DECLSPEC void mpf_dump (mpf_srcptr); - -#define mpf_eq __gmpf_eq -__GMP_DECLSPEC int mpf_eq (mpf_srcptr, mpf_srcptr, mp_bitcnt_t) __GMP_ATTRIBUTE_PURE; - -#define mpf_fits_sint_p __gmpf_fits_sint_p -__GMP_DECLSPEC int mpf_fits_sint_p (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_fits_slong_p __gmpf_fits_slong_p -__GMP_DECLSPEC int mpf_fits_slong_p (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_fits_sshort_p __gmpf_fits_sshort_p -__GMP_DECLSPEC int mpf_fits_sshort_p (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_fits_uint_p __gmpf_fits_uint_p -__GMP_DECLSPEC int mpf_fits_uint_p (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_fits_ulong_p __gmpf_fits_ulong_p -__GMP_DECLSPEC int mpf_fits_ulong_p (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_fits_ushort_p __gmpf_fits_ushort_p -__GMP_DECLSPEC int mpf_fits_ushort_p (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_floor __gmpf_floor -__GMP_DECLSPEC void mpf_floor (mpf_ptr, mpf_srcptr); - -#define mpf_get_d __gmpf_get_d -__GMP_DECLSPEC double mpf_get_d (mpf_srcptr) __GMP_ATTRIBUTE_PURE; - -#define mpf_get_d_2exp __gmpf_get_d_2exp -__GMP_DECLSPEC double mpf_get_d_2exp (signed long int *, mpf_srcptr); - -#define mpf_get_default_prec __gmpf_get_default_prec -__GMP_DECLSPEC mp_bitcnt_t mpf_get_default_prec (void) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_get_prec __gmpf_get_prec -__GMP_DECLSPEC mp_bitcnt_t mpf_get_prec (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_get_si __gmpf_get_si -__GMP_DECLSPEC long mpf_get_si (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_get_str __gmpf_get_str -__GMP_DECLSPEC char *mpf_get_str (char *, mp_exp_t *, int, size_t, mpf_srcptr); - -#define mpf_get_ui __gmpf_get_ui -__GMP_DECLSPEC unsigned long mpf_get_ui (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_init __gmpf_init -__GMP_DECLSPEC void mpf_init (mpf_ptr); - -#define mpf_init2 __gmpf_init2 -__GMP_DECLSPEC void mpf_init2 (mpf_ptr, mp_bitcnt_t); - -#define mpf_inits __gmpf_inits -__GMP_DECLSPEC void mpf_inits (mpf_ptr, ...); - -#define mpf_init_set __gmpf_init_set -__GMP_DECLSPEC void mpf_init_set (mpf_ptr, mpf_srcptr); - -#define mpf_init_set_d __gmpf_init_set_d -__GMP_DECLSPEC void mpf_init_set_d (mpf_ptr, double); - -#define mpf_init_set_si __gmpf_init_set_si -__GMP_DECLSPEC void mpf_init_set_si (mpf_ptr, signed long int); - -#define mpf_init_set_str __gmpf_init_set_str -__GMP_DECLSPEC int mpf_init_set_str (mpf_ptr, const char *, int); - -#define mpf_init_set_ui __gmpf_init_set_ui -__GMP_DECLSPEC void mpf_init_set_ui (mpf_ptr, unsigned long int); - -#define mpf_inp_str __gmpf_inp_str -#ifdef _GMP_H_HAVE_FILE -__GMP_DECLSPEC size_t mpf_inp_str (mpf_ptr, FILE *, int); -#endif - -#define mpf_integer_p __gmpf_integer_p -__GMP_DECLSPEC int mpf_integer_p (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_mul __gmpf_mul -__GMP_DECLSPEC void mpf_mul (mpf_ptr, mpf_srcptr, mpf_srcptr); - -#define mpf_mul_2exp __gmpf_mul_2exp -__GMP_DECLSPEC void mpf_mul_2exp (mpf_ptr, mpf_srcptr, mp_bitcnt_t); - -#define mpf_mul_ui __gmpf_mul_ui -__GMP_DECLSPEC void mpf_mul_ui (mpf_ptr, mpf_srcptr, unsigned long int); - -#define mpf_neg __gmpf_neg -__GMP_DECLSPEC void mpf_neg (mpf_ptr, mpf_srcptr); - -#define mpf_out_str __gmpf_out_str -#ifdef _GMP_H_HAVE_FILE -__GMP_DECLSPEC size_t mpf_out_str (FILE *, int, size_t, mpf_srcptr); -#endif - -#define mpf_pow_ui __gmpf_pow_ui -__GMP_DECLSPEC void mpf_pow_ui (mpf_ptr, mpf_srcptr, unsigned long int); - -#define mpf_random2 __gmpf_random2 -__GMP_DECLSPEC void mpf_random2 (mpf_ptr, mp_size_t, mp_exp_t); - -#define mpf_reldiff __gmpf_reldiff -__GMP_DECLSPEC void mpf_reldiff (mpf_ptr, mpf_srcptr, mpf_srcptr); - -#define mpf_set __gmpf_set -__GMP_DECLSPEC void mpf_set (mpf_ptr, mpf_srcptr); - -#define mpf_set_d __gmpf_set_d -__GMP_DECLSPEC void mpf_set_d (mpf_ptr, double); - -#define mpf_set_default_prec __gmpf_set_default_prec -__GMP_DECLSPEC void mpf_set_default_prec (mp_bitcnt_t) __GMP_NOTHROW; - -#define mpf_set_prec __gmpf_set_prec -__GMP_DECLSPEC void mpf_set_prec (mpf_ptr, mp_bitcnt_t); - -#define mpf_set_prec_raw __gmpf_set_prec_raw -__GMP_DECLSPEC void mpf_set_prec_raw (mpf_ptr, mp_bitcnt_t) __GMP_NOTHROW; - -#define mpf_set_q __gmpf_set_q -__GMP_DECLSPEC void mpf_set_q (mpf_ptr, mpq_srcptr); - -#define mpf_set_si __gmpf_set_si -__GMP_DECLSPEC void mpf_set_si (mpf_ptr, signed long int); - -#define mpf_set_str __gmpf_set_str -__GMP_DECLSPEC int mpf_set_str (mpf_ptr, const char *, int); - -#define mpf_set_ui __gmpf_set_ui -__GMP_DECLSPEC void mpf_set_ui (mpf_ptr, unsigned long int); - -#define mpf_set_z __gmpf_set_z -__GMP_DECLSPEC void mpf_set_z (mpf_ptr, mpz_srcptr); - -#define mpf_size __gmpf_size -__GMP_DECLSPEC size_t mpf_size (mpf_srcptr) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpf_sqrt __gmpf_sqrt -__GMP_DECLSPEC void mpf_sqrt (mpf_ptr, mpf_srcptr); - -#define mpf_sqrt_ui __gmpf_sqrt_ui -__GMP_DECLSPEC void mpf_sqrt_ui (mpf_ptr, unsigned long int); - -#define mpf_sub __gmpf_sub -__GMP_DECLSPEC void mpf_sub (mpf_ptr, mpf_srcptr, mpf_srcptr); - -#define mpf_sub_ui __gmpf_sub_ui -__GMP_DECLSPEC void mpf_sub_ui (mpf_ptr, mpf_srcptr, unsigned long int); - -#define mpf_swap __gmpf_swap -__GMP_DECLSPEC void mpf_swap (mpf_ptr, mpf_ptr) __GMP_NOTHROW; - -#define mpf_trunc __gmpf_trunc -__GMP_DECLSPEC void mpf_trunc (mpf_ptr, mpf_srcptr); - -#define mpf_ui_div __gmpf_ui_div -__GMP_DECLSPEC void mpf_ui_div (mpf_ptr, unsigned long int, mpf_srcptr); - -#define mpf_ui_sub __gmpf_ui_sub -__GMP_DECLSPEC void mpf_ui_sub (mpf_ptr, unsigned long int, mpf_srcptr); - -#define mpf_urandomb __gmpf_urandomb -__GMP_DECLSPEC void mpf_urandomb (mpf_t, gmp_randstate_t, mp_bitcnt_t); - - -/************ Low level positive-integer (i.e. N) routines. ************/ - -/* This is ugly, but we need to make user calls reach the prefixed function. */ - -#define mpn_add __MPN(add) -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_add) -__GMP_DECLSPEC mp_limb_t mpn_add (mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t); -#endif - -#define mpn_add_1 __MPN(add_1) -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_add_1) -__GMP_DECLSPEC mp_limb_t mpn_add_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t) __GMP_NOTHROW; -#endif - -#define mpn_add_n __MPN(add_n) -__GMP_DECLSPEC mp_limb_t mpn_add_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); - -#define mpn_addmul_1 __MPN(addmul_1) -__GMP_DECLSPEC mp_limb_t mpn_addmul_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t); - -#define mpn_cmp __MPN(cmp) -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_cmp) -__GMP_DECLSPEC int mpn_cmp (mp_srcptr, mp_srcptr, mp_size_t) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; -#endif - -#define mpn_zero_p __MPN(zero_p) -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_zero_p) -__GMP_DECLSPEC int mpn_zero_p (mp_srcptr, mp_size_t) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; -#endif - -#define mpn_divexact_1 __MPN(divexact_1) -__GMP_DECLSPEC void mpn_divexact_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t); - -#define mpn_divexact_by3(dst,src,size) \ - mpn_divexact_by3c (dst, src, size, __GMP_CAST (mp_limb_t, 0)) - -#define mpn_divexact_by3c __MPN(divexact_by3c) -__GMP_DECLSPEC mp_limb_t mpn_divexact_by3c (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t); - -#define mpn_divmod_1(qp,np,nsize,dlimb) \ - mpn_divrem_1 (qp, __GMP_CAST (mp_size_t, 0), np, nsize, dlimb) - -#define mpn_divrem __MPN(divrem) -__GMP_DECLSPEC mp_limb_t mpn_divrem (mp_ptr, mp_size_t, mp_ptr, mp_size_t, mp_srcptr, mp_size_t); - -#define mpn_divrem_1 __MPN(divrem_1) -__GMP_DECLSPEC mp_limb_t mpn_divrem_1 (mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t); - -#define mpn_divrem_2 __MPN(divrem_2) -__GMP_DECLSPEC mp_limb_t mpn_divrem_2 (mp_ptr, mp_size_t, mp_ptr, mp_size_t, mp_srcptr); - -#define mpn_div_qr_1 __MPN(div_qr_1) -__GMP_DECLSPEC mp_limb_t mpn_div_qr_1 (mp_ptr, mp_limb_t *, mp_srcptr, mp_size_t, mp_limb_t); - -#define mpn_div_qr_2 __MPN(div_qr_2) -__GMP_DECLSPEC mp_limb_t mpn_div_qr_2 (mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_srcptr); - -#define mpn_gcd __MPN(gcd) -__GMP_DECLSPEC mp_size_t mpn_gcd (mp_ptr, mp_ptr, mp_size_t, mp_ptr, mp_size_t); - -#define mpn_gcd_11 __MPN(gcd_11) -__GMP_DECLSPEC mp_limb_t mpn_gcd_11 (mp_limb_t, mp_limb_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_gcd_1 __MPN(gcd_1) -__GMP_DECLSPEC mp_limb_t mpn_gcd_1 (mp_srcptr, mp_size_t, mp_limb_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_gcdext_1 __MPN(gcdext_1) -__GMP_DECLSPEC mp_limb_t mpn_gcdext_1 (mp_limb_signed_t *, mp_limb_signed_t *, mp_limb_t, mp_limb_t); - -#define mpn_gcdext __MPN(gcdext) -__GMP_DECLSPEC mp_size_t mpn_gcdext (mp_ptr, mp_ptr, mp_size_t *, mp_ptr, mp_size_t, mp_ptr, mp_size_t); - -#define mpn_get_str __MPN(get_str) -__GMP_DECLSPEC size_t mpn_get_str (unsigned char *, int, mp_ptr, mp_size_t); - -#define mpn_hamdist __MPN(hamdist) -__GMP_DECLSPEC mp_bitcnt_t mpn_hamdist (mp_srcptr, mp_srcptr, mp_size_t) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpn_lshift __MPN(lshift) -__GMP_DECLSPEC mp_limb_t mpn_lshift (mp_ptr, mp_srcptr, mp_size_t, unsigned int); - -#define mpn_mod_1 __MPN(mod_1) -__GMP_DECLSPEC mp_limb_t mpn_mod_1 (mp_srcptr, mp_size_t, mp_limb_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_mul __MPN(mul) -__GMP_DECLSPEC mp_limb_t mpn_mul (mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t); - -#define mpn_mul_1 __MPN(mul_1) -__GMP_DECLSPEC mp_limb_t mpn_mul_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t); - -#define mpn_mul_n __MPN(mul_n) -__GMP_DECLSPEC void mpn_mul_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); - -#define mpn_sqr __MPN(sqr) -__GMP_DECLSPEC void mpn_sqr (mp_ptr, mp_srcptr, mp_size_t); - -#define mpn_neg __MPN(neg) -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_neg) -__GMP_DECLSPEC mp_limb_t mpn_neg (mp_ptr, mp_srcptr, mp_size_t); -#endif - -#define mpn_com __MPN(com) -__GMP_DECLSPEC void mpn_com (mp_ptr, mp_srcptr, mp_size_t); - -#define mpn_perfect_square_p __MPN(perfect_square_p) -__GMP_DECLSPEC int mpn_perfect_square_p (mp_srcptr, mp_size_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_perfect_power_p __MPN(perfect_power_p) -__GMP_DECLSPEC int mpn_perfect_power_p (mp_srcptr, mp_size_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_popcount __MPN(popcount) -__GMP_DECLSPEC mp_bitcnt_t mpn_popcount (mp_srcptr, mp_size_t) __GMP_NOTHROW __GMP_ATTRIBUTE_PURE; - -#define mpn_pow_1 __MPN(pow_1) -__GMP_DECLSPEC mp_size_t mpn_pow_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_ptr); - -/* undocumented now, but retained here for upward compatibility */ -#define mpn_preinv_mod_1 __MPN(preinv_mod_1) -__GMP_DECLSPEC mp_limb_t mpn_preinv_mod_1 (mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_random __MPN(random) -__GMP_DECLSPEC void mpn_random (mp_ptr, mp_size_t); - -#define mpn_random2 __MPN(random2) -__GMP_DECLSPEC void mpn_random2 (mp_ptr, mp_size_t); - -#define mpn_rshift __MPN(rshift) -__GMP_DECLSPEC mp_limb_t mpn_rshift (mp_ptr, mp_srcptr, mp_size_t, unsigned int); - -#define mpn_scan0 __MPN(scan0) -__GMP_DECLSPEC mp_bitcnt_t mpn_scan0 (mp_srcptr, mp_bitcnt_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_scan1 __MPN(scan1) -__GMP_DECLSPEC mp_bitcnt_t mpn_scan1 (mp_srcptr, mp_bitcnt_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_set_str __MPN(set_str) -__GMP_DECLSPEC mp_size_t mpn_set_str (mp_ptr, const unsigned char *, size_t, int); - -#define mpn_sizeinbase __MPN(sizeinbase) -__GMP_DECLSPEC size_t mpn_sizeinbase (mp_srcptr, mp_size_t, int); - -#define mpn_sqrtrem __MPN(sqrtrem) -__GMP_DECLSPEC mp_size_t mpn_sqrtrem (mp_ptr, mp_ptr, mp_srcptr, mp_size_t); - -#define mpn_sub __MPN(sub) -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_sub) -__GMP_DECLSPEC mp_limb_t mpn_sub (mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t); -#endif - -#define mpn_sub_1 __MPN(sub_1) -#if __GMP_INLINE_PROTOTYPES || defined (__GMP_FORCE_mpn_sub_1) -__GMP_DECLSPEC mp_limb_t mpn_sub_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t) __GMP_NOTHROW; -#endif - -#define mpn_sub_n __MPN(sub_n) -__GMP_DECLSPEC mp_limb_t mpn_sub_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); - -#define mpn_submul_1 __MPN(submul_1) -__GMP_DECLSPEC mp_limb_t mpn_submul_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t); - -#define mpn_tdiv_qr __MPN(tdiv_qr) -__GMP_DECLSPEC void mpn_tdiv_qr (mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t); - -#define mpn_and_n __MPN(and_n) -__GMP_DECLSPEC void mpn_and_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); -#define mpn_andn_n __MPN(andn_n) -__GMP_DECLSPEC void mpn_andn_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); -#define mpn_nand_n __MPN(nand_n) -__GMP_DECLSPEC void mpn_nand_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); -#define mpn_ior_n __MPN(ior_n) -__GMP_DECLSPEC void mpn_ior_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); -#define mpn_iorn_n __MPN(iorn_n) -__GMP_DECLSPEC void mpn_iorn_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); -#define mpn_nior_n __MPN(nior_n) -__GMP_DECLSPEC void mpn_nior_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); -#define mpn_xor_n __MPN(xor_n) -__GMP_DECLSPEC void mpn_xor_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); -#define mpn_xnor_n __MPN(xnor_n) -__GMP_DECLSPEC void mpn_xnor_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); - -#define mpn_copyi __MPN(copyi) -__GMP_DECLSPEC void mpn_copyi (mp_ptr, mp_srcptr, mp_size_t); -#define mpn_copyd __MPN(copyd) -__GMP_DECLSPEC void mpn_copyd (mp_ptr, mp_srcptr, mp_size_t); -#define mpn_zero __MPN(zero) -__GMP_DECLSPEC void mpn_zero (mp_ptr, mp_size_t); - -#define mpn_cnd_add_n __MPN(cnd_add_n) -__GMP_DECLSPEC mp_limb_t mpn_cnd_add_n (mp_limb_t, mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); -#define mpn_cnd_sub_n __MPN(cnd_sub_n) -__GMP_DECLSPEC mp_limb_t mpn_cnd_sub_n (mp_limb_t, mp_ptr, mp_srcptr, mp_srcptr, mp_size_t); - -#define mpn_sec_add_1 __MPN(sec_add_1) -__GMP_DECLSPEC mp_limb_t mpn_sec_add_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_ptr); -#define mpn_sec_add_1_itch __MPN(sec_add_1_itch) -__GMP_DECLSPEC mp_size_t mpn_sec_add_1_itch (mp_size_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_sec_sub_1 __MPN(sec_sub_1) -__GMP_DECLSPEC mp_limb_t mpn_sec_sub_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_ptr); -#define mpn_sec_sub_1_itch __MPN(sec_sub_1_itch) -__GMP_DECLSPEC mp_size_t mpn_sec_sub_1_itch (mp_size_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_cnd_swap __MPN(cnd_swap) -__GMP_DECLSPEC void mpn_cnd_swap (mp_limb_t, volatile mp_limb_t *, volatile mp_limb_t *, mp_size_t); - -#define mpn_sec_mul __MPN(sec_mul) -__GMP_DECLSPEC void mpn_sec_mul (mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr); -#define mpn_sec_mul_itch __MPN(sec_mul_itch) -__GMP_DECLSPEC mp_size_t mpn_sec_mul_itch (mp_size_t, mp_size_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_sec_sqr __MPN(sec_sqr) -__GMP_DECLSPEC void mpn_sec_sqr (mp_ptr, mp_srcptr, mp_size_t, mp_ptr); -#define mpn_sec_sqr_itch __MPN(sec_sqr_itch) -__GMP_DECLSPEC mp_size_t mpn_sec_sqr_itch (mp_size_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_sec_powm __MPN(sec_powm) -__GMP_DECLSPEC void mpn_sec_powm (mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_bitcnt_t, mp_srcptr, mp_size_t, mp_ptr); -#define mpn_sec_powm_itch __MPN(sec_powm_itch) -__GMP_DECLSPEC mp_size_t mpn_sec_powm_itch (mp_size_t, mp_bitcnt_t, mp_size_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_sec_tabselect __MPN(sec_tabselect) -__GMP_DECLSPEC void mpn_sec_tabselect (volatile mp_limb_t *, volatile const mp_limb_t *, mp_size_t, mp_size_t, mp_size_t); - -#define mpn_sec_div_qr __MPN(sec_div_qr) -__GMP_DECLSPEC mp_limb_t mpn_sec_div_qr (mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr); -#define mpn_sec_div_qr_itch __MPN(sec_div_qr_itch) -__GMP_DECLSPEC mp_size_t mpn_sec_div_qr_itch (mp_size_t, mp_size_t) __GMP_ATTRIBUTE_PURE; -#define mpn_sec_div_r __MPN(sec_div_r) -__GMP_DECLSPEC void mpn_sec_div_r (mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr); -#define mpn_sec_div_r_itch __MPN(sec_div_r_itch) -__GMP_DECLSPEC mp_size_t mpn_sec_div_r_itch (mp_size_t, mp_size_t) __GMP_ATTRIBUTE_PURE; - -#define mpn_sec_invert __MPN(sec_invert) -__GMP_DECLSPEC int mpn_sec_invert (mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_bitcnt_t, mp_ptr); -#define mpn_sec_invert_itch __MPN(sec_invert_itch) -__GMP_DECLSPEC mp_size_t mpn_sec_invert_itch (mp_size_t) __GMP_ATTRIBUTE_PURE; - - -/**************** mpz inlines ****************/ - -/* The following are provided as inlines where possible, but always exist as - library functions too, for binary compatibility. - - Within gmp itself this inlining generally isn't relied on, since it - doesn't get done for all compilers, whereas if something is worth - inlining then it's worth arranging always. - - There are two styles of inlining here. When the same bit of code is - wanted for the inline as for the library version, then __GMP_FORCE_foo - arranges for that code to be emitted and the __GMP_EXTERN_INLINE - directive suppressed, eg. mpz_fits_uint_p. When a different bit of code - is wanted for the inline than for the library version, then - __GMP_FORCE_foo arranges the inline to be suppressed, eg. mpz_abs. */ - -#if defined (__GMP_EXTERN_INLINE) && ! defined (__GMP_FORCE_mpz_abs) -__GMP_EXTERN_INLINE void -mpz_abs (mpz_ptr __gmp_w, mpz_srcptr __gmp_u) -{ - if (__gmp_w != __gmp_u) - mpz_set (__gmp_w, __gmp_u); - __gmp_w->_mp_size = __GMP_ABS (__gmp_w->_mp_size); -} -#endif - -#if GMP_NAIL_BITS == 0 -#define __GMPZ_FITS_UTYPE_P(z,maxval) \ - mp_size_t __gmp_n = z->_mp_size; \ - mp_ptr __gmp_p = z->_mp_d; \ - return (__gmp_n == 0 || (__gmp_n == 1 && __gmp_p[0] <= maxval)); -#else -#define __GMPZ_FITS_UTYPE_P(z,maxval) \ - mp_size_t __gmp_n = z->_mp_size; \ - mp_ptr __gmp_p = z->_mp_d; \ - return (__gmp_n == 0 || (__gmp_n == 1 && __gmp_p[0] <= maxval) \ - || (__gmp_n == 2 && __gmp_p[1] <= ((mp_limb_t) maxval >> GMP_NUMB_BITS))); -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_fits_uint_p) -#if ! defined (__GMP_FORCE_mpz_fits_uint_p) -__GMP_EXTERN_INLINE -#endif -int -mpz_fits_uint_p (mpz_srcptr __gmp_z) __GMP_NOTHROW -{ - __GMPZ_FITS_UTYPE_P (__gmp_z, UINT_MAX); -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_fits_ulong_p) -#if ! defined (__GMP_FORCE_mpz_fits_ulong_p) -__GMP_EXTERN_INLINE -#endif -int -mpz_fits_ulong_p (mpz_srcptr __gmp_z) __GMP_NOTHROW -{ - __GMPZ_FITS_UTYPE_P (__gmp_z, ULONG_MAX); -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_fits_ushort_p) -#if ! defined (__GMP_FORCE_mpz_fits_ushort_p) -__GMP_EXTERN_INLINE -#endif -int -mpz_fits_ushort_p (mpz_srcptr __gmp_z) __GMP_NOTHROW -{ - __GMPZ_FITS_UTYPE_P (__gmp_z, USHRT_MAX); -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_get_ui) -#if ! defined (__GMP_FORCE_mpz_get_ui) -__GMP_EXTERN_INLINE -#endif -unsigned long -mpz_get_ui (mpz_srcptr __gmp_z) __GMP_NOTHROW -{ - mp_ptr __gmp_p = __gmp_z->_mp_d; - mp_size_t __gmp_n = __gmp_z->_mp_size; - mp_limb_t __gmp_l = __gmp_p[0]; - /* This is a "#if" rather than a plain "if" so as to avoid gcc warnings - about "<< GMP_NUMB_BITS" exceeding the type size, and to avoid Borland - C++ 6.0 warnings about condition always true for something like - "ULONG_MAX < GMP_NUMB_MASK". */ -#if GMP_NAIL_BITS == 0 || defined (_LONG_LONG_LIMB) - /* limb==long and no nails, or limb==longlong, one limb is enough */ - return (__gmp_n != 0 ? __gmp_l : 0); -#else - /* limb==long and nails, need two limbs when available */ - __gmp_n = __GMP_ABS (__gmp_n); - if (__gmp_n <= 1) - return (__gmp_n != 0 ? __gmp_l : 0); - else - return __gmp_l + (__gmp_p[1] << GMP_NUMB_BITS); -#endif -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_getlimbn) -#if ! defined (__GMP_FORCE_mpz_getlimbn) -__GMP_EXTERN_INLINE -#endif -mp_limb_t -mpz_getlimbn (mpz_srcptr __gmp_z, mp_size_t __gmp_n) __GMP_NOTHROW -{ - mp_limb_t __gmp_result = 0; - if (__GMP_LIKELY (__gmp_n >= 0 && __gmp_n < __GMP_ABS (__gmp_z->_mp_size))) - __gmp_result = __gmp_z->_mp_d[__gmp_n]; - return __gmp_result; -} -#endif - -#if defined (__GMP_EXTERN_INLINE) && ! defined (__GMP_FORCE_mpz_neg) -__GMP_EXTERN_INLINE void -mpz_neg (mpz_ptr __gmp_w, mpz_srcptr __gmp_u) -{ - if (__gmp_w != __gmp_u) - mpz_set (__gmp_w, __gmp_u); - __gmp_w->_mp_size = - __gmp_w->_mp_size; -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_perfect_square_p) -#if ! defined (__GMP_FORCE_mpz_perfect_square_p) -__GMP_EXTERN_INLINE -#endif -int -mpz_perfect_square_p (mpz_srcptr __gmp_a) -{ - mp_size_t __gmp_asize; - int __gmp_result; - - __gmp_asize = __gmp_a->_mp_size; - __gmp_result = (__gmp_asize >= 0); /* zero is a square, negatives are not */ - if (__GMP_LIKELY (__gmp_asize > 0)) - __gmp_result = mpn_perfect_square_p (__gmp_a->_mp_d, __gmp_asize); - return __gmp_result; -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_popcount) -#if ! defined (__GMP_FORCE_mpz_popcount) -__GMP_EXTERN_INLINE -#endif -mp_bitcnt_t -mpz_popcount (mpz_srcptr __gmp_u) __GMP_NOTHROW -{ - mp_size_t __gmp_usize; - mp_bitcnt_t __gmp_result; - - __gmp_usize = __gmp_u->_mp_size; - __gmp_result = (__gmp_usize < 0 ? ~ __GMP_CAST (mp_bitcnt_t, 0) : __GMP_CAST (mp_bitcnt_t, 0)); - if (__GMP_LIKELY (__gmp_usize > 0)) - __gmp_result = mpn_popcount (__gmp_u->_mp_d, __gmp_usize); - return __gmp_result; -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_set_q) -#if ! defined (__GMP_FORCE_mpz_set_q) -__GMP_EXTERN_INLINE -#endif -void -mpz_set_q (mpz_ptr __gmp_w, mpq_srcptr __gmp_u) -{ - mpz_tdiv_q (__gmp_w, mpq_numref (__gmp_u), mpq_denref (__gmp_u)); -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpz_size) -#if ! defined (__GMP_FORCE_mpz_size) -__GMP_EXTERN_INLINE -#endif -size_t -mpz_size (mpz_srcptr __gmp_z) __GMP_NOTHROW -{ - return __GMP_ABS (__gmp_z->_mp_size); -} -#endif - - -/**************** mpq inlines ****************/ - -#if defined (__GMP_EXTERN_INLINE) && ! defined (__GMP_FORCE_mpq_abs) -__GMP_EXTERN_INLINE void -mpq_abs (mpq_ptr __gmp_w, mpq_srcptr __gmp_u) -{ - if (__gmp_w != __gmp_u) - mpq_set (__gmp_w, __gmp_u); - __gmp_w->_mp_num._mp_size = __GMP_ABS (__gmp_w->_mp_num._mp_size); -} -#endif - -#if defined (__GMP_EXTERN_INLINE) && ! defined (__GMP_FORCE_mpq_neg) -__GMP_EXTERN_INLINE void -mpq_neg (mpq_ptr __gmp_w, mpq_srcptr __gmp_u) -{ - if (__gmp_w != __gmp_u) - mpq_set (__gmp_w, __gmp_u); - __gmp_w->_mp_num._mp_size = - __gmp_w->_mp_num._mp_size; -} -#endif - - -/**************** mpn inlines ****************/ - -/* The comments with __GMPN_ADD_1 below apply here too. - - The test for FUNCTION returning 0 should predict well. If it's assumed - {yp,ysize} will usually have a random number of bits then the high limb - won't be full and a carry out will occur a good deal less than 50% of the - time. - - ysize==0 isn't a documented feature, but is used internally in a few - places. - - Producing cout last stops it using up a register during the main part of - the calculation, though gcc (as of 3.0) on an "if (mpn_add (...))" - doesn't seem able to move the true and false legs of the conditional up - to the two places cout is generated. */ - -#define __GMPN_AORS(cout, wp, xp, xsize, yp, ysize, FUNCTION, TEST) \ - do { \ - mp_size_t __gmp_i; \ - mp_limb_t __gmp_x; \ - \ - /* ASSERT ((ysize) >= 0); */ \ - /* ASSERT ((xsize) >= (ysize)); */ \ - /* ASSERT (MPN_SAME_OR_SEPARATE2_P (wp, xsize, xp, xsize)); */ \ - /* ASSERT (MPN_SAME_OR_SEPARATE2_P (wp, xsize, yp, ysize)); */ \ - \ - __gmp_i = (ysize); \ - if (__gmp_i != 0) \ - { \ - if (FUNCTION (wp, xp, yp, __gmp_i)) \ - { \ - do \ - { \ - if (__gmp_i >= (xsize)) \ - { \ - (cout) = 1; \ - goto __gmp_done; \ - } \ - __gmp_x = (xp)[__gmp_i]; \ - } \ - while (TEST); \ - } \ - } \ - if ((wp) != (xp)) \ - __GMPN_COPY_REST (wp, xp, xsize, __gmp_i); \ - (cout) = 0; \ - __gmp_done: \ - ; \ - } while (0) - -#define __GMPN_ADD(cout, wp, xp, xsize, yp, ysize) \ - __GMPN_AORS (cout, wp, xp, xsize, yp, ysize, mpn_add_n, \ - (((wp)[__gmp_i++] = (__gmp_x + 1) & GMP_NUMB_MASK) == 0)) -#define __GMPN_SUB(cout, wp, xp, xsize, yp, ysize) \ - __GMPN_AORS (cout, wp, xp, xsize, yp, ysize, mpn_sub_n, \ - (((wp)[__gmp_i++] = (__gmp_x - 1) & GMP_NUMB_MASK), __gmp_x == 0)) - - -/* The use of __gmp_i indexing is designed to ensure a compile time src==dst - remains nice and clear to the compiler, so that __GMPN_COPY_REST can - disappear, and the load/add/store gets a chance to become a - read-modify-write on CISC CPUs. - - Alternatives: - - Using a pair of pointers instead of indexing would be possible, but gcc - isn't able to recognise compile-time src==dst in that case, even when the - pointers are incremented more or less together. Other compilers would - very likely have similar difficulty. - - gcc could use "if (__builtin_constant_p(src==dst) && src==dst)" or - similar to detect a compile-time src==dst. This works nicely on gcc - 2.95.x, it's not good on gcc 3.0 where __builtin_constant_p(p==p) seems - to be always false, for a pointer p. But the current code form seems - good enough for src==dst anyway. - - gcc on x86 as usual doesn't give particularly good flags handling for the - carry/borrow detection. It's tempting to want some multi instruction asm - blocks to help it, and this was tried, but in truth there's only a few - instructions to save and any gain is all too easily lost by register - juggling setting up for the asm. */ - -#if GMP_NAIL_BITS == 0 -#define __GMPN_AORS_1(cout, dst, src, n, v, OP, CB) \ - do { \ - mp_size_t __gmp_i; \ - mp_limb_t __gmp_x, __gmp_r; \ - \ - /* ASSERT ((n) >= 1); */ \ - /* ASSERT (MPN_SAME_OR_SEPARATE_P (dst, src, n)); */ \ - \ - __gmp_x = (src)[0]; \ - __gmp_r = __gmp_x OP (v); \ - (dst)[0] = __gmp_r; \ - if (CB (__gmp_r, __gmp_x, (v))) \ - { \ - (cout) = 1; \ - for (__gmp_i = 1; __gmp_i < (n);) \ - { \ - __gmp_x = (src)[__gmp_i]; \ - __gmp_r = __gmp_x OP 1; \ - (dst)[__gmp_i] = __gmp_r; \ - ++__gmp_i; \ - if (!CB (__gmp_r, __gmp_x, 1)) \ - { \ - if ((src) != (dst)) \ - __GMPN_COPY_REST (dst, src, n, __gmp_i); \ - (cout) = 0; \ - break; \ - } \ - } \ - } \ - else \ - { \ - if ((src) != (dst)) \ - __GMPN_COPY_REST (dst, src, n, 1); \ - (cout) = 0; \ - } \ - } while (0) -#endif - -#if GMP_NAIL_BITS >= 1 -#define __GMPN_AORS_1(cout, dst, src, n, v, OP, CB) \ - do { \ - mp_size_t __gmp_i; \ - mp_limb_t __gmp_x, __gmp_r; \ - \ - /* ASSERT ((n) >= 1); */ \ - /* ASSERT (MPN_SAME_OR_SEPARATE_P (dst, src, n)); */ \ - \ - __gmp_x = (src)[0]; \ - __gmp_r = __gmp_x OP (v); \ - (dst)[0] = __gmp_r & GMP_NUMB_MASK; \ - if (__gmp_r >> GMP_NUMB_BITS != 0) \ - { \ - (cout) = 1; \ - for (__gmp_i = 1; __gmp_i < (n);) \ - { \ - __gmp_x = (src)[__gmp_i]; \ - __gmp_r = __gmp_x OP 1; \ - (dst)[__gmp_i] = __gmp_r & GMP_NUMB_MASK; \ - ++__gmp_i; \ - if (__gmp_r >> GMP_NUMB_BITS == 0) \ - { \ - if ((src) != (dst)) \ - __GMPN_COPY_REST (dst, src, n, __gmp_i); \ - (cout) = 0; \ - break; \ - } \ - } \ - } \ - else \ - { \ - if ((src) != (dst)) \ - __GMPN_COPY_REST (dst, src, n, 1); \ - (cout) = 0; \ - } \ - } while (0) -#endif - -#define __GMPN_ADDCB(r,x,y) ((r) < (y)) -#define __GMPN_SUBCB(r,x,y) ((x) < (y)) - -#define __GMPN_ADD_1(cout, dst, src, n, v) \ - __GMPN_AORS_1(cout, dst, src, n, v, +, __GMPN_ADDCB) -#define __GMPN_SUB_1(cout, dst, src, n, v) \ - __GMPN_AORS_1(cout, dst, src, n, v, -, __GMPN_SUBCB) - - -/* Compare {xp,size} and {yp,size}, setting "result" to positive, zero or - negative. size==0 is allowed. On random data usually only one limb will - need to be examined to get a result, so it's worth having it inline. */ -#define __GMPN_CMP(result, xp, yp, size) \ - do { \ - mp_size_t __gmp_i; \ - mp_limb_t __gmp_x, __gmp_y; \ - \ - /* ASSERT ((size) >= 0); */ \ - \ - (result) = 0; \ - __gmp_i = (size); \ - while (--__gmp_i >= 0) \ - { \ - __gmp_x = (xp)[__gmp_i]; \ - __gmp_y = (yp)[__gmp_i]; \ - if (__gmp_x != __gmp_y) \ - { \ - /* Cannot use __gmp_x - __gmp_y, may overflow an "int" */ \ - (result) = (__gmp_x > __gmp_y ? 1 : -1); \ - break; \ - } \ - } \ - } while (0) - - -#if defined (__GMPN_COPY) && ! defined (__GMPN_COPY_REST) -#define __GMPN_COPY_REST(dst, src, size, start) \ - do { \ - /* ASSERT ((start) >= 0); */ \ - /* ASSERT ((start) <= (size)); */ \ - __GMPN_COPY ((dst)+(start), (src)+(start), (size)-(start)); \ - } while (0) -#endif - -/* Copy {src,size} to {dst,size}, starting at "start". This is designed to - keep the indexing dst[j] and src[j] nice and simple for __GMPN_ADD_1, - __GMPN_ADD, etc. */ -#if ! defined (__GMPN_COPY_REST) -#define __GMPN_COPY_REST(dst, src, size, start) \ - do { \ - mp_size_t __gmp_j; \ - /* ASSERT ((size) >= 0); */ \ - /* ASSERT ((start) >= 0); */ \ - /* ASSERT ((start) <= (size)); */ \ - /* ASSERT (MPN_SAME_OR_SEPARATE_P (dst, src, size)); */ \ - __GMP_CRAY_Pragma ("_CRI ivdep"); \ - for (__gmp_j = (start); __gmp_j < (size); __gmp_j++) \ - (dst)[__gmp_j] = (src)[__gmp_j]; \ - } while (0) -#endif - -/* Enhancement: Use some of the smarter code from gmp-impl.h. Maybe use - mpn_copyi if there's a native version, and if we don't mind demanding - binary compatibility for it (on targets which use it). */ - -#if ! defined (__GMPN_COPY) -#define __GMPN_COPY(dst, src, size) __GMPN_COPY_REST (dst, src, size, 0) -#endif - - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_add) -#if ! defined (__GMP_FORCE_mpn_add) -__GMP_EXTERN_INLINE -#endif -mp_limb_t -mpn_add (mp_ptr __gmp_wp, mp_srcptr __gmp_xp, mp_size_t __gmp_xsize, mp_srcptr __gmp_yp, mp_size_t __gmp_ysize) -{ - mp_limb_t __gmp_c; - __GMPN_ADD (__gmp_c, __gmp_wp, __gmp_xp, __gmp_xsize, __gmp_yp, __gmp_ysize); - return __gmp_c; -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_add_1) -#if ! defined (__GMP_FORCE_mpn_add_1) -__GMP_EXTERN_INLINE -#endif -mp_limb_t -mpn_add_1 (mp_ptr __gmp_dst, mp_srcptr __gmp_src, mp_size_t __gmp_size, mp_limb_t __gmp_n) __GMP_NOTHROW -{ - mp_limb_t __gmp_c; - __GMPN_ADD_1 (__gmp_c, __gmp_dst, __gmp_src, __gmp_size, __gmp_n); - return __gmp_c; -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_cmp) -#if ! defined (__GMP_FORCE_mpn_cmp) -__GMP_EXTERN_INLINE -#endif -int -mpn_cmp (mp_srcptr __gmp_xp, mp_srcptr __gmp_yp, mp_size_t __gmp_size) __GMP_NOTHROW -{ - int __gmp_result; - __GMPN_CMP (__gmp_result, __gmp_xp, __gmp_yp, __gmp_size); - return __gmp_result; -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_zero_p) -#if ! defined (__GMP_FORCE_mpn_zero_p) -__GMP_EXTERN_INLINE -#endif -int -mpn_zero_p (mp_srcptr __gmp_p, mp_size_t __gmp_n) __GMP_NOTHROW -{ - /* if (__GMP_LIKELY (__gmp_n > 0)) */ - do { - if (__gmp_p[--__gmp_n] != 0) - return 0; - } while (__gmp_n != 0); - return 1; -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_sub) -#if ! defined (__GMP_FORCE_mpn_sub) -__GMP_EXTERN_INLINE -#endif -mp_limb_t -mpn_sub (mp_ptr __gmp_wp, mp_srcptr __gmp_xp, mp_size_t __gmp_xsize, mp_srcptr __gmp_yp, mp_size_t __gmp_ysize) -{ - mp_limb_t __gmp_c; - __GMPN_SUB (__gmp_c, __gmp_wp, __gmp_xp, __gmp_xsize, __gmp_yp, __gmp_ysize); - return __gmp_c; -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_sub_1) -#if ! defined (__GMP_FORCE_mpn_sub_1) -__GMP_EXTERN_INLINE -#endif -mp_limb_t -mpn_sub_1 (mp_ptr __gmp_dst, mp_srcptr __gmp_src, mp_size_t __gmp_size, mp_limb_t __gmp_n) __GMP_NOTHROW -{ - mp_limb_t __gmp_c; - __GMPN_SUB_1 (__gmp_c, __gmp_dst, __gmp_src, __gmp_size, __gmp_n); - return __gmp_c; -} -#endif - -#if defined (__GMP_EXTERN_INLINE) || defined (__GMP_FORCE_mpn_neg) -#if ! defined (__GMP_FORCE_mpn_neg) -__GMP_EXTERN_INLINE -#endif -mp_limb_t -mpn_neg (mp_ptr __gmp_rp, mp_srcptr __gmp_up, mp_size_t __gmp_n) -{ - while (*__gmp_up == 0) /* Low zero limbs are unchanged by negation. */ - { - *__gmp_rp = 0; - if (!--__gmp_n) /* All zero */ - return 0; - ++__gmp_up; ++__gmp_rp; - } - - *__gmp_rp = (- *__gmp_up) & GMP_NUMB_MASK; - - if (--__gmp_n) /* Higher limbs get complemented. */ - mpn_com (++__gmp_rp, ++__gmp_up, __gmp_n); - - return 1; -} -#endif - -#if defined (__cplusplus) -} -#endif - - -/* Allow faster testing for negative, zero, and positive. */ -#define mpz_sgn(Z) ((Z)->_mp_size < 0 ? -1 : (Z)->_mp_size > 0) -#define mpf_sgn(F) ((F)->_mp_size < 0 ? -1 : (F)->_mp_size > 0) -#define mpq_sgn(Q) ((Q)->_mp_num._mp_size < 0 ? -1 : (Q)->_mp_num._mp_size > 0) - -/* When using GCC, optimize certain common comparisons. */ -#if defined (__GNUC__) && __GNUC__ >= 2 -#define mpz_cmp_ui(Z,UI) \ - (__builtin_constant_p (UI) && (UI) == 0 \ - ? mpz_sgn (Z) : _mpz_cmp_ui (Z,UI)) -#define mpz_cmp_si(Z,SI) \ - (__builtin_constant_p ((SI) >= 0) && (SI) >= 0 \ - ? mpz_cmp_ui (Z, __GMP_CAST (unsigned long, SI)) \ - : _mpz_cmp_si (Z,SI)) -#define mpq_cmp_ui(Q,NUI,DUI) \ - (__builtin_constant_p (NUI) && (NUI) == 0 ? mpq_sgn (Q) \ - : __builtin_constant_p ((NUI) == (DUI)) && (NUI) == (DUI) \ - ? mpz_cmp (mpq_numref (Q), mpq_denref (Q)) \ - : _mpq_cmp_ui (Q,NUI,DUI)) -#define mpq_cmp_si(q,n,d) \ - (__builtin_constant_p ((n) >= 0) && (n) >= 0 \ - ? mpq_cmp_ui (q, __GMP_CAST (unsigned long, n), d) \ - : _mpq_cmp_si (q, n, d)) -#else -#define mpz_cmp_ui(Z,UI) _mpz_cmp_ui (Z,UI) -#define mpz_cmp_si(Z,UI) _mpz_cmp_si (Z,UI) -#define mpq_cmp_ui(Q,NUI,DUI) _mpq_cmp_ui (Q,NUI,DUI) -#define mpq_cmp_si(q,n,d) _mpq_cmp_si(q,n,d) -#endif - - -/* Using "&" rather than "&&" means these can come out branch-free. Every - mpz_t has at least one limb allocated, so fetching the low limb is always - allowed. */ -#define mpz_odd_p(z) (((z)->_mp_size != 0) & __GMP_CAST (int, (z)->_mp_d[0])) -#define mpz_even_p(z) (! mpz_odd_p (z)) - - -/**************** C++ routines ****************/ - -#ifdef __cplusplus -__GMP_DECLSPEC_XX std::ostream& operator<< (std::ostream &, mpz_srcptr); -__GMP_DECLSPEC_XX std::ostream& operator<< (std::ostream &, mpq_srcptr); -__GMP_DECLSPEC_XX std::ostream& operator<< (std::ostream &, mpf_srcptr); -__GMP_DECLSPEC_XX std::istream& operator>> (std::istream &, mpz_ptr); -__GMP_DECLSPEC_XX std::istream& operator>> (std::istream &, mpq_ptr); -__GMP_DECLSPEC_XX std::istream& operator>> (std::istream &, mpf_ptr); -#endif - - -/* Source-level compatibility with GMP 2 and earlier. */ -#define mpn_divmod(qp,np,nsize,dp,dsize) \ - mpn_divrem (qp, __GMP_CAST (mp_size_t, 0), np, nsize, dp, dsize) - -/* Source-level compatibility with GMP 1. */ -#define mpz_mdiv mpz_fdiv_q -#define mpz_mdivmod mpz_fdiv_qr -#define mpz_mmod mpz_fdiv_r -#define mpz_mdiv_ui mpz_fdiv_q_ui -#define mpz_mdivmod_ui(q,r,n,d) \ - (((r) == 0) ? mpz_fdiv_q_ui (q,n,d) : mpz_fdiv_qr_ui (q,r,n,d)) -#define mpz_mmod_ui(r,n,d) \ - (((r) == 0) ? mpz_fdiv_ui (n,d) : mpz_fdiv_r_ui (r,n,d)) - -/* Useful synonyms, but not quite compatible with GMP 1. */ -#define mpz_div mpz_fdiv_q -#define mpz_divmod mpz_fdiv_qr -#define mpz_div_ui mpz_fdiv_q_ui -#define mpz_divmod_ui mpz_fdiv_qr_ui -#define mpz_div_2exp mpz_fdiv_q_2exp -#define mpz_mod_2exp mpz_fdiv_r_2exp - -enum -{ - GMP_ERROR_NONE = 0, - GMP_ERROR_UNSUPPORTED_ARGUMENT = 1, - GMP_ERROR_DIVISION_BY_ZERO = 2, - GMP_ERROR_SQRT_OF_NEGATIVE = 4, - GMP_ERROR_INVALID_ARGUMENT = 8 -}; - -/* Define CC and CFLAGS which were used to build this version of GMP */ -#define __GMP_CC "gcc" -#define __GMP_CFLAGS "-O2 -pedantic -fomit-frame-pointer -m64" - -/* Major version number is the value of __GNU_MP__ too, above. */ -#define __GNU_MP_VERSION 6 -#define __GNU_MP_VERSION_MINOR 2 -#define __GNU_MP_VERSION_PATCHLEVEL 1 -#define __GNU_MP_RELEASE (__GNU_MP_VERSION * 10000 + __GNU_MP_VERSION_MINOR * 100 + __GNU_MP_VERSION_PATCHLEVEL) - -#define __GMP_H__ -#endif /* __GMP_H__ */ diff --git a/misc/builddeps/linux64/gmp/lib/libgmp.a b/misc/builddeps/linux64/gmp/lib/libgmp.a deleted file mode 100644 index 28f26569..00000000 Binary files a/misc/builddeps/linux64/gmp/lib/libgmp.a and /dev/null differ diff --git a/misc/builddeps/linux64/gmp/lib/libgmp.la b/misc/builddeps/linux64/gmp/lib/libgmp.la deleted file mode 100755 index 7dbf3579..00000000 --- a/misc/builddeps/linux64/gmp/lib/libgmp.la +++ /dev/null @@ -1,41 +0,0 @@ -# libgmp.la - a libtool library file -# Generated by libtool (GNU libtool) 2.4.6 -# -# Please DO NOT delete this file! -# It is necessary for linking the library. - -# The name that we can dlopen(3). -dlname='' - -# Names of this library. -library_names='' - -# The name of the static archive. -old_library='libgmp.a' - -# Linker flags that cannot go in dependency_libs. -inherited_linker_flags='' - -# Libraries that this one depends upon. -dependency_libs='' - -# Names of additional weak libraries provided by this library -weak_library_names='' - -# Version information for libgmp. -current=14 -age=4 -revision=1 - -# Is this an already installed library? -installed=yes - -# Should we warn about portability when linking against -modules? -shouldnotlink=no - -# Files to dlopen/dlpreopen -dlopen='' -dlpreopen='' - -# Directory that this library needs to be installed in: -libdir='/home/rpolzer/Games/xonotic/misc/builddeps/linux64/gmp/lib' diff --git a/misc/builddeps/linux64/gmp/lib/pkgconfig/gmp.pc b/misc/builddeps/linux64/gmp/lib/pkgconfig/gmp.pc deleted file mode 100644 index 49b8bafa..00000000 --- a/misc/builddeps/linux64/gmp/lib/pkgconfig/gmp.pc +++ /dev/null @@ -1,11 +0,0 @@ -prefix=/home/rpolzer/Games/xonotic/misc/builddeps/linux64/gmp -exec_prefix=${prefix} -includedir=${prefix}/include -libdir=${exec_prefix}/lib - -Name: GNU MP -Description: GNU Multiple Precision Arithmetic Library -URL: https://gmplib.org -Version: 6.2.1 -Cflags: -I${includedir} -Libs: -L${libdir} -lgmp diff --git a/misc/builddeps/linux64/gmp/share/info/gmp.info b/misc/builddeps/linux64/gmp/share/info/gmp.info deleted file mode 100644 index 449c156b..00000000 --- a/misc/builddeps/linux64/gmp/share/info/gmp.info +++ /dev/null @@ -1,179 +0,0 @@ -This is gmp.info, produced by makeinfo version 6.7 from gmp.texi. - -This manual describes how to install and use the GNU multiple precision -arithmetic library, version 6.2.1. - - Copyright 1991, 1993-2016, 2018-2020 Free Software Foundation, Inc. - - Permission is granted to copy, distribute and/or modify this document -under the terms of the GNU Free Documentation License, Version 1.3 or -any later version published by the Free Software Foundation; with no -Invariant Sections, with the Front-Cover Texts being "A GNU Manual", and -with the Back-Cover Texts being "You have freedom to copy and modify -this GNU Manual, like GNU software". A copy of the license is included -in *note GNU Free Documentation License::. -INFO-DIR-SECTION GNU libraries -START-INFO-DIR-ENTRY -* gmp: (gmp). GNU Multiple Precision Arithmetic Library. -END-INFO-DIR-ENTRY - - -Indirect: -gmp.info-1: 863 -gmp.info-2: 303737 - -Tag Table: -(Indirect) -Node: Top863 -Node: Copying2941 -Node: Introduction to GMP5288 -Node: Installing GMP8004 -Node: Build Options8736 -Node: ABI and ISA24445 -Node: Notes for Package Builds34286 -Node: Notes for Particular Systems37373 -Node: Known Build Problems45124 -Node: Performance optimization48656 -Node: GMP Basics49785 -Node: Headers and Libraries50433 -Node: Nomenclature and Types51838 -Node: Function Classes53834 -Node: Variable Conventions55369 -Node: Parameter Conventions57609 -Node: Memory Management59416 -Node: Reentrancy60544 -Node: Useful Macros and Constants62412 -Node: Compatibility with older versions63403 -Node: Demonstration Programs64313 -Node: Efficiency66172 -Node: Debugging73778 -Node: Profiling80553 -Node: Autoconf84544 -Node: Emacs86325 -Node: Reporting Bugs86931 -Node: Integer Functions89557 -Node: Initializing Integers90333 -Node: Assigning Integers92709 -Node: Simultaneous Integer Init & Assign94320 -Node: Converting Integers95967 -Node: Integer Arithmetic98907 -Node: Integer Division100643 -Node: Integer Exponentiation107402 -Node: Integer Roots108899 -Node: Number Theoretic Functions110616 -Node: Integer Comparisons118111 -Node: Integer Logic and Bit Fiddling119549 -Node: I/O of Integers122189 -Node: Integer Random Numbers125180 -Node: Integer Import and Export127803 -Node: Miscellaneous Integer Functions131819 -Node: Integer Special Functions133733 -Node: Rational Number Functions137906 -Node: Initializing Rationals139099 -Node: Rational Conversions141572 -Node: Rational Arithmetic143594 -Node: Comparing Rationals145006 -Node: Applying Integer Functions146477 -Node: I/O of Rationals147996 -Node: Floating-point Functions150355 -Node: Initializing Floats153400 -Node: Assigning Floats157492 -Node: Simultaneous Float Init & Assign160080 -Node: Converting Floats161630 -Node: Float Arithmetic164895 -Node: Float Comparison167048 -Node: I/O of Floats168619 -Node: Miscellaneous Float Functions171308 -Node: Low-level Functions173310 -Node: Random Number Functions207558 -Node: Random State Initialization208626 -Node: Random State Seeding211491 -Node: Random State Miscellaneous212896 -Node: Formatted Output213538 -Node: Formatted Output Strings213783 -Node: Formatted Output Functions219178 -Node: C++ Formatted Output223242 -Node: Formatted Input225942 -Node: Formatted Input Strings226178 -Node: Formatted Input Functions230838 -Node: C++ Formatted Input233807 -Node: C++ Class Interface235710 -Node: C++ Interface General236661 -Node: C++ Interface Integers239730 -Node: C++ Interface Rationals243963 -Node: C++ Interface Floats247987 -Node: C++ Interface Random Numbers254004 -Node: C++ Interface Limitations256404 -Node: Custom Allocation259979 -Node: Language Bindings264198 -Node: Algorithms267511 -Node: Multiplication Algorithms268211 -Node: Basecase Multiplication269300 -Node: Karatsuba Multiplication271208 -Node: Toom 3-Way Multiplication274832 -Node: Toom 4-Way Multiplication281251 -Node: Higher degree Toom'n'half282630 -Node: FFT Multiplication283922 -Node: Other Multiplication289258 -Node: Unbalanced Multiplication291732 -Node: Division Algorithms292520 -Node: Single Limb Division292899 -Node: Basecase Division295787 -Node: Divide and Conquer Division296990 -Node: Block-Wise Barrett Division299058 -Node: Exact Division299710 -Node: Exact Remainder303737 -Node: Small Quotient Division305987 -Node: Greatest Common Divisor Algorithms307585 -Node: Binary GCD307882 -Node: Lehmer's Algorithm310732 -Node: Subquadratic GCD312962 -Node: Extended GCD315431 -Node: Jacobi Symbol316749 -Node: Powering Algorithms318658 -Node: Normal Powering Algorithm318921 -Node: Modular Powering Algorithm319449 -Node: Root Extraction Algorithms320231 -Node: Square Root Algorithm320546 -Node: Nth Root Algorithm322687 -Node: Perfect Square Algorithm323472 -Node: Perfect Power Algorithm325559 -Node: Radix Conversion Algorithms326180 -Node: Binary to Radix326556 -Node: Radix to Binary330177 -Node: Other Algorithms332265 -Node: Prime Testing Algorithm332617 -Node: Factorial Algorithm333801 -Node: Binomial Coefficients Algorithm336201 -Node: Fibonacci Numbers Algorithm337095 -Node: Lucas Numbers Algorithm339569 -Node: Random Number Algorithms340290 -Node: Assembly Coding342410 -Node: Assembly Code Organisation343370 -Node: Assembly Basics344337 -Node: Assembly Carry Propagation345487 -Node: Assembly Cache Handling347317 -Node: Assembly Functional Units349478 -Node: Assembly Floating Point351091 -Node: Assembly SIMD Instructions354870 -Node: Assembly Software Pipelining355852 -Node: Assembly Loop Unrolling356915 -Node: Assembly Writing Guide359130 -Node: Internals361895 -Node: Integer Internals362407 -Node: Rational Internals364871 -Node: Float Internals366109 -Node: Raw Output Internals373509 -Node: C++ Interface Internals374703 -Node: Contributors378024 -Node: References384255 -Node: GNU Free Documentation License390174 -Node: Concept Index415316 -Node: Function Index463130 - -End Tag Table - - -Local Variables: -coding: iso-8859-1 -End: diff --git a/misc/builddeps/linux64/gmp/share/info/gmp.info-1 b/misc/builddeps/linux64/gmp/share/info/gmp.info-1 deleted file mode 100644 index 0616dbb6..00000000 --- a/misc/builddeps/linux64/gmp/share/info/gmp.info-1 +++ /dev/null @@ -1,7071 +0,0 @@ -This is gmp.info, produced by makeinfo version 6.7 from gmp.texi. - -This manual describes how to install and use the GNU multiple precision -arithmetic library, version 6.2.1. - - Copyright 1991, 1993-2016, 2018-2020 Free Software Foundation, Inc. - - Permission is granted to copy, distribute and/or modify this document -under the terms of the GNU Free Documentation License, Version 1.3 or -any later version published by the Free Software Foundation; with no -Invariant Sections, with the Front-Cover Texts being "A GNU Manual", and -with the Back-Cover Texts being "You have freedom to copy and modify -this GNU Manual, like GNU software". A copy of the license is included -in *note GNU Free Documentation License::. -INFO-DIR-SECTION GNU libraries -START-INFO-DIR-ENTRY -* gmp: (gmp). GNU Multiple Precision Arithmetic Library. -END-INFO-DIR-ENTRY - - -File: gmp.info, Node: Top, Next: Copying, Prev: (dir), Up: (dir) - -GNU MP -****** - -This manual describes how to install and use the GNU multiple precision -arithmetic library, version 6.2.1. - - Copyright 1991, 1993-2016, 2018-2020 Free Software Foundation, Inc. - - Permission is granted to copy, distribute and/or modify this document -under the terms of the GNU Free Documentation License, Version 1.3 or -any later version published by the Free Software Foundation; with no -Invariant Sections, with the Front-Cover Texts being "A GNU Manual", and -with the Back-Cover Texts being "You have freedom to copy and modify -this GNU Manual, like GNU software". A copy of the license is included -in *note GNU Free Documentation License::. - -* Menu: - -* Copying:: GMP Copying Conditions (LGPL). -* Introduction to GMP:: Brief introduction to GNU MP. -* Installing GMP:: How to configure and compile the GMP library. -* GMP Basics:: What every GMP user should know. -* Reporting Bugs:: How to usefully report bugs. -* Integer Functions:: Functions for arithmetic on signed integers. -* Rational Number Functions:: Functions for arithmetic on rational numbers. -* Floating-point Functions:: Functions for arithmetic on floats. -* Low-level Functions:: Fast functions for natural numbers. -* Random Number Functions:: Functions for generating random numbers. -* Formatted Output:: 'printf' style output. -* Formatted Input:: 'scanf' style input. -* C++ Class Interface:: Class wrappers around GMP types. -* Custom Allocation:: How to customize the internal allocation. -* Language Bindings:: Using GMP from other languages. -* Algorithms:: What happens behind the scenes. -* Internals:: How values are represented behind the scenes. - -* Contributors:: Who brings you this library? -* References:: Some useful papers and books to read. -* GNU Free Documentation License:: -* Concept Index:: -* Function Index:: - - -File: gmp.info, Node: Copying, Next: Introduction to GMP, Prev: Top, Up: Top - -GNU MP Copying Conditions -************************* - -This library is "free"; this means that everyone is free to use it and -free to redistribute it on a free basis. The library is not in the -public domain; it is copyrighted and there are restrictions on its -distribution, but these restrictions are designed to permit everything -that a good cooperating citizen would want to do. What is not allowed -is to try to prevent others from further sharing any version of this -library that they might get from you. - - Specifically, we want to make sure that you have the right to give -away copies of the library, that you receive source code or else can get -it if you want it, that you can change this library or use pieces of it -in new free programs, and that you know you can do these things. - - To make sure that everyone has such rights, we have to forbid you to -deprive anyone else of these rights. For example, if you distribute -copies of the GNU MP library, you must give the recipients all the -rights that you have. You must make sure that they, too, receive or can -get the source code. And you must tell them their rights. - - Also, for our own protection, we must make certain that everyone -finds out that there is no warranty for the GNU MP library. If it is -modified by someone else and passed on, we want their recipients to know -that what they have is not what we distributed, so that any problems -introduced by others will not reflect on our reputation. - - More precisely, the GNU MP library is dual licensed, under the -conditions of the GNU Lesser General Public License version 3 (see -'COPYING.LESSERv3'), or the GNU General Public License version 2 (see -'COPYINGv2'). This is the recipient's choice, and the recipient also -has the additional option of applying later versions of these licenses. -(The reason for this dual licensing is to make it possible to use the -library with programs which are licensed under GPL version 2, but which -for historical or other reasons do not allow use under later versions of -the GPL). - - Programs which are not part of the library itself, such as -demonstration programs and the GMP testsuite, are licensed under the -terms of the GNU General Public License version 3 (see 'COPYINGv3'), or -any later version. - - -File: gmp.info, Node: Introduction to GMP, Next: Installing GMP, Prev: Copying, Up: Top - -1 Introduction to GNU MP -************************ - -GNU MP is a portable library written in C for arbitrary precision -arithmetic on integers, rational numbers, and floating-point numbers. -It aims to provide the fastest possible arithmetic for all applications -that need higher precision than is directly supported by the basic C -types. - - Many applications use just a few hundred bits of precision; but some -applications may need thousands or even millions of bits. GMP is -designed to give good performance for both, by choosing algorithms based -on the sizes of the operands, and by carefully keeping the overhead at a -minimum. - - The speed of GMP is achieved by using fullwords as the basic -arithmetic type, by using sophisticated algorithms, by including -carefully optimized assembly code for the most common inner loops for -many different CPUs, and by a general emphasis on speed (as opposed to -simplicity or elegance). - - There is assembly code for these CPUs: ARM Cortex-A9, Cortex-A15, and -generic ARM, DEC Alpha 21064, 21164, and 21264, AMD K8 and K10 (sold -under many brands, e.g. Athlon64, Phenom, Opteron) Bulldozer, and -Bobcat, Intel Pentium, Pentium Pro/II/III, Pentium 4, Core2, Nehalem, -Sandy bridge, Haswell, generic x86, Intel IA-64, Motorola/IBM PowerPC 32 -and 64 such as POWER970, POWER5, POWER6, and POWER7, MIPS 32-bit and -64-bit, SPARC 32-bit ad 64-bit with special support for all UltraSPARC -models. There is also assembly code for many obsolete CPUs. - -For up-to-date information on GMP, please see the GMP web pages at - - - -The latest version of the library is available at - - - - Many sites around the world mirror 'ftp.gnu.org', please use a mirror -near you, see for a full list. - - There are three public mailing lists of interest. One for release -announcements, one for general questions and discussions about usage of -the GMP library and one for bug reports. For more information, see - - . - - The proper place for bug reports is . See *note -Reporting Bugs:: for information about reporting bugs. - - -1.1 How to use this Manual -========================== - -Everyone should read *note GMP Basics::. If you need to install the -library yourself, then read *note Installing GMP::. If you have a -system with multiple ABIs, then read *note ABI and ISA::, for the -compiler options that must be used on applications. - - The rest of the manual can be used for later reference, although it -is probably a good idea to glance through it. - - -File: gmp.info, Node: Installing GMP, Next: GMP Basics, Prev: Introduction to GMP, Up: Top - -2 Installing GMP -**************** - -GMP has an autoconf/automake/libtool based configuration system. On a -Unix-like system a basic build can be done with - - ./configure - make - -Some self-tests can be run with - - make check - -And you can install (under '/usr/local' by default) with - - make install - - If you experience problems, please report them to -. See *note Reporting Bugs::, for information on -what to include in useful bug reports. - -* Menu: - -* Build Options:: -* ABI and ISA:: -* Notes for Package Builds:: -* Notes for Particular Systems:: -* Known Build Problems:: -* Performance optimization:: - - -File: gmp.info, Node: Build Options, Next: ABI and ISA, Prev: Installing GMP, Up: Installing GMP - -2.1 Build Options -================= - -All the usual autoconf configure options are available, run './configure ---help' for a summary. The file 'INSTALL.autoconf' has some generic -installation information too. - -Tools - 'configure' requires various Unix-like tools. See *note Notes for - Particular Systems::, for some options on non-Unix systems. - - It might be possible to build without the help of 'configure', - certainly all the code is there, but unfortunately you'll be on - your own. - -Build Directory - To compile in a separate build directory, 'cd' to that directory, - and prefix the configure command with the path to the GMP source - directory. For example - - cd /my/build/dir - /my/sources/gmp-6.2.1/configure - - Not all 'make' programs have the necessary features ('VPATH') to - support this. In particular, SunOS and Slowaris 'make' have bugs - that make them unable to build in a separate directory. Use GNU - 'make' instead. - -'--prefix' and '--exec-prefix' - The '--prefix' option can be used in the normal way to direct GMP - to install under a particular tree. The default is '/usr/local'. - - '--exec-prefix' can be used to direct architecture-dependent files - like 'libgmp.a' to a different location. This can be used to share - architecture-independent parts like the documentation, but separate - the dependent parts. Note however that 'gmp.h' is - architecture-dependent since it encodes certain aspects of - 'libgmp', so it will be necessary to ensure both '$prefix/include' - and '$exec_prefix/include' are available to the compiler. - -'--disable-shared', '--disable-static' - By default both shared and static libraries are built (where - possible), but one or other can be disabled. Shared libraries - result in smaller executables and permit code sharing between - separate running processes, but on some CPUs are slightly slower, - having a small cost on each function call. - -Native Compilation, '--build=CPU-VENDOR-OS' - For normal native compilation, the system can be specified with - '--build'. By default './configure' uses the output from running - './config.guess'. On some systems './config.guess' can determine - the exact CPU type, on others it will be necessary to give it - explicitly. For example, - - ./configure --build=ultrasparc-sun-solaris2.7 - - In all cases the 'OS' part is important, since it controls how - libtool generates shared libraries. Running './config.guess' is - the simplest way to see what it should be, if you don't know - already. - -Cross Compilation, '--host=CPU-VENDOR-OS' - When cross-compiling, the system used for compiling is given by - '--build' and the system where the library will run is given by - '--host'. For example when using a FreeBSD Athlon system to build - GNU/Linux m68k binaries, - - ./configure --build=athlon-pc-freebsd3.5 --host=m68k-mac-linux-gnu - - Compiler tools are sought first with the host system type as a - prefix. For example 'm68k-mac-linux-gnu-ranlib' is tried, then - plain 'ranlib'. This makes it possible for a set of - cross-compiling tools to co-exist with native tools. The prefix is - the argument to '--host', and this can be an alias, such as - 'm68k-linux'. But note that tools don't have to be setup this way, - it's enough to just have a 'PATH' with a suitable cross-compiling - 'cc' etc. - - Compiling for a different CPU in the same family as the build - system is a form of cross-compilation, though very possibly this - would merely be special options on a native compiler. In any case - './configure' avoids depending on being able to run code on the - build system, which is important when creating binaries for a newer - CPU since they very possibly won't run on the build system. - - In all cases the compiler must be able to produce an executable (of - whatever format) from a standard C 'main'. Although only object - files will go to make up 'libgmp', './configure' uses linking tests - for various purposes, such as determining what functions are - available on the host system. - - Currently a warning is given unless an explicit '--build' is used - when cross-compiling, because it may not be possible to correctly - guess the build system type if the 'PATH' has only a - cross-compiling 'cc'. - - Note that the '--target' option is not appropriate for GMP. It's - for use when building compiler tools, with '--host' being where - they will run, and '--target' what they'll produce code for. - Ordinary programs or libraries like GMP are only interested in the - '--host' part, being where they'll run. (Some past versions of GMP - used '--target' incorrectly.) - -CPU types - In general, if you want a library that runs as fast as possible, - you should configure GMP for the exact CPU type your system uses. - However, this may mean the binaries won't run on older members of - the family, and might run slower on other members, older or newer. - The best idea is always to build GMP for the exact machine type you - intend to run it on. - - The following CPUs have specific support. See 'configure.ac' for - details of what code and compiler options they select. - - * Alpha: alpha, alphaev5, alphaev56, alphapca56, alphapca57, - alphaev6, alphaev67, alphaev68 alphaev7 - - * Cray: c90, j90, t90, sv1 - - * HPPA: hppa1.0, hppa1.1, hppa2.0, hppa2.0n, hppa2.0w, hppa64 - - * IA-64: ia64, itanium, itanium2 - - * MIPS: mips, mips3, mips64 - - * Motorola: m68k, m68000, m68010, m68020, m68030, m68040, - m68060, m68302, m68360, m88k, m88110 - - * POWER: power, power1, power2, power2sc - - * PowerPC: powerpc, powerpc64, powerpc401, powerpc403, - powerpc405, powerpc505, powerpc601, powerpc602, powerpc603, - powerpc603e, powerpc604, powerpc604e, powerpc620, powerpc630, - powerpc740, powerpc7400, powerpc7450, powerpc750, powerpc801, - powerpc821, powerpc823, powerpc860, powerpc970 - - * SPARC: sparc, sparcv8, microsparc, supersparc, sparcv9, - ultrasparc, ultrasparc2, ultrasparc2i, ultrasparc3, sparc64 - - * x86 family: i386, i486, i586, pentium, pentiummmx, pentiumpro, - pentium2, pentium3, pentium4, k6, k62, k63, athlon, amd64, - viac3, viac32 - - * Other: arm, sh, sh2, vax, - - CPUs not listed will use generic C code. - -Generic C Build - If some of the assembly code causes problems, or if otherwise - desired, the generic C code can be selected with the configure - '--disable-assembly'. - - Note that this will run quite slowly, but it should be portable and - should at least make it possible to get something running if all - else fails. - -Fat binary, '--enable-fat' - Using '--enable-fat' selects a "fat binary" build on x86, where - optimized low level subroutines are chosen at runtime according to - the CPU detected. This means more code, but gives good performance - on all x86 chips. (This option might become available for more - architectures in the future.) - -'ABI' - On some systems GMP supports multiple ABIs (application binary - interfaces), meaning data type sizes and calling conventions. By - default GMP chooses the best ABI available, but a particular ABI - can be selected. For example - - ./configure --host=mips64-sgi-irix6 ABI=n32 - - See *note ABI and ISA::, for the available choices on relevant - CPUs, and what applications need to do. - -'CC', 'CFLAGS' - By default the C compiler used is chosen from among some likely - candidates, with 'gcc' normally preferred if it's present. The - usual 'CC=whatever' can be passed to './configure' to choose - something different. - - For various systems, default compiler flags are set based on the - CPU and compiler. The usual 'CFLAGS="-whatever"' can be passed to - './configure' to use something different or to set good flags for - systems GMP doesn't otherwise know. - - The 'CC' and 'CFLAGS' used are printed during './configure', and - can be found in each generated 'Makefile'. This is the easiest way - to check the defaults when considering changing or adding - something. - - Note that when 'CC' and 'CFLAGS' are specified on a system - supporting multiple ABIs it's important to give an explicit - 'ABI=whatever', since GMP can't determine the ABI just from the - flags and won't be able to select the correct assembly code. - - If just 'CC' is selected then normal default 'CFLAGS' for that - compiler will be used (if GMP recognises it). For example 'CC=gcc' - can be used to force the use of GCC, with default flags (and - default ABI). - -'CPPFLAGS' - Any flags like '-D' defines or '-I' includes required by the - preprocessor should be set in 'CPPFLAGS' rather than 'CFLAGS'. - Compiling is done with both 'CPPFLAGS' and 'CFLAGS', but - preprocessing uses just 'CPPFLAGS'. This distinction is because - most preprocessors won't accept all the flags the compiler does. - Preprocessing is done separately in some configure tests. - -'CC_FOR_BUILD' - Some build-time programs are compiled and run to generate - host-specific data tables. 'CC_FOR_BUILD' is the compiler used for - this. It doesn't need to be in any particular ABI or mode, it - merely needs to generate executables that can run. The default is - to try the selected 'CC' and some likely candidates such as 'cc' - and 'gcc', looking for something that works. - - No flags are used with 'CC_FOR_BUILD' because a simple invocation - like 'cc foo.c' should be enough. If some particular options are - required they can be included as for instance 'CC_FOR_BUILD="cc - -whatever"'. - -C++ Support, '--enable-cxx' - C++ support in GMP can be enabled with '--enable-cxx', in which - case a C++ compiler will be required. As a convenience - '--enable-cxx=detect' can be used to enable C++ support only if a - compiler can be found. The C++ support consists of a library - 'libgmpxx.la' and header file 'gmpxx.h' (*note Headers and - Libraries::). - - A separate 'libgmpxx.la' has been adopted rather than having C++ - objects within 'libgmp.la' in order to ensure dynamic linked C - programs aren't bloated by a dependency on the C++ standard - library, and to avoid any chance that the C++ compiler could be - required when linking plain C programs. - - 'libgmpxx.la' will use certain internals from 'libgmp.la' and can - only be expected to work with 'libgmp.la' from the same GMP - version. Future changes to the relevant internals will be - accompanied by renaming, so a mismatch will cause unresolved - symbols rather than perhaps mysterious misbehaviour. - - In general 'libgmpxx.la' will be usable only with the C++ compiler - that built it, since name mangling and runtime support are usually - incompatible between different compilers. - -'CXX', 'CXXFLAGS' - When C++ support is enabled, the C++ compiler and its flags can be - set with variables 'CXX' and 'CXXFLAGS' in the usual way. The - default for 'CXX' is the first compiler that works from a list of - likely candidates, with 'g++' normally preferred when available. - The default for 'CXXFLAGS' is to try 'CFLAGS', 'CFLAGS' without - '-g', then for 'g++' either '-g -O2' or '-O2', or for other - compilers '-g' or nothing. Trying 'CFLAGS' this way is convenient - when using 'gcc' and 'g++' together, since the flags for 'gcc' will - usually suit 'g++'. - - It's important that the C and C++ compilers match, meaning their - startup and runtime support routines are compatible and that they - generate code in the same ABI (if there's a choice of ABIs on the - system). './configure' isn't currently able to check these things - very well itself, so for that reason '--disable-cxx' is the - default, to avoid a build failure due to a compiler mismatch. - Perhaps this will change in the future. - - Incidentally, it's normally not good enough to set 'CXX' to the - same as 'CC'. Although 'gcc' for instance recognises 'foo.cc' as - C++ code, only 'g++' will invoke the linker the right way when - building an executable or shared library from C++ object files. - -Temporary Memory, '--enable-alloca=' - GMP allocates temporary workspace using one of the following three - methods, which can be selected with for instance - '--enable-alloca=malloc-reentrant'. - - * 'alloca' - C library or compiler builtin. - * 'malloc-reentrant' - the heap, in a re-entrant fashion. - * 'malloc-notreentrant' - the heap, with global variables. - - For convenience, the following choices are also available. - '--disable-alloca' is the same as 'no'. - - * 'yes' - a synonym for 'alloca'. - * 'no' - a synonym for 'malloc-reentrant'. - * 'reentrant' - 'alloca' if available, otherwise - 'malloc-reentrant'. This is the default. - * 'notreentrant' - 'alloca' if available, otherwise - 'malloc-notreentrant'. - - 'alloca' is reentrant and fast, and is recommended. It actually - allocates just small blocks on the stack; larger ones use - malloc-reentrant. - - 'malloc-reentrant' is, as the name suggests, reentrant and thread - safe, but 'malloc-notreentrant' is faster and should be used if - reentrancy is not required. - - The two malloc methods in fact use the memory allocation functions - selected by 'mp_set_memory_functions', these being 'malloc' and - friends by default. *Note Custom Allocation::. - - An additional choice '--enable-alloca=debug' is available, to help - when debugging memory related problems (*note Debugging::). - -FFT Multiplication, '--disable-fft' - By default multiplications are done using Karatsuba, 3-way Toom, - higher degree Toom, and Fermat FFT. The FFT is only used on large - to very large operands and can be disabled to save code size if - desired. - -Assertion Checking, '--enable-assert' - This option enables some consistency checking within the library. - This can be of use while debugging, *note Debugging::. - -Execution Profiling, '--enable-profiling=prof/gprof/instrument' - Enable profiling support, in one of various styles, *note - Profiling::. - -'MPN_PATH' - Various assembly versions of each mpn subroutines are provided. - For a given CPU, a search is made though a path to choose a version - of each. For example 'sparcv8' has - - MPN_PATH="sparc32/v8 sparc32 generic" - - which means look first for v8 code, then plain sparc32 (which is - v7), and finally fall back on generic C. Knowledgeable users with - special requirements can specify a different path. Normally this - is completely unnecessary. - -Documentation - The source for the document you're now reading is 'doc/gmp.texi', - in Texinfo format, see *note Texinfo: (texinfo)Top. - - Info format 'doc/gmp.info' is included in the distribution. The - usual automake targets are available to make PostScript, DVI, PDF - and HTML (these will require various TeX and Texinfo tools). - - DocBook and XML can be generated by the Texinfo 'makeinfo' program - too, see *note Options for 'makeinfo': (texinfo)makeinfo options. - - Some supplementary notes can also be found in the 'doc' - subdirectory. - - -File: gmp.info, Node: ABI and ISA, Next: Notes for Package Builds, Prev: Build Options, Up: Installing GMP - -2.2 ABI and ISA -=============== - -ABI (Application Binary Interface) refers to the calling conventions -between functions, meaning what registers are used and what sizes the -various C data types are. ISA (Instruction Set Architecture) refers to -the instructions and registers a CPU has available. - - Some 64-bit ISA CPUs have both a 64-bit ABI and a 32-bit ABI defined, -the latter for compatibility with older CPUs in the family. GMP -supports some CPUs like this in both ABIs. In fact within GMP 'ABI' -means a combination of chip ABI, plus how GMP chooses to use it. For -example in some 32-bit ABIs, GMP may support a limb as either a 32-bit -'long' or a 64-bit 'long long'. - - By default GMP chooses the best ABI available for a given system, and -this generally gives significantly greater speed. But an ABI can be -chosen explicitly to make GMP compatible with other libraries, or -particular application requirements. For example, - - ./configure ABI=32 - - In all cases it's vital that all object code used in a given program -is compiled for the same ABI. - - Usually a limb is implemented as a 'long'. When a 'long long' limb -is used this is encoded in the generated 'gmp.h'. This is convenient -for applications, but it does mean that 'gmp.h' will vary, and can't be -just copied around. 'gmp.h' remains compiler independent though, since -all compilers for a particular ABI will be expected to use the same limb -type. - - Currently no attempt is made to follow whatever conventions a system -has for installing library or header files built for a particular ABI. -This will probably only matter when installing multiple builds of GMP, -and it might be as simple as configuring with a special 'libdir', or it -might require more than that. Note that builds for different ABIs need -to done separately, with a fresh './configure' and 'make' each. - - -AMD64 ('x86_64') - On AMD64 systems supporting both 32-bit and 64-bit modes for - applications, the following ABI choices are available. - - 'ABI=64' - The 64-bit ABI uses 64-bit limbs and pointers and makes full - use of the chip architecture. This is the default. - Applications will usually not need special compiler flags, but - for reference the option is - - gcc -m64 - - 'ABI=32' - The 32-bit ABI is the usual i386 conventions. This will be - slower, and is not recommended except for inter-operating with - other code not yet 64-bit capable. Applications must be - compiled with - - gcc -m32 - - (In GCC 2.95 and earlier there's no '-m32' option, it's the - only mode.) - - 'ABI=x32' - The x32 ABI uses 64-bit limbs but 32-bit pointers. Like the - 64-bit ABI, it makes full use of the chip's arithmetic - capabilities. This ABI is not supported by all operating - systems. - - gcc -mx32 - - -HPPA 2.0 ('hppa2.0*', 'hppa64') - 'ABI=2.0w' - The 2.0w ABI uses 64-bit limbs and pointers and is available - on HP-UX 11 or up. Applications must be compiled with - - gcc [built for 2.0w] - cc +DD64 - - 'ABI=2.0n' - The 2.0n ABI means the 32-bit HPPA 1.0 ABI and all its normal - calling conventions, but with 64-bit instructions permitted - within functions. GMP uses a 64-bit 'long long' for a limb. - This ABI is available on hppa64 GNU/Linux and on HP-UX 10 or - higher. Applications must be compiled with - - gcc [built for 2.0n] - cc +DA2.0 +e - - Note that current versions of GCC (eg. 3.2) don't generate - 64-bit instructions for 'long long' operations and so may be - slower than for 2.0w. (The GMP assembly code is the same - though.) - - 'ABI=1.0' - HPPA 2.0 CPUs can run all HPPA 1.0 and 1.1 code in the 32-bit - HPPA 1.0 ABI. No special compiler options are needed for - applications. - - All three ABIs are available for CPU types 'hppa2.0w', 'hppa2.0' - and 'hppa64', but for CPU type 'hppa2.0n' only 2.0n or 1.0 are - considered. - - Note that GCC on HP-UX has no options to choose between 2.0n and - 2.0w modes, unlike HP 'cc'. Instead it must be built for one or - the other ABI. GMP will detect how it was built, and skip to the - corresponding 'ABI'. - - -IA-64 under HP-UX ('ia64*-*-hpux*', 'itanium*-*-hpux*') - HP-UX supports two ABIs for IA-64. GMP performance is the same in - both. - - 'ABI=32' - In the 32-bit ABI, pointers, 'int's and 'long's are 32 bits - and GMP uses a 64 bit 'long long' for a limb. Applications - can be compiled without any special flags since this ABI is - the default in both HP C and GCC, but for reference the flags - are - - gcc -milp32 - cc +DD32 - - 'ABI=64' - In the 64-bit ABI, 'long's and pointers are 64 bits and GMP - uses a 'long' for a limb. Applications must be compiled with - - gcc -mlp64 - cc +DD64 - - On other IA-64 systems, GNU/Linux for instance, 'ABI=64' is the - only choice. - - -MIPS under IRIX 6 ('mips*-*-irix[6789]') - IRIX 6 always has a 64-bit MIPS 3 or better CPU, and supports ABIs - o32, n32, and 64. n32 or 64 are recommended, and GMP performance - will be the same in each. The default is n32. - - 'ABI=o32' - The o32 ABI is 32-bit pointers and integers, and no 64-bit - operations. GMP will be slower than in n32 or 64, this option - only exists to support old compilers, eg. GCC 2.7.2. - Applications can be compiled with no special flags on an old - compiler, or on a newer compiler with - - gcc -mabi=32 - cc -32 - - 'ABI=n32' - The n32 ABI is 32-bit pointers and integers, but with a 64-bit - limb using a 'long long'. Applications must be compiled with - - gcc -mabi=n32 - cc -n32 - - 'ABI=64' - The 64-bit ABI is 64-bit pointers and integers. Applications - must be compiled with - - gcc -mabi=64 - cc -64 - - Note that MIPS GNU/Linux, as of kernel version 2.2, doesn't have - the necessary support for n32 or 64 and so only gets a 32-bit limb - and the MIPS 2 code. - - -PowerPC 64 ('powerpc64', 'powerpc620', 'powerpc630', 'powerpc970', 'power4', 'power5') - 'ABI=mode64' - The AIX 64 ABI uses 64-bit limbs and pointers and is the - default on PowerPC 64 '*-*-aix*' systems. Applications must - be compiled with - - gcc -maix64 - xlc -q64 - - On 64-bit GNU/Linux, BSD, and Mac OS X/Darwin systems, the - applications must be compiled with - - gcc -m64 - - 'ABI=mode32' - The 'mode32' ABI uses a 64-bit 'long long' limb but with the - chip still in 32-bit mode and using 32-bit calling - conventions. This is the default for systems where the true - 64-bit ABI is unavailable. No special compiler options are - typically needed for applications. This ABI is not available - under AIX. - - 'ABI=32' - This is the basic 32-bit PowerPC ABI, with a 32-bit limb. No - special compiler options are needed for applications. - - GMP's speed is greatest for the 'mode64' ABI, the 'mode32' ABI is - 2nd best. In 'ABI=32' only the 32-bit ISA is used and this doesn't - make full use of a 64-bit chip. - - -Sparc V9 ('sparc64', 'sparcv9', 'ultrasparc*') - 'ABI=64' - The 64-bit V9 ABI is available on the various BSD sparc64 - ports, recent versions of Sparc64 GNU/Linux, and Solaris 2.7 - and up (when the kernel is in 64-bit mode). GCC 3.2 or - higher, or Sun 'cc' is required. On GNU/Linux, depending on - the default 'gcc' mode, applications must be compiled with - - gcc -m64 - - On Solaris applications must be compiled with - - gcc -m64 -mptr64 -Wa,-xarch=v9 -mcpu=v9 - cc -xarch=v9 - - On the BSD sparc64 systems no special options are required, - since 64-bits is the only ABI available. - - 'ABI=32' - For the basic 32-bit ABI, GMP still uses as much of the V9 ISA - as it can. In the Sun documentation this combination is known - as "v8plus". On GNU/Linux, depending on the default 'gcc' - mode, applications may need to be compiled with - - gcc -m32 - - On Solaris, no special compiler options are required for - applications, though using something like the following is - recommended. ('gcc' 2.8 and earlier only support '-mv8' - though.) - - gcc -mv8plus - cc -xarch=v8plus - - GMP speed is greatest in 'ABI=64', so it's the default where - available. The speed is partly because there are extra registers - available and partly because 64-bits is considered the more - important case and has therefore had better code written for it. - - Don't be confused by the names of the '-m' and '-x' compiler - options, they're called 'arch' but effectively control both ABI and - ISA. - - On Solaris 2.6 and earlier, only 'ABI=32' is available since the - kernel doesn't save all registers. - - On Solaris 2.7 with the kernel in 32-bit mode, a normal native - build will reject 'ABI=64' because the resulting executables won't - run. 'ABI=64' can still be built if desired by making it look like - a cross-compile, for example - - ./configure --build=none --host=sparcv9-sun-solaris2.7 ABI=64 - - -File: gmp.info, Node: Notes for Package Builds, Next: Notes for Particular Systems, Prev: ABI and ISA, Up: Installing GMP - -2.3 Notes for Package Builds -============================ - -GMP should present no great difficulties for packaging in a binary -distribution. - - Libtool is used to build the library and '-version-info' is set -appropriately, having started from '3:0:0' in GMP 3.0 (*note Library -interface versions: (libtool)Versioning.). - - The GMP 4 series will be upwardly binary compatible in each release -and will be upwardly binary compatible with all of the GMP 3 series. -Additional function interfaces may be added in each release, so on -systems where libtool versioning is not fully checked by the loader an -auxiliary mechanism may be needed to express that a dynamic linked -application depends on a new enough GMP. - - An auxiliary mechanism may also be needed to express that -'libgmpxx.la' (from '--enable-cxx', *note Build Options::) requires -'libgmp.la' from the same GMP version, since this is not done by the -libtool versioning, nor otherwise. A mismatch will result in unresolved -symbols from the linker, or perhaps the loader. - - When building a package for a CPU family, care should be taken to use -'--host' (or '--build') to choose the least common denominator among the -CPUs which might use the package. For example this might mean plain -'sparc' (meaning V7) for SPARCs. - - For x86s, '--enable-fat' sets things up for a fat binary build, -making a runtime selection of optimized low level routines. This is a -good choice for packaging to run on a range of x86 chips. - - Users who care about speed will want GMP built for their exact CPU -type, to make best use of the available optimizations. Providing a way -to suitably rebuild a package may be useful. This could be as simple as -making it possible for a user to omit '--build' (and '--host') so -'./config.guess' will detect the CPU. But a way to manually specify a -'--build' will be wanted for systems where './config.guess' is inexact. - - On systems with multiple ABIs, a packaged build will need to decide -which among the choices is to be provided, see *note ABI and ISA::. A -given run of './configure' etc will only build one ABI. If a second ABI -is also required then a second run of './configure' etc must be made, -starting from a clean directory tree ('make distclean'). - - As noted under "ABI and ISA", currently no attempt is made to follow -system conventions for install locations that vary with ABI, such as -'/usr/lib/sparcv9' for 'ABI=64' as opposed to '/usr/lib' for 'ABI=32'. -A package build can override 'libdir' and other standard variables as -necessary. - - Note that 'gmp.h' is a generated file, and will be architecture and -ABI dependent. When attempting to install two ABIs simultaneously it -will be important that an application compile gets the correct 'gmp.h' -for its desired ABI. If compiler include paths don't vary with ABI -options then it might be necessary to create a '/usr/include/gmp.h' -which tests preprocessor symbols and chooses the correct actual 'gmp.h'. - - -File: gmp.info, Node: Notes for Particular Systems, Next: Known Build Problems, Prev: Notes for Package Builds, Up: Installing GMP - -2.4 Notes for Particular Systems -================================ - -AIX 3 and 4 - On systems '*-*-aix[34]*' shared libraries are disabled by default, - since some versions of the native 'ar' fail on the convenience - libraries used. A shared build can be attempted with - - ./configure --enable-shared --disable-static - - Note that the '--disable-static' is necessary because in a shared - build libtool makes 'libgmp.a' a symlink to 'libgmp.so', apparently - for the benefit of old versions of 'ld' which only recognise '.a', - but unfortunately this is done even if a fully functional 'ld' is - available. - -ARM - On systems 'arm*-*-*', versions of GCC up to and including 2.95.3 - have a bug in unsigned division, giving wrong results for some - operands. GMP './configure' will demand GCC 2.95.4 or later. - -Compaq C++ - Compaq C++ on OSF 5.1 has two flavours of 'iostream', a standard - one and an old pre-standard one (see 'man iostream_intro'). GMP - can only use the standard one, which unfortunately is not the - default but must be selected by defining '__USE_STD_IOSTREAM'. - Configure with for instance - - ./configure --enable-cxx CPPFLAGS=-D__USE_STD_IOSTREAM - -Floating Point Mode - On some systems, the hardware floating point has a control mode - which can set all operations to be done in a particular precision, - for instance single, double or extended on x86 systems (x87 - floating point). The GMP functions involving a 'double' cannot be - expected to operate to their full precision when the hardware is in - single precision mode. Of course this affects all code, including - application code, not just GMP. - -FreeBSD 7.x, 8.x, 9.0, 9.1, 9.2 - 'm4' in these releases of FreeBSD has an eval function which - ignores its 2nd and 3rd arguments, which makes it unsuitable for - '.asm' file processing. './configure' will detect the problem and - either abort or choose another m4 in the 'PATH'. The bug is fixed - in FreeBSD 9.3 and 10.0, so either upgrade or use GNU m4. Note - that the FreeBSD package system installs GNU m4 under the name - 'gm4', which GMP cannot guess. - -FreeBSD 7.x, 8.x, 9.x - GMP releases starting with 6.0 do not support 'ABI=32' on - FreeBSD/amd64 prior to release 10.0 of the system. The cause is a - broken 'limits.h', which GMP no longer works around. - -MS-DOS and MS Windows - On an MS-DOS system DJGPP can be used to build GMP, and on an MS - Windows system Cygwin, DJGPP and MINGW can be used. All three are - excellent ports of GCC and the various GNU tools. - - - - - - Microsoft also publishes an Interix "Services for Unix" which can - be used to build GMP on Windows (with a normal './configure'), but - it's not free software. - -MS Windows DLLs - On systems '*-*-cygwin*', '*-*-mingw*' and '*-*-pw32*' by default - GMP builds only a static library, but a DLL can be built instead - using - - ./configure --disable-static --enable-shared - - Static and DLL libraries can't both be built, since certain export - directives in 'gmp.h' must be different. - - A MINGW DLL build of GMP can be used with Microsoft C. Libtool - doesn't install a '.lib' format import library, but it can be - created with MS 'lib' as follows, and copied to the install - directory. Similarly for 'libmp' and 'libgmpxx'. - - cd .libs - lib /def:libgmp-3.dll.def /out:libgmp-3.lib - - MINGW uses the C runtime library 'msvcrt.dll' for I/O, so - applications wanting to use the GMP I/O routines must be compiled - with 'cl /MD' to do the same. If one of the other C runtime - library choices provided by MS C is desired then the suggestion is - to use the GMP string functions and confine I/O to the application. - -Motorola 68k CPU Types - 'm68k' is taken to mean 68000. 'm68020' or higher will give a - performance boost on applicable CPUs. 'm68360' can be used for - CPU32 series chips. 'm68302' can be used for "Dragonball" series - chips, though this is merely a synonym for 'm68000'. - -NetBSD 5.x - 'm4' in these releases of NetBSD has an eval function which ignores - its 2nd and 3rd arguments, which makes it unsuitable for '.asm' - file processing. './configure' will detect the problem and either - abort or choose another m4 in the 'PATH'. The bug is fixed in - NetBSD 6, so either upgrade or use GNU m4. Note that the NetBSD - package system installs GNU m4 under the name 'gm4', which GMP - cannot guess. - -OpenBSD 2.6 - 'm4' in this release of OpenBSD has a bug in 'eval' that makes it - unsuitable for '.asm' file processing. './configure' will detect - the problem and either abort or choose another m4 in the 'PATH'. - The bug is fixed in OpenBSD 2.7, so either upgrade or use GNU m4. - -Power CPU Types - In GMP, CPU types 'power*' and 'powerpc*' will each use - instructions not available on the other, so it's important to - choose the right one for the CPU that will be used. Currently GMP - has no assembly code support for using just the common instruction - subset. To get executables that run on both, the current - suggestion is to use the generic C code ('--disable-assembly'), - possibly with appropriate compiler options (like '-mcpu=common' for - 'gcc'). CPU 'rs6000' (which is not a CPU but a family of - workstations) is accepted by 'config.sub', but is currently - equivalent to '--disable-assembly'. - -Sparc CPU Types - 'sparcv8' or 'supersparc' on relevant systems will give a - significant performance increase over the V7 code selected by plain - 'sparc'. - -Sparc App Regs - The GMP assembly code for both 32-bit and 64-bit Sparc clobbers the - "application registers" 'g2', 'g3' and 'g4', the same way that the - GCC default '-mapp-regs' does (*note SPARC Options: (gcc)SPARC - Options.). - - This makes that code unsuitable for use with the special V9 - '-mcmodel=embmedany' (which uses 'g4' as a data segment pointer), - and for applications wanting to use those registers for special - purposes. In these cases the only suggestion currently is to build - GMP with '--disable-assembly' to avoid the assembly code. - -SunOS 4 - '/usr/bin/m4' lacks various features needed to process '.asm' - files, and instead './configure' will automatically use - '/usr/5bin/m4', which we believe is always available (if not then - use GNU m4). - -x86 CPU Types - 'i586', 'pentium' or 'pentiummmx' code is good for its intended P5 - Pentium chips, but quite slow when run on Intel P6 class chips - (PPro, P-II, P-III). 'i386' is a better choice when making - binaries that must run on both. - -x86 MMX and SSE2 Code - If the CPU selected has MMX code but the assembler doesn't support - it, a warning is given and non-MMX code is used instead. This will - be an inferior build, since the MMX code that's present is there - because it's faster than the corresponding plain integer code. The - same applies to SSE2. - - Old versions of 'gas' don't support MMX instructions, in particular - version 1.92.3 that comes with FreeBSD 2.2.8 or the more recent - OpenBSD 3.1 doesn't. - - Solaris 2.6 and 2.7 'as' generate incorrect object code for - register to register 'movq' instructions, and so can't be used for - MMX code. Install a recent 'gas' if MMX code is wanted on these - systems. - - -File: gmp.info, Node: Known Build Problems, Next: Performance optimization, Prev: Notes for Particular Systems, Up: Installing GMP - -2.5 Known Build Problems -======================== - -You might find more up-to-date information at . - -Compiler link options - The version of libtool currently in use rather aggressively strips - compiler options when linking a shared library. This will - hopefully be relaxed in the future, but for now if this is a - problem the suggestion is to create a little script to hide them, - and for instance configure with - - ./configure CC=gcc-with-my-options - -DJGPP ('*-*-msdosdjgpp*') - The DJGPP port of 'bash' 2.03 is unable to run the 'configure' - script, it exits silently, having died writing a preamble to - 'config.log'. Use 'bash' 2.04 or higher. - - 'make all' was found to run out of memory during the final - 'libgmp.la' link on one system tested, despite having 64Mb - available. Running 'make libgmp.la' directly helped, perhaps - recursing into the various subdirectories uses up memory. - -GNU binutils 'strip' prior to 2.12 - 'strip' from GNU binutils 2.11 and earlier should not be used on - the static libraries 'libgmp.a' and 'libmp.a' since it will discard - all but the last of multiple archive members with the same name, - like the three versions of 'init.o' in 'libgmp.a'. Binutils 2.12 - or higher can be used successfully. - - The shared libraries 'libgmp.so' and 'libmp.so' are not affected by - this and any version of 'strip' can be used on them. - -'make' syntax error - On certain versions of SCO OpenServer 5 and IRIX 6.5 the native - 'make' is unable to handle the long dependencies list for - 'libgmp.la'. The symptom is a "syntax error" on the following line - of the top-level 'Makefile'. - - libgmp.la: $(libgmp_la_OBJECTS) $(libgmp_la_DEPENDENCIES) - - Either use GNU Make, or as a workaround remove - '$(libgmp_la_DEPENDENCIES)' from that line (which will make the - initial build work, but if any recompiling is done 'libgmp.la' - might not be rebuilt). - -MacOS X ('*-*-darwin*') - Libtool currently only knows how to create shared libraries on - MacOS X using the native 'cc' (which is a modified GCC), not a - plain GCC. A static-only build should work though - ('--disable-shared'). - -NeXT prior to 3.3 - The system compiler on old versions of NeXT was a massacred and old - GCC, even if it called itself 'cc'. This compiler cannot be used - to build GMP, you need to get a real GCC, and install that. (NeXT - may have fixed this in release 3.3 of their system.) - -POWER and PowerPC - Bugs in GCC 2.7.2 (and 2.6.3) mean it can't be used to compile GMP - on POWER or PowerPC. If you want to use GCC for these machines, - get GCC 2.7.2.1 (or later). - -Sequent Symmetry - Use the GNU assembler instead of the system assembler, since the - latter has serious bugs. - -Solaris 2.6 - The system 'sed' prints an error "Output line too long" when - libtool builds 'libgmp.la'. This doesn't seem to cause any obvious - ill effects, but GNU 'sed' is recommended, to avoid any doubt. - -Sparc Solaris 2.7 with gcc 2.95.2 in 'ABI=32' - A shared library build of GMP seems to fail in this combination, it - builds but then fails the tests, apparently due to some incorrect - data relocations within 'gmp_randinit_lc_2exp_size'. The exact - cause is unknown, '--disable-shared' is recommended. - - -File: gmp.info, Node: Performance optimization, Prev: Known Build Problems, Up: Installing GMP - -2.6 Performance optimization -============================ - -For optimal performance, build GMP for the exact CPU type of the target -computer, see *note Build Options::. - - Unlike what is the case for most other programs, the compiler -typically doesn't matter much, since GMP uses assembly language for the -most critical operation. - - In particular for long-running GMP applications, and applications -demanding extremely large numbers, building and running the 'tuneup' -program in the 'tune' subdirectory, can be important. For example, - - cd tune - make tuneup - ./tuneup - - will generate better contents for the 'gmp-mparam.h' parameter file. - - To use the results, put the output in the file indicated in the -'Parameters for ...' header. Then recompile from scratch. - - The 'tuneup' program takes one useful parameter, '-f NNN', which -instructs the program how long to check FFT multiply parameters. If -you're going to use GMP for extremely large numbers, you may want to run -'tuneup' with a large NNN value. - - -File: gmp.info, Node: GMP Basics, Next: Reporting Bugs, Prev: Installing GMP, Up: Top - -3 GMP Basics -************ - -*Using functions, macros, data types, etc. not documented in this manual -is strongly discouraged. If you do so your application is guaranteed to -be incompatible with future versions of GMP.* - -* Menu: - -* Headers and Libraries:: -* Nomenclature and Types:: -* Function Classes:: -* Variable Conventions:: -* Parameter Conventions:: -* Memory Management:: -* Reentrancy:: -* Useful Macros and Constants:: -* Compatibility with older versions:: -* Demonstration Programs:: -* Efficiency:: -* Debugging:: -* Profiling:: -* Autoconf:: -* Emacs:: - - -File: gmp.info, Node: Headers and Libraries, Next: Nomenclature and Types, Prev: GMP Basics, Up: GMP Basics - -3.1 Headers and Libraries -========================= - -All declarations needed to use GMP are collected in the include file -'gmp.h'. It is designed to work with both C and C++ compilers. - - #include - - Note however that prototypes for GMP functions with 'FILE *' -parameters are only provided if '' is included too. - - #include - #include - - Likewise '' is required for prototypes with 'va_list' -parameters, such as 'gmp_vprintf'. And '' for prototypes -with 'struct obstack' parameters, such as 'gmp_obstack_printf', when -available. - - All programs using GMP must link against the 'libgmp' library. On a -typical Unix-like system this can be done with '-lgmp', for example - - gcc myprogram.c -lgmp - - GMP C++ functions are in a separate 'libgmpxx' library. This is -built and installed if C++ support has been enabled (*note Build -Options::). For example, - - g++ mycxxprog.cc -lgmpxx -lgmp - - GMP is built using Libtool and an application can use that to link if -desired, *note GNU Libtool: (libtool)Top. - - If GMP has been installed to a non-standard location then it may be -necessary to use '-I' and '-L' compiler options to point to the right -directories, and some sort of run-time path for a shared library. - - -File: gmp.info, Node: Nomenclature and Types, Next: Function Classes, Prev: Headers and Libraries, Up: GMP Basics - -3.2 Nomenclature and Types -========================== - -In this manual, "integer" usually means a multiple precision integer, as -defined by the GMP library. The C data type for such integers is -'mpz_t'. Here are some examples of how to declare such integers: - - mpz_t sum; - - struct foo { mpz_t x, y; }; - - mpz_t vec[20]; - - "Rational number" means a multiple precision fraction. The C data -type for these fractions is 'mpq_t'. For example: - - mpq_t quotient; - - "Floating point number" or "Float" for short, is an arbitrary -precision mantissa with a limited precision exponent. The C data type -for such objects is 'mpf_t'. For example: - - mpf_t fp; - - The floating point functions accept and return exponents in the C -type 'mp_exp_t'. Currently this is usually a 'long', but on some -systems it's an 'int' for efficiency. - - A "limb" means the part of a multi-precision number that fits in a -single machine word. (We chose this word because a limb of the human -body is analogous to a digit, only larger, and containing several -digits.) Normally a limb is 32 or 64 bits. The C data type for a limb -is 'mp_limb_t'. - - Counts of limbs of a multi-precision number represented in the C type -'mp_size_t'. Currently this is normally a 'long', but on some systems -it's an 'int' for efficiency, and on some systems it will be 'long long' -in the future. - - Counts of bits of a multi-precision number are represented in the C -type 'mp_bitcnt_t'. Currently this is always an 'unsigned long', but on -some systems it will be an 'unsigned long long' in the future. - - "Random state" means an algorithm selection and current state data. -The C data type for such objects is 'gmp_randstate_t'. For example: - - gmp_randstate_t rstate; - - Also, in general 'mp_bitcnt_t' is used for bit counts and ranges, and -'size_t' is used for byte or character counts. - - -File: gmp.info, Node: Function Classes, Next: Variable Conventions, Prev: Nomenclature and Types, Up: GMP Basics - -3.3 Function Classes -==================== - -There are six classes of functions in the GMP library: - - 1. Functions for signed integer arithmetic, with names beginning with - 'mpz_'. The associated type is 'mpz_t'. There are about 150 - functions in this class. (*note Integer Functions::) - - 2. Functions for rational number arithmetic, with names beginning with - 'mpq_'. The associated type is 'mpq_t'. There are about 35 - functions in this class, but the integer functions can be used for - arithmetic on the numerator and denominator separately. (*note - Rational Number Functions::) - - 3. Functions for floating-point arithmetic, with names beginning with - 'mpf_'. The associated type is 'mpf_t'. There are about 70 - functions is this class. (*note Floating-point Functions::) - - 4. Fast low-level functions that operate on natural numbers. These - are used by the functions in the preceding groups, and you can also - call them directly from very time-critical user programs. These - functions' names begin with 'mpn_'. The associated type is array - of 'mp_limb_t'. There are about 60 (hard-to-use) functions in this - class. (*note Low-level Functions::) - - 5. Miscellaneous functions. Functions for setting up custom - allocation and functions for generating random numbers. (*note - Custom Allocation::, and *note Random Number Functions::) - - -File: gmp.info, Node: Variable Conventions, Next: Parameter Conventions, Prev: Function Classes, Up: GMP Basics - -3.4 Variable Conventions -======================== - -GMP functions generally have output arguments before input arguments. -This notation is by analogy with the assignment operator. - - GMP lets you use the same variable for both input and output in one -call. For example, the main function for integer multiplication, -'mpz_mul', can be used to square 'x' and put the result back in 'x' with - - mpz_mul (x, x, x); - - Before you can assign to a GMP variable, you need to initialize it by -calling one of the special initialization functions. When you're done -with a variable, you need to clear it out, using one of the functions -for that purpose. Which function to use depends on the type of -variable. See the chapters on integer functions, rational number -functions, and floating-point functions for details. - - A variable should only be initialized once, or at least cleared -between each initialization. After a variable has been initialized, it -may be assigned to any number of times. - - For efficiency reasons, avoid excessive initializing and clearing. -In general, initialize near the start of a function and clear near the -end. For example, - - void - foo (void) - { - mpz_t n; - int i; - mpz_init (n); - for (i = 1; i < 100; i++) - { - mpz_mul (n, ...); - mpz_fdiv_q (n, ...); - ... - } - mpz_clear (n); - } - - GMP types like 'mpz_t' are implemented as one-element arrays of -certain structures. Declaring a variable creates an object with the -fields GMP needs, but variables are normally manipulated by using the -pointer to the object. For both behavior and efficiency reasons, it is -discouraged to make copies of the GMP object itself (either directly or -via aggregate objects containing such GMP objects). If copies are done, -all of them must be used read-only; using a copy as the output of some -function will invalidate all the other copies. Note that the actual -fields in each 'mpz_t' etc are for internal use only and should not be -accessed directly by code that expects to be compatible with future GMP -releases. - - -File: gmp.info, Node: Parameter Conventions, Next: Memory Management, Prev: Variable Conventions, Up: GMP Basics - -3.5 Parameter Conventions -========================= - -When a GMP variable is used as a function parameter, it's effectively a -call-by-reference, meaning that when the function stores a value there -it will change the original in the caller. Parameters which are -input-only can be designated 'const' to provoke a compiler error or -warning on attempting to modify them. - - When a function is going to return a GMP result, it should designate -a parameter that it sets, like the library functions do. More than one -value can be returned by having more than one output parameter, again -like the library functions. A 'return' of an 'mpz_t' etc doesn't return -the object, only a pointer, and this is almost certainly not what's -wanted. - - Here's an example accepting an 'mpz_t' parameter, doing a -calculation, and storing the result to the indicated parameter. - - void - foo (mpz_t result, const mpz_t param, unsigned long n) - { - unsigned long i; - mpz_mul_ui (result, param, n); - for (i = 1; i < n; i++) - mpz_add_ui (result, result, i*7); - } - - int - main (void) - { - mpz_t r, n; - mpz_init (r); - mpz_init_set_str (n, "123456", 0); - foo (r, n, 20L); - gmp_printf ("%Zd\n", r); - return 0; - } - - Our function 'foo' works even if its caller passes the same variable -for 'param' and 'result', just like the library functions. But -sometimes it's tricky to make that work, and an application might not -want to bother supporting that sort of thing. - - Since GMP types are implemented as one-element arrays, using a GMP -variable as a parameter passes a pointer to the object. Hence the -call-by-reference. - - -File: gmp.info, Node: Memory Management, Next: Reentrancy, Prev: Parameter Conventions, Up: GMP Basics - -3.6 Memory Management -===================== - -The GMP types like 'mpz_t' are small, containing only a couple of sizes, -and pointers to allocated data. Once a variable is initialized, GMP -takes care of all space allocation. Additional space is allocated -whenever a variable doesn't have enough. - - 'mpz_t' and 'mpq_t' variables never reduce their allocated space. -Normally this is the best policy, since it avoids frequent reallocation. -Applications that need to return memory to the heap at some particular -point can use 'mpz_realloc2', or clear variables no longer needed. - - 'mpf_t' variables, in the current implementation, use a fixed amount -of space, determined by the chosen precision and allocated at -initialization, so their size doesn't change. - - All memory is allocated using 'malloc' and friends by default, but -this can be changed, see *note Custom Allocation::. Temporary memory on -the stack is also used (via 'alloca'), but this can be changed at -build-time if desired, see *note Build Options::. - - -File: gmp.info, Node: Reentrancy, Next: Useful Macros and Constants, Prev: Memory Management, Up: GMP Basics - -3.7 Reentrancy -============== - -GMP is reentrant and thread-safe, with some exceptions: - - * If configured with '--enable-alloca=malloc-notreentrant' (or with - '--enable-alloca=notreentrant' when 'alloca' is not available), - then naturally GMP is not reentrant. - - * 'mpf_set_default_prec' and 'mpf_init' use a global variable for the - selected precision. 'mpf_init2' can be used instead, and in the - C++ interface an explicit precision to the 'mpf_class' constructor. - - * 'mpz_random' and the other old random number functions use a global - random state and are hence not reentrant. The newer random number - functions that accept a 'gmp_randstate_t' parameter can be used - instead. - - * 'gmp_randinit' (obsolete) returns an error indication through a - global variable, which is not thread safe. Applications are - advised to use 'gmp_randinit_default' or 'gmp_randinit_lc_2exp' - instead. - - * 'mp_set_memory_functions' uses global variables to store the - selected memory allocation functions. - - * If the memory allocation functions set by a call to - 'mp_set_memory_functions' (or 'malloc' and friends by default) are - not reentrant, then GMP will not be reentrant either. - - * If the standard I/O functions such as 'fwrite' are not reentrant - then the GMP I/O functions using them will not be reentrant either. - - * It's safe for two threads to read from the same GMP variable - simultaneously, but it's not safe for one to read while another - might be writing, nor for two threads to write simultaneously. - It's not safe for two threads to generate a random number from the - same 'gmp_randstate_t' simultaneously, since this involves an - update of that variable. - - -File: gmp.info, Node: Useful Macros and Constants, Next: Compatibility with older versions, Prev: Reentrancy, Up: GMP Basics - -3.8 Useful Macros and Constants -=============================== - - -- Global Constant: const int mp_bits_per_limb - The number of bits per limb. - - -- Macro: __GNU_MP_VERSION - -- Macro: __GNU_MP_VERSION_MINOR - -- Macro: __GNU_MP_VERSION_PATCHLEVEL - The major and minor GMP version, and patch level, respectively, as - integers. For GMP i.j, these numbers will be i, j, and 0, - respectively. For GMP i.j.k, these numbers will be i, j, and k, - respectively. - - -- Global Constant: const char * const gmp_version - The GMP version number, as a null-terminated string, in the form - "i.j.k". This release is "6.2.1". Note that the format "i.j" was - used, before version 4.3.0, when k was zero. - - -- Macro: __GMP_CC - -- Macro: __GMP_CFLAGS - The compiler and compiler flags, respectively, used when compiling - GMP, as strings. - - -File: gmp.info, Node: Compatibility with older versions, Next: Demonstration Programs, Prev: Useful Macros and Constants, Up: GMP Basics - -3.9 Compatibility with older versions -===================================== - -This version of GMP is upwardly binary compatible with all 5.x, 4.x, and -3.x versions, and upwardly compatible at the source level with all 2.x -versions, with the following exceptions. - - * 'mpn_gcd' had its source arguments swapped as of GMP 3.0, for - consistency with other 'mpn' functions. - - * 'mpf_get_prec' counted precision slightly differently in GMP 3.0 - and 3.0.1, but in 3.1 reverted to the 2.x style. - - * 'mpn_bdivmod', documented as preliminary in GMP 4, has been - removed. - - There are a number of compatibility issues between GMP 1 and GMP 2 -that of course also apply when porting applications from GMP 1 to GMP 5. -Please see the GMP 2 manual for details. - - -File: gmp.info, Node: Demonstration Programs, Next: Efficiency, Prev: Compatibility with older versions, Up: GMP Basics - -3.10 Demonstration programs -=========================== - -The 'demos' subdirectory has some sample programs using GMP. These -aren't built or installed, but there's a 'Makefile' with rules for them. -For instance, - - make pexpr - ./pexpr 68^975+10 - -The following programs are provided - - * 'pexpr' is an expression evaluator, the program used on the GMP web - page. - * The 'calc' subdirectory has a similar but simpler evaluator using - 'lex' and 'yacc'. - * The 'expr' subdirectory is yet another expression evaluator, a - library designed for ease of use within a C program. See - 'demos/expr/README' for more information. - * 'factorize' is a Pollard-Rho factorization program. - * 'isprime' is a command-line interface to the 'mpz_probab_prime_p' - function. - * 'primes' counts or lists primes in an interval, using a sieve. - * 'qcn' is an example use of 'mpz_kronecker_ui' to estimate quadratic - class numbers. - * The 'perl' subdirectory is a comprehensive perl interface to GMP. - See 'demos/perl/INSTALL' for more information. Documentation is in - POD format in 'demos/perl/GMP.pm'. - - As an aside, consideration has been given at various times to some -sort of expression evaluation within the main GMP library. Going beyond -something minimal quickly leads to matters like user-defined functions, -looping, fixnums for control variables, etc, which are considered -outside the scope of GMP (much closer to language interpreters or -compilers, *Note Language Bindings::.) Something simple for program -input convenience may yet be a possibility, a combination of the 'expr' -demo and the 'pexpr' tree back-end perhaps. But for now the above -evaluators are offered as illustrations. - - -File: gmp.info, Node: Efficiency, Next: Debugging, Prev: Demonstration Programs, Up: GMP Basics - -3.11 Efficiency -=============== - -Small Operands - On small operands, the time for function call overheads and memory - allocation can be significant in comparison to actual calculation. - This is unavoidable in a general purpose variable precision - library, although GMP attempts to be as efficient as it can on both - large and small operands. - -Static Linking - On some CPUs, in particular the x86s, the static 'libgmp.a' should - be used for maximum speed, since the PIC code in the shared - 'libgmp.so' will have a small overhead on each function call and - global data address. For many programs this will be insignificant, - but for long calculations there's a gain to be had. - -Initializing and Clearing - Avoid excessive initializing and clearing of variables, since this - can be quite time consuming, especially in comparison to otherwise - fast operations like addition. - - A language interpreter might want to keep a free list or stack of - initialized variables ready for use. It should be possible to - integrate something like that with a garbage collector too. - -Reallocations - An 'mpz_t' or 'mpq_t' variable used to hold successively increasing - values will have its memory repeatedly 'realloc'ed, which could be - quite slow or could fragment memory, depending on the C library. - If an application can estimate the final size then 'mpz_init2' or - 'mpz_realloc2' can be called to allocate the necessary space from - the beginning (*note Initializing Integers::). - - It doesn't matter if a size set with 'mpz_init2' or 'mpz_realloc2' - is too small, since all functions will do a further reallocation if - necessary. Badly overestimating memory required will waste space - though. - -'2exp' Functions - It's up to an application to call functions like 'mpz_mul_2exp' - when appropriate. General purpose functions like 'mpz_mul' make no - attempt to identify powers of two or other special forms, because - such inputs will usually be very rare and testing every time would - be wasteful. - -'ui' and 'si' Functions - The 'ui' functions and the small number of 'si' functions exist for - convenience and should be used where applicable. But if for - example an 'mpz_t' contains a value that fits in an 'unsigned long' - there's no need extract it and call a 'ui' function, just use the - regular 'mpz' function. - -In-Place Operations - 'mpz_abs', 'mpq_abs', 'mpf_abs', 'mpz_neg', 'mpq_neg' and 'mpf_neg' - are fast when used for in-place operations like 'mpz_abs(x,x)', - since in the current implementation only a single field of 'x' - needs changing. On suitable compilers (GCC for instance) this is - inlined too. - - 'mpz_add_ui', 'mpz_sub_ui', 'mpf_add_ui' and 'mpf_sub_ui' benefit - from an in-place operation like 'mpz_add_ui(x,x,y)', since usually - only one or two limbs of 'x' will need to be changed. The same - applies to the full precision 'mpz_add' etc if 'y' is small. If - 'y' is big then cache locality may be helped, but that's all. - - 'mpz_mul' is currently the opposite, a separate destination is - slightly better. A call like 'mpz_mul(x,x,y)' will, unless 'y' is - only one limb, make a temporary copy of 'x' before forming the - result. Normally that copying will only be a tiny fraction of the - time for the multiply, so this is not a particularly important - consideration. - - 'mpz_set', 'mpq_set', 'mpq_set_num', 'mpf_set', etc, make no - attempt to recognise a copy of something to itself, so a call like - 'mpz_set(x,x)' will be wasteful. Naturally that would never be - written deliberately, but if it might arise from two pointers to - the same object then a test to avoid it might be desirable. - - if (x != y) - mpz_set (x, y); - - Note that it's never worth introducing extra 'mpz_set' calls just - to get in-place operations. If a result should go to a particular - variable then just direct it there and let GMP take care of data - movement. - -Divisibility Testing (Small Integers) - 'mpz_divisible_ui_p' and 'mpz_congruent_ui_p' are the best - functions for testing whether an 'mpz_t' is divisible by an - individual small integer. They use an algorithm which is faster - than 'mpz_tdiv_ui', but which gives no useful information about the - actual remainder, only whether it's zero (or a particular value). - - However when testing divisibility by several small integers, it's - best to take a remainder modulo their product, to save - multi-precision operations. For instance to test whether a number - is divisible by any of 23, 29 or 31 take a remainder modulo - 23*29*31 = 20677 and then test that. - - The division functions like 'mpz_tdiv_q_ui' which give a quotient - as well as a remainder are generally a little slower than the - remainder-only functions like 'mpz_tdiv_ui'. If the quotient is - only rarely wanted then it's probably best to just take a remainder - and then go back and calculate the quotient if and when it's wanted - ('mpz_divexact_ui' can be used if the remainder is zero). - -Rational Arithmetic - The 'mpq' functions operate on 'mpq_t' values with no common - factors in the numerator and denominator. Common factors are - checked-for and cast out as necessary. In general, cancelling - factors every time is the best approach since it minimizes the - sizes for subsequent operations. - - However, applications that know something about the factorization - of the values they're working with might be able to avoid some of - the GCDs used for canonicalization, or swap them for divisions. - For example when multiplying by a prime it's enough to check for - factors of it in the denominator instead of doing a full GCD. Or - when forming a big product it might be known that very little - cancellation will be possible, and so canonicalization can be left - to the end. - - The 'mpq_numref' and 'mpq_denref' macros give access to the - numerator and denominator to do things outside the scope of the - supplied 'mpq' functions. *Note Applying Integer Functions::. - - The canonical form for rationals allows mixed-type 'mpq_t' and - integer additions or subtractions to be done directly with - multiples of the denominator. This will be somewhat faster than - 'mpq_add'. For example, - - /* mpq increment */ - mpz_add (mpq_numref(q), mpq_numref(q), mpq_denref(q)); - - /* mpq += unsigned long */ - mpz_addmul_ui (mpq_numref(q), mpq_denref(q), 123UL); - - /* mpq -= mpz */ - mpz_submul (mpq_numref(q), mpq_denref(q), z); - -Number Sequences - Functions like 'mpz_fac_ui', 'mpz_fib_ui' and 'mpz_bin_uiui' are - designed for calculating isolated values. If a range of values is - wanted it's probably best to get a starting point and iterate from - there. - -Text Input/Output - Hexadecimal or octal are suggested for input or output in text - form. Power-of-2 bases like these can be converted much more - efficiently than other bases, like decimal. For big numbers - there's usually nothing of particular interest to be seen in the - digits, so the base doesn't matter much. - - Maybe we can hope octal will one day become the normal base for - everyday use, as proposed by King Charles XII of Sweden and later - reformers. - - -File: gmp.info, Node: Debugging, Next: Profiling, Prev: Efficiency, Up: GMP Basics - -3.12 Debugging -============== - -Stack Overflow - Depending on the system, a segmentation violation or bus error - might be the only indication of stack overflow. See - '--enable-alloca' choices in *note Build Options::, for how to - address this. - - In new enough versions of GCC, '-fstack-check' may be able to - ensure an overflow is recognised by the system before too much - damage is done, or '-fstack-limit-symbol' or - '-fstack-limit-register' may be able to add checking if the system - itself doesn't do any (*note Options for Code Generation: (gcc)Code - Gen Options.). These options must be added to the 'CFLAGS' used in - the GMP build (*note Build Options::), adding them just to an - application will have no effect. Note also they're a slowdown, - adding overhead to each function call and each stack allocation. - -Heap Problems - The most likely cause of application problems with GMP is heap - corruption. Failing to 'init' GMP variables will have - unpredictable effects, and corruption arising elsewhere in a - program may well affect GMP. Initializing GMP variables more than - once or failing to clear them will cause memory leaks. - - In all such cases a 'malloc' debugger is recommended. On a GNU or - BSD system the standard C library 'malloc' has some diagnostic - facilities, see *note Allocation Debugging: (libc)Allocation - Debugging, or 'man 3 malloc'. Other possibilities, in no - particular order, include - - - - - - The GMP default allocation routines in 'memory.c' also have a - simple sentinel scheme which can be enabled with '#define DEBUG' in - that file. This is mainly designed for detecting buffer overruns - during GMP development, but might find other uses. - -Stack Backtraces - On some systems the compiler options GMP uses by default can - interfere with debugging. In particular on x86 and 68k systems - '-fomit-frame-pointer' is used and this generally inhibits stack - backtracing. Recompiling without such options may help while - debugging, though the usual caveats about it potentially moving a - memory problem or hiding a compiler bug will apply. - -GDB, the GNU Debugger - A sample '.gdbinit' is included in the distribution, showing how to - call some undocumented dump functions to print GMP variables from - within GDB. Note that these functions shouldn't be used in final - application code since they're undocumented and may be subject to - incompatible changes in future versions of GMP. - -Source File Paths - GMP has multiple source files with the same name, in different - directories. For example 'mpz', 'mpq' and 'mpf' each have an - 'init.c'. If the debugger can't already determine the right one it - may help to build with absolute paths on each C file. One way to - do that is to use a separate object directory with an absolute path - to the source directory. - - cd /my/build/dir - /my/source/dir/gmp-6.2.1/configure - - This works via 'VPATH', and might require GNU 'make'. Alternately - it might be possible to change the '.c.lo' rules appropriately. - -Assertion Checking - The build option '--enable-assert' is available to add some - consistency checks to the library (see *note Build Options::). - These are likely to be of limited value to most applications. - Assertion failures are just as likely to indicate memory corruption - as a library or compiler bug. - - Applications using the low-level 'mpn' functions, however, will - benefit from '--enable-assert' since it adds checks on the - parameters of most such functions, many of which have subtle - restrictions on their usage. Note however that only the generic C - code has checks, not the assembly code, so '--disable-assembly' - should be used for maximum checking. - -Temporary Memory Checking - The build option '--enable-alloca=debug' arranges that each block - of temporary memory in GMP is allocated with a separate call to - 'malloc' (or the allocation function set with - 'mp_set_memory_functions'). - - This can help a malloc debugger detect accesses outside the - intended bounds, or detect memory not released. In a normal build, - on the other hand, temporary memory is allocated in blocks which - GMP divides up for its own use, or may be allocated with a compiler - builtin 'alloca' which will go nowhere near any malloc debugger - hooks. - -Maximum Debuggability - To summarize the above, a GMP build for maximum debuggability would - be - - ./configure --disable-shared --enable-assert \ - --enable-alloca=debug --disable-assembly CFLAGS=-g - - For C++, add '--enable-cxx CXXFLAGS=-g'. - -Checker - The GCC checker () - can be used with GMP. It contains a stub library which means GMP - applications compiled with checker can use a normal GMP build. - - A build of GMP with checking within GMP itself can be made. This - will run very very slowly. On GNU/Linux for example, - - ./configure --disable-assembly CC=checkergcc - - '--disable-assembly' must be used, since the GMP assembly code - doesn't support the checking scheme. The GMP C++ features cannot - be used, since current versions of checker (0.9.9.1) don't yet - support the standard C++ library. - -Valgrind - Valgrind () is a memory checker for x86, ARM, - MIPS, PowerPC, and S/390. It translates and emulates machine - instructions to do strong checks for uninitialized data (at the - level of individual bits), memory accesses through bad pointers, - and memory leaks. - - Valgrind does not always support every possible instruction, in - particular ones recently added to an ISA. Valgrind might therefore - be incompatible with a recent GMP or even a less recent GMP which - is compiled using a recent GCC. - - GMP's assembly code sometimes promotes a read of the limbs to some - larger size, for efficiency. GMP will do this even at the start - and end of a multilimb operand, using naturally aligned operations - on the larger type. This may lead to benign reads outside of - allocated areas, triggering complaints from Valgrind. Valgrind's - option '--partial-loads-ok=yes' should help. - -Other Problems - Any suspected bug in GMP itself should be isolated to make sure - it's not an application problem, see *note Reporting Bugs::. - - -File: gmp.info, Node: Profiling, Next: Autoconf, Prev: Debugging, Up: GMP Basics - -3.13 Profiling -============== - -Running a program under a profiler is a good way to find where it's -spending most time and where improvements can be best sought. The -profiling choices for a GMP build are as follows. - -'--disable-profiling' - The default is to add nothing special for profiling. - - It should be possible to just compile the mainline of a program - with '-p' and use 'prof' to get a profile consisting of timer-based - sampling of the program counter. Most of the GMP assembly code has - the necessary symbol information. - - This approach has the advantage of minimizing interference with - normal program operation, but on most systems the resolution of the - sampling is quite low (10 milliseconds for instance), requiring - long runs to get accurate information. - -'--enable-profiling=prof' - Build with support for the system 'prof', which means '-p' added to - the 'CFLAGS'. - - This provides call counting in addition to program counter - sampling, which allows the most frequently called routines to be - identified, and an average time spent in each routine to be - determined. - - The x86 assembly code has support for this option, but on other - processors the assembly routines will be as if compiled without - '-p' and therefore won't appear in the call counts. - - On some systems, such as GNU/Linux, '-p' in fact means '-pg' and in - this case '--enable-profiling=gprof' described below should be used - instead. - -'--enable-profiling=gprof' - Build with support for 'gprof', which means '-pg' added to the - 'CFLAGS'. - - This provides call graph construction in addition to call counting - and program counter sampling, which makes it possible to count - calls coming from different locations. For example the number of - calls to 'mpn_mul' from 'mpz_mul' versus the number from 'mpf_mul'. - The program counter sampling is still flat though, so only a total - time in 'mpn_mul' would be accumulated, not a separate amount for - each call site. - - The x86 assembly code has support for this option, but on other - processors the assembly routines will be as if compiled without - '-pg' and therefore not be included in the call counts. - - On x86 and m68k systems '-pg' and '-fomit-frame-pointer' are - incompatible, so the latter is omitted from the default flags in - that case, which might result in poorer code generation. - - Incidentally, it should be possible to use the 'gprof' program with - a plain '--enable-profiling=prof' build. But in that case only the - 'gprof -p' flat profile and call counts can be expected to be - valid, not the 'gprof -q' call graph. - -'--enable-profiling=instrument' - Build with the GCC option '-finstrument-functions' added to the - 'CFLAGS' (*note Options for Code Generation: (gcc)Code Gen - Options.). - - This inserts special instrumenting calls at the start and end of - each function, allowing exact timing and full call graph - construction. - - This instrumenting is not normally a standard system feature and - will require support from an external library, such as - - - - This should be included in 'LIBS' during the GMP configure so that - test programs will link. For example, - - ./configure --enable-profiling=instrument LIBS=-lfc - - On a GNU system the C library provides dummy instrumenting - functions, so programs compiled with this option will link. In - this case it's only necessary to ensure the correct library is - added when linking an application. - - The x86 assembly code supports this option, but on other processors - the assembly routines will be as if compiled without - '-finstrument-functions' meaning time spent in them will - effectively be attributed to their caller. - - -File: gmp.info, Node: Autoconf, Next: Emacs, Prev: Profiling, Up: GMP Basics - -3.14 Autoconf -============= - -Autoconf based applications can easily check whether GMP is installed. -The only thing to be noted is that GMP library symbols from version 3 -onwards have prefixes like '__gmpz'. The following therefore would be a -simple test, - - AC_CHECK_LIB(gmp, __gmpz_init) - - This just uses the default 'AC_CHECK_LIB' actions for found or not -found, but an application that must have GMP would want to generate an -error if not found. For example, - - AC_CHECK_LIB(gmp, __gmpz_init, , - [AC_MSG_ERROR([GNU MP not found, see https://gmplib.org/])]) - - If functions added in some particular version of GMP are required, -then one of those can be used when checking. For example 'mpz_mul_si' -was added in GMP 3.1, - - AC_CHECK_LIB(gmp, __gmpz_mul_si, , - [AC_MSG_ERROR( - [GNU MP not found, or not 3.1 or up, see https://gmplib.org/])]) - - An alternative would be to test the version number in 'gmp.h' using -say 'AC_EGREP_CPP'. That would make it possible to test the exact -version, if some particular sub-minor release is known to be necessary. - - In general it's recommended that applications should simply demand a -new enough GMP rather than trying to provide supplements for features -not available in past versions. - - Occasionally an application will need or want to know the size of a -type at configuration or preprocessing time, not just with 'sizeof' in -the code. This can be done in the normal way with 'mp_limb_t' etc, but -GMP 4.0 or up is best for this, since prior versions needed certain '-D' -defines on systems using a 'long long' limb. The following would suit -Autoconf 2.50 or up, - - AC_CHECK_SIZEOF(mp_limb_t, , [#include ]) - - -File: gmp.info, Node: Emacs, Prev: Autoconf, Up: GMP Basics - -3.15 Emacs -========== - - ('info-lookup-symbol') is a good way to find documentation on -C functions while editing (*note Info Documentation Lookup: (emacs)Info -Lookup.). - - The GMP manual can be included in such lookups by putting the -following in your '.emacs', - - (eval-after-load "info-look" - '(let ((mode-value (assoc 'c-mode (assoc 'symbol info-lookup-alist)))) - (setcar (nthcdr 3 mode-value) - (cons '("(gmp)Function Index" nil "^ -.* " "\\>") - (nth 3 mode-value))))) - - -File: gmp.info, Node: Reporting Bugs, Next: Integer Functions, Prev: GMP Basics, Up: Top - -4 Reporting Bugs -**************** - -If you think you have found a bug in the GMP library, please investigate -it and report it. We have made this library available to you, and it is -not too much to ask you to report the bugs you find. - - Before you report a bug, check it's not already addressed in *note -Known Build Problems::, or perhaps *note Notes for Particular Systems::. -You may also want to check for patches for this -release. - - Please include the following in any report, - - * The GMP version number, and if pre-packaged or patched then say so. - - * A test program that makes it possible for us to reproduce the bug. - Include instructions on how to run the program. - - * A description of what is wrong. If the results are incorrect, in - what way. If you get a crash, say so. - - * If you get a crash, include a stack backtrace from the debugger if - it's informative ('where' in 'gdb', or '$C' in 'adb'). - - * Please do not send core dumps, executables or 'strace's. - - * The 'configure' options you used when building GMP, if any. - - * The output from 'configure', as printed to stdout, with any options - used. - - * The name of the compiler and its version. For 'gcc', get the - version with 'gcc -v', otherwise perhaps 'what `which cc`', or - similar. - - * The output from running 'uname -a'. - - * The output from running './config.guess', and from running - './configfsf.guess' (might be the same). - - * If the bug is related to 'configure', then the compressed contents - of 'config.log'. - - * If the bug is related to an 'asm' file not assembling, then the - contents of 'config.m4' and the offending line or lines from the - temporary 'mpn/tmp-.s'. - - Please make an effort to produce a self-contained report, with -something definite that can be tested or debugged. Vague queries or -piecemeal messages are difficult to act on and don't help the -development effort. - - It is not uncommon that an observed problem is actually due to a bug -in the compiler; the GMP code tends to explore interesting corners in -compilers. - - If your bug report is good, we will do our best to help you get a -corrected version of the library; if the bug report is poor, we won't do -anything about it (except maybe ask you to send a better report). - - Send your report to: . - - If you think something in this manual is unclear, or downright -incorrect, or if the language needs to be improved, please send a note -to the same address. - - -File: gmp.info, Node: Integer Functions, Next: Rational Number Functions, Prev: Reporting Bugs, Up: Top - -5 Integer Functions -******************* - -This chapter describes the GMP functions for performing integer -arithmetic. These functions start with the prefix 'mpz_'. - - GMP integers are stored in objects of type 'mpz_t'. - -* Menu: - -* Initializing Integers:: -* Assigning Integers:: -* Simultaneous Integer Init & Assign:: -* Converting Integers:: -* Integer Arithmetic:: -* Integer Division:: -* Integer Exponentiation:: -* Integer Roots:: -* Number Theoretic Functions:: -* Integer Comparisons:: -* Integer Logic and Bit Fiddling:: -* I/O of Integers:: -* Integer Random Numbers:: -* Integer Import and Export:: -* Miscellaneous Integer Functions:: -* Integer Special Functions:: - - -File: gmp.info, Node: Initializing Integers, Next: Assigning Integers, Prev: Integer Functions, Up: Integer Functions - -5.1 Initialization Functions -============================ - -The functions for integer arithmetic assume that all integer objects are -initialized. You do that by calling the function 'mpz_init'. For -example, - - { - mpz_t integ; - mpz_init (integ); - ... - mpz_add (integ, ...); - ... - mpz_sub (integ, ...); - - /* Unless the program is about to exit, do ... */ - mpz_clear (integ); - } - - As you can see, you can store new values any number of times, once an -object is initialized. - - -- Function: void mpz_init (mpz_t X) - Initialize X, and set its value to 0. - - -- Function: void mpz_inits (mpz_t X, ...) - Initialize a NULL-terminated list of 'mpz_t' variables, and set - their values to 0. - - -- Function: void mpz_init2 (mpz_t X, mp_bitcnt_t N) - Initialize X, with space for N-bit numbers, and set its value to 0. - Calling this function instead of 'mpz_init' or 'mpz_inits' is never - necessary; reallocation is handled automatically by GMP when - needed. - - While N defines the initial space, X will grow automatically in the - normal way, if necessary, for subsequent values stored. - 'mpz_init2' makes it possible to avoid such reallocations if a - maximum size is known in advance. - - In preparation for an operation, GMP often allocates one limb more - than ultimately needed. To make sure GMP will not perform - reallocation for X, you need to add the number of bits in - 'mp_limb_t' to N. - - -- Function: void mpz_clear (mpz_t X) - Free the space occupied by X. Call this function for all 'mpz_t' - variables when you are done with them. - - -- Function: void mpz_clears (mpz_t X, ...) - Free the space occupied by a NULL-terminated list of 'mpz_t' - variables. - - -- Function: void mpz_realloc2 (mpz_t X, mp_bitcnt_t N) - Change the space allocated for X to N bits. The value in X is - preserved if it fits, or is set to 0 if not. - - Calling this function is never necessary; reallocation is handled - automatically by GMP when needed. But this function can be used to - increase the space for a variable in order to avoid repeated - automatic reallocations, or to decrease it to give memory back to - the heap. - - -File: gmp.info, Node: Assigning Integers, Next: Simultaneous Integer Init & Assign, Prev: Initializing Integers, Up: Integer Functions - -5.2 Assignment Functions -======================== - -These functions assign new values to already initialized integers (*note -Initializing Integers::). - - -- Function: void mpz_set (mpz_t ROP, const mpz_t OP) - -- Function: void mpz_set_ui (mpz_t ROP, unsigned long int OP) - -- Function: void mpz_set_si (mpz_t ROP, signed long int OP) - -- Function: void mpz_set_d (mpz_t ROP, double OP) - -- Function: void mpz_set_q (mpz_t ROP, const mpq_t OP) - -- Function: void mpz_set_f (mpz_t ROP, const mpf_t OP) - Set the value of ROP from OP. - - 'mpz_set_d', 'mpz_set_q' and 'mpz_set_f' truncate OP to make it an - integer. - - -- Function: int mpz_set_str (mpz_t ROP, const char *STR, int BASE) - Set the value of ROP from STR, a null-terminated C string in base - BASE. White space is allowed in the string, and is simply ignored. - - The BASE may vary from 2 to 62, or if BASE is 0, then the leading - characters are used: '0x' and '0X' for hexadecimal, '0b' and '0B' - for binary, '0' for octal, or decimal otherwise. - - For bases up to 36, case is ignored; upper-case and lower-case - letters have the same value. For bases 37 to 62, upper-case letter - represent the usual 10..35 while lower-case letter represent - 36..61. - - This function returns 0 if the entire string is a valid number in - base BASE. Otherwise it returns -1. - - -- Function: void mpz_swap (mpz_t ROP1, mpz_t ROP2) - Swap the values ROP1 and ROP2 efficiently. - - -File: gmp.info, Node: Simultaneous Integer Init & Assign, Next: Converting Integers, Prev: Assigning Integers, Up: Integer Functions - -5.3 Combined Initialization and Assignment Functions -==================================================== - -For convenience, GMP provides a parallel series of initialize-and-set -functions which initialize the output and then store the value there. -These functions' names have the form 'mpz_init_set...' - - Here is an example of using one: - - { - mpz_t pie; - mpz_init_set_str (pie, "3141592653589793238462643383279502884", 10); - ... - mpz_sub (pie, ...); - ... - mpz_clear (pie); - } - -Once the integer has been initialized by any of the 'mpz_init_set...' -functions, it can be used as the source or destination operand for the -ordinary integer functions. Don't use an initialize-and-set function on -a variable already initialized! - - -- Function: void mpz_init_set (mpz_t ROP, const mpz_t OP) - -- Function: void mpz_init_set_ui (mpz_t ROP, unsigned long int OP) - -- Function: void mpz_init_set_si (mpz_t ROP, signed long int OP) - -- Function: void mpz_init_set_d (mpz_t ROP, double OP) - Initialize ROP with limb space and set the initial numeric value - from OP. - - -- Function: int mpz_init_set_str (mpz_t ROP, const char *STR, int - BASE) - Initialize ROP and set its value like 'mpz_set_str' (see its - documentation above for details). - - If the string is a correct base BASE number, the function returns - 0; if an error occurs it returns -1. ROP is initialized even if an - error occurs. (I.e., you have to call 'mpz_clear' for it.) - - -File: gmp.info, Node: Converting Integers, Next: Integer Arithmetic, Prev: Simultaneous Integer Init & Assign, Up: Integer Functions - -5.4 Conversion Functions -======================== - -This section describes functions for converting GMP integers to standard -C types. Functions for converting _to_ GMP integers are described in -*note Assigning Integers:: and *note I/O of Integers::. - - -- Function: unsigned long int mpz_get_ui (const mpz_t OP) - Return the value of OP as an 'unsigned long'. - - If OP is too big to fit an 'unsigned long' then just the least - significant bits that do fit are returned. The sign of OP is - ignored, only the absolute value is used. - - -- Function: signed long int mpz_get_si (const mpz_t OP) - If OP fits into a 'signed long int' return the value of OP. - Otherwise return the least significant part of OP, with the same - sign as OP. - - If OP is too big to fit in a 'signed long int', the returned result - is probably not very useful. To find out if the value will fit, - use the function 'mpz_fits_slong_p'. - - -- Function: double mpz_get_d (const mpz_t OP) - Convert OP to a 'double', truncating if necessary (i.e. rounding - towards zero). - - If the exponent from the conversion is too big, the result is - system dependent. An infinity is returned where available. A - hardware overflow trap may or may not occur. - - -- Function: double mpz_get_d_2exp (signed long int *EXP, const mpz_t - OP) - Convert OP to a 'double', truncating if necessary (i.e. rounding - towards zero), and returning the exponent separately. - - The return value is in the range 0.5<=abs(D)<1 and the exponent is - stored to '*EXP'. D * 2^EXP is the (truncated) OP value. If OP is - zero, the return is 0.0 and 0 is stored to '*EXP'. - - This is similar to the standard C 'frexp' function (*note - (libc)Normalization Functions::). - - -- Function: char * mpz_get_str (char *STR, int BASE, const mpz_t OP) - Convert OP to a string of digits in base BASE. The base argument - may vary from 2 to 62 or from -2 to -36. - - For BASE in the range 2..36, digits and lower-case letters are - used; for -2..-36, digits and upper-case letters are used; for - 37..62, digits, upper-case letters, and lower-case letters (in that - significance order) are used. - - If STR is 'NULL', the result string is allocated using the current - allocation function (*note Custom Allocation::). The block will be - 'strlen(str)+1' bytes, that being exactly enough for the string and - null-terminator. - - If STR is not 'NULL', it should point to a block of storage large - enough for the result, that being 'mpz_sizeinbase (OP, BASE) + 2'. - The two extra bytes are for a possible minus sign, and the - null-terminator. - - A pointer to the result string is returned, being either the - allocated block, or the given STR. - - -File: gmp.info, Node: Integer Arithmetic, Next: Integer Division, Prev: Converting Integers, Up: Integer Functions - -5.5 Arithmetic Functions -======================== - - -- Function: void mpz_add (mpz_t ROP, const mpz_t OP1, const mpz_t OP2) - -- Function: void mpz_add_ui (mpz_t ROP, const mpz_t OP1, unsigned long - int OP2) - Set ROP to OP1 + OP2. - - -- Function: void mpz_sub (mpz_t ROP, const mpz_t OP1, const mpz_t OP2) - -- Function: void mpz_sub_ui (mpz_t ROP, const mpz_t OP1, unsigned long - int OP2) - -- Function: void mpz_ui_sub (mpz_t ROP, unsigned long int OP1, const - mpz_t OP2) - Set ROP to OP1 - OP2. - - -- Function: void mpz_mul (mpz_t ROP, const mpz_t OP1, const mpz_t OP2) - -- Function: void mpz_mul_si (mpz_t ROP, const mpz_t OP1, long int OP2) - -- Function: void mpz_mul_ui (mpz_t ROP, const mpz_t OP1, unsigned long - int OP2) - Set ROP to OP1 times OP2. - - -- Function: void mpz_addmul (mpz_t ROP, const mpz_t OP1, const mpz_t - OP2) - -- Function: void mpz_addmul_ui (mpz_t ROP, const mpz_t OP1, unsigned - long int OP2) - Set ROP to ROP + OP1 times OP2. - - -- Function: void mpz_submul (mpz_t ROP, const mpz_t OP1, const mpz_t - OP2) - -- Function: void mpz_submul_ui (mpz_t ROP, const mpz_t OP1, unsigned - long int OP2) - Set ROP to ROP - OP1 times OP2. - - -- Function: void mpz_mul_2exp (mpz_t ROP, const mpz_t OP1, mp_bitcnt_t - OP2) - Set ROP to OP1 times 2 raised to OP2. This operation can also be - defined as a left shift by OP2 bits. - - -- Function: void mpz_neg (mpz_t ROP, const mpz_t OP) - Set ROP to -OP. - - -- Function: void mpz_abs (mpz_t ROP, const mpz_t OP) - Set ROP to the absolute value of OP. - - -File: gmp.info, Node: Integer Division, Next: Integer Exponentiation, Prev: Integer Arithmetic, Up: Integer Functions - -5.6 Division Functions -====================== - -Division is undefined if the divisor is zero. Passing a zero divisor to -the division or modulo functions (including the modular powering -functions 'mpz_powm' and 'mpz_powm_ui'), will cause an intentional -division by zero. This lets a program handle arithmetic exceptions in -these functions the same way as for normal C 'int' arithmetic. - - -- Function: void mpz_cdiv_q (mpz_t Q, const mpz_t N, const mpz_t D) - -- Function: void mpz_cdiv_r (mpz_t R, const mpz_t N, const mpz_t D) - -- Function: void mpz_cdiv_qr (mpz_t Q, mpz_t R, const mpz_t N, const - mpz_t D) - - -- Function: unsigned long int mpz_cdiv_q_ui (mpz_t Q, const mpz_t N, - unsigned long int D) - -- Function: unsigned long int mpz_cdiv_r_ui (mpz_t R, const mpz_t N, - unsigned long int D) - -- Function: unsigned long int mpz_cdiv_qr_ui (mpz_t Q, mpz_t R, - const mpz_t N, unsigned long int D) - -- Function: unsigned long int mpz_cdiv_ui (const mpz_t N, - unsigned long int D) - - -- Function: void mpz_cdiv_q_2exp (mpz_t Q, const mpz_t N, - mp_bitcnt_t B) - -- Function: void mpz_cdiv_r_2exp (mpz_t R, const mpz_t N, - mp_bitcnt_t B) - - -- Function: void mpz_fdiv_q (mpz_t Q, const mpz_t N, const mpz_t D) - -- Function: void mpz_fdiv_r (mpz_t R, const mpz_t N, const mpz_t D) - -- Function: void mpz_fdiv_qr (mpz_t Q, mpz_t R, const mpz_t N, const - mpz_t D) - - -- Function: unsigned long int mpz_fdiv_q_ui (mpz_t Q, const mpz_t N, - unsigned long int D) - -- Function: unsigned long int mpz_fdiv_r_ui (mpz_t R, const mpz_t N, - unsigned long int D) - -- Function: unsigned long int mpz_fdiv_qr_ui (mpz_t Q, mpz_t R, - const mpz_t N, unsigned long int D) - -- Function: unsigned long int mpz_fdiv_ui (const mpz_t N, - unsigned long int D) - - -- Function: void mpz_fdiv_q_2exp (mpz_t Q, const mpz_t N, - mp_bitcnt_t B) - -- Function: void mpz_fdiv_r_2exp (mpz_t R, const mpz_t N, - mp_bitcnt_t B) - - -- Function: void mpz_tdiv_q (mpz_t Q, const mpz_t N, const mpz_t D) - -- Function: void mpz_tdiv_r (mpz_t R, const mpz_t N, const mpz_t D) - -- Function: void mpz_tdiv_qr (mpz_t Q, mpz_t R, const mpz_t N, const - mpz_t D) - - -- Function: unsigned long int mpz_tdiv_q_ui (mpz_t Q, const mpz_t N, - unsigned long int D) - -- Function: unsigned long int mpz_tdiv_r_ui (mpz_t R, const mpz_t N, - unsigned long int D) - -- Function: unsigned long int mpz_tdiv_qr_ui (mpz_t Q, mpz_t R, - const mpz_t N, unsigned long int D) - -- Function: unsigned long int mpz_tdiv_ui (const mpz_t N, - unsigned long int D) - - -- Function: void mpz_tdiv_q_2exp (mpz_t Q, const mpz_t N, - mp_bitcnt_t B) - -- Function: void mpz_tdiv_r_2exp (mpz_t R, const mpz_t N, - mp_bitcnt_t B) - - - Divide N by D, forming a quotient Q and/or remainder R. For the - '2exp' functions, D=2^B. The rounding is in three styles, each - suiting different applications. - - * 'cdiv' rounds Q up towards +infinity, and R will have the - opposite sign to D. The 'c' stands for "ceil". - - * 'fdiv' rounds Q down towards -infinity, and R will have the - same sign as D. The 'f' stands for "floor". - - * 'tdiv' rounds Q towards zero, and R will have the same sign as - N. The 't' stands for "truncate". - - In all cases Q and R will satisfy N=Q*D+R, and R will satisfy - 0<=abs(R) 0 and that MOD is odd. - - This function is designed to take the same time and have the same - cache access patterns for any two same-size arguments, assuming - that function arguments are placed at the same position and that - the machine state is identical upon function entry. This function - is intended for cryptographic purposes, where resilience to - side-channel attacks is desired. - - -- Function: void mpz_pow_ui (mpz_t ROP, const mpz_t BASE, unsigned - long int EXP) - -- Function: void mpz_ui_pow_ui (mpz_t ROP, unsigned long int BASE, - unsigned long int EXP) - Set ROP to BASE raised to EXP. The case 0^0 yields 1. - - -File: gmp.info, Node: Integer Roots, Next: Number Theoretic Functions, Prev: Integer Exponentiation, Up: Integer Functions - -5.8 Root Extraction Functions -============================= - - -- Function: int mpz_root (mpz_t ROP, const mpz_t OP, unsigned long int - N) - Set ROP to the truncated integer part of the Nth root of OP. - Return non-zero if the computation was exact, i.e., if OP is ROP to - the Nth power. - - -- Function: void mpz_rootrem (mpz_t ROOT, mpz_t REM, const mpz_t U, - unsigned long int N) - Set ROOT to the truncated integer part of the Nth root of U. Set - REM to the remainder, U-ROOT**N. - - -- Function: void mpz_sqrt (mpz_t ROP, const mpz_t OP) - Set ROP to the truncated integer part of the square root of OP. - - -- Function: void mpz_sqrtrem (mpz_t ROP1, mpz_t ROP2, const mpz_t OP) - Set ROP1 to the truncated integer part of the square root of OP, - like 'mpz_sqrt'. Set ROP2 to the remainder OP-ROP1*ROP1, which - will be zero if OP is a perfect square. - - If ROP1 and ROP2 are the same variable, the results are undefined. - - -- Function: int mpz_perfect_power_p (const mpz_t OP) - Return non-zero if OP is a perfect power, i.e., if there exist - integers A and B, with B>1, such that OP equals A raised to the - power B. - - Under this definition both 0 and 1 are considered to be perfect - powers. Negative values of OP are accepted, but of course can only - be odd perfect powers. - - -- Function: int mpz_perfect_square_p (const mpz_t OP) - Return non-zero if OP is a perfect square, i.e., if the square root - of OP is an integer. Under this definition both 0 and 1 are - considered to be perfect squares. - - -File: gmp.info, Node: Number Theoretic Functions, Next: Integer Comparisons, Prev: Integer Roots, Up: Integer Functions - -5.9 Number Theoretic Functions -============================== - - -- Function: int mpz_probab_prime_p (const mpz_t N, int REPS) - Determine whether N is prime. Return 2 if N is definitely prime, - return 1 if N is probably prime (without being certain), or return - 0 if N is definitely non-prime. - - This function performs some trial divisions, a Baillie-PSW probable - prime test, then REPS-24 Miller-Rabin probabilistic primality - tests. A higher REPS value will reduce the chances of a non-prime - being identified as "probably prime". A composite number will be - identified as a prime with an asymptotic probability of less than - 4^(-REPS). Reasonable values of REPS are between 15 and 50. - - GMP versions up to and including 6.1.2 did not use the Baillie-PSW - primality test. In those older versions of GMP, this function - performed REPS Miller-Rabin tests. - - -- Function: void mpz_nextprime (mpz_t ROP, const mpz_t OP) - Set ROP to the next prime greater than OP. - - This function uses a probabilistic algorithm to identify primes. - For practical purposes it's adequate, the chance of a composite - passing will be extremely small. - - -- Function: void mpz_gcd (mpz_t ROP, const mpz_t OP1, const mpz_t OP2) - Set ROP to the greatest common divisor of OP1 and OP2. The result - is always positive even if one or both input operands are negative. - Except if both inputs are zero; then this function defines gcd(0,0) - = 0. - - -- Function: unsigned long int mpz_gcd_ui (mpz_t ROP, const mpz_t OP1, - unsigned long int OP2) - Compute the greatest common divisor of OP1 and OP2. If ROP is not - 'NULL', store the result there. - - If the result is small enough to fit in an 'unsigned long int', it - is returned. If the result does not fit, 0 is returned, and the - result is equal to the argument OP1. Note that the result will - always fit if OP2 is non-zero. - - -- Function: void mpz_gcdext (mpz_t G, mpz_t S, mpz_t T, const mpz_t A, - const mpz_t B) - Set G to the greatest common divisor of A and B, and in addition - set S and T to coefficients satisfying A*S + B*T = G. The value in - G is always positive, even if one or both of A and B are negative - (or zero if both inputs are zero). The values in S and T are - chosen such that normally, abs(S) < abs(B) / (2 G) and abs(T) < - abs(A) / (2 G), and these relations define S and T uniquely. There - are a few exceptional cases: - - If abs(A) = abs(B), then S = 0, T = sgn(B). - - Otherwise, S = sgn(A) if B = 0 or abs(B) = 2 G, and T = sgn(B) if A - = 0 or abs(A) = 2 G. - - In all cases, S = 0 if and only if G = abs(B), i.e., if B divides A - or A = B = 0. - - If T or G is 'NULL' then that value is not computed. - - -- Function: void mpz_lcm (mpz_t ROP, const mpz_t OP1, const mpz_t OP2) - -- Function: void mpz_lcm_ui (mpz_t ROP, const mpz_t OP1, unsigned long - OP2) - Set ROP to the least common multiple of OP1 and OP2. ROP is always - positive, irrespective of the signs of OP1 and OP2. ROP will be - zero if either OP1 or OP2 is zero. - - -- Function: int mpz_invert (mpz_t ROP, const mpz_t OP1, const mpz_t - OP2) - Compute the inverse of OP1 modulo OP2 and put the result in ROP. - If the inverse exists, the return value is non-zero and ROP will - satisfy 0 <= ROP < abs(OP2) (with ROP = 0 possible only when - abs(OP2) = 1, i.e., in the somewhat degenerate zero ring). If an - inverse doesn't exist the return value is zero and ROP is - undefined. The behaviour of this function is undefined when OP2 is - zero. - - -- Function: int mpz_jacobi (const mpz_t A, const mpz_t B) - Calculate the Jacobi symbol (A/B). This is defined only for B odd. - - -- Function: int mpz_legendre (const mpz_t A, const mpz_t P) - Calculate the Legendre symbol (A/P). This is defined only for P an - odd positive prime, and for such P it's identical to the Jacobi - symbol. - - -- Function: int mpz_kronecker (const mpz_t A, const mpz_t B) - -- Function: int mpz_kronecker_si (const mpz_t A, long B) - -- Function: int mpz_kronecker_ui (const mpz_t A, unsigned long B) - -- Function: int mpz_si_kronecker (long A, const mpz_t B) - -- Function: int mpz_ui_kronecker (unsigned long A, const mpz_t B) - Calculate the Jacobi symbol (A/B) with the Kronecker extension - (a/2)=(2/a) when a odd, or (a/2)=0 when a even. - - When B is odd the Jacobi symbol and Kronecker symbol are identical, - so 'mpz_kronecker_ui' etc can be used for mixed precision Jacobi - symbols too. - - For more information see Henri Cohen section 1.4.2 (*note - References::), or any number theory textbook. See also the example - program 'demos/qcn.c' which uses 'mpz_kronecker_ui'. - - -- Function: mp_bitcnt_t mpz_remove (mpz_t ROP, const mpz_t OP, const - mpz_t F) - Remove all occurrences of the factor F from OP and store the result - in ROP. The return value is how many such occurrences were - removed. - - -- Function: void mpz_fac_ui (mpz_t ROP, unsigned long int N) - -- Function: void mpz_2fac_ui (mpz_t ROP, unsigned long int N) - -- Function: void mpz_mfac_uiui (mpz_t ROP, unsigned long int N, - unsigned long int M) - Set ROP to the factorial of N: 'mpz_fac_ui' computes the plain - factorial N!, 'mpz_2fac_ui' computes the double-factorial N!!, and - 'mpz_mfac_uiui' the M-multi-factorial N!^(M). - - -- Function: void mpz_primorial_ui (mpz_t ROP, unsigned long int N) - Set ROP to the primorial of N, i.e. the product of all positive - prime numbers <=N. - - -- Function: void mpz_bin_ui (mpz_t ROP, const mpz_t N, unsigned long - int K) - -- Function: void mpz_bin_uiui (mpz_t ROP, unsigned long int N, - unsigned long int K) - Compute the binomial coefficient N over K and store the result in - ROP. Negative values of N are supported by 'mpz_bin_ui', using the - identity bin(-n,k) = (-1)^k * bin(n+k-1,k), see Knuth volume 1 - section 1.2.6 part G. - - -- Function: void mpz_fib_ui (mpz_t FN, unsigned long int N) - -- Function: void mpz_fib2_ui (mpz_t FN, mpz_t FNSUB1, unsigned long - int N) - 'mpz_fib_ui' sets FN to to F[n], the N'th Fibonacci number. - 'mpz_fib2_ui' sets FN to F[n], and FNSUB1 to F[n-1]. - - These functions are designed for calculating isolated Fibonacci - numbers. When a sequence of values is wanted it's best to start - with 'mpz_fib2_ui' and iterate the defining F[n+1]=F[n]+F[n-1] or - similar. - - -- Function: void mpz_lucnum_ui (mpz_t LN, unsigned long int N) - -- Function: void mpz_lucnum2_ui (mpz_t LN, mpz_t LNSUB1, unsigned long - int N) - 'mpz_lucnum_ui' sets LN to to L[n], the N'th Lucas number. - 'mpz_lucnum2_ui' sets LN to L[n], and LNSUB1 to L[n-1]. - - These functions are designed for calculating isolated Lucas - numbers. When a sequence of values is wanted it's best to start - with 'mpz_lucnum2_ui' and iterate the defining L[n+1]=L[n]+L[n-1] - or similar. - - The Fibonacci numbers and Lucas numbers are related sequences, so - it's never necessary to call both 'mpz_fib2_ui' and - 'mpz_lucnum2_ui'. The formulas for going from Fibonacci to Lucas - can be found in *note Lucas Numbers Algorithm::, the reverse is - straightforward too. - - -File: gmp.info, Node: Integer Comparisons, Next: Integer Logic and Bit Fiddling, Prev: Number Theoretic Functions, Up: Integer Functions - -5.10 Comparison Functions -========================= - - -- Function: int mpz_cmp (const mpz_t OP1, const mpz_t OP2) - -- Function: int mpz_cmp_d (const mpz_t OP1, double OP2) - -- Macro: int mpz_cmp_si (const mpz_t OP1, signed long int OP2) - -- Macro: int mpz_cmp_ui (const mpz_t OP1, unsigned long int OP2) - Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero if - OP1 = OP2, or a negative value if OP1 < OP2. - - 'mpz_cmp_ui' and 'mpz_cmp_si' are macros and will evaluate their - arguments more than once. 'mpz_cmp_d' can be called with an - infinity, but results are undefined for a NaN. - - -- Function: int mpz_cmpabs (const mpz_t OP1, const mpz_t OP2) - -- Function: int mpz_cmpabs_d (const mpz_t OP1, double OP2) - -- Function: int mpz_cmpabs_ui (const mpz_t OP1, unsigned long int OP2) - Compare the absolute values of OP1 and OP2. Return a positive - value if abs(OP1) > abs(OP2), zero if abs(OP1) = abs(OP2), or a - negative value if abs(OP1) < abs(OP2). - - 'mpz_cmpabs_d' can be called with an infinity, but results are - undefined for a NaN. - - -- Macro: int mpz_sgn (const mpz_t OP) - Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0. - - This function is actually implemented as a macro. It evaluates its - argument multiple times. - - -File: gmp.info, Node: Integer Logic and Bit Fiddling, Next: I/O of Integers, Prev: Integer Comparisons, Up: Integer Functions - -5.11 Logical and Bit Manipulation Functions -=========================================== - -These functions behave as if twos complement arithmetic were used -(although sign-magnitude is the actual implementation). The least -significant bit is number 0. - - -- Function: void mpz_and (mpz_t ROP, const mpz_t OP1, const mpz_t OP2) - Set ROP to OP1 bitwise-and OP2. - - -- Function: void mpz_ior (mpz_t ROP, const mpz_t OP1, const mpz_t OP2) - Set ROP to OP1 bitwise inclusive-or OP2. - - -- Function: void mpz_xor (mpz_t ROP, const mpz_t OP1, const mpz_t OP2) - Set ROP to OP1 bitwise exclusive-or OP2. - - -- Function: void mpz_com (mpz_t ROP, const mpz_t OP) - Set ROP to the one's complement of OP. - - -- Function: mp_bitcnt_t mpz_popcount (const mpz_t OP) - If OP>=0, return the population count of OP, which is the number of - 1 bits in the binary representation. If OP<0, the number of 1s is - infinite, and the return value is the largest possible - 'mp_bitcnt_t'. - - -- Function: mp_bitcnt_t mpz_hamdist (const mpz_t OP1, const mpz_t OP2) - If OP1 and OP2 are both >=0 or both <0, return the hamming distance - between the two operands, which is the number of bit positions - where OP1 and OP2 have different bit values. If one operand is >=0 - and the other <0 then the number of bits different is infinite, and - the return value is the largest possible 'mp_bitcnt_t'. - - -- Function: mp_bitcnt_t mpz_scan0 (const mpz_t OP, mp_bitcnt_t - STARTING_BIT) - -- Function: mp_bitcnt_t mpz_scan1 (const mpz_t OP, mp_bitcnt_t - STARTING_BIT) - Scan OP, starting from bit STARTING_BIT, towards more significant - bits, until the first 0 or 1 bit (respectively) is found. Return - the index of the found bit. - - If the bit at STARTING_BIT is already what's sought, then - STARTING_BIT is returned. - - If there's no bit found, then the largest possible 'mp_bitcnt_t' is - returned. This will happen in 'mpz_scan0' past the end of a - negative number, or 'mpz_scan1' past the end of a nonnegative - number. - - -- Function: void mpz_setbit (mpz_t ROP, mp_bitcnt_t BIT_INDEX) - Set bit BIT_INDEX in ROP. - - -- Function: void mpz_clrbit (mpz_t ROP, mp_bitcnt_t BIT_INDEX) - Clear bit BIT_INDEX in ROP. - - -- Function: void mpz_combit (mpz_t ROP, mp_bitcnt_t BIT_INDEX) - Complement bit BIT_INDEX in ROP. - - -- Function: int mpz_tstbit (const mpz_t OP, mp_bitcnt_t BIT_INDEX) - Test bit BIT_INDEX in OP and return 0 or 1 accordingly. - - -File: gmp.info, Node: I/O of Integers, Next: Integer Random Numbers, Prev: Integer Logic and Bit Fiddling, Up: Integer Functions - -5.12 Input and Output Functions -=============================== - -Functions that perform input from a stdio stream, and functions that -output to a stdio stream, of 'mpz' numbers. Passing a 'NULL' pointer -for a STREAM argument to any of these functions will make them read from -'stdin' and write to 'stdout', respectively. - - When using any of these functions, it is a good idea to include -'stdio.h' before 'gmp.h', since that will allow 'gmp.h' to define -prototypes for these functions. - - See also *note Formatted Output:: and *note Formatted Input::. - - -- Function: size_t mpz_out_str (FILE *STREAM, int BASE, const mpz_t - OP) - Output OP on stdio stream STREAM, as a string of digits in base - BASE. The base argument may vary from 2 to 62 or from -2 to -36. - - For BASE in the range 2..36, digits and lower-case letters are - used; for -2..-36, digits and upper-case letters are used; for - 37..62, digits, upper-case letters, and lower-case letters (in that - significance order) are used. - - Return the number of bytes written, or if an error occurred, return - 0. - - -- Function: size_t mpz_inp_str (mpz_t ROP, FILE *STREAM, int BASE) - Input a possibly white-space preceded string in base BASE from - stdio stream STREAM, and put the read integer in ROP. - - The BASE may vary from 2 to 62, or if BASE is 0, then the leading - characters are used: '0x' and '0X' for hexadecimal, '0b' and '0B' - for binary, '0' for octal, or decimal otherwise. - - For bases up to 36, case is ignored; upper-case and lower-case - letters have the same value. For bases 37 to 62, upper-case letter - represent the usual 10..35 while lower-case letter represent - 36..61. - - Return the number of bytes read, or if an error occurred, return 0. - - -- Function: size_t mpz_out_raw (FILE *STREAM, const mpz_t OP) - Output OP on stdio stream STREAM, in raw binary format. The - integer is written in a portable format, with 4 bytes of size - information, and that many bytes of limbs. Both the size and the - limbs are written in decreasing significance order (i.e., in - big-endian). - - The output can be read with 'mpz_inp_raw'. - - Return the number of bytes written, or if an error occurred, return - 0. - - The output of this can not be read by 'mpz_inp_raw' from GMP 1, - because of changes necessary for compatibility between 32-bit and - 64-bit machines. - - -- Function: size_t mpz_inp_raw (mpz_t ROP, FILE *STREAM) - Input from stdio stream STREAM in the format written by - 'mpz_out_raw', and put the result in ROP. Return the number of - bytes read, or if an error occurred, return 0. - - This routine can read the output from 'mpz_out_raw' also from GMP - 1, in spite of changes necessary for compatibility between 32-bit - and 64-bit machines. - - -File: gmp.info, Node: Integer Random Numbers, Next: Integer Import and Export, Prev: I/O of Integers, Up: Integer Functions - -5.13 Random Number Functions -============================ - -The random number functions of GMP come in two groups; older function -that rely on a global state, and newer functions that accept a state -parameter that is read and modified. Please see the *note Random Number -Functions:: for more information on how to use and not to use random -number functions. - - -- Function: void mpz_urandomb (mpz_t ROP, gmp_randstate_t STATE, - mp_bitcnt_t N) - Generate a uniformly distributed random integer in the range 0 to - 2^N-1, inclusive. - - The variable STATE must be initialized by calling one of the - 'gmp_randinit' functions (*note Random State Initialization::) - before invoking this function. - - -- Function: void mpz_urandomm (mpz_t ROP, gmp_randstate_t STATE, const - mpz_t N) - Generate a uniform random integer in the range 0 to N-1, inclusive. - - The variable STATE must be initialized by calling one of the - 'gmp_randinit' functions (*note Random State Initialization::) - before invoking this function. - - -- Function: void mpz_rrandomb (mpz_t ROP, gmp_randstate_t STATE, - mp_bitcnt_t N) - Generate a random integer with long strings of zeros and ones in - the binary representation. Useful for testing functions and - algorithms, since this kind of random numbers have proven to be - more likely to trigger corner-case bugs. The random number will be - in the range 2^(N-1) to 2^N-1, inclusive. - - The variable STATE must be initialized by calling one of the - 'gmp_randinit' functions (*note Random State Initialization::) - before invoking this function. - - -- Function: void mpz_random (mpz_t ROP, mp_size_t MAX_SIZE) - Generate a random integer of at most MAX_SIZE limbs. The generated - random number doesn't satisfy any particular requirements of - randomness. Negative random numbers are generated when MAX_SIZE is - negative. - - This function is obsolete. Use 'mpz_urandomb' or 'mpz_urandomm' - instead. - - -- Function: void mpz_random2 (mpz_t ROP, mp_size_t MAX_SIZE) - Generate a random integer of at most MAX_SIZE limbs, with long - strings of zeros and ones in the binary representation. Useful for - testing functions and algorithms, since this kind of random numbers - have proven to be more likely to trigger corner-case bugs. - Negative random numbers are generated when MAX_SIZE is negative. - - This function is obsolete. Use 'mpz_rrandomb' instead. - - -File: gmp.info, Node: Integer Import and Export, Next: Miscellaneous Integer Functions, Prev: Integer Random Numbers, Up: Integer Functions - -5.14 Integer Import and Export -============================== - -'mpz_t' variables can be converted to and from arbitrary words of binary -data with the following functions. - - -- Function: void mpz_import (mpz_t ROP, size_t COUNT, int ORDER, - size_t SIZE, int ENDIAN, size_t NAILS, const void *OP) - Set ROP from an array of word data at OP. - - The parameters specify the format of the data. COUNT many words - are read, each SIZE bytes. ORDER can be 1 for most significant - word first or -1 for least significant first. Within each word - ENDIAN can be 1 for most significant byte first, -1 for least - significant first, or 0 for the native endianness of the host CPU. - The most significant NAILS bits of each word are skipped, this can - be 0 to use the full words. - - There is no sign taken from the data, ROP will simply be a positive - integer. An application can handle any sign itself, and apply it - for instance with 'mpz_neg'. - - There are no data alignment restrictions on OP, any address is - allowed. - - Here's an example converting an array of 'unsigned long' data, most - significant element first, and host byte order within each value. - - unsigned long a[20]; - /* Initialize Z and A */ - mpz_import (z, 20, 1, sizeof(a[0]), 0, 0, a); - - This example assumes the full 'sizeof' bytes are used for data in - the given type, which is usually true, and certainly true for - 'unsigned long' everywhere we know of. However on Cray vector - systems it may be noted that 'short' and 'int' are always stored in - 8 bytes (and with 'sizeof' indicating that) but use only 32 or 46 - bits. The NAILS feature can account for this, by passing for - instance '8*sizeof(int)-INT_BIT'. - - -- Function: void * mpz_export (void *ROP, size_t *COUNTP, int ORDER, - size_t SIZE, int ENDIAN, size_t NAILS, const mpz_t OP) - Fill ROP with word data from OP. - - The parameters specify the format of the data produced. Each word - will be SIZE bytes and ORDER can be 1 for most significant word - first or -1 for least significant first. Within each word ENDIAN - can be 1 for most significant byte first, -1 for least significant - first, or 0 for the native endianness of the host CPU. The most - significant NAILS bits of each word are unused and set to zero, - this can be 0 to produce full words. - - The number of words produced is written to '*COUNTP', or COUNTP can - be 'NULL' to discard the count. ROP must have enough space for the - data, or if ROP is 'NULL' then a result array of the necessary size - is allocated using the current GMP allocation function (*note - Custom Allocation::). In either case the return value is the - destination used, either ROP or the allocated block. - - If OP is non-zero then the most significant word produced will be - non-zero. If OP is zero then the count returned will be zero and - nothing written to ROP. If ROP is 'NULL' in this case, no block is - allocated, just 'NULL' is returned. - - The sign of OP is ignored, just the absolute value is exported. An - application can use 'mpz_sgn' to get the sign and handle it as - desired. (*note Integer Comparisons::) - - There are no data alignment restrictions on ROP, any address is - allowed. - - When an application is allocating space itself the required size - can be determined with a calculation like the following. Since - 'mpz_sizeinbase' always returns at least 1, 'count' here will be at - least one, which avoids any portability problems with 'malloc(0)', - though if 'z' is zero no space at all is actually needed (or - written). - - numb = 8*size - nail; - count = (mpz_sizeinbase (z, 2) + numb-1) / numb; - p = malloc (count * size); - - -File: gmp.info, Node: Miscellaneous Integer Functions, Next: Integer Special Functions, Prev: Integer Import and Export, Up: Integer Functions - -5.15 Miscellaneous Functions -============================ - - -- Function: int mpz_fits_ulong_p (const mpz_t OP) - -- Function: int mpz_fits_slong_p (const mpz_t OP) - -- Function: int mpz_fits_uint_p (const mpz_t OP) - -- Function: int mpz_fits_sint_p (const mpz_t OP) - -- Function: int mpz_fits_ushort_p (const mpz_t OP) - -- Function: int mpz_fits_sshort_p (const mpz_t OP) - Return non-zero iff the value of OP fits in an 'unsigned long int', - 'signed long int', 'unsigned int', 'signed int', 'unsigned short - int', or 'signed short int', respectively. Otherwise, return zero. - - -- Macro: int mpz_odd_p (const mpz_t OP) - -- Macro: int mpz_even_p (const mpz_t OP) - Determine whether OP is odd or even, respectively. Return non-zero - if yes, zero if no. These macros evaluate their argument more than - once. - - -- Function: size_t mpz_sizeinbase (const mpz_t OP, int BASE) - Return the size of OP measured in number of digits in the given - BASE. BASE can vary from 2 to 62. The sign of OP is ignored, just - the absolute value is used. The result will be either exact or 1 - too big. If BASE is a power of 2, the result is always exact. If - OP is zero the return value is always 1. - - This function can be used to determine the space required when - converting OP to a string. The right amount of allocation is - normally two more than the value returned by 'mpz_sizeinbase', one - extra for a minus sign and one for the null-terminator. - - It will be noted that 'mpz_sizeinbase(OP,2)' can be used to locate - the most significant 1 bit in OP, counting from 1. (Unlike the - bitwise functions which start from 0, *Note Logical and Bit - Manipulation Functions: Integer Logic and Bit Fiddling.) - - -File: gmp.info, Node: Integer Special Functions, Prev: Miscellaneous Integer Functions, Up: Integer Functions - -5.16 Special Functions -====================== - -The functions in this section are for various special purposes. Most -applications will not need them. - - -- Function: void mpz_array_init (mpz_t INTEGER_ARRAY, mp_size_t - ARRAY_SIZE, mp_size_t FIXED_NUM_BITS) - *This is an obsolete function. Do not use it.* - - -- Function: void * _mpz_realloc (mpz_t INTEGER, mp_size_t NEW_ALLOC) - Change the space for INTEGER to NEW_ALLOC limbs. The value in - INTEGER is preserved if it fits, or is set to 0 if not. The return - value is not useful to applications and should be ignored. - - 'mpz_realloc2' is the preferred way to accomplish allocation - changes like this. 'mpz_realloc2' and '_mpz_realloc' are the same - except that '_mpz_realloc' takes its size in limbs. - - -- Function: mp_limb_t mpz_getlimbn (const mpz_t OP, mp_size_t N) - Return limb number N from OP. The sign of OP is ignored, just the - absolute value is used. The least significant limb is number 0. - - 'mpz_size' can be used to find how many limbs make up OP. - 'mpz_getlimbn' returns zero if N is outside the range 0 to - 'mpz_size(OP)-1'. - - -- Function: size_t mpz_size (const mpz_t OP) - Return the size of OP measured in number of limbs. If OP is zero, - the returned value will be zero. - - -- Function: const mp_limb_t * mpz_limbs_read (const mpz_t X) - Return a pointer to the limb array representing the absolute value - of X. The size of the array is 'mpz_size(X)'. Intended for read - access only. - - -- Function: mp_limb_t * mpz_limbs_write (mpz_t X, mp_size_t N) - -- Function: mp_limb_t * mpz_limbs_modify (mpz_t X, mp_size_t N) - Return a pointer to the limb array, intended for write access. The - array is reallocated as needed, to make room for N limbs. Requires - N > 0. The 'mpz_limbs_modify' function returns an array that holds - the old absolute value of X, while 'mpz_limbs_write' may destroy - the old value and return an array with unspecified contents. - - -- Function: void mpz_limbs_finish (mpz_t X, mp_size_t S) - Updates the internal size field of X. Used after writing to the - limb array pointer returned by 'mpz_limbs_write' or - 'mpz_limbs_modify' is completed. The array should contain abs(S) - valid limbs, representing the new absolute value for X, and the - sign of X is taken from the sign of S. This function never - reallocates X, so the limb pointer remains valid. - - void foo (mpz_t x) - { - mp_size_t n, i; - mp_limb_t *xp; - - n = mpz_size (x); - xp = mpz_limbs_modify (x, 2*n); - for (i = 0; i < n; i++) - xp[n+i] = xp[n-1-i]; - mpz_limbs_finish (x, mpz_sgn (x) < 0 ? - 2*n : 2*n); - } - - -- Function: mpz_srcptr mpz_roinit_n (mpz_t X, const mp_limb_t *XP, - mp_size_t XS) - Special initialization of X, using the given limb array and size. - X should be treated as read-only: it can be passed safely as input - to any mpz function, but not as an output. The array XP must point - to at least a readable limb, its size is abs(XS), and the sign of X - is the sign of XS. For convenience, the function returns X, but - cast to a const pointer type. - - void foo (mpz_t x) - { - static const mp_limb_t y[3] = { 0x1, 0x2, 0x3 }; - mpz_t tmp; - mpz_add (x, x, mpz_roinit_n (tmp, y, 3)); - } - - -- Macro: mpz_t MPZ_ROINIT_N (mp_limb_t *XP, mp_size_t XS) - This macro expands to an initializer which can be assigned to an - mpz_t variable. The limb array XP must point to at least a - readable limb, moreover, unlike the 'mpz_roinit_n' function, the - array must be normalized: if XS is non-zero, then 'XP[abs(XS)-1]' - must be non-zero. Intended primarily for constant values. Using - it for non-constant values requires a C compiler supporting C99. - - void foo (mpz_t x) - { - static const mp_limb_t ya[3] = { 0x1, 0x2, 0x3 }; - static const mpz_t y = MPZ_ROINIT_N ((mp_limb_t *) ya, 3); - - mpz_add (x, x, y); - } - - -File: gmp.info, Node: Rational Number Functions, Next: Floating-point Functions, Prev: Integer Functions, Up: Top - -6 Rational Number Functions -*************************** - -This chapter describes the GMP functions for performing arithmetic on -rational numbers. These functions start with the prefix 'mpq_'. - - Rational numbers are stored in objects of type 'mpq_t'. - - All rational arithmetic functions assume operands have a canonical -form, and canonicalize their result. The canonical form means that the -denominator and the numerator have no common factors, and that the -denominator is positive. Zero has the unique representation 0/1. - - Pure assignment functions do not canonicalize the assigned variable. -It is the responsibility of the user to canonicalize the assigned -variable before any arithmetic operations are performed on that -variable. - - -- Function: void mpq_canonicalize (mpq_t OP) - Remove any factors that are common to the numerator and denominator - of OP, and make the denominator positive. - -* Menu: - -* Initializing Rationals:: -* Rational Conversions:: -* Rational Arithmetic:: -* Comparing Rationals:: -* Applying Integer Functions:: -* I/O of Rationals:: - - -File: gmp.info, Node: Initializing Rationals, Next: Rational Conversions, Prev: Rational Number Functions, Up: Rational Number Functions - -6.1 Initialization and Assignment Functions -=========================================== - - -- Function: void mpq_init (mpq_t X) - Initialize X and set it to 0/1. Each variable should normally only - be initialized once, or at least cleared out (using the function - 'mpq_clear') between each initialization. - - -- Function: void mpq_inits (mpq_t X, ...) - Initialize a NULL-terminated list of 'mpq_t' variables, and set - their values to 0/1. - - -- Function: void mpq_clear (mpq_t X) - Free the space occupied by X. Make sure to call this function for - all 'mpq_t' variables when you are done with them. - - -- Function: void mpq_clears (mpq_t X, ...) - Free the space occupied by a NULL-terminated list of 'mpq_t' - variables. - - -- Function: void mpq_set (mpq_t ROP, const mpq_t OP) - -- Function: void mpq_set_z (mpq_t ROP, const mpz_t OP) - Assign ROP from OP. - - -- Function: void mpq_set_ui (mpq_t ROP, unsigned long int OP1, - unsigned long int OP2) - -- Function: void mpq_set_si (mpq_t ROP, signed long int OP1, unsigned - long int OP2) - Set the value of ROP to OP1/OP2. Note that if OP1 and OP2 have - common factors, ROP has to be passed to 'mpq_canonicalize' before - any operations are performed on ROP. - - -- Function: int mpq_set_str (mpq_t ROP, const char *STR, int BASE) - Set ROP from a null-terminated string STR in the given BASE. - - The string can be an integer like "41" or a fraction like "41/152". - The fraction must be in canonical form (*note Rational Number - Functions::), or if not then 'mpq_canonicalize' must be called. - - The numerator and optional denominator are parsed the same as in - 'mpz_set_str' (*note Assigning Integers::). White space is allowed - in the string, and is simply ignored. The BASE can vary from 2 to - 62, or if BASE is 0 then the leading characters are used: '0x' or - '0X' for hex, '0b' or '0B' for binary, '0' for octal, or decimal - otherwise. Note that this is done separately for the numerator and - denominator, so for instance '0xEF/100' is 239/100, whereas - '0xEF/0x100' is 239/256. - - The return value is 0 if the entire string is a valid number, or -1 - if not. - - -- Function: void mpq_swap (mpq_t ROP1, mpq_t ROP2) - Swap the values ROP1 and ROP2 efficiently. - - -File: gmp.info, Node: Rational Conversions, Next: Rational Arithmetic, Prev: Initializing Rationals, Up: Rational Number Functions - -6.2 Conversion Functions -======================== - - -- Function: double mpq_get_d (const mpq_t OP) - Convert OP to a 'double', truncating if necessary (i.e. rounding - towards zero). - - If the exponent from the conversion is too big or too small to fit - a 'double' then the result is system dependent. For too big an - infinity is returned when available. For too small 0.0 is normally - returned. Hardware overflow, underflow and denorm traps may or may - not occur. - - -- Function: void mpq_set_d (mpq_t ROP, double OP) - -- Function: void mpq_set_f (mpq_t ROP, const mpf_t OP) - Set ROP to the value of OP. There is no rounding, this conversion - is exact. - - -- Function: char * mpq_get_str (char *STR, int BASE, const mpq_t OP) - Convert OP to a string of digits in base BASE. The base argument - may vary from 2 to 62 or from -2 to -36. The string will be of the - form 'num/den', or if the denominator is 1 then just 'num'. - - For BASE in the range 2..36, digits and lower-case letters are - used; for -2..-36, digits and upper-case letters are used; for - 37..62, digits, upper-case letters, and lower-case letters (in that - significance order) are used. - - If STR is 'NULL', the result string is allocated using the current - allocation function (*note Custom Allocation::). The block will be - 'strlen(str)+1' bytes, that being exactly enough for the string and - null-terminator. - - If STR is not 'NULL', it should point to a block of storage large - enough for the result, that being - - mpz_sizeinbase (mpq_numref(OP), BASE) - + mpz_sizeinbase (mpq_denref(OP), BASE) + 3 - - The three extra bytes are for a possible minus sign, possible - slash, and the null-terminator. - - A pointer to the result string is returned, being either the - allocated block, or the given STR. - - -File: gmp.info, Node: Rational Arithmetic, Next: Comparing Rationals, Prev: Rational Conversions, Up: Rational Number Functions - -6.3 Arithmetic Functions -======================== - - -- Function: void mpq_add (mpq_t SUM, const mpq_t ADDEND1, const mpq_t - ADDEND2) - Set SUM to ADDEND1 + ADDEND2. - - -- Function: void mpq_sub (mpq_t DIFFERENCE, const mpq_t MINUEND, const - mpq_t SUBTRAHEND) - Set DIFFERENCE to MINUEND - SUBTRAHEND. - - -- Function: void mpq_mul (mpq_t PRODUCT, const mpq_t MULTIPLIER, const - mpq_t MULTIPLICAND) - Set PRODUCT to MULTIPLIER times MULTIPLICAND. - - -- Function: void mpq_mul_2exp (mpq_t ROP, const mpq_t OP1, mp_bitcnt_t - OP2) - Set ROP to OP1 times 2 raised to OP2. - - -- Function: void mpq_div (mpq_t QUOTIENT, const mpq_t DIVIDEND, const - mpq_t DIVISOR) - Set QUOTIENT to DIVIDEND/DIVISOR. - - -- Function: void mpq_div_2exp (mpq_t ROP, const mpq_t OP1, mp_bitcnt_t - OP2) - Set ROP to OP1 divided by 2 raised to OP2. - - -- Function: void mpq_neg (mpq_t NEGATED_OPERAND, const mpq_t OPERAND) - Set NEGATED_OPERAND to -OPERAND. - - -- Function: void mpq_abs (mpq_t ROP, const mpq_t OP) - Set ROP to the absolute value of OP. - - -- Function: void mpq_inv (mpq_t INVERTED_NUMBER, const mpq_t NUMBER) - Set INVERTED_NUMBER to 1/NUMBER. If the new denominator is zero, - this routine will divide by zero. - - -File: gmp.info, Node: Comparing Rationals, Next: Applying Integer Functions, Prev: Rational Arithmetic, Up: Rational Number Functions - -6.4 Comparison Functions -======================== - - -- Function: int mpq_cmp (const mpq_t OP1, const mpq_t OP2) - -- Function: int mpq_cmp_z (const mpq_t OP1, const mpz_t OP2) - Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero if - OP1 = OP2, and a negative value if OP1 < OP2. - - To determine if two rationals are equal, 'mpq_equal' is faster than - 'mpq_cmp'. - - -- Macro: int mpq_cmp_ui (const mpq_t OP1, unsigned long int NUM2, - unsigned long int DEN2) - -- Macro: int mpq_cmp_si (const mpq_t OP1, long int NUM2, unsigned long - int DEN2) - Compare OP1 and NUM2/DEN2. Return a positive value if OP1 > - NUM2/DEN2, zero if OP1 = NUM2/DEN2, and a negative value if OP1 < - NUM2/DEN2. - - NUM2 and DEN2 are allowed to have common factors. - - These functions are implemented as a macros and evaluate their - arguments multiple times. - - -- Macro: int mpq_sgn (const mpq_t OP) - Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0. - - This function is actually implemented as a macro. It evaluates its - argument multiple times. - - -- Function: int mpq_equal (const mpq_t OP1, const mpq_t OP2) - Return non-zero if OP1 and OP2 are equal, zero if they are - non-equal. Although 'mpq_cmp' can be used for the same purpose, - this function is much faster. - - -File: gmp.info, Node: Applying Integer Functions, Next: I/O of Rationals, Prev: Comparing Rationals, Up: Rational Number Functions - -6.5 Applying Integer Functions to Rationals -=========================================== - -The set of 'mpq' functions is quite small. In particular, there are few -functions for either input or output. The following functions give -direct access to the numerator and denominator of an 'mpq_t'. - - Note that if an assignment to the numerator and/or denominator could -take an 'mpq_t' out of the canonical form described at the start of this -chapter (*note Rational Number Functions::) then 'mpq_canonicalize' must -be called before any other 'mpq' functions are applied to that 'mpq_t'. - - -- Macro: mpz_t mpq_numref (const mpq_t OP) - -- Macro: mpz_t mpq_denref (const mpq_t OP) - Return a reference to the numerator and denominator of OP, - respectively. The 'mpz' functions can be used on the result of - these macros. - - -- Function: void mpq_get_num (mpz_t NUMERATOR, const mpq_t RATIONAL) - -- Function: void mpq_get_den (mpz_t DENOMINATOR, const mpq_t RATIONAL) - -- Function: void mpq_set_num (mpq_t RATIONAL, const mpz_t NUMERATOR) - -- Function: void mpq_set_den (mpq_t RATIONAL, const mpz_t DENOMINATOR) - Get or set the numerator or denominator of a rational. These - functions are equivalent to calling 'mpz_set' with an appropriate - 'mpq_numref' or 'mpq_denref'. Direct use of 'mpq_numref' or - 'mpq_denref' is recommended instead of these functions. - - -File: gmp.info, Node: I/O of Rationals, Prev: Applying Integer Functions, Up: Rational Number Functions - -6.6 Input and Output Functions -============================== - -Functions that perform input from a stdio stream, and functions that -output to a stdio stream, of 'mpq' numbers. Passing a 'NULL' pointer -for a STREAM argument to any of these functions will make them read from -'stdin' and write to 'stdout', respectively. - - When using any of these functions, it is a good idea to include -'stdio.h' before 'gmp.h', since that will allow 'gmp.h' to define -prototypes for these functions. - - See also *note Formatted Output:: and *note Formatted Input::. - - -- Function: size_t mpq_out_str (FILE *STREAM, int BASE, const mpq_t - OP) - Output OP on stdio stream STREAM, as a string of digits in base - BASE. The base argument may vary from 2 to 62 or from -2 to -36. - Output is in the form 'num/den' or if the denominator is 1 then - just 'num'. - - For BASE in the range 2..36, digits and lower-case letters are - used; for -2..-36, digits and upper-case letters are used; for - 37..62, digits, upper-case letters, and lower-case letters (in that - significance order) are used. - - Return the number of bytes written, or if an error occurred, return - 0. - - -- Function: size_t mpq_inp_str (mpq_t ROP, FILE *STREAM, int BASE) - Read a string of digits from STREAM and convert them to a rational - in ROP. Any initial white-space characters are read and discarded. - Return the number of characters read (including white space), or 0 - if a rational could not be read. - - The input can be a fraction like '17/63' or just an integer like - '123'. Reading stops at the first character not in this form, and - white space is not permitted within the string. If the input might - not be in canonical form, then 'mpq_canonicalize' must be called - (*note Rational Number Functions::). - - The BASE can be between 2 and 62, or can be 0 in which case the - leading characters of the string determine the base, '0x' or '0X' - for hexadecimal, '0b' and '0B' for binary, '0' for octal, or - decimal otherwise. The leading characters are examined separately - for the numerator and denominator of a fraction, so for instance - '0x10/11' is 16/11, whereas '0x10/0x11' is 16/17. - - -File: gmp.info, Node: Floating-point Functions, Next: Low-level Functions, Prev: Rational Number Functions, Up: Top - -7 Floating-point Functions -************************** - -GMP floating point numbers are stored in objects of type 'mpf_t' and -functions operating on them have an 'mpf_' prefix. - - The mantissa of each float has a user-selectable precision, in -practice only limited by available memory. Each variable has its own -precision, and that can be increased or decreased at any time. This -selectable precision is a minimum value, GMP rounds it up to a whole -limb. - - The accuracy of a calculation is determined by the priorly set -precision of the destination variable and the numeric values of the -input variables. Input variables' set precisions do not affect -calculations (except indirectly as their values might have been affected -when they were assigned). - - The exponent of each float has fixed precision, one machine word on -most systems. In the current implementation the exponent is a count of -limbs, so for example on a 32-bit system this means a range of roughly -2^-68719476768 to 2^68719476736, or on a 64-bit system this will be much -greater. Note however that 'mpf_get_str' can only return an exponent -which fits an 'mp_exp_t' and currently 'mpf_set_str' doesn't accept -exponents bigger than a 'long'. - - Each variable keeps track of the mantissa data actually in use. This -means that if a float is exactly represented in only a few bits then -only those bits will be used in a calculation, even if the variable's -selected precision is high. This is a performance optimization; it does -not affect the numeric results. - - Internally, GMP sometimes calculates with higher precision than that -of the destination variable in order to limit errors. Final results are -always truncated to the destination variable's precision. - - The mantissa is stored in binary. One consequence of this is that -decimal fractions like 0.1 cannot be represented exactly. The same is -true of plain IEEE 'double' floats. This makes both highly unsuitable -for calculations involving money or other values that should be exact -decimal fractions. (Suitably scaled integers, or perhaps rationals, are -better choices.) - - The 'mpf' functions and variables have no special notion of infinity -or not-a-number, and applications must take care not to overflow the -exponent or results will be unpredictable. - - Note that the 'mpf' functions are _not_ intended as a smooth -extension to IEEE P754 arithmetic. In particular results obtained on -one computer often differ from the results on a computer with a -different word size. - - New projects should consider using the GMP extension library MPFR -() instead. MPFR provides well-defined precision and -accurate rounding, and thereby naturally extends IEEE P754. - -* Menu: - -* Initializing Floats:: -* Assigning Floats:: -* Simultaneous Float Init & Assign:: -* Converting Floats:: -* Float Arithmetic:: -* Float Comparison:: -* I/O of Floats:: -* Miscellaneous Float Functions:: - - -File: gmp.info, Node: Initializing Floats, Next: Assigning Floats, Prev: Floating-point Functions, Up: Floating-point Functions - -7.1 Initialization Functions -============================ - - -- Function: void mpf_set_default_prec (mp_bitcnt_t PREC) - Set the default precision to be *at least* PREC bits. All - subsequent calls to 'mpf_init' will use this precision, but - previously initialized variables are unaffected. - - -- Function: mp_bitcnt_t mpf_get_default_prec (void) - Return the default precision actually used. - - An 'mpf_t' object must be initialized before storing the first value -in it. The functions 'mpf_init' and 'mpf_init2' are used for that -purpose. - - -- Function: void mpf_init (mpf_t X) - Initialize X to 0. Normally, a variable should be initialized once - only or at least be cleared, using 'mpf_clear', between - initializations. The precision of X is undefined unless a default - precision has already been established by a call to - 'mpf_set_default_prec'. - - -- Function: void mpf_init2 (mpf_t X, mp_bitcnt_t PREC) - Initialize X to 0 and set its precision to be *at least* PREC bits. - Normally, a variable should be initialized once only or at least be - cleared, using 'mpf_clear', between initializations. - - -- Function: void mpf_inits (mpf_t X, ...) - Initialize a NULL-terminated list of 'mpf_t' variables, and set - their values to 0. The precision of the initialized variables is - undefined unless a default precision has already been established - by a call to 'mpf_set_default_prec'. - - -- Function: void mpf_clear (mpf_t X) - Free the space occupied by X. Make sure to call this function for - all 'mpf_t' variables when you are done with them. - - -- Function: void mpf_clears (mpf_t X, ...) - Free the space occupied by a NULL-terminated list of 'mpf_t' - variables. - - Here is an example on how to initialize floating-point variables: - { - mpf_t x, y; - mpf_init (x); /* use default precision */ - mpf_init2 (y, 256); /* precision _at least_ 256 bits */ - ... - /* Unless the program is about to exit, do ... */ - mpf_clear (x); - mpf_clear (y); - } - - The following three functions are useful for changing the precision -during a calculation. A typical use would be for adjusting the -precision gradually in iterative algorithms like Newton-Raphson, making -the computation precision closely match the actual accurate part of the -numbers. - - -- Function: mp_bitcnt_t mpf_get_prec (const mpf_t OP) - Return the current precision of OP, in bits. - - -- Function: void mpf_set_prec (mpf_t ROP, mp_bitcnt_t PREC) - Set the precision of ROP to be *at least* PREC bits. The value in - ROP will be truncated to the new precision. - - This function requires a call to 'realloc', and so should not be - used in a tight loop. - - -- Function: void mpf_set_prec_raw (mpf_t ROP, mp_bitcnt_t PREC) - Set the precision of ROP to be *at least* PREC bits, without - changing the memory allocated. - - PREC must be no more than the allocated precision for ROP, that - being the precision when ROP was initialized, or in the most recent - 'mpf_set_prec'. - - The value in ROP is unchanged, and in particular if it had a higher - precision than PREC it will retain that higher precision. New - values written to ROP will use the new PREC. - - Before calling 'mpf_clear' or the full 'mpf_set_prec', another - 'mpf_set_prec_raw' call must be made to restore ROP to its original - allocated precision. Failing to do so will have unpredictable - results. - - 'mpf_get_prec' can be used before 'mpf_set_prec_raw' to get the - original allocated precision. After 'mpf_set_prec_raw' it reflects - the PREC value set. - - 'mpf_set_prec_raw' is an efficient way to use an 'mpf_t' variable - at different precisions during a calculation, perhaps to gradually - increase precision in an iteration, or just to use various - different precisions for different purposes during a calculation. - - -File: gmp.info, Node: Assigning Floats, Next: Simultaneous Float Init & Assign, Prev: Initializing Floats, Up: Floating-point Functions - -7.2 Assignment Functions -======================== - -These functions assign new values to already initialized floats (*note -Initializing Floats::). - - -- Function: void mpf_set (mpf_t ROP, const mpf_t OP) - -- Function: void mpf_set_ui (mpf_t ROP, unsigned long int OP) - -- Function: void mpf_set_si (mpf_t ROP, signed long int OP) - -- Function: void mpf_set_d (mpf_t ROP, double OP) - -- Function: void mpf_set_z (mpf_t ROP, const mpz_t OP) - -- Function: void mpf_set_q (mpf_t ROP, const mpq_t OP) - Set the value of ROP from OP. - - -- Function: int mpf_set_str (mpf_t ROP, const char *STR, int BASE) - Set the value of ROP from the string in STR. The string is of the - form 'M@N' or, if the base is 10 or less, alternatively 'MeN'. 'M' - is the mantissa and 'N' is the exponent. The mantissa is always in - the specified base. The exponent is either in the specified base - or, if BASE is negative, in decimal. The decimal point expected is - taken from the current locale, on systems providing 'localeconv'. - - The argument BASE may be in the ranges 2 to 62, or -62 to -2. - Negative values are used to specify that the exponent is in - decimal. - - For bases up to 36, case is ignored; upper-case and lower-case - letters have the same value; for bases 37 to 62, upper-case letter - represent the usual 10..35 while lower-case letter represent - 36..61. - - Unlike the corresponding 'mpz' function, the base will not be - determined from the leading characters of the string if BASE is 0. - This is so that numbers like '0.23' are not interpreted as octal. - - White space is allowed in the string, and is simply ignored. [This - is not really true; white-space is ignored in the beginning of the - string and within the mantissa, but not in other places, such as - after a minus sign or in the exponent. We are considering changing - the definition of this function, making it fail when there is any - white-space in the input, since that makes a lot of sense. Please - tell us your opinion about this change. Do you really want it to - accept "3 14" as meaning 314 as it does now?] - - This function returns 0 if the entire string is a valid number in - base BASE. Otherwise it returns -1. - - -- Function: void mpf_swap (mpf_t ROP1, mpf_t ROP2) - Swap ROP1 and ROP2 efficiently. Both the values and the precisions - of the two variables are swapped. - - -File: gmp.info, Node: Simultaneous Float Init & Assign, Next: Converting Floats, Prev: Assigning Floats, Up: Floating-point Functions - -7.3 Combined Initialization and Assignment Functions -==================================================== - -For convenience, GMP provides a parallel series of initialize-and-set -functions which initialize the output and then store the value there. -These functions' names have the form 'mpf_init_set...' - - Once the float has been initialized by any of the 'mpf_init_set...' -functions, it can be used as the source or destination operand for the -ordinary float functions. Don't use an initialize-and-set function on a -variable already initialized! - - -- Function: void mpf_init_set (mpf_t ROP, const mpf_t OP) - -- Function: void mpf_init_set_ui (mpf_t ROP, unsigned long int OP) - -- Function: void mpf_init_set_si (mpf_t ROP, signed long int OP) - -- Function: void mpf_init_set_d (mpf_t ROP, double OP) - Initialize ROP and set its value from OP. - - The precision of ROP will be taken from the active default - precision, as set by 'mpf_set_default_prec'. - - -- Function: int mpf_init_set_str (mpf_t ROP, const char *STR, int - BASE) - Initialize ROP and set its value from the string in STR. See - 'mpf_set_str' above for details on the assignment operation. - - Note that ROP is initialized even if an error occurs. (I.e., you - have to call 'mpf_clear' for it.) - - The precision of ROP will be taken from the active default - precision, as set by 'mpf_set_default_prec'. - - -File: gmp.info, Node: Converting Floats, Next: Float Arithmetic, Prev: Simultaneous Float Init & Assign, Up: Floating-point Functions - -7.4 Conversion Functions -======================== - - -- Function: double mpf_get_d (const mpf_t OP) - Convert OP to a 'double', truncating if necessary (i.e. rounding - towards zero). - - If the exponent in OP is too big or too small to fit a 'double' - then the result is system dependent. For too big an infinity is - returned when available. For too small 0.0 is normally returned. - Hardware overflow, underflow and denorm traps may or may not occur. - - -- Function: double mpf_get_d_2exp (signed long int *EXP, const mpf_t - OP) - Convert OP to a 'double', truncating if necessary (i.e. rounding - towards zero), and with an exponent returned separately. - - The return value is in the range 0.5<=abs(D)<1 and the exponent is - stored to '*EXP'. D * 2^EXP is the (truncated) OP value. If OP is - zero, the return is 0.0 and 0 is stored to '*EXP'. - - This is similar to the standard C 'frexp' function (*note - (libc)Normalization Functions::). - - -- Function: long mpf_get_si (const mpf_t OP) - -- Function: unsigned long mpf_get_ui (const mpf_t OP) - Convert OP to a 'long' or 'unsigned long', truncating any fraction - part. If OP is too big for the return type, the result is - undefined. - - See also 'mpf_fits_slong_p' and 'mpf_fits_ulong_p' (*note - Miscellaneous Float Functions::). - - -- Function: char * mpf_get_str (char *STR, mp_exp_t *EXPPTR, int BASE, - size_t N_DIGITS, const mpf_t OP) - Convert OP to a string of digits in base BASE. The base argument - may vary from 2 to 62 or from -2 to -36. Up to N_DIGITS digits - will be generated. Trailing zeros are not returned. No more - digits than can be accurately represented by OP are ever generated. - If N_DIGITS is 0 then that accurate maximum number of digits are - generated. - - For BASE in the range 2..36, digits and lower-case letters are - used; for -2..-36, digits and upper-case letters are used; for - 37..62, digits, upper-case letters, and lower-case letters (in that - significance order) are used. - - If STR is 'NULL', the result string is allocated using the current - allocation function (*note Custom Allocation::). The block will be - 'strlen(str)+1' bytes, that being exactly enough for the string and - null-terminator. - - If STR is not 'NULL', it should point to a block of N_DIGITS + 2 - bytes, that being enough for the mantissa, a possible minus sign, - and a null-terminator. When N_DIGITS is 0 to get all significant - digits, an application won't be able to know the space required, - and STR should be 'NULL' in that case. - - The generated string is a fraction, with an implicit radix point - immediately to the left of the first digit. The applicable - exponent is written through the EXPPTR pointer. For example, the - number 3.1416 would be returned as string "31416" and exponent 1. - - When OP is zero, an empty string is produced and the exponent - returned is 0. - - A pointer to the result string is returned, being either the - allocated block or the given STR. - - -File: gmp.info, Node: Float Arithmetic, Next: Float Comparison, Prev: Converting Floats, Up: Floating-point Functions - -7.5 Arithmetic Functions -======================== - - -- Function: void mpf_add (mpf_t ROP, const mpf_t OP1, const mpf_t OP2) - -- Function: void mpf_add_ui (mpf_t ROP, const mpf_t OP1, unsigned long - int OP2) - Set ROP to OP1 + OP2. - - -- Function: void mpf_sub (mpf_t ROP, const mpf_t OP1, const mpf_t OP2) - -- Function: void mpf_ui_sub (mpf_t ROP, unsigned long int OP1, const - mpf_t OP2) - -- Function: void mpf_sub_ui (mpf_t ROP, const mpf_t OP1, unsigned long - int OP2) - Set ROP to OP1 - OP2. - - -- Function: void mpf_mul (mpf_t ROP, const mpf_t OP1, const mpf_t OP2) - -- Function: void mpf_mul_ui (mpf_t ROP, const mpf_t OP1, unsigned long - int OP2) - Set ROP to OP1 times OP2. - - Division is undefined if the divisor is zero, and passing a zero -divisor to the divide functions will make these functions intentionally -divide by zero. This lets the user handle arithmetic exceptions in -these functions in the same manner as other arithmetic exceptions. - - -- Function: void mpf_div (mpf_t ROP, const mpf_t OP1, const mpf_t OP2) - -- Function: void mpf_ui_div (mpf_t ROP, unsigned long int OP1, const - mpf_t OP2) - -- Function: void mpf_div_ui (mpf_t ROP, const mpf_t OP1, unsigned long - int OP2) - Set ROP to OP1/OP2. - - -- Function: void mpf_sqrt (mpf_t ROP, const mpf_t OP) - -- Function: void mpf_sqrt_ui (mpf_t ROP, unsigned long int OP) - Set ROP to the square root of OP. - - -- Function: void mpf_pow_ui (mpf_t ROP, const mpf_t OP1, unsigned long - int OP2) - Set ROP to OP1 raised to the power OP2. - - -- Function: void mpf_neg (mpf_t ROP, const mpf_t OP) - Set ROP to -OP. - - -- Function: void mpf_abs (mpf_t ROP, const mpf_t OP) - Set ROP to the absolute value of OP. - - -- Function: void mpf_mul_2exp (mpf_t ROP, const mpf_t OP1, mp_bitcnt_t - OP2) - Set ROP to OP1 times 2 raised to OP2. - - -- Function: void mpf_div_2exp (mpf_t ROP, const mpf_t OP1, mp_bitcnt_t - OP2) - Set ROP to OP1 divided by 2 raised to OP2. - - -File: gmp.info, Node: Float Comparison, Next: I/O of Floats, Prev: Float Arithmetic, Up: Floating-point Functions - -7.6 Comparison Functions -======================== - - -- Function: int mpf_cmp (const mpf_t OP1, const mpf_t OP2) - -- Function: int mpf_cmp_z (const mpf_t OP1, const mpz_t OP2) - -- Function: int mpf_cmp_d (const mpf_t OP1, double OP2) - -- Function: int mpf_cmp_ui (const mpf_t OP1, unsigned long int OP2) - -- Function: int mpf_cmp_si (const mpf_t OP1, signed long int OP2) - Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero if - OP1 = OP2, and a negative value if OP1 < OP2. - - 'mpf_cmp_d' can be called with an infinity, but results are - undefined for a NaN. - - -- Function: int mpf_eq (const mpf_t OP1, const mpf_t OP2, mp_bitcnt_t - op3) - *This function is mathematically ill-defined and should not be - used.* - - Return non-zero if the first OP3 bits of OP1 and OP2 are equal, - zero otherwise. Note that numbers like e.g., 256 (binary - 100000000) and 255 (binary 11111111) will never be equal by this - function's measure, and furthermore that 0 will only be equal to - itself. - - -- Function: void mpf_reldiff (mpf_t ROP, const mpf_t OP1, const mpf_t - OP2) - Compute the relative difference between OP1 and OP2 and store the - result in ROP. This is abs(OP1-OP2)/OP1. - - -- Macro: int mpf_sgn (const mpf_t OP) - Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0. - - This function is actually implemented as a macro. It evaluates its - argument multiple times. - - -File: gmp.info, Node: I/O of Floats, Next: Miscellaneous Float Functions, Prev: Float Comparison, Up: Floating-point Functions - -7.7 Input and Output Functions -============================== - -Functions that perform input from a stdio stream, and functions that -output to a stdio stream, of 'mpf' numbers. Passing a 'NULL' pointer -for a STREAM argument to any of these functions will make them read from -'stdin' and write to 'stdout', respectively. - - When using any of these functions, it is a good idea to include -'stdio.h' before 'gmp.h', since that will allow 'gmp.h' to define -prototypes for these functions. - - See also *note Formatted Output:: and *note Formatted Input::. - - -- Function: size_t mpf_out_str (FILE *STREAM, int BASE, size_t - N_DIGITS, const mpf_t OP) - Print OP to STREAM, as a string of digits. Return the number of - bytes written, or if an error occurred, return 0. - - The mantissa is prefixed with an '0.' and is in the given BASE, - which may vary from 2 to 62 or from -2 to -36. An exponent is then - printed, separated by an 'e', or if the base is greater than 10 - then by an '@'. The exponent is always in decimal. The decimal - point follows the current locale, on systems providing - 'localeconv'. - - For BASE in the range 2..36, digits and lower-case letters are - used; for -2..-36, digits and upper-case letters are used; for - 37..62, digits, upper-case letters, and lower-case letters (in that - significance order) are used. - - Up to N_DIGITS will be printed from the mantissa, except that no - more digits than are accurately representable by OP will be - printed. N_DIGITS can be 0 to select that accurate maximum. - - -- Function: size_t mpf_inp_str (mpf_t ROP, FILE *STREAM, int BASE) - Read a string in base BASE from STREAM, and put the read float in - ROP. The string is of the form 'M@N' or, if the base is 10 or - less, alternatively 'MeN'. 'M' is the mantissa and 'N' is the - exponent. The mantissa is always in the specified base. The - exponent is either in the specified base or, if BASE is negative, - in decimal. The decimal point expected is taken from the current - locale, on systems providing 'localeconv'. - - The argument BASE may be in the ranges 2 to 36, or -36 to -2. - Negative values are used to specify that the exponent is in - decimal. - - Unlike the corresponding 'mpz' function, the base will not be - determined from the leading characters of the string if BASE is 0. - This is so that numbers like '0.23' are not interpreted as octal. - - Return the number of bytes read, or if an error occurred, return 0. - - -File: gmp.info, Node: Miscellaneous Float Functions, Prev: I/O of Floats, Up: Floating-point Functions - -7.8 Miscellaneous Functions -=========================== - - -- Function: void mpf_ceil (mpf_t ROP, const mpf_t OP) - -- Function: void mpf_floor (mpf_t ROP, const mpf_t OP) - -- Function: void mpf_trunc (mpf_t ROP, const mpf_t OP) - Set ROP to OP rounded to an integer. 'mpf_ceil' rounds to the next - higher integer, 'mpf_floor' to the next lower, and 'mpf_trunc' to - the integer towards zero. - - -- Function: int mpf_integer_p (const mpf_t OP) - Return non-zero if OP is an integer. - - -- Function: int mpf_fits_ulong_p (const mpf_t OP) - -- Function: int mpf_fits_slong_p (const mpf_t OP) - -- Function: int mpf_fits_uint_p (const mpf_t OP) - -- Function: int mpf_fits_sint_p (const mpf_t OP) - -- Function: int mpf_fits_ushort_p (const mpf_t OP) - -- Function: int mpf_fits_sshort_p (const mpf_t OP) - Return non-zero if OP would fit in the respective C data type, when - truncated to an integer. - - -- Function: void mpf_urandomb (mpf_t ROP, gmp_randstate_t STATE, - mp_bitcnt_t NBITS) - Generate a uniformly distributed random float in ROP, such that 0 - <= ROP < 1, with NBITS significant bits in the mantissa or less if - the precision of ROP is smaller. - - The variable STATE must be initialized by calling one of the - 'gmp_randinit' functions (*note Random State Initialization::) - before invoking this function. - - -- Function: void mpf_random2 (mpf_t ROP, mp_size_t MAX_SIZE, mp_exp_t - EXP) - Generate a random float of at most MAX_SIZE limbs, with long - strings of zeros and ones in the binary representation. The - exponent of the number is in the interval -EXP to EXP (in limbs). - This function is useful for testing functions and algorithms, since - these kind of random numbers have proven to be more likely to - trigger corner-case bugs. Negative random numbers are generated - when MAX_SIZE is negative. - - -File: gmp.info, Node: Low-level Functions, Next: Random Number Functions, Prev: Floating-point Functions, Up: Top - -8 Low-level Functions -********************* - -This chapter describes low-level GMP functions, used to implement the -high-level GMP functions, but also intended for time-critical user code. - - These functions start with the prefix 'mpn_'. - - The 'mpn' functions are designed to be as fast as possible, *not* to -provide a coherent calling interface. The different functions have -somewhat similar interfaces, but there are variations that make them -hard to use. These functions do as little as possible apart from the -real multiple precision computation, so that no time is spent on things -that not all callers need. - - A source operand is specified by a pointer to the least significant -limb and a limb count. A destination operand is specified by just a -pointer. It is the responsibility of the caller to ensure that the -destination has enough space for storing the result. - - With this way of specifying operands, it is possible to perform -computations on subranges of an argument, and store the result into a -subrange of a destination. - - A common requirement for all functions is that each source area needs -at least one limb. No size argument may be zero. Unless otherwise -stated, in-place operations are allowed where source and destination are -the same, but not where they only partly overlap. - - The 'mpn' functions are the base for the implementation of the -'mpz_', 'mpf_', and 'mpq_' functions. - - This example adds the number beginning at S1P and the number -beginning at S2P and writes the sum at DESTP. All areas have N limbs. - - cy = mpn_add_n (destp, s1p, s2p, n) - - It should be noted that the 'mpn' functions make no attempt to -identify high or low zero limbs on their operands, or other special -forms. On random data such cases will be unlikely and it'd be wasteful -for every function to check every time. An application knowing -something about its data can take steps to trim or perhaps split its -calculations. - - -In the notation used below, a source operand is identified by the -pointer to the least significant limb, and the limb count in braces. -For example, {S1P, S1N}. - - -- Function: mp_limb_t mpn_add_n (mp_limb_t *RP, const mp_limb_t *S1P, - const mp_limb_t *S2P, mp_size_t N) - Add {S1P, N} and {S2P, N}, and write the N least significant limbs - of the result to RP. Return carry, either 0 or 1. - - This is the lowest-level function for addition. It is the - preferred function for addition, since it is written in assembly - for most CPUs. For addition of a variable to itself (i.e., S1P - equals S2P) use 'mpn_lshift' with a count of 1 for optimal speed. - - -- Function: mp_limb_t mpn_add_1 (mp_limb_t *RP, const mp_limb_t *S1P, - mp_size_t N, mp_limb_t S2LIMB) - Add {S1P, N} and S2LIMB, and write the N least significant limbs of - the result to RP. Return carry, either 0 or 1. - - -- Function: mp_limb_t mpn_add (mp_limb_t *RP, const mp_limb_t *S1P, - mp_size_t S1N, const mp_limb_t *S2P, mp_size_t S2N) - Add {S1P, S1N} and {S2P, S2N}, and write the S1N least significant - limbs of the result to RP. Return carry, either 0 or 1. - - This function requires that S1N is greater than or equal to S2N. - - -- Function: mp_limb_t mpn_sub_n (mp_limb_t *RP, const mp_limb_t *S1P, - const mp_limb_t *S2P, mp_size_t N) - Subtract {S2P, N} from {S1P, N}, and write the N least significant - limbs of the result to RP. Return borrow, either 0 or 1. - - This is the lowest-level function for subtraction. It is the - preferred function for subtraction, since it is written in assembly - for most CPUs. - - -- Function: mp_limb_t mpn_sub_1 (mp_limb_t *RP, const mp_limb_t *S1P, - mp_size_t N, mp_limb_t S2LIMB) - Subtract S2LIMB from {S1P, N}, and write the N least significant - limbs of the result to RP. Return borrow, either 0 or 1. - - -- Function: mp_limb_t mpn_sub (mp_limb_t *RP, const mp_limb_t *S1P, - mp_size_t S1N, const mp_limb_t *S2P, mp_size_t S2N) - Subtract {S2P, S2N} from {S1P, S1N}, and write the S1N least - significant limbs of the result to RP. Return borrow, either 0 or - 1. - - This function requires that S1N is greater than or equal to S2N. - - -- Function: mp_limb_t mpn_neg (mp_limb_t *RP, const mp_limb_t *SP, - mp_size_t N) - Perform the negation of {SP, N}, and write the result to {RP, N}. - This is equivalent to calling 'mpn_sub_n' with a N-limb zero - minuend and passing {SP, N} as subtrahend. Return borrow, either 0 - or 1. - - -- Function: void mpn_mul_n (mp_limb_t *RP, const mp_limb_t *S1P, const - mp_limb_t *S2P, mp_size_t N) - Multiply {S1P, N} and {S2P, N}, and write the 2*N-limb result to - RP. - - The destination has to have space for 2*N limbs, even if the - product's most significant limb is zero. No overlap is permitted - between the destination and either source. - - If the two input operands are the same, use 'mpn_sqr'. - - -- Function: mp_limb_t mpn_mul (mp_limb_t *RP, const mp_limb_t *S1P, - mp_size_t S1N, const mp_limb_t *S2P, mp_size_t S2N) - Multiply {S1P, S1N} and {S2P, S2N}, and write the (S1N+S2N)-limb - result to RP. Return the most significant limb of the result. - - The destination has to have space for S1N + S2N limbs, even if the - product's most significant limb is zero. No overlap is permitted - between the destination and either source. - - This function requires that S1N is greater than or equal to S2N. - - -- Function: void mpn_sqr (mp_limb_t *RP, const mp_limb_t *S1P, - mp_size_t N) - Compute the square of {S1P, N} and write the 2*N-limb result to RP. - - The destination has to have space for 2N limbs, even if the - result's most significant limb is zero. No overlap is permitted - between the destination and the source. - - -- Function: mp_limb_t mpn_mul_1 (mp_limb_t *RP, const mp_limb_t *S1P, - mp_size_t N, mp_limb_t S2LIMB) - Multiply {S1P, N} by S2LIMB, and write the N least significant - limbs of the product to RP. Return the most significant limb of - the product. {S1P, N} and {RP, N} are allowed to overlap provided - RP <= S1P. - - This is a low-level function that is a building block for general - multiplication as well as other operations in GMP. It is written - in assembly for most CPUs. - - Don't call this function if S2LIMB is a power of 2; use - 'mpn_lshift' with a count equal to the logarithm of S2LIMB instead, - for optimal speed. - - -- Function: mp_limb_t mpn_addmul_1 (mp_limb_t *RP, const mp_limb_t - *S1P, mp_size_t N, mp_limb_t S2LIMB) - Multiply {S1P, N} and S2LIMB, and add the N least significant limbs - of the product to {RP, N} and write the result to RP. Return the - most significant limb of the product, plus carry-out from the - addition. {S1P, N} and {RP, N} are allowed to overlap provided RP - <= S1P. - - This is a low-level function that is a building block for general - multiplication as well as other operations in GMP. It is written - in assembly for most CPUs. - - -- Function: mp_limb_t mpn_submul_1 (mp_limb_t *RP, const mp_limb_t - *S1P, mp_size_t N, mp_limb_t S2LIMB) - Multiply {S1P, N} and S2LIMB, and subtract the N least significant - limbs of the product from {RP, N} and write the result to RP. - Return the most significant limb of the product, plus borrow-out - from the subtraction. {S1P, N} and {RP, N} are allowed to overlap - provided RP <= S1P. - - This is a low-level function that is a building block for general - multiplication and division as well as other operations in GMP. It - is written in assembly for most CPUs. - - -- Function: void mpn_tdiv_qr (mp_limb_t *QP, mp_limb_t *RP, mp_size_t - QXN, const mp_limb_t *NP, mp_size_t NN, const mp_limb_t *DP, - mp_size_t DN) - Divide {NP, NN} by {DP, DN} and put the quotient at {QP, NN-DN+1} - and the remainder at {RP, DN}. The quotient is rounded towards 0. - - No overlap is permitted between arguments, except that NP might - equal RP. The dividend size NN must be greater than or equal to - divisor size DN. The most significant limb of the divisor must be - non-zero. The QXN operand must be zero. - - -- Function: mp_limb_t mpn_divrem (mp_limb_t *R1P, mp_size_t QXN, - mp_limb_t *RS2P, mp_size_t RS2N, const mp_limb_t *S3P, - mp_size_t S3N) - [This function is obsolete. Please call 'mpn_tdiv_qr' instead for - best performance.] - - Divide {RS2P, RS2N} by {S3P, S3N}, and write the quotient at R1P, - with the exception of the most significant limb, which is returned. - The remainder replaces the dividend at RS2P; it will be S3N limbs - long (i.e., as many limbs as the divisor). - - In addition to an integer quotient, QXN fraction limbs are - developed, and stored after the integral limbs. For most usages, - QXN will be zero. - - It is required that RS2N is greater than or equal to S3N. It is - required that the most significant bit of the divisor is set. - - If the quotient is not needed, pass RS2P + S3N as R1P. Aside from - that special case, no overlap between arguments is permitted. - - Return the most significant limb of the quotient, either 0 or 1. - - The area at R1P needs to be RS2N - S3N + QXN limbs large. - - -- Function: mp_limb_t mpn_divrem_1 (mp_limb_t *R1P, mp_size_t QXN, - mp_limb_t *S2P, mp_size_t S2N, mp_limb_t S3LIMB) - -- Macro: mp_limb_t mpn_divmod_1 (mp_limb_t *R1P, mp_limb_t *S2P, - mp_size_t S2N, mp_limb_t S3LIMB) - Divide {S2P, S2N} by S3LIMB, and write the quotient at R1P. Return - the remainder. - - The integer quotient is written to {R1P+QXN, S2N} and in addition - QXN fraction limbs are developed and written to {R1P, QXN}. Either - or both S2N and QXN can be zero. For most usages, QXN will be - zero. - - 'mpn_divmod_1' exists for upward source compatibility and is simply - a macro calling 'mpn_divrem_1' with a QXN of 0. - - The areas at R1P and S2P have to be identical or completely - separate, not partially overlapping. - - -- Function: mp_limb_t mpn_divmod (mp_limb_t *R1P, mp_limb_t *RS2P, - mp_size_t RS2N, const mp_limb_t *S3P, mp_size_t S3N) - [This function is obsolete. Please call 'mpn_tdiv_qr' instead for - best performance.] - - -- Function: void mpn_divexact_1 (mp_limb_t * RP, const mp_limb_t * SP, - mp_size_t N, mp_limb_t D) - Divide {SP, N} by D, expecting it to divide exactly, and writing - the result to {RP, N}. If D doesn't divide exactly, the value - written to {RP, N} is undefined. The areas at RP and SP have to be - identical or completely separate, not partially overlapping. - - -- Macro: mp_limb_t mpn_divexact_by3 (mp_limb_t *RP, mp_limb_t *SP, - mp_size_t N) - -- Function: mp_limb_t mpn_divexact_by3c (mp_limb_t *RP, mp_limb_t *SP, - mp_size_t N, mp_limb_t CARRY) - Divide {SP, N} by 3, expecting it to divide exactly, and writing - the result to {RP, N}. If 3 divides exactly, the return value is - zero and the result is the quotient. If not, the return value is - non-zero and the result won't be anything useful. - - 'mpn_divexact_by3c' takes an initial carry parameter, which can be - the return value from a previous call, so a large calculation can - be done piece by piece from low to high. 'mpn_divexact_by3' is - simply a macro calling 'mpn_divexact_by3c' with a 0 carry - parameter. - - These routines use a multiply-by-inverse and will be faster than - 'mpn_divrem_1' on CPUs with fast multiplication but slow division. - - The source a, result q, size n, initial carry i, and return value c - satisfy c*b^n + a-i = 3*q, where b=2^GMP_NUMB_BITS. The return c is - always 0, 1 or 2, and the initial carry i must also be 0, 1 or 2 - (these are both borrows really). When c=0 clearly q=(a-i)/3. When - c!=0, the remainder (a-i) mod 3 is given by 3-c, because b == 1 mod - 3 (when 'mp_bits_per_limb' is even, which is always so currently). - - -- Function: mp_limb_t mpn_mod_1 (const mp_limb_t *S1P, mp_size_t S1N, - mp_limb_t S2LIMB) - Divide {S1P, S1N} by S2LIMB, and return the remainder. S1N can be - zero. - - -- Function: mp_limb_t mpn_lshift (mp_limb_t *RP, const mp_limb_t *SP, - mp_size_t N, unsigned int COUNT) - Shift {SP, N} left by COUNT bits, and write the result to {RP, N}. - The bits shifted out at the left are returned in the least - significant COUNT bits of the return value (the rest of the return - value is zero). - - COUNT must be in the range 1 to mp_bits_per_limb-1. The regions - {SP, N} and {RP, N} may overlap, provided RP >= SP. - - This function is written in assembly for most CPUs. - - -- Function: mp_limb_t mpn_rshift (mp_limb_t *RP, const mp_limb_t *SP, - mp_size_t N, unsigned int COUNT) - Shift {SP, N} right by COUNT bits, and write the result to {RP, N}. - The bits shifted out at the right are returned in the most - significant COUNT bits of the return value (the rest of the return - value is zero). - - COUNT must be in the range 1 to mp_bits_per_limb-1. The regions - {SP, N} and {RP, N} may overlap, provided RP <= SP. - - This function is written in assembly for most CPUs. - - -- Function: int mpn_cmp (const mp_limb_t *S1P, const mp_limb_t *S2P, - mp_size_t N) - Compare {S1P, N} and {S2P, N} and return a positive value if S1 > - S2, 0 if they are equal, or a negative value if S1 < S2. - - -- Function: int mpn_zero_p (const mp_limb_t *SP, mp_size_t N) - Test {SP, N} and return 1 if the operand is zero, 0 otherwise. - - -- Function: mp_size_t mpn_gcd (mp_limb_t *RP, mp_limb_t *XP, mp_size_t - XN, mp_limb_t *YP, mp_size_t YN) - Set {RP, RETVAL} to the greatest common divisor of {XP, XN} and - {YP, YN}. The result can be up to YN limbs, the return value is - the actual number produced. Both source operands are destroyed. - - It is required that XN >= YN > 0, the most significant limb of {YP, - YN} must be non-zero, and at least one of the two operands must be - odd. No overlap is permitted between {XP, XN} and {YP, YN}. - - -- Function: mp_limb_t mpn_gcd_1 (const mp_limb_t *XP, mp_size_t XN, - mp_limb_t YLIMB) - Return the greatest common divisor of {XP, XN} and YLIMB. Both - operands must be non-zero. - - -- Function: mp_size_t mpn_gcdext (mp_limb_t *GP, mp_limb_t *SP, - mp_size_t *SN, mp_limb_t *UP, mp_size_t UN, mp_limb_t *VP, - mp_size_t VN) - Let U be defined by {UP, UN} and let V be defined by {VP, VN}. - - Compute the greatest common divisor G of U and V. Compute a - cofactor S such that G = US + VT. The second cofactor T is not - computed but can easily be obtained from (G - U*S) / V (the - division will be exact). It is required that UN >= VN > 0, and the - most significant limb of {VP, VN} must be non-zero. - - S satisfies S = 1 or abs(S) < V / (2 G). S = 0 if and only if V - divides U (i.e., G = V). - - Store G at GP and let the return value define its limb count. - Store S at SP and let |*SN| define its limb count. S can be - negative; when this happens *SN will be negative. The area at GP - should have room for VN limbs and the area at SP should have room - for VN+1 limbs. - - Both source operands are destroyed. - - Compatibility notes: GMP 4.3.0 and 4.3.1 defined S less strictly. - Earlier as well as later GMP releases define S as described here. - GMP releases before GMP 4.3.0 required additional space for both - input and output areas. More precisely, the areas {UP, UN+1} and - {VP, VN+1} were destroyed (i.e. the operands plus an extra limb - past the end of each), and the areas pointed to by GP and SP should - each have room for UN+1 limbs. - - -- Function: mp_size_t mpn_sqrtrem (mp_limb_t *R1P, mp_limb_t *R2P, - const mp_limb_t *SP, mp_size_t N) - Compute the square root of {SP, N} and put the result at {R1P, - ceil(N/2)} and the remainder at {R2P, RETVAL}. R2P needs space for - N limbs, but the return value indicates how many are produced. - - The most significant limb of {SP, N} must be non-zero. The areas - {R1P, ceil(N/2)} and {SP, N} must be completely separate. The - areas {R2P, N} and {SP, N} must be either identical or completely - separate. - - If the remainder is not wanted then R2P can be 'NULL', and in this - case the return value is zero or non-zero according to whether the - remainder would have been zero or non-zero. - - A return value of zero indicates a perfect square. See also - 'mpn_perfect_square_p'. - - -- Function: size_t mpn_sizeinbase (const mp_limb_t *XP, mp_size_t N, - int BASE) - Return the size of {XP,N} measured in number of digits in the given - BASE. BASE can vary from 2 to 62. Requires N > 0 and XP[N-1] > 0. - The result will be either exact or 1 too big. If BASE is a power - of 2, the result is always exact. - - -- Function: mp_size_t mpn_get_str (unsigned char *STR, int BASE, - mp_limb_t *S1P, mp_size_t S1N) - Convert {S1P, S1N} to a raw unsigned char array at STR in base - BASE, and return the number of characters produced. There may be - leading zeros in the string. The string is not in ASCII; to - convert it to printable format, add the ASCII codes for '0' or 'A', - depending on the base and range. BASE can vary from 2 to 256. - - The most significant limb of the input {S1P, S1N} must be non-zero. - The input {S1P, S1N} is clobbered, except when BASE is a power of - 2, in which case it's unchanged. - - The area at STR has to have space for the largest possible number - represented by a S1N long limb array, plus one extra character. - - -- Function: mp_size_t mpn_set_str (mp_limb_t *RP, const unsigned char - *STR, size_t STRSIZE, int BASE) - Convert bytes {STR,STRSIZE} in the given BASE to limbs at RP. - - STR[0] is the most significant input byte and STR[STRSIZE-1] is the - least significant input byte. Each byte should be a value in the - range 0 to BASE-1, not an ASCII character. BASE can vary from 2 to - 256. - - The converted value is {RP,RN} where RN is the return value. If - the most significant input byte STR[0] is non-zero, then RP[RN-1] - will be non-zero, else RP[RN-1] and some number of subsequent limbs - may be zero. - - The area at RP has to have space for the largest possible number - with STRSIZE digits in the chosen base, plus one extra limb. - - The input must have at least one byte, and no overlap is permitted - between {STR,STRSIZE} and the result at RP. - - -- Function: mp_bitcnt_t mpn_scan0 (const mp_limb_t *S1P, mp_bitcnt_t - BIT) - Scan S1P from bit position BIT for the next clear bit. - - It is required that there be a clear bit within the area at S1P at - or beyond bit position BIT, so that the function has something to - return. - - -- Function: mp_bitcnt_t mpn_scan1 (const mp_limb_t *S1P, mp_bitcnt_t - BIT) - Scan S1P from bit position BIT for the next set bit. - - It is required that there be a set bit within the area at S1P at or - beyond bit position BIT, so that the function has something to - return. - - -- Function: void mpn_random (mp_limb_t *R1P, mp_size_t R1N) - -- Function: void mpn_random2 (mp_limb_t *R1P, mp_size_t R1N) - Generate a random number of length R1N and store it at R1P. The - most significant limb is always non-zero. 'mpn_random' generates - uniformly distributed limb data, 'mpn_random2' generates long - strings of zeros and ones in the binary representation. - - 'mpn_random2' is intended for testing the correctness of the 'mpn' - routines. - - -- Function: mp_bitcnt_t mpn_popcount (const mp_limb_t *S1P, mp_size_t - N) - Count the number of set bits in {S1P, N}. - - -- Function: mp_bitcnt_t mpn_hamdist (const mp_limb_t *S1P, const - mp_limb_t *S2P, mp_size_t N) - Compute the hamming distance between {S1P, N} and {S2P, N}, which - is the number of bit positions where the two operands have - different bit values. - - -- Function: int mpn_perfect_square_p (const mp_limb_t *S1P, mp_size_t - N) - Return non-zero iff {S1P, N} is a perfect square. The most - significant limb of the input {S1P, N} must be non-zero. - - -- Function: void mpn_and_n (mp_limb_t *RP, const mp_limb_t *S1P, const - mp_limb_t *S2P, mp_size_t N) - Perform the bitwise logical and of {S1P, N} and {S2P, N}, and write - the result to {RP, N}. - - -- Function: void mpn_ior_n (mp_limb_t *RP, const mp_limb_t *S1P, const - mp_limb_t *S2P, mp_size_t N) - Perform the bitwise logical inclusive or of {S1P, N} and {S2P, N}, - and write the result to {RP, N}. - - -- Function: void mpn_xor_n (mp_limb_t *RP, const mp_limb_t *S1P, const - mp_limb_t *S2P, mp_size_t N) - Perform the bitwise logical exclusive or of {S1P, N} and {S2P, N}, - and write the result to {RP, N}. - - -- Function: void mpn_andn_n (mp_limb_t *RP, const mp_limb_t *S1P, - const mp_limb_t *S2P, mp_size_t N) - Perform the bitwise logical and of {S1P, N} and the bitwise - complement of {S2P, N}, and write the result to {RP, N}. - - -- Function: void mpn_iorn_n (mp_limb_t *RP, const mp_limb_t *S1P, - const mp_limb_t *S2P, mp_size_t N) - Perform the bitwise logical inclusive or of {S1P, N} and the - bitwise complement of {S2P, N}, and write the result to {RP, N}. - - -- Function: void mpn_nand_n (mp_limb_t *RP, const mp_limb_t *S1P, - const mp_limb_t *S2P, mp_size_t N) - Perform the bitwise logical and of {S1P, N} and {S2P, N}, and write - the bitwise complement of the result to {RP, N}. - - -- Function: void mpn_nior_n (mp_limb_t *RP, const mp_limb_t *S1P, - const mp_limb_t *S2P, mp_size_t N) - Perform the bitwise logical inclusive or of {S1P, N} and {S2P, N}, - and write the bitwise complement of the result to {RP, N}. - - -- Function: void mpn_xnor_n (mp_limb_t *RP, const mp_limb_t *S1P, - const mp_limb_t *S2P, mp_size_t N) - Perform the bitwise logical exclusive or of {S1P, N} and {S2P, N}, - and write the bitwise complement of the result to {RP, N}. - - -- Function: void mpn_com (mp_limb_t *RP, const mp_limb_t *SP, - mp_size_t N) - Perform the bitwise complement of {SP, N}, and write the result to - {RP, N}. - - -- Function: void mpn_copyi (mp_limb_t *RP, const mp_limb_t *S1P, - mp_size_t N) - Copy from {S1P, N} to {RP, N}, increasingly. - - -- Function: void mpn_copyd (mp_limb_t *RP, const mp_limb_t *S1P, - mp_size_t N) - Copy from {S1P, N} to {RP, N}, decreasingly. - - -- Function: void mpn_zero (mp_limb_t *RP, mp_size_t N) - Zero {RP, N}. - - -8.1 Low-level functions for cryptography -======================================== - -The functions prefixed with 'mpn_sec_' and 'mpn_cnd_' are designed to -perform the exact same low-level operations and have the same cache -access patterns for any two same-size arguments, assuming that function -arguments are placed at the same position and that the machine state is -identical upon function entry. These functions are intended for -cryptographic purposes, where resilience to side-channel attacks is -desired. - - These functions are less efficient than their "leaky" counterparts; -their performance for operands of the sizes typically used for -cryptographic applications is between 15% and 100% worse. For larger -operands, these functions might be inadequate, since they rely on -asymptotically elementary algorithms. - - These functions do not make any explicit allocations. Those of these -functions that need scratch space accept a scratch space operand. This -convention allows callers to keep sensitive data in designated memory -areas. Note however that compilers may choose to spill scalar values -used within these functions to their stack frame and that such scalars -may contain sensitive data. - - In addition to these specially crafted functions, the following 'mpn' -functions are naturally side-channel resistant: 'mpn_add_n', -'mpn_sub_n', 'mpn_lshift', 'mpn_rshift', 'mpn_zero', 'mpn_copyi', -'mpn_copyd', 'mpn_com', and the logical function ('mpn_and_n', etc). - - There are some exceptions from the side-channel resilience: (1) Some -assembly implementations of 'mpn_lshift' identify shift-by-one as a -special case. This is a problem iff the shift count is a function of -sensitive data. (2) Alpha ev6 and Pentium4 using 64-bit limbs have -leaky 'mpn_add_n' and 'mpn_sub_n'. (3) Alpha ev6 has a leaky -'mpn_mul_1' which also makes 'mpn_sec_mul' on those systems unsafe. - - -- Function: mp_limb_t mpn_cnd_add_n (mp_limb_t CND, mp_limb_t *RP, - const mp_limb_t *S1P, const mp_limb_t *S2P, mp_size_t N) - -- Function: mp_limb_t mpn_cnd_sub_n (mp_limb_t CND, mp_limb_t *RP, - const mp_limb_t *S1P, const mp_limb_t *S2P, mp_size_t N) - These functions do conditional addition and subtraction. If CND is - non-zero, they produce the same result as a regular 'mpn_add_n' or - 'mpn_sub_n', and if CND is zero, they copy {S1P,N} to the result - area and return zero. The functions are designed to have timing - and memory access patterns depending only on size and location of - the data areas, but independent of the condition CND. Like for - 'mpn_add_n' and 'mpn_sub_n', on most machines, the timing will also - be independent of the actual limb values. - - -- Function: mp_limb_t mpn_sec_add_1 (mp_limb_t *RP, const mp_limb_t - *AP, mp_size_t N, mp_limb_t B, mp_limb_t *TP) - -- Function: mp_limb_t mpn_sec_sub_1 (mp_limb_t *RP, const mp_limb_t - *AP, mp_size_t N, mp_limb_t B, mp_limb_t *TP) - Set R to A + B or A - B, respectively, where R = {RP,N}, A = - {AP,N}, and B is a single limb. Returns carry. - - These functions take O(N) time, unlike the leaky functions - 'mpn_add_1' which are O(1) on average. They require scratch space - of 'mpn_sec_add_1_itch(N)' and 'mpn_sec_sub_1_itch(N)' limbs, - respectively, to be passed in the TP parameter. The scratch space - requirements are guaranteed to be at most N limbs, and increase - monotonously in the operand size. - - -- Function: void mpn_cnd_swap (mp_limb_t CND, volatile mp_limb_t *AP, - volatile mp_limb_t *BP, mp_size_t N) - If CND is non-zero, swaps the contents of the areas {AP,N} and - {BP,N}. Otherwise, the areas are left unmodified. Implemented - using logical operations on the limbs, with the same memory - accesses independent of the value of CND. - - -- Function: void mpn_sec_mul (mp_limb_t *RP, const mp_limb_t *AP, - mp_size_t AN, const mp_limb_t *BP, mp_size_t BN, mp_limb_t - *TP) - -- Function: mp_size_t mpn_sec_mul_itch (mp_size_t AN, mp_size_t BN) - Set R to A * B, where A = {AP,AN}, B = {BP,BN}, and R = {RP,AN+BN}. - - It is required that AN >= BN > 0. - - No overlapping between R and the input operands is allowed. For A - = B, use 'mpn_sec_sqr' for optimal performance. - - This function requires scratch space of 'mpn_sec_mul_itch(AN, BN)' - limbs to be passed in the TP parameter. The scratch space - requirements are guaranteed to increase monotonously in the operand - sizes. - - -- Function: void mpn_sec_sqr (mp_limb_t *RP, const mp_limb_t *AP, - mp_size_t AN, mp_limb_t *TP) - -- Function: mp_size_t mpn_sec_sqr_itch (mp_size_t AN) - Set R to A^2, where A = {AP,AN}, and R = {RP,2AN}. - - It is required that AN > 0. - - No overlapping between R and the input operands is allowed. - - This function requires scratch space of 'mpn_sec_sqr_itch(AN)' - limbs to be passed in the TP parameter. The scratch space - requirements are guaranteed to increase monotonously in the operand - size. - - -- Function: void mpn_sec_powm (mp_limb_t *RP, const mp_limb_t *BP, - mp_size_t BN, const mp_limb_t *EP, mp_bitcnt_t ENB, const - mp_limb_t *MP, mp_size_t N, mp_limb_t *TP) - -- Function: mp_size_t mpn_sec_powm_itch (mp_size_t BN, mp_bitcnt_t - ENB, size_t N) - Set R to (B raised to E) modulo M, where R = {RP,N}, M = {MP,N}, - and E = {EP,ceil(ENB / 'GMP\_NUMB\_BITS')}. - - It is required that B > 0, that M > 0 is odd, and that E < 2^ENB, - with ENB > 0. - - No overlapping between R and the input operands is allowed. - - This function requires scratch space of 'mpn_sec_powm_itch(BN, ENB, - N)' limbs to be passed in the TP parameter. The scratch space - requirements are guaranteed to increase monotonously in the operand - sizes. - - -- Function: void mpn_sec_tabselect (mp_limb_t *RP, const mp_limb_t - *TAB, mp_size_t N, mp_size_t NENTS, mp_size_t WHICH) - Select entry WHICH from table TAB, which has NENTS entries, each N - limbs. Store the selected entry at RP. - - This function reads the entire table to avoid side-channel - information leaks. - - -- Function: mp_limb_t mpn_sec_div_qr (mp_limb_t *QP, mp_limb_t *NP, - mp_size_t NN, const mp_limb_t *DP, mp_size_t DN, mp_limb_t - *TP) - -- Function: mp_size_t mpn_sec_div_qr_itch (mp_size_t NN, mp_size_t DN) - - Set Q to the truncated quotient N / D and R to N modulo D, where N - = {NP,NN}, D = {DP,DN}, Q's most significant limb is the function - return value and the remaining limbs are {QP,NN-DN}, and R = - {NP,DN}. - - It is required that NN >= DN >= 1, and that DP[DN-1] != 0. This - does not imply that N >= D since N might be zero-padded. - - Note the overlapping between N and R. No other operand overlapping - is allowed. The entire space occupied by N is overwritten. - - This function requires scratch space of 'mpn_sec_div_qr_itch(NN, - DN)' limbs to be passed in the TP parameter. - - -- Function: void mpn_sec_div_r (mp_limb_t *NP, mp_size_t NN, const - mp_limb_t *DP, mp_size_t DN, mp_limb_t *TP) - -- Function: mp_size_t mpn_sec_div_r_itch (mp_size_t NN, mp_size_t DN) - - Set R to N modulo D, where N = {NP,NN}, D = {DP,DN}, and R = - {NP,DN}. - - It is required that NN >= DN >= 1, and that DP[DN-1] != 0. This - does not imply that N >= D since N might be zero-padded. - - Note the overlapping between N and R. No other operand overlapping - is allowed. The entire space occupied by N is overwritten. - - This function requires scratch space of 'mpn_sec_div_r_itch(NN, - DN)' limbs to be passed in the TP parameter. - - -- Function: int mpn_sec_invert (mp_limb_t *RP, mp_limb_t *AP, const - mp_limb_t *MP, mp_size_t N, mp_bitcnt_t NBCNT, mp_limb_t *TP) - -- Function: mp_size_t mpn_sec_invert_itch (mp_size_t N) - Set R to the inverse of A modulo M, where R = {RP,N}, A = {AP,N}, - and M = {MP,N}. *This function's interface is preliminary.* - - If an inverse exists, return 1, otherwise return 0 and leave R - undefined. In either case, the input A is destroyed. - - It is required that M is odd, and that NBCNT >= ceil(\log(A+1)) + - ceil(\log(M+1)). A safe choice is NBCNT = 2 * N * GMP_NUMB_BITS, - but a smaller value might improve performance if M or A are known - to have leading zero bits. - - This function requires scratch space of 'mpn_sec_invert_itch(N)' - limbs to be passed in the TP parameter. - - -8.2 Nails -========= - -*Everything in this section is highly experimental and may disappear or -be subject to incompatible changes in a future version of GMP.* - - Nails are an experimental feature whereby a few bits are left unused -at the top of each 'mp_limb_t'. This can significantly improve carry -handling on some processors. - - All the 'mpn' functions accepting limb data will expect the nail bits -to be zero on entry, and will return data with the nails similarly all -zero. This applies both to limb vectors and to single limb arguments. - - Nails can be enabled by configuring with '--enable-nails'. By -default the number of bits will be chosen according to what suits the -host processor, but a particular number can be selected with -'--enable-nails=N'. - - At the mpn level, a nail build is neither source nor binary -compatible with a non-nail build, strictly speaking. But programs -acting on limbs only through the mpn functions are likely to work -equally well with either build, and judicious use of the definitions -below should make any program compatible with either build, at the -source level. - - For the higher level routines, meaning 'mpz' etc, a nail build should -be fully source and binary compatible with a non-nail build. - - -- Macro: GMP_NAIL_BITS - -- Macro: GMP_NUMB_BITS - -- Macro: GMP_LIMB_BITS - 'GMP_NAIL_BITS' is the number of nail bits, or 0 when nails are not - in use. 'GMP_NUMB_BITS' is the number of data bits in a limb. - 'GMP_LIMB_BITS' is the total number of bits in an 'mp_limb_t'. In - all cases - - GMP_LIMB_BITS == GMP_NAIL_BITS + GMP_NUMB_BITS - - -- Macro: GMP_NAIL_MASK - -- Macro: GMP_NUMB_MASK - Bit masks for the nail and number parts of a limb. 'GMP_NAIL_MASK' - is 0 when nails are not in use. - - 'GMP_NAIL_MASK' is not often needed, since the nail part can be - obtained with 'x >> GMP_NUMB_BITS', and that means one less large - constant, which can help various RISC chips. - - -- Macro: GMP_NUMB_MAX - The maximum value that can be stored in the number part of a limb. - This is the same as 'GMP_NUMB_MASK', but can be used for clarity - when doing comparisons rather than bit-wise operations. - - The term "nails" comes from finger or toe nails, which are at the -ends of a limb (arm or leg). "numb" is short for number, but is also -how the developers felt after trying for a long time to come up with -sensible names for these things. - - In the future (the distant future most likely) a non-zero nail might -be permitted, giving non-unique representations for numbers in a limb -vector. This would help vector processors since carries would only ever -need to propagate one or two limbs. - - -File: gmp.info, Node: Random Number Functions, Next: Formatted Output, Prev: Low-level Functions, Up: Top - -9 Random Number Functions -************************* - -Sequences of pseudo-random numbers in GMP are generated using a variable -of type 'gmp_randstate_t', which holds an algorithm selection and a -current state. Such a variable must be initialized by a call to one of -the 'gmp_randinit' functions, and can be seeded with one of the -'gmp_randseed' functions. - - The functions actually generating random numbers are described in -*note Integer Random Numbers::, and *note Miscellaneous Float -Functions::. - - The older style random number functions don't accept a -'gmp_randstate_t' parameter but instead share a global variable of that -type. They use a default algorithm and are currently not seeded (though -perhaps that will change in the future). The new functions accepting a -'gmp_randstate_t' are recommended for applications that care about -randomness. - -* Menu: - -* Random State Initialization:: -* Random State Seeding:: -* Random State Miscellaneous:: - - -File: gmp.info, Node: Random State Initialization, Next: Random State Seeding, Prev: Random Number Functions, Up: Random Number Functions - -9.1 Random State Initialization -=============================== - - -- Function: void gmp_randinit_default (gmp_randstate_t STATE) - Initialize STATE with a default algorithm. This will be a - compromise between speed and randomness, and is recommended for - applications with no special requirements. Currently this is - 'gmp_randinit_mt'. - - -- Function: void gmp_randinit_mt (gmp_randstate_t STATE) - Initialize STATE for a Mersenne Twister algorithm. This algorithm - is fast and has good randomness properties. - - -- Function: void gmp_randinit_lc_2exp (gmp_randstate_t STATE, const - mpz_t A, unsigned long C, mp_bitcnt_t M2EXP) - Initialize STATE with a linear congruential algorithm X = (A*X + C) - mod 2^M2EXP. - - The low bits of X in this algorithm are not very random. The least - significant bit will have a period no more than 2, and the second - bit no more than 4, etc. For this reason only the high half of - each X is actually used. - - When a random number of more than M2EXP/2 bits is to be generated, - multiple iterations of the recurrence are used and the results - concatenated. - - -- Function: int gmp_randinit_lc_2exp_size (gmp_randstate_t STATE, - mp_bitcnt_t SIZE) - Initialize STATE for a linear congruential algorithm as per - 'gmp_randinit_lc_2exp'. A, C and M2EXP are selected from a table, - chosen so that SIZE bits (or more) of each X will be used, i.e. - M2EXP/2 >= SIZE. - - If successful the return value is non-zero. If SIZE is bigger than - the table data provides then the return value is zero. The maximum - SIZE currently supported is 128. - - -- Function: void gmp_randinit_set (gmp_randstate_t ROP, - gmp_randstate_t OP) - Initialize ROP with a copy of the algorithm and state from OP. - - -- Function: void gmp_randinit (gmp_randstate_t STATE, - gmp_randalg_t ALG, ...) - *This function is obsolete.* - - Initialize STATE with an algorithm selected by ALG. The only - choice is 'GMP_RAND_ALG_LC', which is 'gmp_randinit_lc_2exp_size' - described above. A third parameter of type 'unsigned long' is - required, this is the SIZE for that function. - 'GMP_RAND_ALG_DEFAULT' or 0 are the same as 'GMP_RAND_ALG_LC'. - - 'gmp_randinit' sets bits in the global variable 'gmp_errno' to - indicate an error. 'GMP_ERROR_UNSUPPORTED_ARGUMENT' if ALG is - unsupported, or 'GMP_ERROR_INVALID_ARGUMENT' if the SIZE parameter - is too big. It may be noted this error reporting is not thread - safe (a good reason to use 'gmp_randinit_lc_2exp_size' instead). - - -- Function: void gmp_randclear (gmp_randstate_t STATE) - Free all memory occupied by STATE. - - -File: gmp.info, Node: Random State Seeding, Next: Random State Miscellaneous, Prev: Random State Initialization, Up: Random Number Functions - -9.2 Random State Seeding -======================== - - -- Function: void gmp_randseed (gmp_randstate_t STATE, const mpz_t - SEED) - -- Function: void gmp_randseed_ui (gmp_randstate_t STATE, - unsigned long int SEED) - Set an initial seed value into STATE. - - The size of a seed determines how many different sequences of - random numbers that it's possible to generate. The "quality" of - the seed is the randomness of a given seed compared to the previous - seed used, and this affects the randomness of separate number - sequences. The method for choosing a seed is critical if the - generated numbers are to be used for important applications, such - as generating cryptographic keys. - - Traditionally the system time has been used to seed, but care needs - to be taken with this. If an application seeds often and the - resolution of the system clock is low, then the same sequence of - numbers might be repeated. Also, the system time is quite easy to - guess, so if unpredictability is required then it should definitely - not be the only source for the seed value. On some systems there's - a special device '/dev/random' which provides random data better - suited for use as a seed. - - -File: gmp.info, Node: Random State Miscellaneous, Prev: Random State Seeding, Up: Random Number Functions - -9.3 Random State Miscellaneous -============================== - - -- Function: unsigned long gmp_urandomb_ui (gmp_randstate_t STATE, - unsigned long N) - Return a uniformly distributed random number of N bits, i.e. in the - range 0 to 2^N-1 inclusive. N must be less than or equal to the - number of bits in an 'unsigned long'. - - -- Function: unsigned long gmp_urandomm_ui (gmp_randstate_t STATE, - unsigned long N) - Return a uniformly distributed random number in the range 0 to N-1, - inclusive. - - -File: gmp.info, Node: Formatted Output, Next: Formatted Input, Prev: Random Number Functions, Up: Top - -10 Formatted Output -******************* - -* Menu: - -* Formatted Output Strings:: -* Formatted Output Functions:: -* C++ Formatted Output:: - - -File: gmp.info, Node: Formatted Output Strings, Next: Formatted Output Functions, Prev: Formatted Output, Up: Formatted Output - -10.1 Format Strings -=================== - -'gmp_printf' and friends accept format strings similar to the standard C -'printf' (*note Formatted Output: (libc)Formatted Output.). A format -specification is of the form - - % [flags] [width] [.[precision]] [type] conv - - GMP adds types 'Z', 'Q' and 'F' for 'mpz_t', 'mpq_t' and 'mpf_t' -respectively, 'M' for 'mp_limb_t', and 'N' for an 'mp_limb_t' array. -'Z', 'Q', 'M' and 'N' behave like integers. 'Q' will print a '/' and a -denominator, if needed. 'F' behaves like a float. For example, - - mpz_t z; - gmp_printf ("%s is an mpz %Zd\n", "here", z); - - mpq_t q; - gmp_printf ("a hex rational: %#40Qx\n", q); - - mpf_t f; - int n; - gmp_printf ("fixed point mpf %.*Ff with %d digits\n", n, f, n); - - mp_limb_t l; - gmp_printf ("limb %Mu\n", l); - - const mp_limb_t *ptr; - mp_size_t size; - gmp_printf ("limb array %Nx\n", ptr, size); - - For 'N' the limbs are expected least significant first, as per the -'mpn' functions (*note Low-level Functions::). A negative size can be -given to print the value as a negative. - - All the standard C 'printf' types behave the same as the C library -'printf', and can be freely intermixed with the GMP extensions. In the -current implementation the standard parts of the format string are -simply handed to 'printf' and only the GMP extensions handled directly. - - The flags accepted are as follows. GLIBC style ' is only for the -standard C types (not the GMP types), and only if the C library supports -it. - - 0 pad with zeros (rather than spaces) - # show the base with '0x', '0X' or '0' - + always show a sign - (space) show a space or a '-' sign - ' group digits, GLIBC style (not GMP - types) - - The optional width and precision can be given as a number within the -format string, or as a '*' to take an extra parameter of type 'int', the -same as the standard 'printf'. - - The standard types accepted are as follows. 'h' and 'l' are -portable, the rest will depend on the compiler (or include files) for -the type and the C library for the output. - - h short - hh char - j intmax_t or uintmax_t - l long or wchar_t - ll long long - L long double - q quad_t or u_quad_t - t ptrdiff_t - z size_t - -The GMP types are - - F mpf_t, float conversions - Q mpq_t, integer conversions - M mp_limb_t, integer conversions - N mp_limb_t array, integer conversions - Z mpz_t, integer conversions - - The conversions accepted are as follows. 'a' and 'A' are always -supported for 'mpf_t' but depend on the C library for standard C float -types. 'm' and 'p' depend on the C library. - - a A hex floats, C99 style - c character - d decimal integer - e E scientific format float - f fixed point float - i same as d - g G fixed or scientific float - m 'strerror' string, GLIBC style - n store characters written so far - o octal integer - p pointer - s string - u unsigned integer - x X hex integer - - 'o', 'x' and 'X' are unsigned for the standard C types, but for types -'Z', 'Q' and 'N' they are signed. 'u' is not meaningful for 'Z', 'Q' -and 'N'. - - 'M' is a proxy for the C library 'l' or 'L', according to the size of -'mp_limb_t'. Unsigned conversions will be usual, but a signed -conversion can be used and will interpret the value as a twos complement -negative. - - 'n' can be used with any type, even the GMP types. - - Other types or conversions that might be accepted by the C library -'printf' cannot be used through 'gmp_printf', this includes for instance -extensions registered with GLIBC 'register_printf_function'. Also -currently there's no support for POSIX '$' style numbered arguments -(perhaps this will be added in the future). - - The precision field has its usual meaning for integer 'Z' and float -'F' types, but is currently undefined for 'Q' and should not be used -with that. - - 'mpf_t' conversions only ever generate as many digits as can be -accurately represented by the operand, the same as 'mpf_get_str' does. -Zeros will be used if necessary to pad to the requested precision. This -happens even for an 'f' conversion of an 'mpf_t' which is an integer, -for instance 2^1024 in an 'mpf_t' of 128 bits precision will only -produce about 40 digits, then pad with zeros to the decimal point. An -empty precision field like '%.Fe' or '%.Ff' can be used to specifically -request just the significant digits. Without any dot and thus no -precision field, a precision value of 6 will be used. Note that these -rules mean that '%Ff', '%.Ff', and '%.0Ff' will all be different. - - The decimal point character (or string) is taken from the current -locale settings on systems which provide 'localeconv' (*note Locales and -Internationalization: (libc)Locales.). The C library will normally do -the same for standard float output. - - The format string is only interpreted as plain 'char's, multibyte -characters are not recognised. Perhaps this will change in the future. - - -File: gmp.info, Node: Formatted Output Functions, Next: C++ Formatted Output, Prev: Formatted Output Strings, Up: Formatted Output - -10.2 Functions -============== - -Each of the following functions is similar to the corresponding C -library function. The basic 'printf' forms take a variable argument -list. The 'vprintf' forms take an argument pointer, see *note Variadic -Functions: (libc)Variadic Functions, or 'man 3 va_start'. - - It should be emphasised that if a format string is invalid, or the -arguments don't match what the format specifies, then the behaviour of -any of these functions will be unpredictable. GCC format string -checking is not available, since it doesn't recognise the GMP -extensions. - - The file based functions 'gmp_printf' and 'gmp_fprintf' will return --1 to indicate a write error. Output is not "atomic", so partial output -may be produced if a write error occurs. All the functions can return --1 if the C library 'printf' variant in use returns -1, but this -shouldn't normally occur. - - -- Function: int gmp_printf (const char *FMT, ...) - -- Function: int gmp_vprintf (const char *FMT, va_list AP) - Print to the standard output 'stdout'. Return the number of - characters written, or -1 if an error occurred. - - -- Function: int gmp_fprintf (FILE *FP, const char *FMT, ...) - -- Function: int gmp_vfprintf (FILE *FP, const char *FMT, va_list AP) - Print to the stream FP. Return the number of characters written, - or -1 if an error occurred. - - -- Function: int gmp_sprintf (char *BUF, const char *FMT, ...) - -- Function: int gmp_vsprintf (char *BUF, const char *FMT, va_list AP) - Form a null-terminated string in BUF. Return the number of - characters written, excluding the terminating null. - - No overlap is permitted between the space at BUF and the string - FMT. - - These functions are not recommended, since there's no protection - against exceeding the space available at BUF. - - -- Function: int gmp_snprintf (char *BUF, size_t SIZE, const char *FMT, - ...) - -- Function: int gmp_vsnprintf (char *BUF, size_t SIZE, const char - *FMT, va_list AP) - Form a null-terminated string in BUF. No more than SIZE bytes will - be written. To get the full output, SIZE must be enough for the - string and null-terminator. - - The return value is the total number of characters which ought to - have been produced, excluding the terminating null. If RETVAL >= - SIZE then the actual output has been truncated to the first SIZE-1 - characters, and a null appended. - - No overlap is permitted between the region {BUF,SIZE} and the FMT - string. - - Notice the return value is in ISO C99 'snprintf' style. This is so - even if the C library 'vsnprintf' is the older GLIBC 2.0.x style. - - -- Function: int gmp_asprintf (char **PP, const char *FMT, ...) - -- Function: int gmp_vasprintf (char **PP, const char *FMT, va_list AP) - Form a null-terminated string in a block of memory obtained from - the current memory allocation function (*note Custom Allocation::). - The block will be the size of the string and null-terminator. The - address of the block in stored to *PP. The return value is the - number of characters produced, excluding the null-terminator. - - Unlike the C library 'asprintf', 'gmp_asprintf' doesn't return -1 - if there's no more memory available, it lets the current allocation - function handle that. - - -- Function: int gmp_obstack_printf (struct obstack *OB, const char - *FMT, ...) - -- Function: int gmp_obstack_vprintf (struct obstack *OB, const char - *FMT, va_list AP) - Append to the current object in OB. The return value is the number - of characters written. A null-terminator is not written. - - FMT cannot be within the current object in OB, since that object - might move as it grows. - - These functions are available only when the C library provides the - obstack feature, which probably means only on GNU systems, see - *note Obstacks: (libc)Obstacks. - - -File: gmp.info, Node: C++ Formatted Output, Prev: Formatted Output Functions, Up: Formatted Output - -10.3 C++ Formatted Output -========================= - -The following functions are provided in 'libgmpxx' (*note Headers and -Libraries::), which is built if C++ support is enabled (*note Build -Options::). Prototypes are available from ''. - - -- Function: ostream& operator<< (ostream& STREAM, const mpz_t OP) - Print OP to STREAM, using its 'ios' formatting settings. - 'ios::width' is reset to 0 after output, the same as the standard - 'ostream operator<<' routines do. - - In hex or octal, OP is printed as a signed number, the same as for - decimal. This is unlike the standard 'operator<<' routines on - 'int' etc, which instead give twos complement. - - -- Function: ostream& operator<< (ostream& STREAM, const mpq_t OP) - Print OP to STREAM, using its 'ios' formatting settings. - 'ios::width' is reset to 0 after output, the same as the standard - 'ostream operator<<' routines do. - - Output will be a fraction like '5/9', or if the denominator is 1 - then just a plain integer like '123'. - - In hex or octal, OP is printed as a signed value, the same as for - decimal. If 'ios::showbase' is set then a base indicator is shown - on both the numerator and denominator (if the denominator is - required). - - -- Function: ostream& operator<< (ostream& STREAM, const mpf_t OP) - Print OP to STREAM, using its 'ios' formatting settings. - 'ios::width' is reset to 0 after output, the same as the standard - 'ostream operator<<' routines do. - - The decimal point follows the standard library float 'operator<<', - which on recent systems means the 'std::locale' imbued on STREAM. - - Hex and octal are supported, unlike the standard 'operator<<' on - 'double'. The mantissa will be in hex or octal, the exponent will - be in decimal. For hex the exponent delimiter is an '@'. This is - as per 'mpf_out_str'. - - 'ios::showbase' is supported, and will put a base on the mantissa, - for example hex '0x1.8' or '0x0.8', or octal '01.4' or '00.4'. - This last form is slightly strange, but at least differentiates - itself from decimal. - - These operators mean that GMP types can be printed in the usual C++ -way, for example, - - mpz_t z; - int n; - ... - cout << "iteration " << n << " value " << z << "\n"; - - But note that 'ostream' output (and 'istream' input, *note C++ -Formatted Input::) is the only overloading available for the GMP types -and that for instance using '+' with an 'mpz_t' will have unpredictable -results. For classes with overloading, see *note C++ Class Interface::. - - -File: gmp.info, Node: Formatted Input, Next: C++ Class Interface, Prev: Formatted Output, Up: Top - -11 Formatted Input -****************** - -* Menu: - -* Formatted Input Strings:: -* Formatted Input Functions:: -* C++ Formatted Input:: - - -File: gmp.info, Node: Formatted Input Strings, Next: Formatted Input Functions, Prev: Formatted Input, Up: Formatted Input - -11.1 Formatted Input Strings -============================ - -'gmp_scanf' and friends accept format strings similar to the standard C -'scanf' (*note Formatted Input: (libc)Formatted Input.). A format -specification is of the form - - % [flags] [width] [type] conv - - GMP adds types 'Z', 'Q' and 'F' for 'mpz_t', 'mpq_t' and 'mpf_t' -respectively. 'Z' and 'Q' behave like integers. 'Q' will read a '/' -and a denominator, if present. 'F' behaves like a float. - - GMP variables don't require an '&' when passed to 'gmp_scanf', since -they're already "call-by-reference". For example, - - /* to read say "a(5) = 1234" */ - int n; - mpz_t z; - gmp_scanf ("a(%d) = %Zd\n", &n, z); - - mpq_t q1, q2; - gmp_sscanf ("0377 + 0x10/0x11", "%Qi + %Qi", q1, q2); - - /* to read say "topleft (1.55,-2.66)" */ - mpf_t x, y; - char buf[32]; - gmp_scanf ("%31s (%Ff,%Ff)", buf, x, y); - - All the standard C 'scanf' types behave the same as in the C library -'scanf', and can be freely intermixed with the GMP extensions. In the -current implementation the standard parts of the format string are -simply handed to 'scanf' and only the GMP extensions handled directly. - - The flags accepted are as follows. 'a' and ''' will depend on -support from the C library, and ''' cannot be used with GMP types. - - * read but don't store - a allocate a buffer (string conversions) - ' grouped digits, GLIBC style (not GMP - types) - - The standard types accepted are as follows. 'h' and 'l' are -portable, the rest will depend on the compiler (or include files) for -the type and the C library for the input. - - h short - hh char - j intmax_t or uintmax_t - l long int, double or wchar_t - ll long long - L long double - q quad_t or u_quad_t - t ptrdiff_t - z size_t - -The GMP types are - - F mpf_t, float conversions - Q mpq_t, integer conversions - Z mpz_t, integer conversions - - The conversions accepted are as follows. 'p' and '[' will depend on -support from the C library, the rest are standard. - - c character or characters - d decimal integer - e E f g float - G - i integer with base indicator - n characters read so far - o octal integer - p pointer - s string of non-whitespace characters - u decimal integer - x X hex integer - [ string of characters in a set - - 'e', 'E', 'f', 'g' and 'G' are identical, they all read either fixed -point or scientific format, and either upper or lower case 'e' for the -exponent in scientific format. - - C99 style hex float format ('printf %a', *note Formatted Output -Strings::) is always accepted for 'mpf_t', but for the standard float -types it will depend on the C library. - - 'x' and 'X' are identical, both accept both upper and lower case -hexadecimal. - - 'o', 'u', 'x' and 'X' all read positive or negative values. For the -standard C types these are described as "unsigned" conversions, but that -merely affects certain overflow handling, negatives are still allowed -(per 'strtoul', *note Parsing of Integers: (libc)Parsing of Integers.). -For GMP types there are no overflows, so 'd' and 'u' are identical. - - 'Q' type reads the numerator and (optional) denominator as given. If -the value might not be in canonical form then 'mpq_canonicalize' must be -called before using it in any calculations (*note Rational Number -Functions::). - - 'Qi' will read a base specification separately for the numerator and -denominator. For example '0x10/11' would be 16/11, whereas '0x10/0x11' -would be 16/17. - - 'n' can be used with any of the types above, even the GMP types. '*' -to suppress assignment is allowed, though in that case it would do -nothing at all. - - Other conversions or types that might be accepted by the C library -'scanf' cannot be used through 'gmp_scanf'. - - Whitespace is read and discarded before a field, except for 'c' and -'[' conversions. - - For float conversions, the decimal point character (or string) -expected is taken from the current locale settings on systems which -provide 'localeconv' (*note Locales and Internationalization: -(libc)Locales.). The C library will normally do the same for standard -float input. - - The format string is only interpreted as plain 'char's, multibyte -characters are not recognised. Perhaps this will change in the future. - - -File: gmp.info, Node: Formatted Input Functions, Next: C++ Formatted Input, Prev: Formatted Input Strings, Up: Formatted Input - -11.2 Formatted Input Functions -============================== - -Each of the following functions is similar to the corresponding C -library function. The plain 'scanf' forms take a variable argument -list. The 'vscanf' forms take an argument pointer, see *note Variadic -Functions: (libc)Variadic Functions, or 'man 3 va_start'. - - It should be emphasised that if a format string is invalid, or the -arguments don't match what the format specifies, then the behaviour of -any of these functions will be unpredictable. GCC format string -checking is not available, since it doesn't recognise the GMP -extensions. - - No overlap is permitted between the FMT string and any of the results -produced. - - -- Function: int gmp_scanf (const char *FMT, ...) - -- Function: int gmp_vscanf (const char *FMT, va_list AP) - Read from the standard input 'stdin'. - - -- Function: int gmp_fscanf (FILE *FP, const char *FMT, ...) - -- Function: int gmp_vfscanf (FILE *FP, const char *FMT, va_list AP) - Read from the stream FP. - - -- Function: int gmp_sscanf (const char *S, const char *FMT, ...) - -- Function: int gmp_vsscanf (const char *S, const char *FMT, va_list - AP) - Read from a null-terminated string S. - - The return value from each of these functions is the same as the -standard C99 'scanf', namely the number of fields successfully parsed -and stored. '%n' fields and fields read but suppressed by '*' don't -count towards the return value. - - If end of input (or a file error) is reached before a character for a -field or a literal, and if no previous non-suppressed fields have -matched, then the return value is 'EOF' instead of 0. A whitespace -character in the format string is only an optional match and doesn't -induce an 'EOF' in this fashion. Leading whitespace read and discarded -for a field don't count as characters for that field. - - For the GMP types, input parsing follows C99 rules, namely one -character of lookahead is used and characters are read while they -continue to meet the format requirements. If this doesn't provide a -complete number then the function terminates, with that field not stored -nor counted towards the return value. For instance with 'mpf_t' an -input '1.23e-XYZ' would be read up to the 'X' and that character pushed -back since it's not a digit. The string '1.23e-' would then be -considered invalid since an 'e' must be followed by at least one digit. - - For the standard C types, in the current implementation GMP calls the -C library 'scanf' functions, which might have looser rules about what -constitutes a valid input. - - Note that 'gmp_sscanf' is the same as 'gmp_fscanf' and only does one -character of lookahead when parsing. Although clearly it could look at -its entire input, it is deliberately made identical to 'gmp_fscanf', the -same way C99 'sscanf' is the same as 'fscanf'. - - -File: gmp.info, Node: C++ Formatted Input, Prev: Formatted Input Functions, Up: Formatted Input - -11.3 C++ Formatted Input -======================== - -The following functions are provided in 'libgmpxx' (*note Headers and -Libraries::), which is built only if C++ support is enabled (*note Build -Options::). Prototypes are available from ''. - - -- Function: istream& operator>> (istream& STREAM, mpz_t ROP) - Read ROP from STREAM, using its 'ios' formatting settings. - - -- Function: istream& operator>> (istream& STREAM, mpq_t ROP) - An integer like '123' will be read, or a fraction like '5/9'. No - whitespace is allowed around the '/'. If the fraction is not in - canonical form then 'mpq_canonicalize' must be called (*note - Rational Number Functions::) before operating on it. - - As per integer input, an '0' or '0x' base indicator is read when - none of 'ios::dec', 'ios::oct' or 'ios::hex' are set. This is done - separately for numerator and denominator, so that for instance - '0x10/11' is 16/11 and '0x10/0x11' is 16/17. - - -- Function: istream& operator>> (istream& STREAM, mpf_t ROP) - Read ROP from STREAM, using its 'ios' formatting settings. - - Hex or octal floats are not supported, but might be in the future, - or perhaps it's best to accept only what the standard float - 'operator>>' does. - - Note that digit grouping specified by the 'istream' locale is -currently not accepted. Perhaps this will change in the future. - - - These operators mean that GMP types can be read in the usual C++ way, -for example, - - mpz_t z; - ... - cin >> z; - - But note that 'istream' input (and 'ostream' output, *note C++ -Formatted Output::) is the only overloading available for the GMP types -and that for instance using '+' with an 'mpz_t' will have unpredictable -results. For classes with overloading, see *note C++ Class Interface::. - - -File: gmp.info, Node: C++ Class Interface, Next: Custom Allocation, Prev: Formatted Input, Up: Top - -12 C++ Class Interface -********************** - -This chapter describes the C++ class based interface to GMP. - - All GMP C language types and functions can be used in C++ programs, -since 'gmp.h' has 'extern "C"' qualifiers, but the class interface -offers overloaded functions and operators which may be more convenient. - - Due to the implementation of this interface, a reasonably recent C++ -compiler is required, one supporting namespaces, partial specialization -of templates and member templates. - - *Everything described in this chapter is to be considered preliminary -and might be subject to incompatible changes if some unforeseen -difficulty reveals itself.* - -* Menu: - -* C++ Interface General:: -* C++ Interface Integers:: -* C++ Interface Rationals:: -* C++ Interface Floats:: -* C++ Interface Random Numbers:: -* C++ Interface Limitations:: - - -File: gmp.info, Node: C++ Interface General, Next: C++ Interface Integers, Prev: C++ Class Interface, Up: C++ Class Interface - -12.1 C++ Interface General -========================== - -All the C++ classes and functions are available with - - #include - - Programs should be linked with the 'libgmpxx' and 'libgmp' libraries. -For example, - - g++ mycxxprog.cc -lgmpxx -lgmp - -The classes defined are - - -- Class: mpz_class - -- Class: mpq_class - -- Class: mpf_class - - The standard operators and various standard functions are overloaded -to allow arithmetic with these classes. For example, - - int - main (void) - { - mpz_class a, b, c; - - a = 1234; - b = "-5678"; - c = a+b; - cout << "sum is " << c << "\n"; - cout << "absolute value is " << abs(c) << "\n"; - - return 0; - } - - An important feature of the implementation is that an expression like -'a=b+c' results in a single call to the corresponding 'mpz_add', without -using a temporary for the 'b+c' part. Expressions which by their nature -imply intermediate values, like 'a=b*c+d*e', still use temporaries -though. - - The classes can be freely intermixed in expressions, as can the -classes and the standard types 'long', 'unsigned long' and 'double'. -Smaller types like 'int' or 'float' can also be intermixed, since C++ -will promote them. - - Note that 'bool' is not accepted directly, but must be explicitly -cast to an 'int' first. This is because C++ will automatically convert -any pointer to a 'bool', so if GMP accepted 'bool' it would make all -sorts of invalid class and pointer combinations compile but almost -certainly not do anything sensible. - - Conversions back from the classes to standard C++ types aren't done -automatically, instead member functions like 'get_si' are provided (see -the following sections for details). - - Also there are no automatic conversions from the classes to the -corresponding GMP C types, instead a reference to the underlying C -object can be obtained with the following functions, - - -- Function: mpz_t mpz_class::get_mpz_t () - -- Function: mpq_t mpq_class::get_mpq_t () - -- Function: mpf_t mpf_class::get_mpf_t () - - These can be used to call a C function which doesn't have a C++ class -interface. For example to set 'a' to the GCD of 'b' and 'c', - - mpz_class a, b, c; - ... - mpz_gcd (a.get_mpz_t(), b.get_mpz_t(), c.get_mpz_t()); - - In the other direction, a class can be initialized from the -corresponding GMP C type, or assigned to if an explicit constructor is -used. In both cases this makes a copy of the value, it doesn't create -any sort of association. For example, - - mpz_t z; - // ... init and calculate z ... - mpz_class x(z); - mpz_class y; - y = mpz_class (z); - - There are no namespace setups in 'gmpxx.h', all types and functions -are simply put into the global namespace. This is what 'gmp.h' has done -in the past, and continues to do for compatibility. The extras provided -by 'gmpxx.h' follow GMP naming conventions and are unlikely to clash -with anything. - - -File: gmp.info, Node: C++ Interface Integers, Next: C++ Interface Rationals, Prev: C++ Interface General, Up: C++ Class Interface - -12.2 C++ Interface Integers -=========================== - - -- Function: mpz_class::mpz_class (type N) - Construct an 'mpz_class'. All the standard C++ types may be used, - except 'long long' and 'long double', and all the GMP C++ classes - can be used, although conversions from 'mpq_class' and 'mpf_class' - are 'explicit'. Any necessary conversion follows the corresponding - C function, for example 'double' follows 'mpz_set_d' (*note - Assigning Integers::). - - -- Function: explicit mpz_class::mpz_class (const mpz_t Z) - Construct an 'mpz_class' from an 'mpz_t'. The value in Z is copied - into the new 'mpz_class', there won't be any permanent association - between it and Z. - - -- Function: explicit mpz_class::mpz_class (const char *S, int BASE = - 0) - -- Function: explicit mpz_class::mpz_class (const string& S, int BASE = - 0) - Construct an 'mpz_class' converted from a string using - 'mpz_set_str' (*note Assigning Integers::). - - If the string is not a valid integer, an 'std::invalid_argument' - exception is thrown. The same applies to 'operator='. - - -- Function: mpz_class operator"" _mpz (const char *STR) - With C++11 compilers, integers can be constructed with the syntax - '123_mpz' which is equivalent to 'mpz_class("123")'. - - -- Function: mpz_class operator/ (mpz_class A, mpz_class D) - -- Function: mpz_class operator% (mpz_class A, mpz_class D) - Divisions involving 'mpz_class' round towards zero, as per the - 'mpz_tdiv_q' and 'mpz_tdiv_r' functions (*note Integer Division::). - This is the same as the C99 '/' and '%' operators. - - The 'mpz_fdiv...' or 'mpz_cdiv...' functions can always be called - directly if desired. For example, - - mpz_class q, a, d; - ... - mpz_fdiv_q (q.get_mpz_t(), a.get_mpz_t(), d.get_mpz_t()); - - -- Function: mpz_class abs (mpz_class OP) - -- Function: int cmp (mpz_class OP1, type OP2) - -- Function: int cmp (type OP1, mpz_class OP2) - - -- Function: bool mpz_class::fits_sint_p (void) - -- Function: bool mpz_class::fits_slong_p (void) - -- Function: bool mpz_class::fits_sshort_p (void) - - -- Function: bool mpz_class::fits_uint_p (void) - -- Function: bool mpz_class::fits_ulong_p (void) - -- Function: bool mpz_class::fits_ushort_p (void) - - -- Function: double mpz_class::get_d (void) - -- Function: long mpz_class::get_si (void) - -- Function: string mpz_class::get_str (int BASE = 10) - -- Function: unsigned long mpz_class::get_ui (void) - - -- Function: int mpz_class::set_str (const char *STR, int BASE) - -- Function: int mpz_class::set_str (const string& STR, int BASE) - -- Function: int sgn (mpz_class OP) - -- Function: mpz_class sqrt (mpz_class OP) - - -- Function: mpz_class gcd (mpz_class OP1, mpz_class OP2) - -- Function: mpz_class lcm (mpz_class OP1, mpz_class OP2) - -- Function: mpz_class mpz_class::factorial (type OP) - -- Function: mpz_class factorial (mpz_class OP) - -- Function: mpz_class mpz_class::primorial (type OP) - -- Function: mpz_class primorial (mpz_class OP) - -- Function: mpz_class mpz_class::fibonacci (type OP) - -- Function: mpz_class fibonacci (mpz_class OP) - - -- Function: void mpz_class::swap (mpz_class& OP) - -- Function: void swap (mpz_class& OP1, mpz_class& OP2) - These functions provide a C++ class interface to the corresponding - GMP C routines. Calling 'factorial' or 'primorial' on a negative - number is undefined. - - 'cmp' can be used with any of the classes or the standard C++ - types, except 'long long' and 'long double'. - - - Overloaded operators for combinations of 'mpz_class' and 'double' are -provided for completeness, but it should be noted that if the given -'double' is not an integer then the way any rounding is done is -currently unspecified. The rounding might take place at the start, in -the middle, or at the end of the operation, and it might change in the -future. - - Conversions between 'mpz_class' and 'double', however, are defined to -follow the corresponding C functions 'mpz_get_d' and 'mpz_set_d'. And -comparisons are always made exactly, as per 'mpz_cmp_d'. - - -File: gmp.info, Node: C++ Interface Rationals, Next: C++ Interface Floats, Prev: C++ Interface Integers, Up: C++ Class Interface - -12.3 C++ Interface Rationals -============================ - -In all the following constructors, if a fraction is given then it should -be in canonical form, or if not then 'mpq_class::canonicalize' called. - - -- Function: mpq_class::mpq_class (type OP) - -- Function: mpq_class::mpq_class (integer NUM, integer DEN) - Construct an 'mpq_class'. The initial value can be a single value - of any type (conversion from 'mpf_class' is 'explicit'), or a pair - of integers ('mpz_class' or standard C++ integer types) - representing a fraction, except that 'long long' and 'long double' - are not supported. For example, - - mpq_class q (99); - mpq_class q (1.75); - mpq_class q (1, 3); - - -- Function: explicit mpq_class::mpq_class (const mpq_t Q) - Construct an 'mpq_class' from an 'mpq_t'. The value in Q is copied - into the new 'mpq_class', there won't be any permanent association - between it and Q. - - -- Function: explicit mpq_class::mpq_class (const char *S, int BASE = - 0) - -- Function: explicit mpq_class::mpq_class (const string& S, int BASE = - 0) - Construct an 'mpq_class' converted from a string using - 'mpq_set_str' (*note Initializing Rationals::). - - If the string is not a valid rational, an 'std::invalid_argument' - exception is thrown. The same applies to 'operator='. - - -- Function: mpq_class operator"" _mpq (const char *STR) - With C++11 compilers, integral rationals can be constructed with - the syntax '123_mpq' which is equivalent to 'mpq_class(123_mpz)'. - Other rationals can be built as '-1_mpq/2' or '0xb_mpq/123456_mpz'. - - -- Function: void mpq_class::canonicalize () - Put an 'mpq_class' into canonical form, as per *note Rational - Number Functions::. All arithmetic operators require their - operands in canonical form, and will return results in canonical - form. - - -- Function: mpq_class abs (mpq_class OP) - -- Function: int cmp (mpq_class OP1, type OP2) - -- Function: int cmp (type OP1, mpq_class OP2) - - -- Function: double mpq_class::get_d (void) - -- Function: string mpq_class::get_str (int BASE = 10) - - -- Function: int mpq_class::set_str (const char *STR, int BASE) - -- Function: int mpq_class::set_str (const string& STR, int BASE) - -- Function: int sgn (mpq_class OP) - - -- Function: void mpq_class::swap (mpq_class& OP) - -- Function: void swap (mpq_class& OP1, mpq_class& OP2) - These functions provide a C++ class interface to the corresponding - GMP C routines. - - 'cmp' can be used with any of the classes or the standard C++ - types, except 'long long' and 'long double'. - - -- Function: mpz_class& mpq_class::get_num () - -- Function: mpz_class& mpq_class::get_den () - Get a reference to an 'mpz_class' which is the numerator or - denominator of an 'mpq_class'. This can be used both for read and - write access. If the object returned is modified, it modifies the - original 'mpq_class'. - - If direct manipulation might produce a non-canonical value, then - 'mpq_class::canonicalize' must be called before further operations. - - -- Function: mpz_t mpq_class::get_num_mpz_t () - -- Function: mpz_t mpq_class::get_den_mpz_t () - Get a reference to the underlying 'mpz_t' numerator or denominator - of an 'mpq_class'. This can be passed to C functions expecting an - 'mpz_t'. Any modifications made to the 'mpz_t' will modify the - original 'mpq_class'. - - If direct manipulation might produce a non-canonical value, then - 'mpq_class::canonicalize' must be called before further operations. - - -- Function: istream& operator>> (istream& STREAM, mpq_class& ROP); - Read ROP from STREAM, using its 'ios' formatting settings, the same - as 'mpq_t operator>>' (*note C++ Formatted Input::). - - If the ROP read might not be in canonical form then - 'mpq_class::canonicalize' must be called. - - -File: gmp.info, Node: C++ Interface Floats, Next: C++ Interface Random Numbers, Prev: C++ Interface Rationals, Up: C++ Class Interface - -12.4 C++ Interface Floats -========================= - -When an expression requires the use of temporary intermediate -'mpf_class' values, like 'f=g*h+x*y', those temporaries will have the -same precision as the destination 'f'. Explicit constructors can be -used if this doesn't suit. - - -- Function: mpf_class::mpf_class (type OP) - -- Function: mpf_class::mpf_class (type OP, mp_bitcnt_t PREC) - Construct an 'mpf_class'. Any standard C++ type can be used, - except 'long long' and 'long double', and any of the GMP C++ - classes can be used. - - If PREC is given, the initial precision is that value, in bits. If - PREC is not given, then the initial precision is determined by the - type of OP given. An 'mpz_class', 'mpq_class', or C++ builtin type - will give the default 'mpf' precision (*note Initializing - Floats::). An 'mpf_class' or expression will give the precision of - that value. The precision of a binary expression is the higher of - the two operands. - - mpf_class f(1.5); // default precision - mpf_class f(1.5, 500); // 500 bits (at least) - mpf_class f(x); // precision of x - mpf_class f(abs(x)); // precision of x - mpf_class f(-g, 1000); // 1000 bits (at least) - mpf_class f(x+y); // greater of precisions of x and y - - -- Function: explicit mpf_class::mpf_class (const mpf_t F) - -- Function: mpf_class::mpf_class (const mpf_t F, mp_bitcnt_t PREC) - Construct an 'mpf_class' from an 'mpf_t'. The value in F is copied - into the new 'mpf_class', there won't be any permanent association - between it and F. - - If PREC is given, the initial precision is that value, in bits. If - PREC is not given, then the initial precision is that of F. - - -- Function: explicit mpf_class::mpf_class (const char *S) - -- Function: mpf_class::mpf_class (const char *S, mp_bitcnt_t PREC, int - BASE = 0) - -- Function: explicit mpf_class::mpf_class (const string& S) - -- Function: mpf_class::mpf_class (const string& S, mp_bitcnt_t PREC, - int BASE = 0) - Construct an 'mpf_class' converted from a string using - 'mpf_set_str' (*note Assigning Floats::). If PREC is given, the - initial precision is that value, in bits. If not, the default - 'mpf' precision (*note Initializing Floats::) is used. - - If the string is not a valid float, an 'std::invalid_argument' - exception is thrown. The same applies to 'operator='. - - -- Function: mpf_class operator"" _mpf (const char *STR) - With C++11 compilers, floats can be constructed with the syntax - '1.23e-1_mpf' which is equivalent to 'mpf_class("1.23e-1")'. - - -- Function: mpf_class& mpf_class::operator= (type OP) - Convert and store the given OP value to an 'mpf_class' object. The - same types are accepted as for the constructors above. - - Note that 'operator=' only stores a new value, it doesn't copy or - change the precision of the destination, instead the value is - truncated if necessary. This is the same as 'mpf_set' etc. Note - in particular this means for 'mpf_class' a copy constructor is not - the same as a default constructor plus assignment. - - mpf_class x (y); // x created with precision of y - - mpf_class x; // x created with default precision - x = y; // value truncated to that precision - - Applications using templated code may need to be careful about the - assumptions the code makes in this area, when working with - 'mpf_class' values of various different or non-default precisions. - For instance implementations of the standard 'complex' template - have been seen in both styles above, though of course 'complex' is - normally only actually specified for use with the builtin float - types. - - -- Function: mpf_class abs (mpf_class OP) - -- Function: mpf_class ceil (mpf_class OP) - -- Function: int cmp (mpf_class OP1, type OP2) - -- Function: int cmp (type OP1, mpf_class OP2) - - -- Function: bool mpf_class::fits_sint_p (void) - -- Function: bool mpf_class::fits_slong_p (void) - -- Function: bool mpf_class::fits_sshort_p (void) - - -- Function: bool mpf_class::fits_uint_p (void) - -- Function: bool mpf_class::fits_ulong_p (void) - -- Function: bool mpf_class::fits_ushort_p (void) - - -- Function: mpf_class floor (mpf_class OP) - -- Function: mpf_class hypot (mpf_class OP1, mpf_class OP2) - - -- Function: double mpf_class::get_d (void) - -- Function: long mpf_class::get_si (void) - -- Function: string mpf_class::get_str (mp_exp_t& EXP, int BASE = 10, - size_t DIGITS = 0) - -- Function: unsigned long mpf_class::get_ui (void) - - -- Function: int mpf_class::set_str (const char *STR, int BASE) - -- Function: int mpf_class::set_str (const string& STR, int BASE) - -- Function: int sgn (mpf_class OP) - -- Function: mpf_class sqrt (mpf_class OP) - - -- Function: void mpf_class::swap (mpf_class& OP) - -- Function: void swap (mpf_class& OP1, mpf_class& OP2) - -- Function: mpf_class trunc (mpf_class OP) - These functions provide a C++ class interface to the corresponding - GMP C routines. - - 'cmp' can be used with any of the classes or the standard C++ - types, except 'long long' and 'long double'. - - The accuracy provided by 'hypot' is not currently guaranteed. - - -- Function: mp_bitcnt_t mpf_class::get_prec () - -- Function: void mpf_class::set_prec (mp_bitcnt_t PREC) - -- Function: void mpf_class::set_prec_raw (mp_bitcnt_t PREC) - Get or set the current precision of an 'mpf_class'. - - The restrictions described for 'mpf_set_prec_raw' (*note - Initializing Floats::) apply to 'mpf_class::set_prec_raw'. Note in - particular that the 'mpf_class' must be restored to it's allocated - precision before being destroyed. This must be done by application - code, there's no automatic mechanism for it. - - -File: gmp.info, Node: C++ Interface Random Numbers, Next: C++ Interface Limitations, Prev: C++ Interface Floats, Up: C++ Class Interface - -12.5 C++ Interface Random Numbers -================================= - - -- Class: gmp_randclass - The C++ class interface to the GMP random number functions uses - 'gmp_randclass' to hold an algorithm selection and current state, - as per 'gmp_randstate_t'. - - -- Function: gmp_randclass::gmp_randclass (void (*RANDINIT) - (gmp_randstate_t, ...), ...) - Construct a 'gmp_randclass', using a call to the given RANDINIT - function (*note Random State Initialization::). The arguments - expected are the same as RANDINIT, but with 'mpz_class' instead of - 'mpz_t'. For example, - - gmp_randclass r1 (gmp_randinit_default); - gmp_randclass r2 (gmp_randinit_lc_2exp_size, 32); - gmp_randclass r3 (gmp_randinit_lc_2exp, a, c, m2exp); - gmp_randclass r4 (gmp_randinit_mt); - - 'gmp_randinit_lc_2exp_size' will fail if the size requested is too - big, an 'std::length_error' exception is thrown in that case. - - -- Function: gmp_randclass::gmp_randclass (gmp_randalg_t ALG, ...) - Construct a 'gmp_randclass' using the same parameters as - 'gmp_randinit' (*note Random State Initialization::). This - function is obsolete and the above RANDINIT style should be - preferred. - - -- Function: void gmp_randclass::seed (unsigned long int S) - -- Function: void gmp_randclass::seed (mpz_class S) - Seed a random number generator. See *note Random Number - Functions::, for how to choose a good seed. - - -- Function: mpz_class gmp_randclass::get_z_bits (mp_bitcnt_t BITS) - -- Function: mpz_class gmp_randclass::get_z_bits (mpz_class BITS) - Generate a random integer with a specified number of bits. - - -- Function: mpz_class gmp_randclass::get_z_range (mpz_class N) - Generate a random integer in the range 0 to N-1 inclusive. - - -- Function: mpf_class gmp_randclass::get_f () - -- Function: mpf_class gmp_randclass::get_f (mp_bitcnt_t PREC) - Generate a random float F in the range 0 <= F < 1. F will be to - PREC bits precision, or if PREC is not given then to the precision - of the destination. For example, - - gmp_randclass r; - ... - mpf_class f (0, 512); // 512 bits precision - f = r.get_f(); // random number, 512 bits - - -File: gmp.info, Node: C++ Interface Limitations, Prev: C++ Interface Random Numbers, Up: C++ Class Interface - -12.6 C++ Interface Limitations -============================== - -'mpq_class' and Templated Reading - A generic piece of template code probably won't know that - 'mpq_class' requires a 'canonicalize' call if inputs read with - 'operator>>' might be non-canonical. This can lead to incorrect - results. - - 'operator>>' behaves as it does for reasons of efficiency. A - canonicalize can be quite time consuming on large operands, and is - best avoided if it's not necessary. - - But this potential difficulty reduces the usefulness of - 'mpq_class'. Perhaps a mechanism to tell 'operator>>' what to do - will be adopted in the future, maybe a preprocessor define, a - global flag, or an 'ios' flag pressed into service. Or maybe, at - the risk of inconsistency, the 'mpq_class' 'operator>>' could - canonicalize and leave 'mpq_t' 'operator>>' not doing so, for use - on those occasions when that's acceptable. Send feedback or - alternate ideas to . - -Subclassing - Subclassing the GMP C++ classes works, but is not currently - recommended. - - Expressions involving subclasses resolve correctly (or seem to), - but in normal C++ fashion the subclass doesn't inherit constructors - and assignments. There's many of those in the GMP classes, and a - good way to reestablish them in a subclass is not yet provided. - -Templated Expressions - A subtle difficulty exists when using expressions together with - application-defined template functions. Consider the following, - with 'T' intended to be some numeric type, - - template - T fun (const T &, const T &); - - When used with, say, plain 'mpz_class' variables, it works fine: - 'T' is resolved as 'mpz_class'. - - mpz_class f(1), g(2); - fun (f, g); // Good - - But when one of the arguments is an expression, it doesn't work. - - mpz_class f(1), g(2), h(3); - fun (f, g+h); // Bad - - This is because 'g+h' ends up being a certain expression template - type internal to 'gmpxx.h', which the C++ template resolution rules - are unable to automatically convert to 'mpz_class'. The workaround - is simply to add an explicit cast. - - mpz_class f(1), g(2), h(3); - fun (f, mpz_class(g+h)); // Good - - Similarly, within 'fun' it may be necessary to cast an expression - to type 'T' when calling a templated 'fun2'. - - template - void fun (T f, T g) - { - fun2 (f, f+g); // Bad - } - - template - void fun (T f, T g) - { - fun2 (f, T(f+g)); // Good - } - -C++11 - C++11 provides several new ways in which types can be inferred: - 'auto', 'decltype', etc. While they can be very convenient, they - don't mix well with expression templates. In this example, the - addition is performed twice, as if we had defined 'sum' as a macro. - - mpz_class z = 33; - auto sum = z + z; - mpz_class prod = sum * sum; - - This other example may crash, though some compilers might make it - look like it is working, because the expression 'z+z' goes out of - scope before it is evaluated. - - mpz_class z = 33; - auto sum = z + z + z; - mpz_class prod = sum * 2; - - It is thus strongly recommended to avoid 'auto' anywhere a GMP C++ - expression may appear. - - -File: gmp.info, Node: Custom Allocation, Next: Language Bindings, Prev: C++ Class Interface, Up: Top - -13 Custom Allocation -******************** - -By default GMP uses 'malloc', 'realloc' and 'free' for memory -allocation, and if they fail GMP prints a message to the standard error -output and terminates the program. - - Alternate functions can be specified, to allocate memory in a -different way or to have a different error action on running out of -memory. - - -- Function: void mp_set_memory_functions ( - void *(*ALLOC_FUNC_PTR) (size_t), - void *(*REALLOC_FUNC_PTR) (void *, size_t, size_t), - void (*FREE_FUNC_PTR) (void *, size_t)) - Replace the current allocation functions from the arguments. If an - argument is 'NULL', the corresponding default function is used. - - These functions will be used for all memory allocation done by GMP, - apart from temporary space from 'alloca' if that function is - available and GMP is configured to use it (*note Build Options::). - - *Be sure to call 'mp_set_memory_functions' only when there are no - active GMP objects allocated using the previous memory functions! - Usually that means calling it before any other GMP function.* - - The functions supplied should fit the following declarations: - - -- Function: void * allocate_function (size_t ALLOC_SIZE) - Return a pointer to newly allocated space with at least ALLOC_SIZE - bytes. - - -- Function: void * reallocate_function (void *PTR, size_t OLD_SIZE, - size_t NEW_SIZE) - Resize a previously allocated block PTR of OLD_SIZE bytes to be - NEW_SIZE bytes. - - The block may be moved if necessary or if desired, and in that case - the smaller of OLD_SIZE and NEW_SIZE bytes must be copied to the - new location. The return value is a pointer to the resized block, - that being the new location if moved or just PTR if not. - - PTR is never 'NULL', it's always a previously allocated block. - NEW_SIZE may be bigger or smaller than OLD_SIZE. - - -- Function: void free_function (void *PTR, size_t SIZE) - De-allocate the space pointed to by PTR. - - PTR is never 'NULL', it's always a previously allocated block of - SIZE bytes. - - A "byte" here means the unit used by the 'sizeof' operator. - - The REALLOCATE_FUNCTION parameter OLD_SIZE and the FREE_FUNCTION -parameter SIZE are passed for convenience, but of course they can be -ignored if not needed by an implementation. The default functions using -'malloc' and friends for instance don't use them. - - No error return is allowed from any of these functions, if they -return then they must have performed the specified operation. In -particular note that ALLOCATE_FUNCTION or REALLOCATE_FUNCTION mustn't -return 'NULL'. - - Getting a different fatal error action is a good use for custom -allocation functions, for example giving a graphical dialog rather than -the default print to 'stderr'. How much is possible when genuinely out -of memory is another question though. - - There's currently no defined way for the allocation functions to -recover from an error such as out of memory, they must terminate program -execution. A 'longjmp' or throwing a C++ exception will have undefined -results. This may change in the future. - - GMP may use allocated blocks to hold pointers to other allocated -blocks. This will limit the assumptions a conservative garbage -collection scheme can make. - - Since the default GMP allocation uses 'malloc' and friends, those -functions will be linked in even if the first thing a program does is an -'mp_set_memory_functions'. It's necessary to change the GMP sources if -this is a problem. - - - -- Function: void mp_get_memory_functions ( - void *(**ALLOC_FUNC_PTR) (size_t), - void *(**REALLOC_FUNC_PTR) (void *, size_t, size_t), - void (**FREE_FUNC_PTR) (void *, size_t)) - Get the current allocation functions, storing function pointers to - the locations given by the arguments. If an argument is 'NULL', - that function pointer is not stored. - - For example, to get just the current free function, - - void (*freefunc) (void *, size_t); - - mp_get_memory_functions (NULL, NULL, &freefunc); - - -File: gmp.info, Node: Language Bindings, Next: Algorithms, Prev: Custom Allocation, Up: Top - -14 Language Bindings -******************** - -The following packages and projects offer access to GMP from languages -other than C, though perhaps with varying levels of functionality and -efficiency. - - -C++ - * GMP C++ class interface, *note C++ Class Interface:: - Straightforward interface, expression templates to eliminate - temporaries. - * ALP - Linear algebra and polynomials using templates. - * CLN - High level classes for arithmetic. - * Linbox - Sparse vectors and matrices. - * NTL - A C++ number theory library. - -Eiffel - * Eiffelroom - -Haskell - * Glasgow Haskell Compiler - -Java - * Kaffe - -Lisp - * GNU Common Lisp - * Librep - * XEmacs (21.5.18 beta and up) - Optional big integers, rationals and floats using GMP. - -ML - * MLton compiler - -Objective Caml - * MLGMP - * Numerix - Optionally using GMP. - -Oz - * Mozart - -Pascal - * GNU Pascal Compiler - GMP unit. - * Numerix - For Free Pascal, optionally using GMP. - -Perl - * GMP module, see 'demos/perl' in the GMP sources (*note - Demonstration Programs::). - * Math::GMP - Compatible with Math::BigInt, but not as many functions as the - GMP module above. - * Math::BigInt::GMP - Plug Math::GMP into normal Math::BigInt operations. - -Pike - * pikempz module in the standard distribution, - - -Prolog - * SWI Prolog - Arbitrary precision floats. - -Python - * GMPY - -Ruby - * - -Scheme - * GNU Guile - * RScheme - * STklos - -Smalltalk - * GNU Smalltalk - -Other - * Axiom - Computer algebra using GCL. - * DrGenius - Geometry system and mathematical programming language. - * GiNaC - C++ computer algebra using CLN. - * GOO - Dynamic object oriented language. - * Maxima - Macsyma computer algebra using GCL. - * Regina - Topological calculator. - * Yacas - Yet another computer algebra system. - - -File: gmp.info, Node: Algorithms, Next: Internals, Prev: Language Bindings, Up: Top - -15 Algorithms -************* - -This chapter is an introduction to some of the algorithms used for -various GMP operations. The code is likely to be hard to understand -without knowing something about the algorithms. - - Some GMP internals are mentioned, but applications that expect to be -compatible with future GMP releases should take care to use only the -documented functions. - -* Menu: - -* Multiplication Algorithms:: -* Division Algorithms:: -* Greatest Common Divisor Algorithms:: -* Powering Algorithms:: -* Root Extraction Algorithms:: -* Radix Conversion Algorithms:: -* Other Algorithms:: -* Assembly Coding:: - - -File: gmp.info, Node: Multiplication Algorithms, Next: Division Algorithms, Prev: Algorithms, Up: Algorithms - -15.1 Multiplication -=================== - -NxN limb multiplications and squares are done using one of seven -algorithms, as the size N increases. - - Algorithm Threshold - Basecase (none) - Karatsuba 'MUL_TOOM22_THRESHOLD' - Toom-3 'MUL_TOOM33_THRESHOLD' - Toom-4 'MUL_TOOM44_THRESHOLD' - Toom-6.5 'MUL_TOOM6H_THRESHOLD' - Toom-8.5 'MUL_TOOM8H_THRESHOLD' - FFT 'MUL_FFT_THRESHOLD' - - Similarly for squaring, with the 'SQR' thresholds. - - NxM multiplications of operands with different sizes above -'MUL_TOOM22_THRESHOLD' are currently done by special Toom-inspired -algorithms or directly with FFT, depending on operand size (*note -Unbalanced Multiplication::). - -* Menu: - -* Basecase Multiplication:: -* Karatsuba Multiplication:: -* Toom 3-Way Multiplication:: -* Toom 4-Way Multiplication:: -* Higher degree Toom'n'half:: -* FFT Multiplication:: -* Other Multiplication:: -* Unbalanced Multiplication:: - - -File: gmp.info, Node: Basecase Multiplication, Next: Karatsuba Multiplication, Prev: Multiplication Algorithms, Up: Multiplication Algorithms - -15.1.1 Basecase Multiplication ------------------------------- - -Basecase NxM multiplication is a straightforward rectangular set of -cross-products, the same as long multiplication done by hand and for -that reason sometimes known as the schoolbook or grammar school method. -This is an O(N*M) algorithm. See Knuth section 4.3.1 algorithm M (*note -References::), and the 'mpn/generic/mul_basecase.c' code. - - Assembly implementations of 'mpn_mul_basecase' are essentially the -same as the generic C code, but have all the usual assembly tricks and -obscurities introduced for speed. - - A square can be done in roughly half the time of a multiply, by using -the fact that the cross products above and below the diagonal are the -same. A triangle of products below the diagonal is formed, doubled -(left shift by one bit), and then the products on the diagonal added. -This can be seen in 'mpn/generic/sqr_basecase.c'. Again the assembly -implementations take essentially the same approach. - - u0 u1 u2 u3 u4 - +---+---+---+---+---+ - u0 | d | | | | | - +---+---+---+---+---+ - u1 | | d | | | | - +---+---+---+---+---+ - u2 | | | d | | | - +---+---+---+---+---+ - u3 | | | | d | | - +---+---+---+---+---+ - u4 | | | | | d | - +---+---+---+---+---+ - - In practice squaring isn't a full 2x faster than multiplying, it's -usually around 1.5x. Less than 1.5x probably indicates -'mpn_sqr_basecase' wants improving on that CPU. - - On some CPUs 'mpn_mul_basecase' can be faster than the generic C -'mpn_sqr_basecase' on some small sizes. 'SQR_BASECASE_THRESHOLD' is the -size at which to use 'mpn_sqr_basecase', this will be zero if that -routine should be used always. - - -File: gmp.info, Node: Karatsuba Multiplication, Next: Toom 3-Way Multiplication, Prev: Basecase Multiplication, Up: Multiplication Algorithms - -15.1.2 Karatsuba Multiplication -------------------------------- - -The Karatsuba multiplication algorithm is described in Knuth section -4.3.3 part A, and various other textbooks. A brief description is given -here. - - The inputs x and y are treated as each split into two parts of equal -length (or the most significant part one limb shorter if N is odd). - - high low - +----------+----------+ - | x1 | x0 | - +----------+----------+ - - +----------+----------+ - | y1 | y0 | - +----------+----------+ - - Let b be the power of 2 where the split occurs, i.e. if x0 is k limbs -(y0 the same) then b=2^(k*mp_bits_per_limb). With that x=x1*b+x0 and -y=y1*b+y0, and the following holds, - - x*y = (b^2+b)*x1*y1 - b*(x1-x0)*(y1-y0) + (b+1)*x0*y0 - - This formula means doing only three multiplies of (N/2)x(N/2) limbs, -whereas a basecase multiply of NxN limbs is equivalent to four -multiplies of (N/2)x(N/2). The factors (b^2+b) etc represent the -positions where the three products must be added. - - high low - +--------+--------+ +--------+--------+ - | x1*y1 | | x0*y0 | - +--------+--------+ +--------+--------+ - +--------+--------+ - add | x1*y1 | - +--------+--------+ - +--------+--------+ - add | x0*y0 | - +--------+--------+ - +--------+--------+ - sub | (x1-x0)*(y1-y0) | - +--------+--------+ - - The term (x1-x0)*(y1-y0) is best calculated as an absolute value, and -the sign used to choose to add or subtract. Notice the sum -high(x0*y0)+low(x1*y1) occurs twice, so it's possible to do 5*k limb -additions, rather than 6*k, but in GMP extra function call overheads -outweigh the saving. - - Squaring is similar to multiplying, but with x=y the formula reduces -to an equivalent with three squares, - - x^2 = (b^2+b)*x1^2 - b*(x1-x0)^2 + (b+1)*x0^2 - - The final result is accumulated from those three squares the same way -as for the three multiplies above. The middle term (x1-x0)^2 is now -always positive. - - A similar formula for both multiplying and squaring can be -constructed with a middle term (x1+x0)*(y1+y0). But those sums can -exceed k limbs, leading to more carry handling and additions than the -form above. - - Karatsuba multiplication is asymptotically an O(N^1.585) algorithm, -the exponent being log(3)/log(2), representing 3 multiplies each 1/2 the -size of the inputs. This is a big improvement over the basecase -multiply at O(N^2) and the advantage soon overcomes the extra additions -Karatsuba performs. 'MUL_TOOM22_THRESHOLD' can be as little as 10 -limbs. The 'SQR' threshold is usually about twice the 'MUL'. - - The basecase algorithm will take a time of the form M(N) = a*N^2 + -b*N + c and the Karatsuba algorithm K(N) = 3*M(N/2) + d*N + e, which -expands to K(N) = 3/4*a*N^2 + 3/2*b*N + 3*c + d*N + e. The factor 3/4 -for a means per-crossproduct speedups in the basecase code will increase -the threshold since they benefit M(N) more than K(N). And conversely the -3/2 for b means linear style speedups of b will increase the threshold -since they benefit K(N) more than M(N). The latter can be seen for -instance when adding an optimized 'mpn_sqr_diagonal' to -'mpn_sqr_basecase'. Of course all speedups reduce total time, and in -that sense the algorithm thresholds are merely of academic interest. - - -File: gmp.info, Node: Toom 3-Way Multiplication, Next: Toom 4-Way Multiplication, Prev: Karatsuba Multiplication, Up: Multiplication Algorithms - -15.1.3 Toom 3-Way Multiplication --------------------------------- - -The Karatsuba formula is the simplest case of a general approach to -splitting inputs that leads to both Toom and FFT algorithms. A -description of Toom can be found in Knuth section 4.3.3, with an example -3-way calculation after Theorem A. The 3-way form used in GMP is -described here. - - The operands are each considered split into 3 pieces of equal length -(or the most significant part 1 or 2 limbs shorter than the other two). - - high low - +----------+----------+----------+ - | x2 | x1 | x0 | - +----------+----------+----------+ - - +----------+----------+----------+ - | y2 | y1 | y0 | - +----------+----------+----------+ - -These parts are treated as the coefficients of two polynomials - - X(t) = x2*t^2 + x1*t + x0 - Y(t) = y2*t^2 + y1*t + y0 - - Let b equal the power of 2 which is the size of the x0, x1, y0 and y1 -pieces, i.e. if they're k limbs each then b=2^(k*mp_bits_per_limb). -With this x=X(b) and y=Y(b). - - Let a polynomial W(t)=X(t)*Y(t) and suppose its coefficients are - - W(t) = w4*t^4 + w3*t^3 + w2*t^2 + w1*t + w0 - - The w[i] are going to be determined, and when they are they'll give -the final result using w=W(b), since x*y=X(b)*Y(b)=W(b). The -coefficients will be roughly b^2 each, and the final W(b) will be an -addition like, - - high low - +-------+-------+ - | w4 | - +-------+-------+ - +--------+-------+ - | w3 | - +--------+-------+ - +--------+-------+ - | w2 | - +--------+-------+ - +--------+-------+ - | w1 | - +--------+-------+ - +-------+-------+ - | w0 | - +-------+-------+ - - The w[i] coefficients could be formed by a simple set of cross -products, like w4=x2*y2, w3=x2*y1+x1*y2, w2=x2*y0+x1*y1+x0*y2 etc, but -this would need all nine x[i]*y[j] for i,j=0,1,2, and would be -equivalent merely to a basecase multiply. Instead the following -approach is used. - - X(t) and Y(t) are evaluated and multiplied at 5 points, giving values -of W(t) at those points. In GMP the following points are used, - - Point Value - t=0 x0 * y0, which gives w0 immediately - t=1 (x2+x1+x0) * (y2+y1+y0) - t=-1 (x2-x1+x0) * (y2-y1+y0) - t=2 (4*x2+2*x1+x0) * (4*y2+2*y1+y0) - t=inf x2 * y2, which gives w4 immediately - - At t=-1 the values can be negative and that's handled using the -absolute values and tracking the sign separately. At t=inf the value is -actually X(t)*Y(t)/t^4 in the limit as t approaches infinity, but it's -much easier to think of as simply x2*y2 giving w4 immediately (much like -x0*y0 at t=0 gives w0 immediately). - - Each of the points substituted into W(t)=w4*t^4+...+w0 gives a linear -combination of the w[i] coefficients, and the value of those -combinations has just been calculated. - - W(0) = w0 - W(1) = w4 + w3 + w2 + w1 + w0 - W(-1) = w4 - w3 + w2 - w1 + w0 - W(2) = 16*w4 + 8*w3 + 4*w2 + 2*w1 + w0 - W(inf) = w4 - - This is a set of five equations in five unknowns, and some elementary -linear algebra quickly isolates each w[i]. This involves adding or -subtracting one W(t) value from another, and a couple of divisions by -powers of 2 and one division by 3, the latter using the special -'mpn_divexact_by3' (*note Exact Division::). - - The conversion of W(t) values to the coefficients is interpolation. -A polynomial of degree 4 like W(t) is uniquely determined by values -known at 5 different points. The points are arbitrary and can be chosen -to make the linear equations come out with a convenient set of steps for -quickly isolating the w[i]. - - Squaring follows the same procedure as multiplication, but there's -only one X(t) and it's evaluated at the 5 points, and those values -squared to give values of W(t). The interpolation is then identical, -and in fact the same 'toom_interpolate_5pts' subroutine is used for both -squaring and multiplying. - - Toom-3 is asymptotically O(N^1.465), the exponent being -log(5)/log(3), representing 5 recursive multiplies of 1/3 the original -size each. This is an improvement over Karatsuba at O(N^1.585), though -Toom does more work in the evaluation and interpolation and so it only -realizes its advantage above a certain size. - - Near the crossover between Toom-3 and Karatsuba there's generally a -range of sizes where the difference between the two is small. -'MUL_TOOM33_THRESHOLD' is a somewhat arbitrary point in that range and -successive runs of the tune program can give different values due to -small variations in measuring. A graph of time versus size for the two -shows the effect, see 'tune/README'. - - At the fairly small sizes where the Toom-3 thresholds occur it's -worth remembering that the asymptotic behaviour for Karatsuba and Toom-3 -can't be expected to make accurate predictions, due of course to the big -influence of all sorts of overheads, and the fact that only a few -recursions of each are being performed. Even at large sizes there's a -good chance machine dependent effects like cache architecture will mean -actual performance deviates from what might be predicted. - - The formula given for the Karatsuba algorithm (*note Karatsuba -Multiplication::) has an equivalent for Toom-3 involving only five -multiplies, but this would be complicated and unenlightening. - - An alternate view of Toom-3 can be found in Zuras (*note -References::), using a vector to represent the x and y splits and a -matrix multiplication for the evaluation and interpolation stages. The -matrix inverses are not meant to be actually used, and they have -elements with values much greater than in fact arise in the -interpolation steps. The diagram shown for the 3-way is attractive, but -again doesn't have to be implemented that way and for example with a bit -of rearrangement just one division by 6 can be done. - - -File: gmp.info, Node: Toom 4-Way Multiplication, Next: Higher degree Toom'n'half, Prev: Toom 3-Way Multiplication, Up: Multiplication Algorithms - -15.1.4 Toom 4-Way Multiplication --------------------------------- - -Karatsuba and Toom-3 split the operands into 2 and 3 coefficients, -respectively. Toom-4 analogously splits the operands into 4 -coefficients. Using the notation from the section on Toom-3 -multiplication, we form two polynomials: - - X(t) = x3*t^3 + x2*t^2 + x1*t + x0 - Y(t) = y3*t^3 + y2*t^2 + y1*t + y0 - - X(t) and Y(t) are evaluated and multiplied at 7 points, giving values -of W(t) at those points. In GMP the following points are used, - - Point Value - t=0 x0 * y0, which gives w0 immediately - t=1/2 (x3+2*x2+4*x1+8*x0) * (y3+2*y2+4*y1+8*y0) - t=-1/2 (-x3+2*x2-4*x1+8*x0) * (-y3+2*y2-4*y1+8*y0) - t=1 (x3+x2+x1+x0) * (y3+y2+y1+y0) - t=-1 (-x3+x2-x1+x0) * (-y3+y2-y1+y0) - t=2 (8*x3+4*x2+2*x1+x0) * (8*y3+4*y2+2*y1+y0) - t=inf x3 * y3, which gives w6 immediately - - The number of additions and subtractions for Toom-4 is much larger -than for Toom-3. But several subexpressions occur multiple times, for -example x2+x0, occurs for both t=1 and t=-1. - - Toom-4 is asymptotically O(N^1.404), the exponent being -log(7)/log(4), representing 7 recursive multiplies of 1/4 the original -size each. - - -File: gmp.info, Node: Higher degree Toom'n'half, Next: FFT Multiplication, Prev: Toom 4-Way Multiplication, Up: Multiplication Algorithms - -15.1.5 Higher degree Toom'n'half --------------------------------- - -The Toom algorithms described above (*note Toom 3-Way Multiplication::, -*note Toom 4-Way Multiplication::) generalizes to split into an -arbitrary number of pieces. In general a split of two equally long -operands into r pieces leads to evaluations and pointwise -multiplications done at 2*r-1 points. To fully exploit symmetries it -would be better to have a multiple of 4 points, that's why for higher -degree Toom'n'half is used. - - Toom'n'half means that the existence of one more piece is considered -for a single operand. It can be virtual, i.e. zero, or real, when the -two operand are not exactly balanced. By choosing an even r, Toom-r+1/2 -requires 2r points, a multiple of four. - - The quadruplets of points include 0, inf, +1, -1 and +-2^i, +-2^-i . -Each of them giving shortcuts for the evaluation phase and for some -steps in the interpolation phase. Further tricks are used to reduce the -memory footprint of the whole multiplication algorithm to a memory -buffer equal in size to the result of the product. - - Current GMP uses both Toom-6'n'half and Toom-8'n'half. - - -File: gmp.info, Node: FFT Multiplication, Next: Other Multiplication, Prev: Higher degree Toom'n'half, Up: Multiplication Algorithms - -15.1.6 FFT Multiplication -------------------------- - -At large to very large sizes a Fermat style FFT multiplication is used, -following Schönhage and Strassen (*note References::). Descriptions of -FFTs in various forms can be found in many textbooks, for instance Knuth -section 4.3.3 part C or Lipson chapter IX. A brief description of the -form used in GMP is given here. - - The multiplication done is x*y mod 2^N+1, for a given N. A full -product x*y is obtained by choosing N>=bits(x)+bits(y) and padding x and -y with high zero limbs. The modular product is the native form for the -algorithm, so padding to get a full product is unavoidable. - - The algorithm follows a split, evaluate, pointwise multiply, -interpolate and combine similar to that described above for Karatsuba -and Toom-3. A k parameter controls the split, with an FFT-k splitting -into 2^k pieces of M=N/2^k bits each. N must be a multiple of -(2^k)*mp_bits_per_limb so the split falls on limb boundaries, avoiding -bit shifts in the split and combine stages. - - The evaluations, pointwise multiplications, and interpolation, are -all done modulo 2^N'+1 where N' is 2M+k+3 rounded up to a multiple of -2^k and of 'mp_bits_per_limb'. The results of interpolation will be the -following negacyclic convolution of the input pieces, and the choice of -N' ensures these sums aren't truncated. - - --- - \ b - w[n] = / (-1) * x[i] * y[j] - --- - i+j==b*2^k+n - b=0,1 - - The points used for the evaluation are g^i for i=0 to 2^k-1 where -g=2^(2N'/2^k). g is a 2^k'th root of unity mod 2^N'+1, which produces -necessary cancellations at the interpolation stage, and it's also a -power of 2 so the fast Fourier transforms used for the evaluation and -interpolation do only shifts, adds and negations. - - The pointwise multiplications are done modulo 2^N'+1 and either -recurse into a further FFT or use a plain multiplication (Toom-3, -Karatsuba or basecase), whichever is optimal at the size N'. The -interpolation is an inverse fast Fourier transform. The resulting set -of sums of x[i]*y[j] are added at appropriate offsets to give the final -result. - - Squaring is the same, but x is the only input so it's one transform -at the evaluate stage and the pointwise multiplies are squares. The -interpolation is the same. - - For a mod 2^N+1 product, an FFT-k is an O(N^(k/(k-1))) algorithm, the -exponent representing 2^k recursed modular multiplies each 1/2^(k-1) the -size of the original. Each successive k is an asymptotic improvement, -but overheads mean each is only faster at bigger and bigger sizes. In -the code, 'MUL_FFT_TABLE' and 'SQR_FFT_TABLE' are the thresholds where -each k is used. Each new k effectively swaps some multiplying for some -shifts, adds and overheads. - - A mod 2^N+1 product can be formed with a normal NxN->2N bit multiply -plus a subtraction, so an FFT and Toom-3 etc can be compared directly. -A k=4 FFT at O(N^1.333) can be expected to be the first faster than -Toom-3 at O(N^1.465). In practice this is what's found, with -'MUL_FFT_MODF_THRESHOLD' and 'SQR_FFT_MODF_THRESHOLD' being between 300 -and 1000 limbs, depending on the CPU. So far it's been found that only -very large FFTs recurse into pointwise multiplies above these sizes. - - When an FFT is to give a full product, the change of N to 2N doesn't -alter the theoretical complexity for a given k, but for the purposes of -considering where an FFT might be first used it can be assumed that the -FFT is recursing into a normal multiply and that on that basis it's -doing 2^k recursed multiplies each 1/2^(k-2) the size of the inputs, -making it O(N^(k/(k-2))). This would mean k=7 at O(N^1.4) would be the -first FFT faster than Toom-3. In practice 'MUL_FFT_THRESHOLD' and -'SQR_FFT_THRESHOLD' have been found to be in the k=8 range, somewhere -between 3000 and 10000 limbs. - - The way N is split into 2^k pieces and then 2M+k+3 is rounded up to a -multiple of 2^k and 'mp_bits_per_limb' means that when -2^k>=mp\_bits\_per\_limb the effective N is a multiple of 2^(2k-1) bits. -The +k+3 means some values of N just under such a multiple will be -rounded to the next. The complexity calculations above assume that a -favourable size is used, meaning one which isn't padded through -rounding, and it's also assumed that the extra +k+3 bits are negligible -at typical FFT sizes. - - The practical effect of the 2^(2k-1) constraint is to introduce a -step-effect into measured speeds. For example k=8 will round N up to a -multiple of 32768 bits, so for a 32-bit limb there'll be 512 limb groups -of sizes for which 'mpn_mul_n' runs at the same speed. Or for k=9 -groups of 2048 limbs, k=10 groups of 8192 limbs, etc. In practice it's -been found each k is used at quite small multiples of its size -constraint and so the step effect is quite noticeable in a time versus -size graph. - - The threshold determinations currently measure at the mid-points of -size steps, but this is sub-optimal since at the start of a new step it -can happen that it's better to go back to the previous k for a while. -Something more sophisticated for 'MUL_FFT_TABLE' and 'SQR_FFT_TABLE' -will be needed. - - -File: gmp.info, Node: Other Multiplication, Next: Unbalanced Multiplication, Prev: FFT Multiplication, Up: Multiplication Algorithms - -15.1.7 Other Multiplication ---------------------------- - -The Toom algorithms described above (*note Toom 3-Way Multiplication::, -*note Toom 4-Way Multiplication::) generalizes to split into an -arbitrary number of pieces, as per Knuth section 4.3.3 algorithm C. -This is not currently used. The notes here are merely for interest. - - In general a split into r+1 pieces is made, and evaluations and -pointwise multiplications done at 2*r+1 points. A 4-way split does 7 -pointwise multiplies, 5-way does 9, etc. Asymptotically an (r+1)-way -algorithm is O(N^(log(2*r+1)/log(r+1))). Only the pointwise -multiplications count towards big-O complexity, but the time spent in -the evaluate and interpolate stages grows with r and has a significant -practical impact, with the asymptotic advantage of each r realized only -at bigger and bigger sizes. The overheads grow as O(N*r), whereas in an -r=2^k FFT they grow only as O(N*log(r)). - - Knuth algorithm C evaluates at points 0,1,2,...,2*r, but exercise 4 -uses -r,...,0,...,r and the latter saves some small multiplies in the -evaluate stage (or rather trades them for additions), and has a further -saving of nearly half the interpolate steps. The idea is to separate -odd and even final coefficients and then perform algorithm C steps C7 -and C8 on them separately. The divisors at step C7 become j^2 and the -multipliers at C8 become 2*t*j-j^2. - - Splitting odd and even parts through positive and negative points can -be thought of as using -1 as a square root of unity. If a 4th root of -unity was available then a further split and speedup would be possible, -but no such root exists for plain integers. Going to complex integers -with i=sqrt(-1) doesn't help, essentially because in Cartesian form it -takes three real multiplies to do a complex multiply. The existence of -2^k'th roots of unity in a suitable ring or field lets the fast Fourier -transform keep splitting and get to O(N*log(r)). - - Floating point FFTs use complex numbers approximating Nth roots of -unity. Some processors have special support for such FFTs. But these -are not used in GMP since it's very difficult to guarantee an exact -result (to some number of bits). An occasional difference of 1 in the -last bit might not matter to a typical signal processing algorithm, but -is of course of vital importance to GMP. - - -File: gmp.info, Node: Unbalanced Multiplication, Prev: Other Multiplication, Up: Multiplication Algorithms - -15.1.8 Unbalanced Multiplication --------------------------------- - -Multiplication of operands with different sizes, both below -'MUL_TOOM22_THRESHOLD' are done with plain schoolbook multiplication -(*note Basecase Multiplication::). - - For really large operands, we invoke FFT directly. - - For operands between these sizes, we use Toom inspired algorithms -suggested by Alberto Zanoni and Marco Bodrato. The idea is to split the -operands into polynomials of different degree. GMP currently splits the -smaller operand onto 2 coefficients, i.e., a polynomial of degree 1, but -the larger operand can be split into 2, 3, or 4 coefficients, i.e., a -polynomial of degree 1 to 3. - - -File: gmp.info, Node: Division Algorithms, Next: Greatest Common Divisor Algorithms, Prev: Multiplication Algorithms, Up: Algorithms - -15.2 Division Algorithms -======================== - -* Menu: - -* Single Limb Division:: -* Basecase Division:: -* Divide and Conquer Division:: -* Block-Wise Barrett Division:: -* Exact Division:: -* Exact Remainder:: -* Small Quotient Division:: - - -File: gmp.info, Node: Single Limb Division, Next: Basecase Division, Prev: Division Algorithms, Up: Division Algorithms - -15.2.1 Single Limb Division ---------------------------- - -Nx1 division is implemented using repeated 2x1 divisions from high to -low, either with a hardware divide instruction or a multiplication by -inverse, whichever is best on a given CPU. - - The multiply by inverse follows "Improved division by invariant -integers" by Möller and Granlund (*note References::) and is implemented -as 'udiv_qrnnd_preinv' in 'gmp-impl.h'. The idea is to have a -fixed-point approximation to 1/d (see 'invert_limb') and then multiply -by the high limb (plus one bit) of the dividend to get a quotient q. -With d normalized (high bit set), q is no more than 1 too small. -Subtracting q*d from the dividend gives a remainder, and reveals whether -q or q-1 is correct. - - The result is a division done with two multiplications and four or -five arithmetic operations. On CPUs with low latency multipliers this -can be much faster than a hardware divide, though the cost of -calculating the inverse at the start may mean it's only better on inputs -bigger than say 4 or 5 limbs. - - When a divisor must be normalized, either for the generic C -'__udiv_qrnnd_c' or the multiply by inverse, the division performed is -actually a*2^k by d*2^k where a is the dividend and k is the power -necessary to have the high bit of d*2^k set. The bit shifts for the -dividend are usually accomplished "on the fly" meaning by extracting the -appropriate bits at each step. Done this way the quotient limbs come -out aligned ready to store. When only the remainder is wanted, an -alternative is to take the dividend limbs unshifted and calculate r = a -mod d*2^k followed by an extra final step r*2^k mod d*2^k. This can -help on CPUs with poor bit shifts or few registers. - - The multiply by inverse can be done two limbs at a time. The -calculation is basically the same, but the inverse is two limbs and the -divisor treated as if padded with a low zero limb. This means more -work, since the inverse will need a 2x2 multiply, but the four 1x1s to -do that are independent and can therefore be done partly or wholly in -parallel. Likewise for a 2x1 calculating q*d. The net effect is to -process two limbs with roughly the same two multiplies worth of latency -that one limb at a time gives. This extends to 3 or 4 limbs at a time, -though the extra work to apply the inverse will almost certainly soon -reach the limits of multiplier throughput. - - A similar approach in reverse can be taken to process just half a -limb at a time if the divisor is only a half limb. In this case the 1x1 -multiply for the inverse effectively becomes two (1/2)x1 for each limb, -which can be a saving on CPUs with a fast half limb multiply, or in fact -if the only multiply is a half limb, and especially if it's not -pipelined. - - -File: gmp.info, Node: Basecase Division, Next: Divide and Conquer Division, Prev: Single Limb Division, Up: Division Algorithms - -15.2.2 Basecase Division ------------------------- - -Basecase NxM division is like long division done by hand, but in base -2^mp_bits_per_limb. See Knuth section 4.3.1 algorithm D, and -'mpn/generic/sb_divrem_mn.c'. - - Briefly stated, while the dividend remains larger than the divisor, a -high quotient limb is formed and the Nx1 product q*d subtracted at the -top end of the dividend. With a normalized divisor (most significant -bit set), each quotient limb can be formed with a 2x1 division and a 1x1 -multiplication plus some subtractions. The 2x1 division is by the high -limb of the divisor and is done either with a hardware divide or a -multiply by inverse (the same as in *note Single Limb Division::) -whichever is faster. Such a quotient is sometimes one too big, -requiring an addback of the divisor, but that happens rarely. - - With Q=N-M being the number of quotient limbs, this is an O(Q*M) -algorithm and will run at a speed similar to a basecase QxM -multiplication, differing in fact only in the extra multiply and divide -for each of the Q quotient limbs. - - -File: gmp.info, Node: Divide and Conquer Division, Next: Block-Wise Barrett Division, Prev: Basecase Division, Up: Division Algorithms - -15.2.3 Divide and Conquer Division ----------------------------------- - -For divisors larger than 'DC_DIV_QR_THRESHOLD', division is done by -dividing. Or to be precise by a recursive divide and conquer algorithm -based on work by Moenck and Borodin, Jebelean, and Burnikel and Ziegler -(*note References::). - - The algorithm consists essentially of recognising that a 2NxN -division can be done with the basecase division algorithm (*note -Basecase Division::), but using N/2 limbs as a base, not just a single -limb. This way the multiplications that arise are (N/2)x(N/2) and can -take advantage of Karatsuba and higher multiplication algorithms (*note -Multiplication Algorithms::). The two "digits" of the quotient are -formed by recursive Nx(N/2) divisions. - - If the (N/2)x(N/2) multiplies are done with a basecase multiplication -then the work is about the same as a basecase division, but with more -function call overheads and with some subtractions separated from the -multiplies. These overheads mean that it's only when N/2 is above -'MUL_TOOM22_THRESHOLD' that divide and conquer is of use. - - 'DC_DIV_QR_THRESHOLD' is based on the divisor size N, so it will be -somewhere above twice 'MUL_TOOM22_THRESHOLD', but how much above depends -on the CPU. An optimized 'mpn_mul_basecase' can lower -'DC_DIV_QR_THRESHOLD' a little by offering a ready-made advantage over -repeated 'mpn_submul_1' calls. - - Divide and conquer is asymptotically O(M(N)*log(N)) where M(N) is the -time for an NxN multiplication done with FFTs. The actual time is a sum -over multiplications of the recursed sizes, as can be seen near the end -of section 2.2 of Burnikel and Ziegler. For example, within the Toom-3 -range, divide and conquer is 2.63*M(N). With higher algorithms the M(N) -term improves and the multiplier tends to log(N). In practice, at -moderate to large sizes, a 2NxN division is about 2 to 4 times slower -than an NxN multiplication. - - -File: gmp.info, Node: Block-Wise Barrett Division, Next: Exact Division, Prev: Divide and Conquer Division, Up: Division Algorithms - -15.2.4 Block-Wise Barrett Division ----------------------------------- - -For the largest divisions, a block-wise Barrett division algorithm is -used. Here, the divisor is inverted to a precision determined by the -relative size of the dividend and divisor. Blocks of quotient limbs are -then generated by multiplying blocks from the dividend by the inverse. - - Our block-wise algorithm computes a smaller inverse than in the plain -Barrett algorithm. For a 2n/n division, the inverse will be just -ceil(n/2) limbs. - - -File: gmp.info, Node: Exact Division, Next: Exact Remainder, Prev: Block-Wise Barrett Division, Up: Division Algorithms - -15.2.5 Exact Division ---------------------- - -A so-called exact division is when the dividend is known to be an exact -multiple of the divisor. Jebelean's exact division algorithm uses this -knowledge to make some significant optimizations (*note References::). - - The idea can be illustrated in decimal for example with 368154 -divided by 543. Because the low digit of the dividend is 4, the low -digit of the quotient must be 8. This is arrived at from 4*7 mod 10, -using the fact 7 is the modular inverse of 3 (the low digit of the -divisor), since 3*7 == 1 mod 10. So 8*543=4344 can be subtracted from -the dividend leaving 363810. Notice the low digit has become zero. - - The procedure is repeated at the second digit, with the next quotient -digit 7 (7 == 1*7 mod 10), subtracting 7*543=3801, leaving 325800. And -finally at the third digit with quotient digit 6 (8*7 mod 10), -subtracting 6*543=3258 leaving 0. So the quotient is 678. - - Notice however that the multiplies and subtractions don't need to -extend past the low three digits of the dividend, since that's enough to -determine the three quotient digits. For the last quotient digit no -subtraction is needed at all. On a 2NxN division like this one, only -about half the work of a normal basecase division is necessary. - - For an NxM exact division producing Q=N-M quotient limbs, the saving -over a normal basecase division is in two parts. Firstly, each of the Q -quotient limbs needs only one multiply, not a 2x1 divide and multiply. -Secondly, the crossproducts are reduced when Q>M to Q*M-M*(M+1)/2, or -when Q<=M to Q*(Q-1)/2. Notice the savings are complementary. If Q is -big then many divisions are saved, or if Q is small then the -crossproducts reduce to a small number. - - The modular inverse used is calculated efficiently by 'binvert_limb' -in 'gmp-impl.h'. This does four multiplies for a 32-bit limb, or six -for a 64-bit limb. 'tune/modlinv.c' has some alternate implementations -that might suit processors better at bit twiddling than multiplying. - - The sub-quadratic exact division described by Jebelean in "Exact -Division with Karatsuba Complexity" is not currently implemented. It -uses a rearrangement similar to the divide and conquer for normal -division (*note Divide and Conquer Division::), but operating from low -to high. A further possibility not currently implemented is -"Bidirectional Exact Integer Division" by Krandick and Jebelean which -forms quotient limbs from both the high and low ends of the dividend, -and can halve once more the number of crossproducts needed in a 2NxN -division. - - A special case exact division by 3 exists in 'mpn_divexact_by3', -supporting Toom-3 multiplication and 'mpq' canonicalizations. It forms -quotient digits with a multiply by the modular inverse of 3 (which is -'0xAA..AAB') and uses two comparisons to determine a borrow for the next -limb. The multiplications don't need to be on the dependent chain, as -long as the effect of the borrows is applied, which can help chips with -pipelined multipliers. - diff --git a/misc/builddeps/linux64/gmp/share/info/gmp.info-2 b/misc/builddeps/linux64/gmp/share/info/gmp.info-2 deleted file mode 100644 index 89319495..00000000 --- a/misc/builddeps/linux64/gmp/share/info/gmp.info-2 +++ /dev/null @@ -1,3968 +0,0 @@ -This is gmp.info, produced by makeinfo version 6.7 from gmp.texi. - -This manual describes how to install and use the GNU multiple precision -arithmetic library, version 6.2.1. - - Copyright 1991, 1993-2016, 2018-2020 Free Software Foundation, Inc. - - Permission is granted to copy, distribute and/or modify this document -under the terms of the GNU Free Documentation License, Version 1.3 or -any later version published by the Free Software Foundation; with no -Invariant Sections, with the Front-Cover Texts being "A GNU Manual", and -with the Back-Cover Texts being "You have freedom to copy and modify -this GNU Manual, like GNU software". A copy of the license is included -in *note GNU Free Documentation License::. -INFO-DIR-SECTION GNU libraries -START-INFO-DIR-ENTRY -* gmp: (gmp). GNU Multiple Precision Arithmetic Library. -END-INFO-DIR-ENTRY - - -File: gmp.info, Node: Exact Remainder, Next: Small Quotient Division, Prev: Exact Division, Up: Division Algorithms - -15.2.6 Exact Remainder ----------------------- - -If the exact division algorithm is done with a full subtraction at each -stage and the dividend isn't a multiple of the divisor, then low zero -limbs are produced but with a remainder in the high limbs. For dividend -a, divisor d, quotient q, and b = 2^mp_bits_per_limb, this remainder r -is of the form - - a = q*d + r*b^n - - n represents the number of zero limbs produced by the subtractions, -that being the number of limbs produced for q. r will be in the range -0<=rb*r+u2 condition appropriately relaxed. - - -File: gmp.info, Node: Greatest Common Divisor Algorithms, Next: Powering Algorithms, Prev: Division Algorithms, Up: Algorithms - -15.3 Greatest Common Divisor -============================ - -* Menu: - -* Binary GCD:: -* Lehmer's Algorithm:: -* Subquadratic GCD:: -* Extended GCD:: -* Jacobi Symbol:: - - -File: gmp.info, Node: Binary GCD, Next: Lehmer's Algorithm, Prev: Greatest Common Divisor Algorithms, Up: Greatest Common Divisor Algorithms - -15.3.1 Binary GCD ------------------ - -At small sizes GMP uses an O(N^2) binary style GCD. This is described -in many textbooks, for example Knuth section 4.5.2 algorithm B. It -simply consists of successively reducing odd operands a and b using - - a,b = abs(a-b),min(a,b) - strip factors of 2 from a - - The Euclidean GCD algorithm, as per Knuth algorithms E and A, -repeatedly computes the quotient q = floor(a/b) and replaces a,b by v, u -- q v. The binary algorithm has so far been found to be faster than the -Euclidean algorithm everywhere. One reason the binary method does well -is that the implied quotient at each step is usually small, so often -only one or two subtractions are needed to get the same effect as a -division. Quotients 1, 2 and 3 for example occur 67.7% of the time, see -Knuth section 4.5.3 Theorem E. - - When the implied quotient is large, meaning b is much smaller than a, -then a division is worthwhile. This is the basis for the initial a mod -b reductions in 'mpn_gcd' and 'mpn_gcd_1' (the latter for both Nx1 and -1x1 cases). But after that initial reduction, big quotients occur too -rarely to make it worth checking for them. - - - The final 1x1 GCD in 'mpn_gcd_1' is done in the generic C code as -described above. For two N-bit operands, the algorithm takes about 0.68 -iterations per bit. For optimum performance some attention needs to be -paid to the way the factors of 2 are stripped from a. - - Firstly it may be noted that in twos complement the number of low -zero bits on a-b is the same as b-a, so counting or testing can begin on -a-b without waiting for abs(a-b) to be determined. - - A loop stripping low zero bits tends not to branch predict well, -since the condition is data dependent. But on average there's only a -few low zeros, so an option is to strip one or two bits arithmetically -then loop for more (as done for AMD K6). Or use a lookup table to get a -count for several bits then loop for more (as done for AMD K7). An -alternative approach is to keep just one of a or b odd and iterate - - a,b = abs(a-b), min(a,b) - a = a/2 if even - b = b/2 if even - - This requires about 1.25 iterations per bit, but stripping of a -single bit at each step avoids any branching. Repeating the bit strip -reduces to about 0.9 iterations per bit, which may be a worthwhile -tradeoff. - - Generally with the above approaches a speed of perhaps 6 cycles per -bit can be achieved, which is still not terribly fast with for instance -a 64-bit GCD taking nearly 400 cycles. It's this sort of time which -means it's not usually advantageous to combine a set of divisibility -tests into a GCD. - - Currently, the binary algorithm is used for GCD only when N < 3. - - -File: gmp.info, Node: Lehmer's Algorithm, Next: Subquadratic GCD, Prev: Binary GCD, Up: Greatest Common Divisor Algorithms - -15.3.2 Lehmer's algorithm -------------------------- - -Lehmer's improvement of the Euclidean algorithms is based on the -observation that the initial part of the quotient sequence depends only -on the most significant parts of the inputs. The variant of Lehmer's -algorithm used in GMP splits off the most significant two limbs, as -suggested, e.g., in "A Double-Digit Lehmer-Euclid Algorithm" by Jebelean -(*note References::). The quotients of two double-limb inputs are -collected as a 2 by 2 matrix with single-limb elements. This is done by -the function 'mpn_hgcd2'. The resulting matrix is applied to the inputs -using 'mpn_mul_1' and 'mpn_submul_1'. Each iteration usually reduces -the inputs by almost one limb. In the rare case of a large quotient, no -progress can be made by examining just the most significant two limbs, -and the quotient is computed using plain division. - - The resulting algorithm is asymptotically O(N^2), just as the -Euclidean algorithm and the binary algorithm. The quadratic part of the -work are the calls to 'mpn_mul_1' and 'mpn_submul_1'. For small sizes, -the linear work is also significant. There are roughly N calls to the -'mpn_hgcd2' function. This function uses a couple of important -optimizations: - - * It uses the same relaxed notion of correctness as 'mpn_hgcd' (see - next section). This means that when called with the most - significant two limbs of two large numbers, the returned matrix - does not always correspond exactly to the initial quotient sequence - for the two large numbers; the final quotient may sometimes be one - off. - - * It takes advantage of the fact the quotients are usually small. - The division operator is not used, since the corresponding - assembler instruction is very slow on most architectures. (This - code could probably be improved further, it uses many branches that - are unfriendly to prediction). - - * It switches from double-limb calculations to single-limb - calculations half-way through, when the input numbers have been - reduced in size from two limbs to one and a half. - - -File: gmp.info, Node: Subquadratic GCD, Next: Extended GCD, Prev: Lehmer's Algorithm, Up: Greatest Common Divisor Algorithms - -15.3.3 Subquadratic GCD ------------------------ - -For inputs larger than 'GCD_DC_THRESHOLD', GCD is computed via the HGCD -(Half GCD) function, as a generalization to Lehmer's algorithm. - - Let the inputs a,b be of size N limbs each. Put S = floor(N/2) + 1. -Then HGCD(a,b) returns a transformation matrix T with non-negative -elements, and reduced numbers (c;d) = T^{-1} (a;b). The reduced numbers -c,d must be larger than S limbs, while their difference abs(c-d) must -fit in S limbs. The matrix elements will also be of size roughly N/2. - - The HGCD base case uses Lehmer's algorithm, but with the above stop -condition that returns reduced numbers and the corresponding -transformation matrix half-way through. For inputs larger than -'HGCD_THRESHOLD', HGCD is computed recursively, using the divide and -conquer algorithm in "On Schönhage's algorithm and subquadratic integer -GCD computation" by Möller (*note References::). The recursive -algorithm consists of these main steps. - - * Call HGCD recursively, on the most significant N/2 limbs. Apply - the resulting matrix T_1 to the full numbers, reducing them to a - size just above 3N/2. - - * Perform a small number of division or subtraction steps to reduce - the numbers to size below 3N/2. This is essential mainly for the - unlikely case of large quotients. - - * Call HGCD recursively, on the most significant N/2 limbs of the - reduced numbers. Apply the resulting matrix T_2 to the full - numbers, reducing them to a size just above N/2. - - * Compute T = T_1 T_2. - - * Perform a small number of division and subtraction steps to satisfy - the requirements, and return. - - GCD is then implemented as a loop around HGCD, similarly to Lehmer's -algorithm. Where Lehmer repeatedly chops off the top two limbs, calls -'mpn_hgcd2', and applies the resulting matrix to the full numbers, the -sub-quadratic GCD chops off the most significant third of the limbs (the -proportion is a tuning parameter, and 1/3 seems to be more efficient -than, e.g, 1/2), calls 'mpn_hgcd', and applies the resulting matrix. -Once the input numbers are reduced to size below 'GCD_DC_THRESHOLD', -Lehmer's algorithm is used for the rest of the work. - - The asymptotic running time of both HGCD and GCD is O(M(N)*log(N)), -where M(N) is the time for multiplying two N-limb numbers. - - -File: gmp.info, Node: Extended GCD, Next: Jacobi Symbol, Prev: Subquadratic GCD, Up: Greatest Common Divisor Algorithms - -15.3.4 Extended GCD -------------------- - -The extended GCD function, or GCDEXT, calculates gcd(a,b) and also -cofactors x and y satisfying a*x+b*y=gcd(a,b). All the algorithms used -for plain GCD are extended to handle this case. The binary algorithm is -used only for single-limb GCDEXT. Lehmer's algorithm is used for sizes -up to 'GCDEXT_DC_THRESHOLD'. Above this threshold, GCDEXT is -implemented as a loop around HGCD, but with more book-keeping to keep -track of the cofactors. This gives the same asymptotic running time as -for GCD and HGCD, O(M(N)*log(N)) - - One difference to plain GCD is that while the inputs a and b are -reduced as the algorithm proceeds, the cofactors x and y grow in size. -This makes the tuning of the chopping-point more difficult. The current -code chops off the most significant half of the inputs for the call to -HGCD in the first iteration, and the most significant two thirds for the -remaining calls. This strategy could surely be improved. Also the stop -condition for the loop, where Lehmer's algorithm is invoked once the -inputs are reduced below 'GCDEXT_DC_THRESHOLD', could maybe be improved -by taking into account the current size of the cofactors. - - -File: gmp.info, Node: Jacobi Symbol, Prev: Extended GCD, Up: Greatest Common Divisor Algorithms - -15.3.5 Jacobi Symbol --------------------- - -Jacobi symbol (A/B) - - Initially if either operand fits in a single limb, a reduction is -done with either 'mpn_mod_1' or 'mpn_modexact_1_odd', followed by the -binary algorithm on a single limb. The binary algorithm is well suited -to a single limb, and the whole calculation in this case is quite -efficient. - - For inputs larger than 'GCD_DC_THRESHOLD', 'mpz_jacobi', -'mpz_legendre' and 'mpz_kronecker' are computed via the HGCD (Half GCD) -function, as a generalization to Lehmer's algorithm. - - Most GCD algorithms reduce a and b by repeatatily computing the -quotient q = floor(a/b) and iteratively replacing - - a, b = b, a - q * b - - Different algorithms use different methods for calculating q, but the -core algorithm is the same if we use *note Lehmer's Algorithm:: or *note -HGCD: Subquadratic GCD. - - At each step it is possible to compute if the reduction inverts the -Jacobi symbol based on the two least significant bits of A and B. For -more details see "Efficient computation of the Jacobi symbol" by Möller -(*note References::). - - A small set of bits is thus used to track state - * current sign of result (1 bit) - - * two least significant bits of A and B (4 bits) - - * a pointer to which input is currently the denominator (1 bit) - - In all the routines sign changes for the result are accumulated using -fast bit twiddling which avoids conditional jumps. - - The final result is calculated after verifying the inputs are coprime -(GCD = 1) by raising (-1)^e - - Much of the HGCD code is shared directly with the HGCD -implementations, such as the 2x2 matrix calculation, *Note Lehmer's -Algorithm:: basecase and 'GCD_DC_THRESHOLD'. - - The asymptotic running time is O(M(N)*log(N)), where M(N) is the time -for multiplying two N-limb numbers. - - -File: gmp.info, Node: Powering Algorithms, Next: Root Extraction Algorithms, Prev: Greatest Common Divisor Algorithms, Up: Algorithms - -15.4 Powering Algorithms -======================== - -* Menu: - -* Normal Powering Algorithm:: -* Modular Powering Algorithm:: - - -File: gmp.info, Node: Normal Powering Algorithm, Next: Modular Powering Algorithm, Prev: Powering Algorithms, Up: Powering Algorithms - -15.4.1 Normal Powering ----------------------- - -Normal 'mpz' or 'mpf' powering uses a simple binary algorithm, -successively squaring and then multiplying by the base when a 1 bit is -seen in the exponent, as per Knuth section 4.6.3. The "left to right" -variant described there is used rather than algorithm A, since it's just -as easy and can be done with somewhat less temporary memory. - - -File: gmp.info, Node: Modular Powering Algorithm, Prev: Normal Powering Algorithm, Up: Powering Algorithms - -15.4.2 Modular Powering ------------------------ - -Modular powering is implemented using a 2^k-ary sliding window -algorithm, as per "Handbook of Applied Cryptography" algorithm 14.85 -(*note References::). k is chosen according to the size of the -exponent. Larger exponents use larger values of k, the choice being -made to minimize the average number of multiplications that must -supplement the squaring. - - The modular multiplies and squarings use either a simple division or -the REDC method by Montgomery (*note References::). REDC is a little -faster, essentially saving N single limb divisions in a fashion similar -to an exact remainder (*note Exact Remainder::). - - -File: gmp.info, Node: Root Extraction Algorithms, Next: Radix Conversion Algorithms, Prev: Powering Algorithms, Up: Algorithms - -15.5 Root Extraction Algorithms -=============================== - -* Menu: - -* Square Root Algorithm:: -* Nth Root Algorithm:: -* Perfect Square Algorithm:: -* Perfect Power Algorithm:: - - -File: gmp.info, Node: Square Root Algorithm, Next: Nth Root Algorithm, Prev: Root Extraction Algorithms, Up: Root Extraction Algorithms - -15.5.1 Square Root ------------------- - -Square roots are taken using the "Karatsuba Square Root" algorithm by -Paul Zimmermann (*note References::). - - An input n is split into four parts of k bits each, so with b=2^k we -have n = a3*b^3 + a2*b^2 + a1*b + a0. Part a3 must be "normalized" so -that either the high or second highest bit is set. In GMP, k is kept on -a limb boundary and the input is left shifted (by an even number of -bits) to normalize. - - The square root of the high two parts is taken, by recursive -application of the algorithm (bottoming out in a one-limb Newton's -method), - - s1,r1 = sqrtrem (a3*b + a2) - - This is an approximation to the desired root and is extended by a -division to give s,r, - - q,u = divrem (r1*b + a1, 2*s1) - s = s1*b + q - r = u*b + a0 - q^2 - - The normalization requirement on a3 means at this point s is either -correct or 1 too big. r is negative in the latter case, so - - if r < 0 then - r = r + 2*s - 1 - s = s - 1 - - The algorithm is expressed in a divide and conquer form, but as noted -in the paper it can also be viewed as a discrete variant of Newton's -method, or as a variation on the schoolboy method (no longer taught) for -square roots two digits at a time. - - If the remainder r is not required then usually only a few high limbs -of r and u need to be calculated to determine whether an adjustment to s -is required. This optimization is not currently implemented. - - In the Karatsuba multiplication range this algorithm is -O(1.5*M(N/2)), where M(n) is the time to multiply two numbers of n -limbs. In the FFT multiplication range this grows to a bound of -O(6*M(N/2)). In practice a factor of about 1.5 to 1.8 is found in the -Karatsuba and Toom-3 ranges, growing to 2 or 3 in the FFT range. - - The algorithm does all its calculations in integers and the resulting -'mpn_sqrtrem' is used for both 'mpz_sqrt' and 'mpf_sqrt'. The extended -precision given by 'mpf_sqrt_ui' is obtained by padding with zero limbs. - - -File: gmp.info, Node: Nth Root Algorithm, Next: Perfect Square Algorithm, Prev: Square Root Algorithm, Up: Root Extraction Algorithms - -15.5.2 Nth Root ---------------- - -Integer Nth roots are taken using Newton's method with the following -iteration, where A is the input and n is the root to be taken. - - 1 A - a[i+1] = - * ( --------- + (n-1)*a[i] ) - n a[i]^(n-1) - - The initial approximation a[1] is generated bitwise by successively -powering a trial root with or without new 1 bits, aiming to be just -above the true root. The iteration converges quadratically when started -from a good approximation. When n is large more initial bits are needed -to get good convergence. The current implementation is not particularly -well optimized. - - -File: gmp.info, Node: Perfect Square Algorithm, Next: Perfect Power Algorithm, Prev: Nth Root Algorithm, Up: Root Extraction Algorithms - -15.5.3 Perfect Square ---------------------- - -A significant fraction of non-squares can be quickly identified by -checking whether the input is a quadratic residue modulo small integers. - - 'mpz_perfect_square_p' first tests the input mod 256, which means -just examining the low byte. Only 44 different values occur for squares -mod 256, so 82.8% of inputs can be immediately identified as -non-squares. - - On a 32-bit system similar tests are done mod 9, 5, 7, 13 and 17, for -a total 99.25% of inputs identified as non-squares. On a 64-bit system -97 is tested too, for a total 99.62%. - - These moduli are chosen because they're factors of 2^24-1 (or 2^48-1 -for 64-bits), and such a remainder can be quickly taken just using -additions (see 'mpn_mod_34lsub1'). - - When nails are in use moduli are instead selected by the 'gen-psqr.c' -program and applied with an 'mpn_mod_1'. The same 2^24-1 or 2^48-1 -could be done with nails using some extra bit shifts, but this is not -currently implemented. - - In any case each modulus is applied to the 'mpn_mod_34lsub1' or -'mpn_mod_1' remainder and a table lookup identifies non-squares. By -using a "modexact" style calculation, and suitably permuted tables, just -one multiply each is required, see the code for details. Moduli are -also combined to save operations, so long as the lookup tables don't -become too big. 'gen-psqr.c' does all the pre-calculations. - - A square root must still be taken for any value that passes these -tests, to verify it's really a square and not one of the small fraction -of non-squares that get through (i.e. a pseudo-square to all the tested -bases). - - Clearly more residue tests could be done, 'mpz_perfect_square_p' only -uses a compact and efficient set. Big inputs would probably benefit -from more residue testing, small inputs might be better off with less. -The assumed distribution of squares versus non-squares in the input -would affect such considerations. - - -File: gmp.info, Node: Perfect Power Algorithm, Prev: Perfect Square Algorithm, Up: Root Extraction Algorithms - -15.5.4 Perfect Power --------------------- - -Detecting perfect powers is required by some factorization algorithms. -Currently 'mpz_perfect_power_p' is implemented using repeated Nth root -extractions, though naturally only prime roots need to be considered. -(*Note Nth Root Algorithm::.) - - If a prime divisor p with multiplicity e can be found, then only -roots which are divisors of e need to be considered, much reducing the -work necessary. To this end divisibility by a set of small primes is -checked. - - -File: gmp.info, Node: Radix Conversion Algorithms, Next: Other Algorithms, Prev: Root Extraction Algorithms, Up: Algorithms - -15.6 Radix Conversion -===================== - -Radix conversions are less important than other algorithms. A program -dominated by conversions should probably use a different data -representation. - -* Menu: - -* Binary to Radix:: -* Radix to Binary:: - - -File: gmp.info, Node: Binary to Radix, Next: Radix to Binary, Prev: Radix Conversion Algorithms, Up: Radix Conversion Algorithms - -15.6.1 Binary to Radix ----------------------- - -Conversions from binary to a power-of-2 radix use a simple and fast O(N) -bit extraction algorithm. - - Conversions from binary to other radices use one of two algorithms. -Sizes below 'GET_STR_PRECOMPUTE_THRESHOLD' use a basic O(N^2) method. -Repeated divisions by b^n are made, where b is the radix and n is the -biggest power that fits in a limb. But instead of simply using the -remainder r from such divisions, an extra divide step is done to give a -fractional limb representing r/b^n. The digits of r can then be -extracted using multiplications by b rather than divisions. Special -case code is provided for decimal, allowing multiplications by 10 to -optimize to shifts and adds. - - Above 'GET_STR_PRECOMPUTE_THRESHOLD' a sub-quadratic algorithm is -used. For an input t, powers b^(n*2^i) of the radix are calculated, -until a power between t and sqrt(t) is reached. t is then divided by -that largest power, giving a quotient which is the digits above that -power, and a remainder which is those below. These two parts are in -turn divided by the second highest power, and so on recursively. When a -piece has been divided down to less than 'GET_STR_DC_THRESHOLD' limbs, -the basecase algorithm described above is used. - - The advantage of this algorithm is that big divisions can make use of -the sub-quadratic divide and conquer division (*note Divide and Conquer -Division::), and big divisions tend to have less overheads than lots of -separate single limb divisions anyway. But in any case the cost of -calculating the powers b^(n*2^i) must first be overcome. - - 'GET_STR_PRECOMPUTE_THRESHOLD' and 'GET_STR_DC_THRESHOLD' represent -the same basic thing, the point where it becomes worth doing a big -division to cut the input in half. 'GET_STR_PRECOMPUTE_THRESHOLD' -includes the cost of calculating the radix power required, whereas -'GET_STR_DC_THRESHOLD' assumes that's already available, which is the -case when recursing. - - Since the base case produces digits from least to most significant -but they want to be stored from most to least, it's necessary to -calculate in advance how many digits there will be, or at least be sure -not to underestimate that. For GMP the number of input bits is -multiplied by 'chars_per_bit_exactly' from 'mp_bases', rounding up. The -result is either correct or one too big. - - Examining some of the high bits of the input could increase the -chance of getting the exact number of digits, but an exact result every -time would not be practical, since in general the difference between -numbers 100... and 99... is only in the last few bits and the work to -identify 99... might well be almost as much as a full conversion. - - The r/b^n scheme described above for using multiplications to bring -out digits might be useful for more than a single limb. Some brief -experiments with it on the base case when recursing didn't give a -noticeable improvement, but perhaps that was only due to the -implementation. Something similar would work for the sub-quadratic -divisions too, though there would be the cost of calculating a bigger -radix power. - - Another possible improvement for the sub-quadratic part would be to -arrange for radix powers that balanced the sizes of quotient and -remainder produced, i.e. the highest power would be an b^(n*k) -approximately equal to sqrt(t), not restricted to a 2^i factor. That -ought to smooth out a graph of times against sizes, but may or may not -be a net speedup. - - -File: gmp.info, Node: Radix to Binary, Prev: Binary to Radix, Up: Radix Conversion Algorithms - -15.6.2 Radix to Binary ----------------------- - -*This section needs to be rewritten, it currently describes the -algorithms used before GMP 4.3.* - - Conversions from a power-of-2 radix into binary use a simple and fast -O(N) bitwise concatenation algorithm. - - Conversions from other radices use one of two algorithms. Sizes -below 'SET_STR_PRECOMPUTE_THRESHOLD' use a basic O(N^2) method. Groups -of n digits are converted to limbs, where n is the biggest power of the -base b which will fit in a limb, then those groups are accumulated into -the result by multiplying by b^n and adding. This saves multi-precision -operations, as per Knuth section 4.4 part E (*note References::). Some -special case code is provided for decimal, giving the compiler a chance -to optimize multiplications by 10. - - Above 'SET_STR_PRECOMPUTE_THRESHOLD' a sub-quadratic algorithm is -used. First groups of n digits are converted into limbs. Then adjacent -limbs are combined into limb pairs with x*b^n+y, where x and y are the -limbs. Adjacent limb pairs are combined into quads similarly with -x*b^(2n)+y. This continues until a single block remains, that being the -result. - - The advantage of this method is that the multiplications for each x -are big blocks, allowing Karatsuba and higher algorithms to be used. -But the cost of calculating the powers b^(n*2^i) must be overcome. -'SET_STR_PRECOMPUTE_THRESHOLD' usually ends up quite big, around 5000 -digits, and on some processors much bigger still. - - 'SET_STR_PRECOMPUTE_THRESHOLD' is based on the input digits (and -tuned for decimal), though it might be better based on a limb count, so -as to be independent of the base. But that sort of count isn't used by -the base case and so would need some sort of initial calculation or -estimate. - - The main reason 'SET_STR_PRECOMPUTE_THRESHOLD' is so much bigger than -the corresponding 'GET_STR_PRECOMPUTE_THRESHOLD' is that 'mpn_mul_1' is -much faster than 'mpn_divrem_1' (often by a factor of 5, or more). - - -File: gmp.info, Node: Other Algorithms, Next: Assembly Coding, Prev: Radix Conversion Algorithms, Up: Algorithms - -15.7 Other Algorithms -===================== - -* Menu: - -* Prime Testing Algorithm:: -* Factorial Algorithm:: -* Binomial Coefficients Algorithm:: -* Fibonacci Numbers Algorithm:: -* Lucas Numbers Algorithm:: -* Random Number Algorithms:: - - -File: gmp.info, Node: Prime Testing Algorithm, Next: Factorial Algorithm, Prev: Other Algorithms, Up: Other Algorithms - -15.7.1 Prime Testing --------------------- - -The primality testing in 'mpz_probab_prime_p' (*note Number Theoretic -Functions::) first does some trial division by small factors and then -uses the Miller-Rabin probabilistic primality testing algorithm, as -described in Knuth section 4.5.4 algorithm P (*note References::). - - For an odd input n, and with n = q*2^k+1 where q is odd, this -algorithm selects a random base x and tests whether x^q mod n is 1 or --1, or an x^(q*2^j) mod n is 1, for 1<=j<=k. If so then n is probably -prime, if not then n is definitely composite. - - Any prime n will pass the test, but some composites do too. Such -composites are known as strong pseudoprimes to base x. No n is a strong -pseudoprime to more than 1/4 of all bases (see Knuth exercise 22), hence -with x chosen at random there's no more than a 1/4 chance a "probable -prime" will in fact be composite. - - In fact strong pseudoprimes are quite rare, making the test much more -powerful than this analysis would suggest, but 1/4 is all that's proven -for an arbitrary n. - - -File: gmp.info, Node: Factorial Algorithm, Next: Binomial Coefficients Algorithm, Prev: Prime Testing Algorithm, Up: Other Algorithms - -15.7.2 Factorial ----------------- - -Factorials are calculated by a combination of two algorithms. An idea -is shared among them: to compute the odd part of the factorial; a final -step takes account of the power of 2 term, by shifting. - - For small n, the odd factor of n! is computed with the simple -observation that it is equal to the product of all positive odd numbers -smaller than n times the odd factor of [n/2]!, where [x] is the integer -part of x, and so on recursively. The procedure can be best illustrated -with an example, - - 23! = (23.21.19.17.15.13.11.9.7.5.3)(11.9.7.5.3)(5.3)2^{19} - - Current code collects all the factors in a single list, with a loop -and no recursion, and compute the product, with no special care for -repeated chunks. - - When n is larger, computation pass trough prime sieving. An helper -function is used, as suggested by Peter Luschny: - - n - ----- - n! | | L(p,n) - msf(n) = -------------- = | | p - [n/2]!^2.2^k p=3 - - Where p ranges on odd prime numbers. The exponent k is chosen to -obtain an odd integer number: k is the number of 1 bits in the binary -representation of [n/2]. The function L(p,n) can be defined as zero -when p is composite, and, for any prime p, it is computed with: - - --- - \ n - L(p,n) = / [---] mod 2 <= log (n) . - --- p^i p - i>0 - - With this helper function, we are able to compute the odd part of n! -using the recursion implied by n!=[n/2]!^2*msf(n)*2^k. The recursion -stops using the small-n algorithm on some [n/2^i]. - - Both the above algorithms use binary splitting to compute the product -of many small factors. At first as many products as possible are -accumulated in a single register, generating a list of factors that fit -in a machine word. This list is then split into halves, and the product -is computed recursively. - - Such splitting is more efficient than repeated Nx1 multiplies since -it forms big multiplies, allowing Karatsuba and higher algorithms to be -used. And even below the Karatsuba threshold a big block of work can be -more efficient for the basecase algorithm. - - -File: gmp.info, Node: Binomial Coefficients Algorithm, Next: Fibonacci Numbers Algorithm, Prev: Factorial Algorithm, Up: Other Algorithms - -15.7.3 Binomial Coefficients ----------------------------- - -Binomial coefficients C(n,k) are calculated by first arranging k <= n/2 -using C(n,k) = C(n,n-k) if necessary, and then evaluating the following -product simply from i=2 to i=k. - - k (n-k+i) - C(n,k) = (n-k+1) * prod ------- - i=2 i - - It's easy to show that each denominator i will divide the product so -far, so the exact division algorithm is used (*note Exact Division::). - - The numerators n-k+i and denominators i are first accumulated into as -many fit a limb, to save multi-precision operations, though for -'mpz_bin_ui' this applies only to the divisors, since n is an 'mpz_t' -and n-k+i in general won't fit in a limb at all. - - -File: gmp.info, Node: Fibonacci Numbers Algorithm, Next: Lucas Numbers Algorithm, Prev: Binomial Coefficients Algorithm, Up: Other Algorithms - -15.7.4 Fibonacci Numbers ------------------------- - -The Fibonacci functions 'mpz_fib_ui' and 'mpz_fib2_ui' are designed for -calculating isolated F[n] or F[n],F[n-1] values efficiently. - - For small n, a table of single limb values in '__gmp_fib_table' is -used. On a 32-bit limb this goes up to F[47], or on a 64-bit limb up to -F[93]. For convenience the table starts at F[-1]. - - Beyond the table, values are generated with a binary powering -algorithm, calculating a pair F[n] and F[n-1] working from high to low -across the bits of n. The formulas used are - - F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k - F[2k-1] = F[k]^2 + F[k-1]^2 - - F[2k] = F[2k+1] - F[2k-1] - - At each step, k is the high b bits of n. If the next bit of n is 0 -then F[2k],F[2k-1] is used, or if it's a 1 then F[2k+1],F[2k] is used, -and the process repeated until all bits of n are incorporated. Notice -these formulas require just two squares per bit of n. - - It'd be possible to handle the first few n above the single limb -table with simple additions, using the defining Fibonacci recurrence -F[k+1]=F[k]+F[k-1], but this is not done since it usually turns out to -be faster for only about 10 or 20 values of n, and including a block of -code for just those doesn't seem worthwhile. If they really mattered -it'd be better to extend the data table. - - Using a table avoids lots of calculations on small numbers, and makes -small n go fast. A bigger table would make more small n go fast, it's -just a question of balancing size against desired speed. For GMP the -code is kept compact, with the emphasis primarily on a good powering -algorithm. - - 'mpz_fib2_ui' returns both F[n] and F[n-1], but 'mpz_fib_ui' is only -interested in F[n]. In this case the last step of the algorithm can -become one multiply instead of two squares. One of the following two -formulas is used, according as n is odd or even. - - F[2k] = F[k]*(F[k]+2F[k-1]) - - F[2k+1] = (2F[k]+F[k-1])*(2F[k]-F[k-1]) + 2*(-1)^k - - F[2k+1] here is the same as above, just rearranged to be a multiply. -For interest, the 2*(-1)^k term both here and above can be applied just -to the low limb of the calculation, without a carry or borrow into -further limbs, which saves some code size. See comments with -'mpz_fib_ui' and the internal 'mpn_fib2_ui' for how this is done. - - -File: gmp.info, Node: Lucas Numbers Algorithm, Next: Random Number Algorithms, Prev: Fibonacci Numbers Algorithm, Up: Other Algorithms - -15.7.5 Lucas Numbers --------------------- - -'mpz_lucnum2_ui' derives a pair of Lucas numbers from a pair of -Fibonacci numbers with the following simple formulas. - - L[k] = F[k] + 2*F[k-1] - L[k-1] = 2*F[k] - F[k-1] - - 'mpz_lucnum_ui' is only interested in L[n], and some work can be -saved. Trailing zero bits on n can be handled with a single square -each. - - L[2k] = L[k]^2 - 2*(-1)^k - - And the lowest 1 bit can be handled with one multiply of a pair of -Fibonacci numbers, similar to what 'mpz_fib_ui' does. - - L[2k+1] = 5*F[k-1]*(2*F[k]+F[k-1]) - 4*(-1)^k - - -File: gmp.info, Node: Random Number Algorithms, Prev: Lucas Numbers Algorithm, Up: Other Algorithms - -15.7.6 Random Numbers ---------------------- - -For the 'urandomb' functions, random numbers are generated simply by -concatenating bits produced by the generator. As long as the generator -has good randomness properties this will produce well-distributed N bit -numbers. - - For the 'urandomm' functions, random numbers in a range 0<=R48 bit pieces is convenient. With some -care though six 21x32->53 bit products can be used, if one of the lower -two 21-bit pieces also uses the sign bit. - - For the 'mpn_mul_1' family of functions on a 64-bit machine, the -invariant single limb is split at the start, into 3 or 4 pieces. Inside -the loop, the bignum operand is split into 32-bit pieces. Fast -conversion of these unsigned 32-bit pieces to floating point is highly -machine-dependent. In some cases, reading the data into the integer -unit, zero-extending to 64-bits, then transferring to the floating point -unit back via memory is the only option. - - Converting partial products back to 64-bit limbs is usually best done -as a signed conversion. Since all values are smaller than 2^53, signed -and unsigned are the same, but most processors lack unsigned -conversions. - - - - Here is a diagram showing 16x32 bit products for an 'mpn_mul_1' or -'mpn_addmul_1' with a 64-bit limb. The single limb operand V is split -into four 16-bit parts. The multi-limb operand U is split in the loop -into two 32-bit parts. - - +---+---+---+---+ - |v48|v32|v16|v00| V operand - +---+---+---+---+ - - +-------+---+---+ - x | u32 | u00 | U operand (one limb) - +---------------+ - - --------------------------------- - - +-----------+ - | u00 x v00 | p00 48-bit products - +-----------+ - +-----------+ - | u00 x v16 | p16 - +-----------+ - +-----------+ - | u00 x v32 | p32 - +-----------+ - +-----------+ - | u00 x v48 | p48 - +-----------+ - +-----------+ - | u32 x v00 | r32 - +-----------+ - +-----------+ - | u32 x v16 | r48 - +-----------+ - +-----------+ - | u32 x v32 | r64 - +-----------+ - +-----------+ - | u32 x v48 | r80 - +-----------+ - - p32 and r32 can be summed using floating-point addition, and likewise -p48 and r48. p00 and p16 can be summed with r64 and r80 from the -previous iteration. - - For each loop then, four 49-bit quantities are transferred to the -integer unit, aligned as follows, - - |-----64bits----|-----64bits----| - +------------+ - | p00 + r64' | i00 - +------------+ - +------------+ - | p16 + r80' | i16 - +------------+ - +------------+ - | p32 + r32 | i32 - +------------+ - +------------+ - | p48 + r48 | i48 - +------------+ - - The challenge then is to sum these efficiently and add in a carry -limb, generating a low 64-bit result limb and a high 33-bit carry limb -(i48 extends 33 bits into the high half). - - -File: gmp.info, Node: Assembly SIMD Instructions, Next: Assembly Software Pipelining, Prev: Assembly Floating Point, Up: Assembly Coding - -15.8.7 SIMD Instructions ------------------------- - -The single-instruction multiple-data support in current microprocessors -is aimed at signal processing algorithms where each data point can be -treated more or less independently. There's generally not much support -for propagating the sort of carries that arise in GMP. - - SIMD multiplications of say four 16x16 bit multiplies only do as much -work as one 32x32 from GMP's point of view, and need some shifts and -adds besides. But of course if say the SIMD form is fully pipelined and -uses less instruction decoding then it may still be worthwhile. - - On the x86 chips, MMX has so far found a use in 'mpn_rshift' and -'mpn_lshift', and is used in a special case for 16-bit multipliers in -the P55 'mpn_mul_1'. SSE2 is used for Pentium 4 'mpn_mul_1', -'mpn_addmul_1', and 'mpn_submul_1'. - - -File: gmp.info, Node: Assembly Software Pipelining, Next: Assembly Loop Unrolling, Prev: Assembly SIMD Instructions, Up: Assembly Coding - -15.8.8 Software Pipelining --------------------------- - -Software pipelining consists of scheduling instructions around the -branch point in a loop. For example a loop might issue a load not for -use in the present iteration but the next, thereby allowing extra cycles -for the data to arrive from memory. - - Naturally this is wanted only when doing things like loads or -multiplies that take several cycles to complete, and only where a CPU -has multiple functional units so that other work can be done in the -meantime. - - A pipeline with several stages will have a data value in progress at -each stage and each loop iteration moves them along one stage. This is -like juggling. - - If the latency of some instruction is greater than the loop time then -it will be necessary to unroll, so one register has a result ready to -use while another (or multiple others) are still in progress. (*note -Assembly Loop Unrolling::). - - -File: gmp.info, Node: Assembly Loop Unrolling, Next: Assembly Writing Guide, Prev: Assembly Software Pipelining, Up: Assembly Coding - -15.8.9 Loop Unrolling ---------------------- - -Loop unrolling consists of replicating code so that several limbs are -processed in each loop. At a minimum this reduces loop overheads by a -corresponding factor, but it can also allow better register usage, for -example alternately using one register combination and then another. -Judicious use of 'm4' macros can help avoid lots of duplication in the -source code. - - Any amount of unrolling can be handled with a loop counter that's -decremented by N each time, stopping when the remaining count is less -than the further N the loop will process. Or by subtracting N at the -start, the termination condition becomes when the counter C is less than -0 (and the count of remaining limbs is C+N). - - Alternately for a power of 2 unroll the loop count and remainder can -be established with a shift and mask. This is convenient if also making -a computed jump into the middle of a large loop. - - The limbs not a multiple of the unrolling can be handled in various -ways, for example - - * A simple loop at the end (or the start) to process the excess. - Care will be wanted that it isn't too much slower than the unrolled - part. - - * A set of binary tests, for example after an 8-limb unrolling, test - for 4 more limbs to process, then a further 2 more or not, and - finally 1 more or not. This will probably take more code space - than a simple loop. - - * A 'switch' statement, providing separate code for each possible - excess, for example an 8-limb unrolling would have separate code - for 0 remaining, 1 remaining, etc, up to 7 remaining. This might - take a lot of code, but may be the best way to optimize all cases - in combination with a deep pipelined loop. - - * A computed jump into the middle of the loop, thus making the first - iteration handle the excess. This should make times smoothly - increase with size, which is attractive, but setups for the jump - and adjustments for pointers can be tricky and could become quite - difficult in combination with deep pipelining. - - -File: gmp.info, Node: Assembly Writing Guide, Prev: Assembly Loop Unrolling, Up: Assembly Coding - -15.8.10 Writing Guide ---------------------- - -This is a guide to writing software pipelined loops for processing limb -vectors in assembly. - - First determine the algorithm and which instructions are needed. -Code it without unrolling or scheduling, to make sure it works. On a -3-operand CPU try to write each new value to a new register, this will -greatly simplify later steps. - - Then note for each instruction the functional unit and/or issue port -requirements. If an instruction can use either of two units, like U0 or -U1 then make a category "U0/U1". Count the total using each unit (or -combined unit), and count all instructions. - - Figure out from those counts the best possible loop time. The goal -will be to find a perfect schedule where instruction latencies are -completely hidden. The total instruction count might be the limiting -factor, or perhaps a particular functional unit. It might be possible -to tweak the instructions to help the limiting factor. - - Suppose the loop time is N, then make N issue buckets, with the final -loop branch at the end of the last. Now fill the buckets with dummy -instructions using the functional units desired. Run this to make sure -the intended speed is reached. - - Now replace the dummy instructions with the real instructions from -the slow but correct loop you started with. The first will typically be -a load instruction. Then the instruction using that value is placed in -a bucket an appropriate distance down. Run the loop again, to check it -still runs at target speed. - - Keep placing instructions, frequently measuring the loop. After a -few you will need to wrap around from the last bucket back to the top of -the loop. If you used the new-register for new-value strategy above -then there will be no register conflicts. If not then take care not to -clobber something already in use. Changing registers at this time is -very error prone. - - The loop will overlap two or more of the original loop iterations, -and the computation of one vector element result will be started in one -iteration of the new loop, and completed one or several iterations -later. - - The final step is to create feed-in and wind-down code for the loop. -A good way to do this is to make a copy (or copies) of the loop at the -start and delete those instructions which don't have valid antecedents, -and at the end replicate and delete those whose results are unwanted -(including any further loads). - - The loop will have a minimum number of limbs loaded and processed, so -the feed-in code must test if the request size is smaller and skip -either to a suitable part of the wind-down or to special code for small -sizes. - - -File: gmp.info, Node: Internals, Next: Contributors, Prev: Algorithms, Up: Top - -16 Internals -************ - -*This chapter is provided only for informational purposes and the -various internals described here may change in future GMP releases. -Applications expecting to be compatible with future releases should use -only the documented interfaces described in previous chapters.* - -* Menu: - -* Integer Internals:: -* Rational Internals:: -* Float Internals:: -* Raw Output Internals:: -* C++ Interface Internals:: - - -File: gmp.info, Node: Integer Internals, Next: Rational Internals, Prev: Internals, Up: Internals - -16.1 Integer Internals -====================== - -'mpz_t' variables represent integers using sign and magnitude, in space -dynamically allocated and reallocated. The fields are as follows. - -'_mp_size' - The number of limbs, or the negative of that when representing a - negative integer. Zero is represented by '_mp_size' set to zero, - in which case the '_mp_d' data is undefined. - -'_mp_d' - A pointer to an array of limbs which is the magnitude. These are - stored "little endian" as per the 'mpn' functions, so '_mp_d[0]' is - the least significant limb and '_mp_d[ABS(_mp_size)-1]' is the most - significant. Whenever '_mp_size' is non-zero, the most significant - limb is non-zero. - - Currently there's always at least one readable limb, so for - instance 'mpz_get_ui' can fetch '_mp_d[0]' unconditionally (though - its value is undefined if '_mp_size' is zero). - -'_mp_alloc' - '_mp_alloc' is the number of limbs currently allocated at '_mp_d', - and normally '_mp_alloc >= ABS(_mp_size)'. When an 'mpz' routine - is about to (or might be about to) increase '_mp_size', it checks - '_mp_alloc' to see whether there's enough space, and reallocates if - not. 'MPZ_REALLOC' is generally used for this. - - 'mpz_t' variables initialised with the 'mpz_roinit_n' function or - the 'MPZ_ROINIT_N' macro have '_mp_alloc = 0' but can have a - non-zero '_mp_size'. They can only be used as read-only constants. - See *note Integer Special Functions:: for details. - - The various bitwise logical functions like 'mpz_and' behave as if -negative values were twos complement. But sign and magnitude is always -used internally, and necessary adjustments are made during the -calculations. Sometimes this isn't pretty, but sign and magnitude are -best for other routines. - - Some internal temporary variables are setup with 'MPZ_TMP_INIT' and -these have '_mp_d' space obtained from 'TMP_ALLOC' rather than the -memory allocation functions. Care is taken to ensure that these are big -enough that no reallocation is necessary (since it would have -unpredictable consequences). - - '_mp_size' and '_mp_alloc' are 'int', although 'mp_size_t' is usually -a 'long'. This is done to make the fields just 32 bits on some 64 bits -systems, thereby saving a few bytes of data space but still providing -plenty of range. - - -File: gmp.info, Node: Rational Internals, Next: Float Internals, Prev: Integer Internals, Up: Internals - -16.2 Rational Internals -======================= - -'mpq_t' variables represent rationals using an 'mpz_t' numerator and -denominator (*note Integer Internals::). - - The canonical form adopted is denominator positive (and non-zero), no -common factors between numerator and denominator, and zero uniquely -represented as 0/1. - - It's believed that casting out common factors at each stage of a -calculation is best in general. A GCD is an O(N^2) operation so it's -better to do a few small ones immediately than to delay and have to do a -big one later. Knowing the numerator and denominator have no common -factors can be used for example in 'mpq_mul' to make only two cross GCDs -necessary, not four. - - This general approach to common factors is badly sub-optimal in the -presence of simple factorizations or little prospect for cancellation, -but GMP has no way to know when this will occur. As per *note -Efficiency::, that's left to applications. The 'mpq_t' framework might -still suit, with 'mpq_numref' and 'mpq_denref' for direct access to the -numerator and denominator, or of course 'mpz_t' variables can be used -directly. - - -File: gmp.info, Node: Float Internals, Next: Raw Output Internals, Prev: Rational Internals, Up: Internals - -16.3 Float Internals -==================== - -Efficient calculation is the primary aim of GMP floats and the use of -whole limbs and simple rounding facilitates this. - - 'mpf_t' floats have a variable precision mantissa and a single -machine word signed exponent. The mantissa is represented using sign -and magnitude. - - most least - significant significant - limb limb - - _mp_d - |---- _mp_exp ---> | - _____ _____ _____ _____ _____ - |_____|_____|_____|_____|_____| - . <------------ radix point - - <-------- _mp_size ---------> - - -The fields are as follows. - -'_mp_size' - The number of limbs currently in use, or the negative of that when - representing a negative value. Zero is represented by '_mp_size' - and '_mp_exp' both set to zero, and in that case the '_mp_d' data - is unused. (In the future '_mp_exp' might be undefined when - representing zero.) - -'_mp_prec' - The precision of the mantissa, in limbs. In any calculation the - aim is to produce '_mp_prec' limbs of result (the most significant - being non-zero). - -'_mp_d' - A pointer to the array of limbs which is the absolute value of the - mantissa. These are stored "little endian" as per the 'mpn' - functions, so '_mp_d[0]' is the least significant limb and - '_mp_d[ABS(_mp_size)-1]' the most significant. - - The most significant limb is always non-zero, but there are no - other restrictions on its value, in particular the highest 1 bit - can be anywhere within the limb. - - '_mp_prec+1' limbs are allocated to '_mp_d', the extra limb being - for convenience (see below). There are no reallocations during a - calculation, only in a change of precision with 'mpf_set_prec'. - -'_mp_exp' - The exponent, in limbs, determining the location of the implied - radix point. Zero means the radix point is just above the most - significant limb. Positive values mean a radix point offset - towards the lower limbs and hence a value >= 1, as for example in - the diagram above. Negative exponents mean a radix point further - above the highest limb. - - Naturally the exponent can be any value, it doesn't have to fall - within the limbs as the diagram shows, it can be a long way above - or a long way below. Limbs other than those included in the - '{_mp_d,_mp_size}' data are treated as zero. - - The '_mp_size' and '_mp_prec' fields are 'int', although the -'mp_size_t' type is usually a 'long'. The '_mp_exp' field is usually -'long'. This is done to make some fields just 32 bits on some 64 bits -systems, thereby saving a few bytes of data space but still providing -plenty of precision and a very large range. - - -The following various points should be noted. - -Low Zeros - The least significant limbs '_mp_d[0]' etc can be zero, though such - low zeros can always be ignored. Routines likely to produce low - zeros check and avoid them to save time in subsequent calculations, - but for most routines they're quite unlikely and aren't checked. - -Mantissa Size Range - The '_mp_size' count of limbs in use can be less than '_mp_prec' if - the value can be represented in less. This means low precision - values or small integers stored in a high precision 'mpf_t' can - still be operated on efficiently. - - '_mp_size' can also be greater than '_mp_prec'. Firstly a value is - allowed to use all of the '_mp_prec+1' limbs available at '_mp_d', - and secondly when 'mpf_set_prec_raw' lowers '_mp_prec' it leaves - '_mp_size' unchanged and so the size can be arbitrarily bigger than - '_mp_prec'. - -Rounding - All rounding is done on limb boundaries. Calculating '_mp_prec' - limbs with the high non-zero will ensure the application requested - minimum precision is obtained. - - The use of simple "trunc" rounding towards zero is efficient, since - there's no need to examine extra limbs and increment or decrement. - -Bit Shifts - Since the exponent is in limbs, there are no bit shifts in basic - operations like 'mpf_add' and 'mpf_mul'. When differing exponents - are encountered all that's needed is to adjust pointers to line up - the relevant limbs. - - Of course 'mpf_mul_2exp' and 'mpf_div_2exp' will require bit - shifts, but the choice is between an exponent in limbs which - requires shifts there, or one in bits which requires them almost - everywhere else. - -Use of '_mp_prec+1' Limbs - The extra limb on '_mp_d' ('_mp_prec+1' rather than just - '_mp_prec') helps when an 'mpf' routine might get a carry from its - operation. 'mpf_add' for instance will do an 'mpn_add' of - '_mp_prec' limbs. If there's no carry then that's the result, but - if there is a carry then it's stored in the extra limb of space and - '_mp_size' becomes '_mp_prec+1'. - - Whenever '_mp_prec+1' limbs are held in a variable, the low limb is - not needed for the intended precision, only the '_mp_prec' high - limbs. But zeroing it out or moving the rest down is unnecessary. - Subsequent routines reading the value will simply take the high - limbs they need, and this will be '_mp_prec' if their target has - that same precision. This is no more than a pointer adjustment, - and must be checked anyway since the destination precision can be - different from the sources. - - Copy functions like 'mpf_set' will retain a full '_mp_prec+1' limbs - if available. This ensures that a variable which has '_mp_size' - equal to '_mp_prec+1' will get its full exact value copied. - Strictly speaking this is unnecessary since only '_mp_prec' limbs - are needed for the application's requested precision, but it's - considered that an 'mpf_set' from one variable into another of the - same precision ought to produce an exact copy. - -Application Precisions - '__GMPF_BITS_TO_PREC' converts an application requested precision - to an '_mp_prec'. The value in bits is rounded up to a whole limb - then an extra limb is added since the most significant limb of - '_mp_d' is only non-zero and therefore might contain only one bit. - - '__GMPF_PREC_TO_BITS' does the reverse conversion, and removes the - extra limb from '_mp_prec' before converting to bits. The net - effect of reading back with 'mpf_get_prec' is simply the precision - rounded up to a multiple of 'mp_bits_per_limb'. - - Note that the extra limb added here for the high only being - non-zero is in addition to the extra limb allocated to '_mp_d'. - For example with a 32-bit limb, an application request for 250 bits - will be rounded up to 8 limbs, then an extra added for the high - being only non-zero, giving an '_mp_prec' of 9. '_mp_d' then gets - 10 limbs allocated. Reading back with 'mpf_get_prec' will take - '_mp_prec' subtract 1 limb and multiply by 32, giving 256 bits. - - Strictly speaking, the fact the high limb has at least one bit - means that a float with, say, 3 limbs of 32-bits each will be - holding at least 65 bits, but for the purposes of 'mpf_t' it's - considered simply to be 64 bits, a nice multiple of the limb size. - - -File: gmp.info, Node: Raw Output Internals, Next: C++ Interface Internals, Prev: Float Internals, Up: Internals - -16.4 Raw Output Internals -========================= - -'mpz_out_raw' uses the following format. - - +------+------------------------+ - | size | data bytes | - +------+------------------------+ - - The size is 4 bytes written most significant byte first, being the -number of subsequent data bytes, or the twos complement negative of that -when a negative integer is represented. The data bytes are the absolute -value of the integer, written most significant byte first. - - The most significant data byte is always non-zero, so the output is -the same on all systems, irrespective of limb size. - - In GMP 1, leading zero bytes were written to pad the data bytes to a -multiple of the limb size. 'mpz_inp_raw' will still accept this, for -compatibility. - - The use of "big endian" for both the size and data fields is -deliberate, it makes the data easy to read in a hex dump of a file. -Unfortunately it also means that the limb data must be reversed when -reading or writing, so neither a big endian nor little endian system can -just read and write '_mp_d'. - - -File: gmp.info, Node: C++ Interface Internals, Prev: Raw Output Internals, Up: Internals - -16.5 C++ Interface Internals -============================ - -A system of expression templates is used to ensure something like -'a=b+c' turns into a simple call to 'mpz_add' etc. For 'mpf_class' the -scheme also ensures the precision of the final destination is used for -any temporaries within a statement like 'f=w*x+y*z'. These are -important features which a naive implementation cannot provide. - - A simplified description of the scheme follows. The true scheme is -complicated by the fact that expressions have different return types. -For detailed information, refer to the source code. - - To perform an operation, say, addition, we first define a "function -object" evaluating it, - - struct __gmp_binary_plus - { - static void eval(mpf_t f, const mpf_t g, const mpf_t h) - { - mpf_add(f, g, h); - } - }; - -And an "additive expression" object, - - __gmp_expr<__gmp_binary_expr > - operator+(const mpf_class &f, const mpf_class &g) - { - return __gmp_expr - <__gmp_binary_expr >(f, g); - } - - The seemingly redundant '__gmp_expr<__gmp_binary_expr<...>>' is used -to encapsulate any possible kind of expression into a single template -type. In fact even 'mpf_class' etc are 'typedef' specializations of -'__gmp_expr'. - - Next we define assignment of '__gmp_expr' to 'mpf_class'. - - template - mpf_class & mpf_class::operator=(const __gmp_expr &expr) - { - expr.eval(this->get_mpf_t(), this->precision()); - return *this; - } - - template - void __gmp_expr<__gmp_binary_expr >::eval - (mpf_t f, mp_bitcnt_t precision) - { - Op::eval(f, expr.val1.get_mpf_t(), expr.val2.get_mpf_t()); - } - - where 'expr.val1' and 'expr.val2' are references to the expression's -operands (here 'expr' is the '__gmp_binary_expr' stored within the -'__gmp_expr'). - - This way, the expression is actually evaluated only at the time of -assignment, when the required precision (that of 'f') is known. -Furthermore the target 'mpf_t' is now available, thus we can call -'mpf_add' directly with 'f' as the output argument. - - Compound expressions are handled by defining operators taking -subexpressions as their arguments, like this: - - template - __gmp_expr - <__gmp_binary_expr<__gmp_expr, __gmp_expr, __gmp_binary_plus> > - operator+(const __gmp_expr &expr1, const __gmp_expr &expr2) - { - return __gmp_expr - <__gmp_binary_expr<__gmp_expr, __gmp_expr, __gmp_binary_plus> > - (expr1, expr2); - } - - And the corresponding specializations of '__gmp_expr::eval': - - template - void __gmp_expr - <__gmp_binary_expr<__gmp_expr, __gmp_expr, Op> >::eval - (mpf_t f, mp_bitcnt_t precision) - { - // declare two temporaries - mpf_class temp1(expr.val1, precision), temp2(expr.val2, precision); - Op::eval(f, temp1.get_mpf_t(), temp2.get_mpf_t()); - } - - The expression is thus recursively evaluated to any level of -complexity and all subexpressions are evaluated to the precision of 'f'. - - -File: gmp.info, Node: Contributors, Next: References, Prev: Internals, Up: Top - -Appendix A Contributors -*********************** - -Torbjörn Granlund wrote the original GMP library and is still the main -developer. Code not explicitly attributed to others, was contributed by -Torbjörn. Several other individuals and organizations have contributed -GMP. Here is a list in chronological order on first contribution: - - Gunnar Sjödin and Hans Riesel helped with mathematical problems in -early versions of the library. - - Richard Stallman helped with the interface design and revised the -first version of this manual. - - Brian Beuning and Doug Lea helped with testing of early versions of -the library and made creative suggestions. - - John Amanatides of York University in Canada contributed the function -'mpz_probab_prime_p'. - - Paul Zimmermann wrote the REDC-based mpz_powm code, the -Schönhage-Strassen FFT multiply code, and the Karatsuba square root -code. He also improved the Toom3 code for GMP 4.2. Paul sparked the -development of GMP 2, with his comparisons between bignum packages. The -ECMNET project Paul is organizing was a driving force behind many of the -optimizations in GMP 3. Paul also wrote the new GMP 4.3 nth root code -(with Torbjörn). - - Ken Weber (Kent State University, Universidade Federal do Rio Grande -do Sul) contributed now defunct versions of 'mpz_gcd', 'mpz_divexact', -'mpn_gcd', and 'mpn_bdivmod', partially supported by CNPq (Brazil) grant -301314194-2. - - Per Bothner of Cygnus Support helped to set up GMP to use Cygnus' -configure. He has also made valuable suggestions and tested numerous -intermediary releases. - - Joachim Hollman was involved in the design of the 'mpf' interface, -and in the 'mpz' design revisions for version 2. - - Bennet Yee contributed the initial versions of 'mpz_jacobi' and -'mpz_legendre'. - - Andreas Schwab contributed the files 'mpn/m68k/lshift.S' and -'mpn/m68k/rshift.S' (now in '.asm' form). - - Robert Harley of Inria, France and David Seal of ARM, England, -suggested clever improvements for population count. Robert also wrote -highly optimized Karatsuba and 3-way Toom multiplication functions for -GMP 3, and contributed the ARM assembly code. - - Torsten Ekedahl of the Mathematical department of Stockholm -University provided significant inspiration during several phases of the -GMP development. His mathematical expertise helped improve several -algorithms. - - Linus Nordberg wrote the new configure system based on autoconf and -implemented the new random functions. - - Kevin Ryde worked on a large number of things: optimized x86 code, m4 -asm macros, parameter tuning, speed measuring, the configure system, -function inlining, divisibility tests, bit scanning, Jacobi symbols, -Fibonacci and Lucas number functions, printf and scanf functions, perl -interface, demo expression parser, the algorithms chapter in the manual, -'gmpasm-mode.el', and various miscellaneous improvements elsewhere. - - Kent Boortz made the Mac OS 9 port. - - Steve Root helped write the optimized alpha 21264 assembly code. - - Gerardo Ballabio wrote the 'gmpxx.h' C++ class interface and the C++ -'istream' input routines. - - Jason Moxham rewrote 'mpz_fac_ui'. - - Pedro Gimeno implemented the Mersenne Twister and made other random -number improvements. - - Niels Möller wrote the sub-quadratic GCD, extended GCD and jacobi -code, the quadratic Hensel division code, and (with Torbjörn) the new -divide and conquer division code for GMP 4.3. Niels also helped -implement the new Toom multiply code for GMP 4.3 and implemented helper -functions to simplify Toom evaluations for GMP 5.0. He wrote the -original version of mpn_mulmod_bnm1, and he is the main author of the -mini-gmp package used for gmp bootstrapping. - - Alberto Zanoni and Marco Bodrato suggested the unbalanced multiply -strategy, and found the optimal strategies for evaluation and -interpolation in Toom multiplication. - - Marco Bodrato helped implement the new Toom multiply code for GMP 4.3 -and implemented most of the new Toom multiply and squaring code for 5.0. -He is the main author of the current mpn_mulmod_bnm1, mpn_mullo_n, and -mpn_sqrlo. Marco also wrote the functions mpn_invert and -mpn_invertappr, and improved the speed of integer root extraction. He -is the author of mini-mpq, an additional layer to mini-gmp; of most of -the combinatorial functions and the BPSW primality testing -implementation, for both the main library and the mini-gmp package. - - David Harvey suggested the internal function 'mpn_bdiv_dbm1', -implementing division relevant to Toom multiplication. He also worked -on fast assembly sequences, in particular on a fast AMD64 -'mpn_mul_basecase'. He wrote the internal middle product functions -'mpn_mulmid_basecase', 'mpn_toom42_mulmid', 'mpn_mulmid_n' and related -helper routines. - - Martin Boij wrote 'mpn_perfect_power_p'. - - Marc Glisse improved 'gmpxx.h': use fewer temporaries (faster), -specializations of 'numeric_limits' and 'common_type', C++11 features -(move constructors, explicit bool conversion, UDL), make the conversion -from 'mpq_class' to 'mpz_class' explicit, optimize operations where one -argument is a small compile-time constant, replace some heap allocations -by stack allocations. He also fixed the eofbit handling of C++ streams, -and removed one division from 'mpq/aors.c'. - - David S Miller wrote assembly code for SPARC T3 and T4. - - Mark Sofroniou cleaned up the types of mul_fft.c, letting it work for -huge operands. - - Ulrich Weigand ported GMP to the powerpc64le ABI. - - (This list is chronological, not ordered after significance. If you -have contributed to GMP but are not listed above, please tell - about the omission!) - - The development of floating point functions of GNU MP 2, were -supported in part by the ESPRIT-BRA (Basic Research Activities) 6846 -project POSSO (POlynomial System SOlving). - - The development of GMP 2, 3, and 4.0 was supported in part by the IDA -Center for Computing Sciences. - - The development of GMP 4.3, 5.0, and 5.1 was supported in part by the -Swedish Foundation for Strategic Research. - - Thanks go to Hans Thorsen for donating an SGI system for the GMP test -system environment. - - -File: gmp.info, Node: References, Next: GNU Free Documentation License, Prev: Contributors, Up: Top - -Appendix B References -********************* - -B.1 Books -========= - - * Jonathan M. Borwein and Peter B. Borwein, "Pi and the AGM: A Study - in Analytic Number Theory and Computational Complexity", Wiley, - 1998. - - * Richard Crandall and Carl Pomerance, "Prime Numbers: A - Computational Perspective", 2nd edition, Springer-Verlag, 2005. - - - * Henri Cohen, "A Course in Computational Algebraic Number Theory", - Graduate Texts in Mathematics number 138, Springer-Verlag, 1993. - - - * Donald E. Knuth, "The Art of Computer Programming", volume 2, - "Seminumerical Algorithms", 3rd edition, Addison-Wesley, 1998. - - - * John D. Lipson, "Elements of Algebra and Algebraic Computing", The - Benjamin Cummings Publishing Company Inc, 1981. - - * Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, - "Handbook of Applied Cryptography", - - - * Richard M. Stallman and the GCC Developer Community, "Using the GNU - Compiler Collection", Free Software Foundation, 2008, available - online , and in the GCC package - - -B.2 Papers -========== - - * Yves Bertot, Nicolas Magaud and Paul Zimmermann, "A Proof of GMP - Square Root", Journal of Automated Reasoning, volume 29, 2002, pp. - 225-252. Also available online as INRIA Research Report 4475, June - 2002, - - * Christoph Burnikel and Joachim Ziegler, "Fast Recursive Division", - Max-Planck-Institut fuer Informatik Research Report MPI-I-98-1-022, - - - * Torbjörn Granlund and Peter L. Montgomery, "Division by Invariant - Integers using Multiplication", in Proceedings of the SIGPLAN - PLDI'94 Conference, June 1994. Also available - . - - * Niels Möller and Torbjörn Granlund, "Improved division by invariant - integers", IEEE Transactions on Computers, 11 June 2010. - - - * Torbjörn Granlund and Niels Möller, "Division of integers large and - small", to appear. - - * Tudor Jebelean, "An algorithm for exact division", Journal of - Symbolic Computation, volume 15, 1993, pp. 169-180. Research - report version available - - - * Tudor Jebelean, "Exact Division with Karatsuba Complexity - - Extended Abstract", RISC-Linz technical report 96-31, - - - * Tudor Jebelean, "Practical Integer Division with Karatsuba - Complexity", ISSAC 97, pp. 339-341. Technical report available - - - * Tudor Jebelean, "A Generalization of the Binary GCD Algorithm", - ISSAC 93, pp. 111-116. Technical report version available - - - * Tudor Jebelean, "A Double-Digit Lehmer-Euclid Algorithm for Finding - the GCD of Long Integers", Journal of Symbolic Computation, volume - 19, 1995, pp. 145-157. Technical report version also available - - - * Werner Krandick and Tudor Jebelean, "Bidirectional Exact Integer - Division", Journal of Symbolic Computation, volume 21, 1996, pp. - 441-455. Early technical report version also available - - - * Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: A - 623-dimensionally equidistributed uniform pseudorandom number - generator", ACM Transactions on Modelling and Computer Simulation, - volume 8, January 1998, pp. 3-30. Available online - - - * R. Moenck and A. Borodin, "Fast Modular Transforms via Division", - Proceedings of the 13th Annual IEEE Symposium on Switching and - Automata Theory, October 1972, pp. 90-96. Reprinted as "Fast - Modular Transforms", Journal of Computer and System Sciences, - volume 8, number 3, June 1974, pp. 366-386. - - * Niels Möller, "On Schönhage's algorithm and subquadratic integer - GCD computation", in Mathematics of Computation, volume 77, January - 2008, pp. 589-607, - - - * Peter L. Montgomery, "Modular Multiplication Without Trial - Division", in Mathematics of Computation, volume 44, number 170, - April 1985. - - * Arnold Schönhage and Volker Strassen, "Schnelle Multiplikation - grosser Zahlen", Computing 7, 1971, pp. 281-292. - - * Kenneth Weber, "The accelerated integer GCD algorithm", ACM - Transactions on Mathematical Software, volume 21, number 1, March - 1995, pp. 111-122. - - * Paul Zimmermann, "Karatsuba Square Root", INRIA Research Report - 3805, November 1999, - - - * Paul Zimmermann, "A Proof of GMP Fast Division and Square Root - Implementations", - - - * Dan Zuras, "On Squaring and Multiplying Large Integers", ARITH-11: - IEEE Symposium on Computer Arithmetic, 1993, pp. 260 to 271. - Reprinted as "More on Multiplying and Squaring Large Integers", - IEEE Transactions on Computers, volume 43, number 8, August 1994, - pp. 899-908. - - * Niels Möller, "Efficient computation of the Jacobi symbol", - - - -File: gmp.info, Node: GNU Free Documentation License, Next: Concept Index, Prev: References, Up: Top - -Appendix C GNU Free Documentation License -***************************************** - - Version 1.3, 3 November 2008 - - Copyright © 2000-2002, 2007, 2008 Free Software Foundation, Inc. - - - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - 0. PREAMBLE - - The purpose of this License is to make a manual, textbook, or other - functional and useful document "free" in the sense of freedom: to - assure everyone the effective freedom to copy and redistribute it, - with or without modifying it, either commercially or - noncommercially. Secondarily, this License preserves for the - author and publisher a way to get credit for their work, while not - being considered responsible for modifications made by others. - - This License is a kind of "copyleft", which means that derivative - works of the document must themselves be free in the same sense. - It complements the GNU General Public License, which is a copyleft - license designed for free software. - - We have designed this License in order to use it for manuals for - free software, because free software needs free documentation: a - free program should come with manuals providing the same freedoms - that the software does. But this License is not limited to - software manuals; it can be used for any textual work, regardless - of subject matter or whether it is published as a printed book. We - recommend this License principally for works whose purpose is - instruction or reference. - - 1. APPLICABILITY AND DEFINITIONS - - This License applies to any manual or other work, in any medium, - that contains a notice placed by the copyright holder saying it can - be distributed under the terms of this License. Such a notice - grants a world-wide, royalty-free license, unlimited in duration, - to use that work under the conditions stated herein. The - "Document", below, refers to any such manual or work. Any member - of the public is a licensee, and is addressed as "you". You accept - the license if you copy, modify or distribute the work in a way - requiring permission under copyright law. - - A "Modified Version" of the Document means any work containing the - Document or a portion of it, either copied verbatim, or with - modifications and/or translated into another language. - - A "Secondary Section" is a named appendix or a front-matter section - of the Document that deals exclusively with the relationship of the - publishers or authors of the Document to the Document's overall - subject (or to related matters) and contains nothing that could - fall directly within that overall subject. (Thus, if the Document - is in part a textbook of mathematics, a Secondary Section may not - explain any mathematics.) The relationship could be a matter of - historical connection with the subject or with related matters, or - of legal, commercial, philosophical, ethical or political position - regarding them. - - The "Invariant Sections" are certain Secondary Sections whose - titles are designated, as being those of Invariant Sections, in the - notice that says that the Document is released under this License. - If a section does not fit the above definition of Secondary then it - is not allowed to be designated as Invariant. The Document may - contain zero Invariant Sections. If the Document does not identify - any Invariant Sections then there are none. - - The "Cover Texts" are certain short passages of text that are - listed, as Front-Cover Texts or Back-Cover Texts, in the notice - that says that the Document is released under this License. A - Front-Cover Text may be at most 5 words, and a Back-Cover Text may - be at most 25 words. - - A "Transparent" copy of the Document means a machine-readable copy, - represented in a format whose specification is available to the - general public, that is suitable for revising the document - straightforwardly with generic text editors or (for images composed - of pixels) generic paint programs or (for drawings) some widely - available drawing editor, and that is suitable for input to text - formatters or for automatic translation to a variety of formats - suitable for input to text formatters. A copy made in an otherwise - Transparent file format whose markup, or absence of markup, has - been arranged to thwart or discourage subsequent modification by - readers is not Transparent. An image format is not Transparent if - used for any substantial amount of text. A copy that is not - "Transparent" is called "Opaque". - - Examples of suitable formats for Transparent copies include plain - ASCII without markup, Texinfo input format, LaTeX input format, - SGML or XML using a publicly available DTD, and standard-conforming - simple HTML, PostScript or PDF designed for human modification. - Examples of transparent image formats include PNG, XCF and JPG. - Opaque formats include proprietary formats that can be read and - edited only by proprietary word processors, SGML or XML for which - the DTD and/or processing tools are not generally available, and - the machine-generated HTML, PostScript or PDF produced by some word - processors for output purposes only. - - The "Title Page" means, for a printed book, the title page itself, - plus such following pages as are needed to hold, legibly, the - material this License requires to appear in the title page. For - works in formats which do not have any title page as such, "Title - Page" means the text near the most prominent appearance of the - work's title, preceding the beginning of the body of the text. - - The "publisher" means any person or entity that distributes copies - of the Document to the public. - - A section "Entitled XYZ" means a named subunit of the Document - whose title either is precisely XYZ or contains XYZ in parentheses - following text that translates XYZ in another language. (Here XYZ - stands for a specific section name mentioned below, such as - "Acknowledgements", "Dedications", "Endorsements", or "History".) - To "Preserve the Title" of such a section when you modify the - Document means that it remains a section "Entitled XYZ" according - to this definition. - - The Document may include Warranty Disclaimers next to the notice - which states that this License applies to the Document. These - Warranty Disclaimers are considered to be included by reference in - this License, but only as regards disclaiming warranties: any other - implication that these Warranty Disclaimers may have is void and - has no effect on the meaning of this License. - - 2. VERBATIM COPYING - - You may copy and distribute the Document in any medium, either - commercially or noncommercially, provided that this License, the - copyright notices, and the license notice saying this License - applies to the Document are reproduced in all copies, and that you - add no other conditions whatsoever to those of this License. You - may not use technical measures to obstruct or control the reading - or further copying of the copies you make or distribute. However, - you may accept compensation in exchange for copies. If you - distribute a large enough number of copies you must also follow the - conditions in section 3. - - You may also lend copies, under the same conditions stated above, - and you may publicly display copies. - - 3. COPYING IN QUANTITY - - If you publish printed copies (or copies in media that commonly - have printed covers) of the Document, numbering more than 100, and - the Document's license notice requires Cover Texts, you must - enclose the copies in covers that carry, clearly and legibly, all - these Cover Texts: Front-Cover Texts on the front cover, and - Back-Cover Texts on the back cover. Both covers must also clearly - and legibly identify you as the publisher of these copies. The - front cover must present the full title with all words of the title - equally prominent and visible. You may add other material on the - covers in addition. Copying with changes limited to the covers, as - long as they preserve the title of the Document and satisfy these - conditions, can be treated as verbatim copying in other respects. - - If the required texts for either cover are too voluminous to fit - legibly, you should put the first ones listed (as many as fit - reasonably) on the actual cover, and continue the rest onto - adjacent pages. - - If you publish or distribute Opaque copies of the Document - numbering more than 100, you must either include a machine-readable - Transparent copy along with each Opaque copy, or state in or with - each Opaque copy a computer-network location from which the general - network-using public has access to download using public-standard - network protocols a complete Transparent copy of the Document, free - of added material. If you use the latter option, you must take - reasonably prudent steps, when you begin distribution of Opaque - copies in quantity, to ensure that this Transparent copy will - remain thus accessible at the stated location until at least one - year after the last time you distribute an Opaque copy (directly or - through your agents or retailers) of that edition to the public. - - It is requested, but not required, that you contact the authors of - the Document well before redistributing any large number of copies, - to give them a chance to provide you with an updated version of the - Document. - - 4. MODIFICATIONS - - You may copy and distribute a Modified Version of the Document - under the conditions of sections 2 and 3 above, provided that you - release the Modified Version under precisely this License, with the - Modified Version filling the role of the Document, thus licensing - distribution and modification of the Modified Version to whoever - possesses a copy of it. In addition, you must do these things in - the Modified Version: - - A. Use in the Title Page (and on the covers, if any) a title - distinct from that of the Document, and from those of previous - versions (which should, if there were any, be listed in the - History section of the Document). You may use the same title - as a previous version if the original publisher of that - version gives permission. - - B. List on the Title Page, as authors, one or more persons or - entities responsible for authorship of the modifications in - the Modified Version, together with at least five of the - principal authors of the Document (all of its principal - authors, if it has fewer than five), unless they release you - from this requirement. - - C. State on the Title page the name of the publisher of the - Modified Version, as the publisher. - - D. Preserve all the copyright notices of the Document. - - E. Add an appropriate copyright notice for your modifications - adjacent to the other copyright notices. - - F. Include, immediately after the copyright notices, a license - notice giving the public permission to use the Modified - Version under the terms of this License, in the form shown in - the Addendum below. - - G. Preserve in that license notice the full lists of Invariant - Sections and required Cover Texts given in the Document's - license notice. - - H. Include an unaltered copy of this License. - - I. Preserve the section Entitled "History", Preserve its Title, - and add to it an item stating at least the title, year, new - authors, and publisher of the Modified Version as given on the - Title Page. If there is no section Entitled "History" in the - Document, create one stating the title, year, authors, and - publisher of the Document as given on its Title Page, then add - an item describing the Modified Version as stated in the - previous sentence. - - J. Preserve the network location, if any, given in the Document - for public access to a Transparent copy of the Document, and - likewise the network locations given in the Document for - previous versions it was based on. These may be placed in the - "History" section. You may omit a network location for a work - that was published at least four years before the Document - itself, or if the original publisher of the version it refers - to gives permission. - - K. For any section Entitled "Acknowledgements" or "Dedications", - Preserve the Title of the section, and preserve in the section - all the substance and tone of each of the contributor - acknowledgements and/or dedications given therein. - - L. Preserve all the Invariant Sections of the Document, unaltered - in their text and in their titles. Section numbers or the - equivalent are not considered part of the section titles. - - M. Delete any section Entitled "Endorsements". Such a section - may not be included in the Modified Version. - - N. Do not retitle any existing section to be Entitled - "Endorsements" or to conflict in title with any Invariant - Section. - - O. Preserve any Warranty Disclaimers. - - If the Modified Version includes new front-matter sections or - appendices that qualify as Secondary Sections and contain no - material copied from the Document, you may at your option designate - some or all of these sections as invariant. To do this, add their - titles to the list of Invariant Sections in the Modified Version's - license notice. These titles must be distinct from any other - section titles. - - You may add a section Entitled "Endorsements", provided it contains - nothing but endorsements of your Modified Version by various - parties--for example, statements of peer review or that the text - has been approved by an organization as the authoritative - definition of a standard. - - You may add a passage of up to five words as a Front-Cover Text, - and a passage of up to 25 words as a Back-Cover Text, to the end of - the list of Cover Texts in the Modified Version. Only one passage - of Front-Cover Text and one of Back-Cover Text may be added by (or - through arrangements made by) any one entity. If the Document - already includes a cover text for the same cover, previously added - by you or by arrangement made by the same entity you are acting on - behalf of, you may not add another; but you may replace the old - one, on explicit permission from the previous publisher that added - the old one. - - The author(s) and publisher(s) of the Document do not by this - License give permission to use their names for publicity for or to - assert or imply endorsement of any Modified Version. - - 5. COMBINING DOCUMENTS - - You may combine the Document with other documents released under - this License, under the terms defined in section 4 above for - modified versions, provided that you include in the combination all - of the Invariant Sections of all of the original documents, - unmodified, and list them all as Invariant Sections of your - combined work in its license notice, and that you preserve all - their Warranty Disclaimers. - - The combined work need only contain one copy of this License, and - multiple identical Invariant Sections may be replaced with a single - copy. If there are multiple Invariant Sections with the same name - but different contents, make the title of each such section unique - by adding at the end of it, in parentheses, the name of the - original author or publisher of that section if known, or else a - unique number. Make the same adjustment to the section titles in - the list of Invariant Sections in the license notice of the - combined work. - - In the combination, you must combine any sections Entitled - "History" in the various original documents, forming one section - Entitled "History"; likewise combine any sections Entitled - "Acknowledgements", and any sections Entitled "Dedications". You - must delete all sections Entitled "Endorsements." - - 6. COLLECTIONS OF DOCUMENTS - - You may make a collection consisting of the Document and other - documents released under this License, and replace the individual - copies of this License in the various documents with a single copy - that is included in the collection, provided that you follow the - rules of this License for verbatim copying of each of the documents - in all other respects. - - You may extract a single document from such a collection, and - distribute it individually under this License, provided you insert - a copy of this License into the extracted document, and follow this - License in all other respects regarding verbatim copying of that - document. - - 7. AGGREGATION WITH INDEPENDENT WORKS - - A compilation of the Document or its derivatives with other - separate and independent documents or works, in or on a volume of a - storage or distribution medium, is called an "aggregate" if the - copyright resulting from the compilation is not used to limit the - legal rights of the compilation's users beyond what the individual - works permit. When the Document is included in an aggregate, this - License does not apply to the other works in the aggregate which - are not themselves derivative works of the Document. - - If the Cover Text requirement of section 3 is applicable to these - copies of the Document, then if the Document is less than one half - of the entire aggregate, the Document's Cover Texts may be placed - on covers that bracket the Document within the aggregate, or the - electronic equivalent of covers if the Document is in electronic - form. Otherwise they must appear on printed covers that bracket - the whole aggregate. - - 8. TRANSLATION - - Translation is considered a kind of modification, so you may - distribute translations of the Document under the terms of section - 4. Replacing Invariant Sections with translations requires special - permission from their copyright holders, but you may include - translations of some or all Invariant Sections in addition to the - original versions of these Invariant Sections. You may include a - translation of this License, and all the license notices in the - Document, and any Warranty Disclaimers, provided that you also - include the original English version of this License and the - original versions of those notices and disclaimers. In case of a - disagreement between the translation and the original version of - this License or a notice or disclaimer, the original version will - prevail. - - If a section in the Document is Entitled "Acknowledgements", - "Dedications", or "History", the requirement (section 4) to - Preserve its Title (section 1) will typically require changing the - actual title. - - 9. TERMINATION - - You may not copy, modify, sublicense, or distribute the Document - except as expressly provided under this License. Any attempt - otherwise to copy, modify, sublicense, or distribute it is void, - and will automatically terminate your rights under this License. - - However, if you cease all violation of this License, then your - license from a particular copyright holder is reinstated (a) - provisionally, unless and until the copyright holder explicitly and - finally terminates your license, and (b) permanently, if the - copyright holder fails to notify you of the violation by some - reasonable means prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is - reinstated permanently if the copyright holder notifies you of the - violation by some reasonable means, this is the first time you have - received notice of violation of this License (for any work) from - that copyright holder, and you cure the violation prior to 30 days - after your receipt of the notice. - - Termination of your rights under this section does not terminate - the licenses of parties who have received copies or rights from you - under this License. If your rights have been terminated and not - permanently reinstated, receipt of a copy of some or all of the - same material does not give you any rights to use it. - - 10. FUTURE REVISIONS OF THIS LICENSE - - The Free Software Foundation may publish new, revised versions of - the GNU Free Documentation License from time to time. Such new - versions will be similar in spirit to the present version, but may - differ in detail to address new problems or concerns. See - . - - Each version of the License is given a distinguishing version - number. If the Document specifies that a particular numbered - version of this License "or any later version" applies to it, you - have the option of following the terms and conditions either of - that specified version or of any later version that has been - published (not as a draft) by the Free Software Foundation. If the - Document does not specify a version number of this License, you may - choose any version ever published (not as a draft) by the Free - Software Foundation. If the Document specifies that a proxy can - decide which future versions of this License can be used, that - proxy's public statement of acceptance of a version permanently - authorizes you to choose that version for the Document. - - 11. RELICENSING - - "Massive Multiauthor Collaboration Site" (or "MMC Site") means any - World Wide Web server that publishes copyrightable works and also - provides prominent facilities for anybody to edit those works. A - public wiki that anybody can edit is an example of such a server. - A "Massive Multiauthor Collaboration" (or "MMC") contained in the - site means any set of copyrightable works thus published on the MMC - site. - - "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 - license published by Creative Commons Corporation, a not-for-profit - corporation with a principal place of business in San Francisco, - California, as well as future copyleft versions of that license - published by that same organization. - - "Incorporate" means to publish or republish a Document, in whole or - in part, as part of another Document. - - An MMC is "eligible for relicensing" if it is licensed under this - License, and if all works that were first published under this - License somewhere other than this MMC, and subsequently - incorporated in whole or in part into the MMC, (1) had no cover - texts or invariant sections, and (2) were thus incorporated prior - to November 1, 2008. - - The operator of an MMC Site may republish an MMC contained in the - site under CC-BY-SA on the same site at any time before August 1, - 2009, provided the MMC is eligible for relicensing. - -ADDENDUM: How to use this License for your documents -==================================================== - -To use this License in a document you have written, include a copy of -the License in the document and put the following copyright and license -notices just after the title page: - - Copyright (C) YEAR YOUR NAME. - Permission is granted to copy, distribute and/or modify this document - under the terms of the GNU Free Documentation License, Version 1.3 - or any later version published by the Free Software Foundation; - with no Invariant Sections, no Front-Cover Texts, and no Back-Cover - Texts. A copy of the license is included in the section entitled ``GNU - Free Documentation License''. - - If you have Invariant Sections, Front-Cover Texts and Back-Cover -Texts, replace the "with...Texts." line with this: - - with the Invariant Sections being LIST THEIR TITLES, with - the Front-Cover Texts being LIST, and with the Back-Cover Texts - being LIST. - - If you have Invariant Sections without Cover Texts, or some other -combination of the three, merge those two alternatives to suit the -situation. - - If your document contains nontrivial examples of program code, we -recommend releasing these examples in parallel under your choice of free -software license, such as the GNU General Public License, to permit -their use in free software. - - -File: gmp.info, Node: Concept Index, Next: Function Index, Prev: GNU Free Documentation License, Up: Top - -Concept Index -************* - -[index] -* Menu: - -* #include: Headers and Libraries. - (line 6) -* --build: Build Options. (line 51) -* --disable-fft: Build Options. (line 307) -* --disable-shared: Build Options. (line 44) -* --disable-static: Build Options. (line 44) -* --enable-alloca: Build Options. (line 273) -* --enable-assert: Build Options. (line 313) -* --enable-cxx: Build Options. (line 225) -* --enable-fat: Build Options. (line 160) -* --enable-profiling: Build Options. (line 317) -* --enable-profiling <1>: Profiling. (line 6) -* --exec-prefix: Build Options. (line 32) -* --host: Build Options. (line 65) -* --prefix: Build Options. (line 32) -* -finstrument-functions: Profiling. (line 66) -* 2exp functions: Efficiency. (line 43) -* 68000: Notes for Particular Systems. - (line 94) -* 80x86: Notes for Particular Systems. - (line 150) -* ABI: Build Options. (line 167) -* ABI <1>: ABI and ISA. (line 6) -* About this manual: Introduction to GMP. (line 57) -* AC_CHECK_LIB: Autoconf. (line 11) -* AIX: ABI and ISA. (line 174) -* AIX <1>: Notes for Particular Systems. - (line 7) -* Algorithms: Algorithms. (line 6) -* alloca: Build Options. (line 273) -* Allocation of memory: Custom Allocation. (line 6) -* AMD64: ABI and ISA. (line 44) -* Anonymous FTP of latest version: Introduction to GMP. (line 37) -* Application Binary Interface: ABI and ISA. (line 6) -* Arithmetic functions: Integer Arithmetic. (line 6) -* Arithmetic functions <1>: Rational Arithmetic. (line 6) -* Arithmetic functions <2>: Float Arithmetic. (line 6) -* ARM: Notes for Particular Systems. - (line 20) -* Assembly cache handling: Assembly Cache Handling. - (line 6) -* Assembly carry propagation: Assembly Carry Propagation. - (line 6) -* Assembly code organisation: Assembly Code Organisation. - (line 6) -* Assembly coding: Assembly Coding. (line 6) -* Assembly floating Point: Assembly Floating Point. - (line 6) -* Assembly loop unrolling: Assembly Loop Unrolling. - (line 6) -* Assembly SIMD: Assembly SIMD Instructions. - (line 6) -* Assembly software pipelining: Assembly Software Pipelining. - (line 6) -* Assembly writing guide: Assembly Writing Guide. - (line 6) -* Assertion checking: Build Options. (line 313) -* Assertion checking <1>: Debugging. (line 74) -* Assignment functions: Assigning Integers. (line 6) -* Assignment functions <1>: Simultaneous Integer Init & Assign. - (line 6) -* Assignment functions <2>: Initializing Rationals. - (line 6) -* Assignment functions <3>: Assigning Floats. (line 6) -* Assignment functions <4>: Simultaneous Float Init & Assign. - (line 6) -* Autoconf: Autoconf. (line 6) -* Basics: GMP Basics. (line 6) -* Binomial coefficient algorithm: Binomial Coefficients Algorithm. - (line 6) -* Binomial coefficient functions: Number Theoretic Functions. - (line 128) -* Binutils strip: Known Build Problems. - (line 28) -* Bit manipulation functions: Integer Logic and Bit Fiddling. - (line 6) -* Bit scanning functions: Integer Logic and Bit Fiddling. - (line 39) -* Bit shift left: Integer Arithmetic. (line 38) -* Bit shift right: Integer Division. (line 74) -* Bits per limb: Useful Macros and Constants. - (line 7) -* Bug reporting: Reporting Bugs. (line 6) -* Build directory: Build Options. (line 19) -* Build notes for binary packaging: Notes for Package Builds. - (line 6) -* Build notes for particular systems: Notes for Particular Systems. - (line 6) -* Build options: Build Options. (line 6) -* Build problems known: Known Build Problems. - (line 6) -* Build system: Build Options. (line 51) -* Building GMP: Installing GMP. (line 6) -* Bus error: Debugging. (line 7) -* C compiler: Build Options. (line 178) -* C++ compiler: Build Options. (line 249) -* C++ interface: C++ Class Interface. (line 6) -* C++ interface internals: C++ Interface Internals. - (line 6) -* C++ istream input: C++ Formatted Input. (line 6) -* C++ ostream output: C++ Formatted Output. - (line 6) -* C++ support: Build Options. (line 225) -* CC: Build Options. (line 178) -* CC_FOR_BUILD: Build Options. (line 212) -* CFLAGS: Build Options. (line 178) -* Checker: Debugging. (line 110) -* checkergcc: Debugging. (line 117) -* Code organisation: Assembly Code Organisation. - (line 6) -* Compaq C++: Notes for Particular Systems. - (line 25) -* Comparison functions: Integer Comparisons. (line 6) -* Comparison functions <1>: Comparing Rationals. (line 6) -* Comparison functions <2>: Float Comparison. (line 6) -* Compatibility with older versions: Compatibility with older versions. - (line 6) -* Conditions for copying GNU MP: Copying. (line 6) -* Configuring GMP: Installing GMP. (line 6) -* Congruence algorithm: Exact Remainder. (line 30) -* Congruence functions: Integer Division. (line 150) -* Constants: Useful Macros and Constants. - (line 6) -* Contributors: Contributors. (line 6) -* Conventions for parameters: Parameter Conventions. - (line 6) -* Conventions for variables: Variable Conventions. - (line 6) -* Conversion functions: Converting Integers. (line 6) -* Conversion functions <1>: Rational Conversions. - (line 6) -* Conversion functions <2>: Converting Floats. (line 6) -* Copying conditions: Copying. (line 6) -* CPPFLAGS: Build Options. (line 204) -* CPU types: Introduction to GMP. (line 24) -* CPU types <1>: Build Options. (line 107) -* Cross compiling: Build Options. (line 65) -* Cryptography functions, low-level: Low-level Functions. (line 507) -* Custom allocation: Custom Allocation. (line 6) -* CXX: Build Options. (line 249) -* CXXFLAGS: Build Options. (line 249) -* Cygwin: Notes for Particular Systems. - (line 57) -* Darwin: Known Build Problems. - (line 51) -* Debugging: Debugging. (line 6) -* Demonstration programs: Demonstration Programs. - (line 6) -* Digits in an integer: Miscellaneous Integer Functions. - (line 23) -* Divisibility algorithm: Exact Remainder. (line 30) -* Divisibility functions: Integer Division. (line 136) -* Divisibility functions <1>: Integer Division. (line 150) -* Divisibility testing: Efficiency. (line 91) -* Division algorithms: Division Algorithms. (line 6) -* Division functions: Integer Division. (line 6) -* Division functions <1>: Rational Arithmetic. (line 24) -* Division functions <2>: Float Arithmetic. (line 33) -* DJGPP: Notes for Particular Systems. - (line 57) -* DJGPP <1>: Known Build Problems. - (line 18) -* DLLs: Notes for Particular Systems. - (line 70) -* DocBook: Build Options. (line 340) -* Documentation formats: Build Options. (line 333) -* Documentation license: GNU Free Documentation License. - (line 6) -* DVI: Build Options. (line 336) -* Efficiency: Efficiency. (line 6) -* Emacs: Emacs. (line 6) -* Exact division functions: Integer Division. (line 125) -* Exact remainder: Exact Remainder. (line 6) -* Example programs: Demonstration Programs. - (line 6) -* Exec prefix: Build Options. (line 32) -* Execution profiling: Build Options. (line 317) -* Execution profiling <1>: Profiling. (line 6) -* Exponentiation functions: Integer Exponentiation. - (line 6) -* Exponentiation functions <1>: Float Arithmetic. (line 41) -* Export: Integer Import and Export. - (line 45) -* Expression parsing demo: Demonstration Programs. - (line 15) -* Expression parsing demo <1>: Demonstration Programs. - (line 17) -* Expression parsing demo <2>: Demonstration Programs. - (line 19) -* Extended GCD: Number Theoretic Functions. - (line 47) -* Factor removal functions: Number Theoretic Functions. - (line 108) -* Factorial algorithm: Factorial Algorithm. (line 6) -* Factorial functions: Number Theoretic Functions. - (line 116) -* Factorization demo: Demonstration Programs. - (line 22) -* Fast Fourier Transform: FFT Multiplication. (line 6) -* Fat binary: Build Options. (line 160) -* FFT multiplication: Build Options. (line 307) -* FFT multiplication <1>: FFT Multiplication. (line 6) -* Fibonacci number algorithm: Fibonacci Numbers Algorithm. - (line 6) -* Fibonacci sequence functions: Number Theoretic Functions. - (line 136) -* Float arithmetic functions: Float Arithmetic. (line 6) -* Float assignment functions: Assigning Floats. (line 6) -* Float assignment functions <1>: Simultaneous Float Init & Assign. - (line 6) -* Float comparison functions: Float Comparison. (line 6) -* Float conversion functions: Converting Floats. (line 6) -* Float functions: Floating-point Functions. - (line 6) -* Float initialization functions: Initializing Floats. (line 6) -* Float initialization functions <1>: Simultaneous Float Init & Assign. - (line 6) -* Float input and output functions: I/O of Floats. (line 6) -* Float internals: Float Internals. (line 6) -* Float miscellaneous functions: Miscellaneous Float Functions. - (line 6) -* Float random number functions: Miscellaneous Float Functions. - (line 27) -* Float rounding functions: Miscellaneous Float Functions. - (line 9) -* Float sign tests: Float Comparison. (line 34) -* Floating point mode: Notes for Particular Systems. - (line 34) -* Floating-point functions: Floating-point Functions. - (line 6) -* Floating-point number: Nomenclature and Types. - (line 21) -* fnccheck: Profiling. (line 77) -* Formatted input: Formatted Input. (line 6) -* Formatted output: Formatted Output. (line 6) -* Free Documentation License: GNU Free Documentation License. - (line 6) -* FreeBSD: Notes for Particular Systems. - (line 43) -* FreeBSD <1>: Notes for Particular Systems. - (line 52) -* frexp: Converting Integers. (line 43) -* frexp <1>: Converting Floats. (line 24) -* FTP of latest version: Introduction to GMP. (line 37) -* Function classes: Function Classes. (line 6) -* FunctionCheck: Profiling. (line 77) -* GCC Checker: Debugging. (line 110) -* GCD algorithms: Greatest Common Divisor Algorithms. - (line 6) -* GCD extended: Number Theoretic Functions. - (line 47) -* GCD functions: Number Theoretic Functions. - (line 30) -* GDB: Debugging. (line 53) -* Generic C: Build Options. (line 151) -* GMP Perl module: Demonstration Programs. - (line 28) -* GMP version number: Useful Macros and Constants. - (line 12) -* gmp.h: Headers and Libraries. - (line 6) -* gmpxx.h: C++ Interface General. - (line 8) -* GNU Debugger: Debugging. (line 53) -* GNU Free Documentation License: GNU Free Documentation License. - (line 6) -* GNU strip: Known Build Problems. - (line 28) -* gprof: Profiling. (line 41) -* Greatest common divisor algorithms: Greatest Common Divisor Algorithms. - (line 6) -* Greatest common divisor functions: Number Theoretic Functions. - (line 30) -* Hardware floating point mode: Notes for Particular Systems. - (line 34) -* Headers: Headers and Libraries. - (line 6) -* Heap problems: Debugging. (line 23) -* Home page: Introduction to GMP. (line 33) -* Host system: Build Options. (line 65) -* HP-UX: ABI and ISA. (line 76) -* HP-UX <1>: ABI and ISA. (line 114) -* HPPA: ABI and ISA. (line 76) -* I/O functions: I/O of Integers. (line 6) -* I/O functions <1>: I/O of Rationals. (line 6) -* I/O functions <2>: I/O of Floats. (line 6) -* i386: Notes for Particular Systems. - (line 150) -* IA-64: ABI and ISA. (line 114) -* Import: Integer Import and Export. - (line 11) -* In-place operations: Efficiency. (line 57) -* Include files: Headers and Libraries. - (line 6) -* info-lookup-symbol: Emacs. (line 6) -* Initialization functions: Initializing Integers. - (line 6) -* Initialization functions <1>: Simultaneous Integer Init & Assign. - (line 6) -* Initialization functions <2>: Initializing Rationals. - (line 6) -* Initialization functions <3>: Initializing Floats. (line 6) -* Initialization functions <4>: Simultaneous Float Init & Assign. - (line 6) -* Initialization functions <5>: Random State Initialization. - (line 6) -* Initializing and clearing: Efficiency. (line 21) -* Input functions: I/O of Integers. (line 6) -* Input functions <1>: I/O of Rationals. (line 6) -* Input functions <2>: I/O of Floats. (line 6) -* Input functions <3>: Formatted Input Functions. - (line 6) -* Install prefix: Build Options. (line 32) -* Installing GMP: Installing GMP. (line 6) -* Instruction Set Architecture: ABI and ISA. (line 6) -* instrument-functions: Profiling. (line 66) -* Integer: Nomenclature and Types. - (line 6) -* Integer arithmetic functions: Integer Arithmetic. (line 6) -* Integer assignment functions: Assigning Integers. (line 6) -* Integer assignment functions <1>: Simultaneous Integer Init & Assign. - (line 6) -* Integer bit manipulation functions: Integer Logic and Bit Fiddling. - (line 6) -* Integer comparison functions: Integer Comparisons. (line 6) -* Integer conversion functions: Converting Integers. (line 6) -* Integer division functions: Integer Division. (line 6) -* Integer exponentiation functions: Integer Exponentiation. - (line 6) -* Integer export: Integer Import and Export. - (line 45) -* Integer functions: Integer Functions. (line 6) -* Integer import: Integer Import and Export. - (line 11) -* Integer initialization functions: Initializing Integers. - (line 6) -* Integer initialization functions <1>: Simultaneous Integer Init & Assign. - (line 6) -* Integer input and output functions: I/O of Integers. (line 6) -* Integer internals: Integer Internals. (line 6) -* Integer logical functions: Integer Logic and Bit Fiddling. - (line 6) -* Integer miscellaneous functions: Miscellaneous Integer Functions. - (line 6) -* Integer random number functions: Integer Random Numbers. - (line 6) -* Integer root functions: Integer Roots. (line 6) -* Integer sign tests: Integer Comparisons. (line 28) -* Integer special functions: Integer Special Functions. - (line 6) -* Interix: Notes for Particular Systems. - (line 65) -* Internals: Internals. (line 6) -* Introduction: Introduction to GMP. (line 6) -* Inverse modulo functions: Number Theoretic Functions. - (line 74) -* IRIX: ABI and ISA. (line 139) -* IRIX <1>: Known Build Problems. - (line 38) -* ISA: ABI and ISA. (line 6) -* istream input: C++ Formatted Input. (line 6) -* Jacobi symbol algorithm: Jacobi Symbol. (line 6) -* Jacobi symbol functions: Number Theoretic Functions. - (line 83) -* Karatsuba multiplication: Karatsuba Multiplication. - (line 6) -* Karatsuba square root algorithm: Square Root Algorithm. - (line 6) -* Kronecker symbol functions: Number Theoretic Functions. - (line 95) -* Language bindings: Language Bindings. (line 6) -* Latest version of GMP: Introduction to GMP. (line 37) -* LCM functions: Number Theoretic Functions. - (line 68) -* Least common multiple functions: Number Theoretic Functions. - (line 68) -* Legendre symbol functions: Number Theoretic Functions. - (line 86) -* libgmp: Headers and Libraries. - (line 22) -* libgmpxx: Headers and Libraries. - (line 27) -* Libraries: Headers and Libraries. - (line 22) -* Libtool: Headers and Libraries. - (line 33) -* Libtool versioning: Notes for Package Builds. - (line 9) -* License conditions: Copying. (line 6) -* Limb: Nomenclature and Types. - (line 31) -* Limb size: Useful Macros and Constants. - (line 7) -* Linear congruential algorithm: Random Number Algorithms. - (line 25) -* Linear congruential random numbers: Random State Initialization. - (line 18) -* Linear congruential random numbers <1>: Random State Initialization. - (line 32) -* Linking: Headers and Libraries. - (line 22) -* Logical functions: Integer Logic and Bit Fiddling. - (line 6) -* Low-level functions: Low-level Functions. (line 6) -* Low-level functions for cryptography: Low-level Functions. (line 507) -* Lucas number algorithm: Lucas Numbers Algorithm. - (line 6) -* Lucas number functions: Number Theoretic Functions. - (line 147) -* MacOS X: Known Build Problems. - (line 51) -* Mailing lists: Introduction to GMP. (line 44) -* Malloc debugger: Debugging. (line 29) -* Malloc problems: Debugging. (line 23) -* Memory allocation: Custom Allocation. (line 6) -* Memory management: Memory Management. (line 6) -* Mersenne twister algorithm: Random Number Algorithms. - (line 17) -* Mersenne twister random numbers: Random State Initialization. - (line 13) -* MINGW: Notes for Particular Systems. - (line 57) -* MIPS: ABI and ISA. (line 139) -* Miscellaneous float functions: Miscellaneous Float Functions. - (line 6) -* Miscellaneous integer functions: Miscellaneous Integer Functions. - (line 6) -* MMX: Notes for Particular Systems. - (line 156) -* Modular inverse functions: Number Theoretic Functions. - (line 74) -* Most significant bit: Miscellaneous Integer Functions. - (line 34) -* MPN_PATH: Build Options. (line 321) -* MS Windows: Notes for Particular Systems. - (line 57) -* MS Windows <1>: Notes for Particular Systems. - (line 70) -* MS-DOS: Notes for Particular Systems. - (line 57) -* Multi-threading: Reentrancy. (line 6) -* Multiplication algorithms: Multiplication Algorithms. - (line 6) -* Nails: Low-level Functions. (line 686) -* Native compilation: Build Options. (line 51) -* NetBSD: Notes for Particular Systems. - (line 100) -* NeXT: Known Build Problems. - (line 57) -* Next prime function: Number Theoretic Functions. - (line 23) -* Nomenclature: Nomenclature and Types. - (line 6) -* Non-Unix systems: Build Options. (line 11) -* Nth root algorithm: Nth Root Algorithm. (line 6) -* Number sequences: Efficiency. (line 145) -* Number theoretic functions: Number Theoretic Functions. - (line 6) -* Numerator and denominator: Applying Integer Functions. - (line 6) -* obstack output: Formatted Output Functions. - (line 79) -* OpenBSD: Notes for Particular Systems. - (line 109) -* Optimizing performance: Performance optimization. - (line 6) -* ostream output: C++ Formatted Output. - (line 6) -* Other languages: Language Bindings. (line 6) -* Output functions: I/O of Integers. (line 6) -* Output functions <1>: I/O of Rationals. (line 6) -* Output functions <2>: I/O of Floats. (line 6) -* Output functions <3>: Formatted Output Functions. - (line 6) -* Packaged builds: Notes for Package Builds. - (line 6) -* Parameter conventions: Parameter Conventions. - (line 6) -* Parsing expressions demo: Demonstration Programs. - (line 15) -* Parsing expressions demo <1>: Demonstration Programs. - (line 17) -* Parsing expressions demo <2>: Demonstration Programs. - (line 19) -* Particular systems: Notes for Particular Systems. - (line 6) -* Past GMP versions: Compatibility with older versions. - (line 6) -* PDF: Build Options. (line 336) -* Perfect power algorithm: Perfect Power Algorithm. - (line 6) -* Perfect power functions: Integer Roots. (line 28) -* Perfect square algorithm: Perfect Square Algorithm. - (line 6) -* Perfect square functions: Integer Roots. (line 37) -* perl: Demonstration Programs. - (line 28) -* Perl module: Demonstration Programs. - (line 28) -* Postscript: Build Options. (line 336) -* Power/PowerPC: Notes for Particular Systems. - (line 115) -* Power/PowerPC <1>: Known Build Problems. - (line 63) -* Powering algorithms: Powering Algorithms. (line 6) -* Powering functions: Integer Exponentiation. - (line 6) -* Powering functions <1>: Float Arithmetic. (line 41) -* PowerPC: ABI and ISA. (line 173) -* Precision of floats: Floating-point Functions. - (line 6) -* Precision of hardware floating point: Notes for Particular Systems. - (line 34) -* Prefix: Build Options. (line 32) -* Prime testing algorithms: Prime Testing Algorithm. - (line 6) -* Prime testing functions: Number Theoretic Functions. - (line 7) -* Primorial functions: Number Theoretic Functions. - (line 121) -* printf formatted output: Formatted Output. (line 6) -* Probable prime testing functions: Number Theoretic Functions. - (line 7) -* prof: Profiling. (line 24) -* Profiling: Profiling. (line 6) -* Radix conversion algorithms: Radix Conversion Algorithms. - (line 6) -* Random number algorithms: Random Number Algorithms. - (line 6) -* Random number functions: Integer Random Numbers. - (line 6) -* Random number functions <1>: Miscellaneous Float Functions. - (line 27) -* Random number functions <2>: Random Number Functions. - (line 6) -* Random number seeding: Random State Seeding. - (line 6) -* Random number state: Random State Initialization. - (line 6) -* Random state: Nomenclature and Types. - (line 46) -* Rational arithmetic: Efficiency. (line 111) -* Rational arithmetic functions: Rational Arithmetic. (line 6) -* Rational assignment functions: Initializing Rationals. - (line 6) -* Rational comparison functions: Comparing Rationals. (line 6) -* Rational conversion functions: Rational Conversions. - (line 6) -* Rational initialization functions: Initializing Rationals. - (line 6) -* Rational input and output functions: I/O of Rationals. (line 6) -* Rational internals: Rational Internals. (line 6) -* Rational number: Nomenclature and Types. - (line 16) -* Rational number functions: Rational Number Functions. - (line 6) -* Rational numerator and denominator: Applying Integer Functions. - (line 6) -* Rational sign tests: Comparing Rationals. (line 28) -* Raw output internals: Raw Output Internals. - (line 6) -* Reallocations: Efficiency. (line 30) -* Reentrancy: Reentrancy. (line 6) -* References: References. (line 5) -* Remove factor functions: Number Theoretic Functions. - (line 108) -* Reporting bugs: Reporting Bugs. (line 6) -* Root extraction algorithm: Nth Root Algorithm. (line 6) -* Root extraction algorithms: Root Extraction Algorithms. - (line 6) -* Root extraction functions: Integer Roots. (line 6) -* Root extraction functions <1>: Float Arithmetic. (line 37) -* Root testing functions: Integer Roots. (line 28) -* Root testing functions <1>: Integer Roots. (line 37) -* Rounding functions: Miscellaneous Float Functions. - (line 9) -* Sample programs: Demonstration Programs. - (line 6) -* Scan bit functions: Integer Logic and Bit Fiddling. - (line 39) -* scanf formatted input: Formatted Input. (line 6) -* SCO: Known Build Problems. - (line 38) -* Seeding random numbers: Random State Seeding. - (line 6) -* Segmentation violation: Debugging. (line 7) -* Sequent Symmetry: Known Build Problems. - (line 68) -* Services for Unix: Notes for Particular Systems. - (line 65) -* Shared library versioning: Notes for Package Builds. - (line 9) -* Sign tests: Integer Comparisons. (line 28) -* Sign tests <1>: Comparing Rationals. (line 28) -* Sign tests <2>: Float Comparison. (line 34) -* Size in digits: Miscellaneous Integer Functions. - (line 23) -* Small operands: Efficiency. (line 7) -* Solaris: ABI and ISA. (line 204) -* Solaris <1>: Known Build Problems. - (line 72) -* Solaris <2>: Known Build Problems. - (line 77) -* Sparc: Notes for Particular Systems. - (line 127) -* Sparc <1>: Notes for Particular Systems. - (line 132) -* Sparc V9: ABI and ISA. (line 204) -* Special integer functions: Integer Special Functions. - (line 6) -* Square root algorithm: Square Root Algorithm. - (line 6) -* SSE2: Notes for Particular Systems. - (line 156) -* Stack backtrace: Debugging. (line 45) -* Stack overflow: Build Options. (line 273) -* Stack overflow <1>: Debugging. (line 7) -* Static linking: Efficiency. (line 14) -* stdarg.h: Headers and Libraries. - (line 17) -* stdio.h: Headers and Libraries. - (line 11) -* Stripped libraries: Known Build Problems. - (line 28) -* Sun: ABI and ISA. (line 204) -* SunOS: Notes for Particular Systems. - (line 144) -* Systems: Notes for Particular Systems. - (line 6) -* Temporary memory: Build Options. (line 273) -* Texinfo: Build Options. (line 333) -* Text input/output: Efficiency. (line 151) -* Thread safety: Reentrancy. (line 6) -* Toom multiplication: Toom 3-Way Multiplication. - (line 6) -* Toom multiplication <1>: Toom 4-Way Multiplication. - (line 6) -* Toom multiplication <2>: Higher degree Toom'n'half. - (line 6) -* Toom multiplication <3>: Other Multiplication. - (line 6) -* Types: Nomenclature and Types. - (line 6) -* ui and si functions: Efficiency. (line 50) -* Unbalanced multiplication: Unbalanced Multiplication. - (line 6) -* Upward compatibility: Compatibility with older versions. - (line 6) -* Useful macros and constants: Useful Macros and Constants. - (line 6) -* User-defined precision: Floating-point Functions. - (line 6) -* Valgrind: Debugging. (line 125) -* Variable conventions: Variable Conventions. - (line 6) -* Version number: Useful Macros and Constants. - (line 12) -* Web page: Introduction to GMP. (line 33) -* Windows: Notes for Particular Systems. - (line 57) -* Windows <1>: Notes for Particular Systems. - (line 70) -* x86: Notes for Particular Systems. - (line 150) -* x87: Notes for Particular Systems. - (line 34) -* XML: Build Options. (line 340) - - -File: gmp.info, Node: Function Index, Prev: Concept Index, Up: Top - -Function and Type Index -*********************** - -[index] -* Menu: - -* _mpz_realloc: Integer Special Functions. - (line 13) -* __GMP_CC: Useful Macros and Constants. - (line 22) -* __GMP_CFLAGS: Useful Macros and Constants. - (line 23) -* __GNU_MP_VERSION: Useful Macros and Constants. - (line 9) -* __GNU_MP_VERSION_MINOR: Useful Macros and Constants. - (line 10) -* __GNU_MP_VERSION_PATCHLEVEL: Useful Macros and Constants. - (line 11) -* abs: C++ Interface Integers. - (line 46) -* abs <1>: C++ Interface Rationals. - (line 47) -* abs <2>: C++ Interface Floats. - (line 82) -* ceil: C++ Interface Floats. - (line 83) -* cmp: C++ Interface Integers. - (line 47) -* cmp <1>: C++ Interface Integers. - (line 48) -* cmp <2>: C++ Interface Rationals. - (line 48) -* cmp <3>: C++ Interface Rationals. - (line 49) -* cmp <4>: C++ Interface Floats. - (line 84) -* cmp <5>: C++ Interface Floats. - (line 85) -* factorial: C++ Interface Integers. - (line 71) -* fibonacci: C++ Interface Integers. - (line 75) -* floor: C++ Interface Floats. - (line 95) -* gcd: C++ Interface Integers. - (line 68) -* gmp_asprintf: Formatted Output Functions. - (line 63) -* gmp_errno: Random State Initialization. - (line 56) -* GMP_ERROR_INVALID_ARGUMENT: Random State Initialization. - (line 56) -* GMP_ERROR_UNSUPPORTED_ARGUMENT: Random State Initialization. - (line 56) -* gmp_fprintf: Formatted Output Functions. - (line 28) -* gmp_fscanf: Formatted Input Functions. - (line 24) -* GMP_LIMB_BITS: Low-level Functions. (line 714) -* GMP_NAIL_BITS: Low-level Functions. (line 712) -* GMP_NAIL_MASK: Low-level Functions. (line 722) -* GMP_NUMB_BITS: Low-level Functions. (line 713) -* GMP_NUMB_MASK: Low-level Functions. (line 723) -* GMP_NUMB_MAX: Low-level Functions. (line 731) -* gmp_obstack_printf: Formatted Output Functions. - (line 75) -* gmp_obstack_vprintf: Formatted Output Functions. - (line 77) -* gmp_printf: Formatted Output Functions. - (line 23) -* gmp_randclass: C++ Interface Random Numbers. - (line 6) -* gmp_randclass::get_f: C++ Interface Random Numbers. - (line 44) -* gmp_randclass::get_f <1>: C++ Interface Random Numbers. - (line 45) -* gmp_randclass::get_z_bits: C++ Interface Random Numbers. - (line 37) -* gmp_randclass::get_z_bits <1>: C++ Interface Random Numbers. - (line 38) -* gmp_randclass::get_z_range: C++ Interface Random Numbers. - (line 41) -* gmp_randclass::gmp_randclass: C++ Interface Random Numbers. - (line 11) -* gmp_randclass::gmp_randclass <1>: C++ Interface Random Numbers. - (line 26) -* gmp_randclass::seed: C++ Interface Random Numbers. - (line 32) -* gmp_randclass::seed <1>: C++ Interface Random Numbers. - (line 33) -* gmp_randclear: Random State Initialization. - (line 62) -* gmp_randinit: Random State Initialization. - (line 45) -* gmp_randinit_default: Random State Initialization. - (line 6) -* gmp_randinit_lc_2exp: Random State Initialization. - (line 16) -* gmp_randinit_lc_2exp_size: Random State Initialization. - (line 30) -* gmp_randinit_mt: Random State Initialization. - (line 12) -* gmp_randinit_set: Random State Initialization. - (line 41) -* gmp_randseed: Random State Seeding. - (line 6) -* gmp_randseed_ui: Random State Seeding. - (line 8) -* gmp_randstate_t: Nomenclature and Types. - (line 46) -* GMP_RAND_ALG_DEFAULT: Random State Initialization. - (line 50) -* GMP_RAND_ALG_LC: Random State Initialization. - (line 50) -* gmp_scanf: Formatted Input Functions. - (line 20) -* gmp_snprintf: Formatted Output Functions. - (line 44) -* gmp_sprintf: Formatted Output Functions. - (line 33) -* gmp_sscanf: Formatted Input Functions. - (line 28) -* gmp_urandomb_ui: Random State Miscellaneous. - (line 6) -* gmp_urandomm_ui: Random State Miscellaneous. - (line 12) -* gmp_vasprintf: Formatted Output Functions. - (line 64) -* gmp_version: Useful Macros and Constants. - (line 18) -* gmp_vfprintf: Formatted Output Functions. - (line 29) -* gmp_vfscanf: Formatted Input Functions. - (line 25) -* gmp_vprintf: Formatted Output Functions. - (line 24) -* gmp_vscanf: Formatted Input Functions. - (line 21) -* gmp_vsnprintf: Formatted Output Functions. - (line 46) -* gmp_vsprintf: Formatted Output Functions. - (line 34) -* gmp_vsscanf: Formatted Input Functions. - (line 29) -* hypot: C++ Interface Floats. - (line 96) -* lcm: C++ Interface Integers. - (line 69) -* mpf_abs: Float Arithmetic. (line 46) -* mpf_add: Float Arithmetic. (line 6) -* mpf_add_ui: Float Arithmetic. (line 7) -* mpf_ceil: Miscellaneous Float Functions. - (line 6) -* mpf_class: C++ Interface General. - (line 19) -* mpf_class::fits_sint_p: C++ Interface Floats. - (line 87) -* mpf_class::fits_slong_p: C++ Interface Floats. - (line 88) -* mpf_class::fits_sshort_p: C++ Interface Floats. - (line 89) -* mpf_class::fits_uint_p: C++ Interface Floats. - (line 91) -* mpf_class::fits_ulong_p: C++ Interface Floats. - (line 92) -* mpf_class::fits_ushort_p: C++ Interface Floats. - (line 93) -* mpf_class::get_d: C++ Interface Floats. - (line 98) -* mpf_class::get_mpf_t: C++ Interface General. - (line 65) -* mpf_class::get_prec: C++ Interface Floats. - (line 120) -* mpf_class::get_si: C++ Interface Floats. - (line 99) -* mpf_class::get_str: C++ Interface Floats. - (line 100) -* mpf_class::get_ui: C++ Interface Floats. - (line 102) -* mpf_class::mpf_class: C++ Interface Floats. - (line 11) -* mpf_class::mpf_class <1>: C++ Interface Floats. - (line 12) -* mpf_class::mpf_class <2>: C++ Interface Floats. - (line 32) -* mpf_class::mpf_class <3>: C++ Interface Floats. - (line 33) -* mpf_class::mpf_class <4>: C++ Interface Floats. - (line 41) -* mpf_class::mpf_class <5>: C++ Interface Floats. - (line 42) -* mpf_class::mpf_class <6>: C++ Interface Floats. - (line 44) -* mpf_class::mpf_class <7>: C++ Interface Floats. - (line 45) -* mpf_class::operator=: C++ Interface Floats. - (line 59) -* mpf_class::set_prec: C++ Interface Floats. - (line 121) -* mpf_class::set_prec_raw: C++ Interface Floats. - (line 122) -* mpf_class::set_str: C++ Interface Floats. - (line 104) -* mpf_class::set_str <1>: C++ Interface Floats. - (line 105) -* mpf_class::swap: C++ Interface Floats. - (line 109) -* mpf_clear: Initializing Floats. (line 36) -* mpf_clears: Initializing Floats. (line 40) -* mpf_cmp: Float Comparison. (line 6) -* mpf_cmp_d: Float Comparison. (line 8) -* mpf_cmp_si: Float Comparison. (line 10) -* mpf_cmp_ui: Float Comparison. (line 9) -* mpf_cmp_z: Float Comparison. (line 7) -* mpf_div: Float Arithmetic. (line 28) -* mpf_div_2exp: Float Arithmetic. (line 53) -* mpf_div_ui: Float Arithmetic. (line 31) -* mpf_eq: Float Comparison. (line 17) -* mpf_fits_sint_p: Miscellaneous Float Functions. - (line 19) -* mpf_fits_slong_p: Miscellaneous Float Functions. - (line 17) -* mpf_fits_sshort_p: Miscellaneous Float Functions. - (line 21) -* mpf_fits_uint_p: Miscellaneous Float Functions. - (line 18) -* mpf_fits_ulong_p: Miscellaneous Float Functions. - (line 16) -* mpf_fits_ushort_p: Miscellaneous Float Functions. - (line 20) -* mpf_floor: Miscellaneous Float Functions. - (line 7) -* mpf_get_d: Converting Floats. (line 6) -* mpf_get_default_prec: Initializing Floats. (line 11) -* mpf_get_d_2exp: Converting Floats. (line 15) -* mpf_get_prec: Initializing Floats. (line 61) -* mpf_get_si: Converting Floats. (line 27) -* mpf_get_str: Converting Floats. (line 36) -* mpf_get_ui: Converting Floats. (line 28) -* mpf_init: Initializing Floats. (line 18) -* mpf_init2: Initializing Floats. (line 25) -* mpf_inits: Initializing Floats. (line 30) -* mpf_init_set: Simultaneous Float Init & Assign. - (line 15) -* mpf_init_set_d: Simultaneous Float Init & Assign. - (line 18) -* mpf_init_set_si: Simultaneous Float Init & Assign. - (line 17) -* mpf_init_set_str: Simultaneous Float Init & Assign. - (line 24) -* mpf_init_set_ui: Simultaneous Float Init & Assign. - (line 16) -* mpf_inp_str: I/O of Floats. (line 38) -* mpf_integer_p: Miscellaneous Float Functions. - (line 13) -* mpf_mul: Float Arithmetic. (line 18) -* mpf_mul_2exp: Float Arithmetic. (line 49) -* mpf_mul_ui: Float Arithmetic. (line 19) -* mpf_neg: Float Arithmetic. (line 43) -* mpf_out_str: I/O of Floats. (line 17) -* mpf_pow_ui: Float Arithmetic. (line 39) -* mpf_random2: Miscellaneous Float Functions. - (line 35) -* mpf_reldiff: Float Comparison. (line 28) -* mpf_set: Assigning Floats. (line 9) -* mpf_set_d: Assigning Floats. (line 12) -* mpf_set_default_prec: Initializing Floats. (line 6) -* mpf_set_prec: Initializing Floats. (line 64) -* mpf_set_prec_raw: Initializing Floats. (line 71) -* mpf_set_q: Assigning Floats. (line 14) -* mpf_set_si: Assigning Floats. (line 11) -* mpf_set_str: Assigning Floats. (line 17) -* mpf_set_ui: Assigning Floats. (line 10) -* mpf_set_z: Assigning Floats. (line 13) -* mpf_sgn: Float Comparison. (line 33) -* mpf_sqrt: Float Arithmetic. (line 35) -* mpf_sqrt_ui: Float Arithmetic. (line 36) -* mpf_sub: Float Arithmetic. (line 11) -* mpf_sub_ui: Float Arithmetic. (line 14) -* mpf_swap: Assigning Floats. (line 50) -* mpf_t: Nomenclature and Types. - (line 21) -* mpf_trunc: Miscellaneous Float Functions. - (line 8) -* mpf_ui_div: Float Arithmetic. (line 29) -* mpf_ui_sub: Float Arithmetic. (line 12) -* mpf_urandomb: Miscellaneous Float Functions. - (line 25) -* mpn_add: Low-level Functions. (line 67) -* mpn_addmul_1: Low-level Functions. (line 148) -* mpn_add_1: Low-level Functions. (line 62) -* mpn_add_n: Low-level Functions. (line 52) -* mpn_andn_n: Low-level Functions. (line 462) -* mpn_and_n: Low-level Functions. (line 447) -* mpn_cmp: Low-level Functions. (line 293) -* mpn_cnd_add_n: Low-level Functions. (line 540) -* mpn_cnd_sub_n: Low-level Functions. (line 542) -* mpn_cnd_swap: Low-level Functions. (line 567) -* mpn_com: Low-level Functions. (line 487) -* mpn_copyd: Low-level Functions. (line 496) -* mpn_copyi: Low-level Functions. (line 492) -* mpn_divexact_1: Low-level Functions. (line 231) -* mpn_divexact_by3: Low-level Functions. (line 238) -* mpn_divexact_by3c: Low-level Functions. (line 240) -* mpn_divmod: Low-level Functions. (line 226) -* mpn_divmod_1: Low-level Functions. (line 210) -* mpn_divrem: Low-level Functions. (line 183) -* mpn_divrem_1: Low-level Functions. (line 208) -* mpn_gcd: Low-level Functions. (line 301) -* mpn_gcdext: Low-level Functions. (line 316) -* mpn_gcd_1: Low-level Functions. (line 311) -* mpn_get_str: Low-level Functions. (line 371) -* mpn_hamdist: Low-level Functions. (line 436) -* mpn_iorn_n: Low-level Functions. (line 467) -* mpn_ior_n: Low-level Functions. (line 452) -* mpn_lshift: Low-level Functions. (line 269) -* mpn_mod_1: Low-level Functions. (line 264) -* mpn_mul: Low-level Functions. (line 114) -* mpn_mul_1: Low-level Functions. (line 133) -* mpn_mul_n: Low-level Functions. (line 103) -* mpn_nand_n: Low-level Functions. (line 472) -* mpn_neg: Low-level Functions. (line 96) -* mpn_nior_n: Low-level Functions. (line 477) -* mpn_perfect_square_p: Low-level Functions. (line 442) -* mpn_popcount: Low-level Functions. (line 432) -* mpn_random: Low-level Functions. (line 422) -* mpn_random2: Low-level Functions. (line 423) -* mpn_rshift: Low-level Functions. (line 281) -* mpn_scan0: Low-level Functions. (line 406) -* mpn_scan1: Low-level Functions. (line 414) -* mpn_sec_add_1: Low-level Functions. (line 553) -* mpn_sec_div_qr: Low-level Functions. (line 630) -* mpn_sec_div_qr_itch: Low-level Functions. (line 633) -* mpn_sec_div_r: Low-level Functions. (line 649) -* mpn_sec_div_r_itch: Low-level Functions. (line 651) -* mpn_sec_invert: Low-level Functions. (line 665) -* mpn_sec_invert_itch: Low-level Functions. (line 667) -* mpn_sec_mul: Low-level Functions. (line 574) -* mpn_sec_mul_itch: Low-level Functions. (line 577) -* mpn_sec_powm: Low-level Functions. (line 604) -* mpn_sec_powm_itch: Low-level Functions. (line 607) -* mpn_sec_sqr: Low-level Functions. (line 590) -* mpn_sec_sqr_itch: Low-level Functions. (line 592) -* mpn_sec_sub_1: Low-level Functions. (line 555) -* mpn_sec_tabselect: Low-level Functions. (line 622) -* mpn_set_str: Low-level Functions. (line 386) -* mpn_sizeinbase: Low-level Functions. (line 364) -* mpn_sqr: Low-level Functions. (line 125) -* mpn_sqrtrem: Low-level Functions. (line 346) -* mpn_sub: Low-level Functions. (line 88) -* mpn_submul_1: Low-level Functions. (line 160) -* mpn_sub_1: Low-level Functions. (line 83) -* mpn_sub_n: Low-level Functions. (line 74) -* mpn_tdiv_qr: Low-level Functions. (line 172) -* mpn_xnor_n: Low-level Functions. (line 482) -* mpn_xor_n: Low-level Functions. (line 457) -* mpn_zero: Low-level Functions. (line 500) -* mpn_zero_p: Low-level Functions. (line 298) -* mpq_abs: Rational Arithmetic. (line 33) -* mpq_add: Rational Arithmetic. (line 6) -* mpq_canonicalize: Rational Number Functions. - (line 21) -* mpq_class: C++ Interface General. - (line 18) -* mpq_class::canonicalize: C++ Interface Rationals. - (line 41) -* mpq_class::get_d: C++ Interface Rationals. - (line 51) -* mpq_class::get_den: C++ Interface Rationals. - (line 67) -* mpq_class::get_den_mpz_t: C++ Interface Rationals. - (line 77) -* mpq_class::get_mpq_t: C++ Interface General. - (line 64) -* mpq_class::get_num: C++ Interface Rationals. - (line 66) -* mpq_class::get_num_mpz_t: C++ Interface Rationals. - (line 76) -* mpq_class::get_str: C++ Interface Rationals. - (line 52) -* mpq_class::mpq_class: C++ Interface Rationals. - (line 9) -* mpq_class::mpq_class <1>: C++ Interface Rationals. - (line 10) -* mpq_class::mpq_class <2>: C++ Interface Rationals. - (line 21) -* mpq_class::mpq_class <3>: C++ Interface Rationals. - (line 26) -* mpq_class::mpq_class <4>: C++ Interface Rationals. - (line 28) -* mpq_class::set_str: C++ Interface Rationals. - (line 54) -* mpq_class::set_str <1>: C++ Interface Rationals. - (line 55) -* mpq_class::swap: C++ Interface Rationals. - (line 58) -* mpq_clear: Initializing Rationals. - (line 15) -* mpq_clears: Initializing Rationals. - (line 19) -* mpq_cmp: Comparing Rationals. (line 6) -* mpq_cmp_si: Comparing Rationals. (line 16) -* mpq_cmp_ui: Comparing Rationals. (line 14) -* mpq_cmp_z: Comparing Rationals. (line 7) -* mpq_denref: Applying Integer Functions. - (line 16) -* mpq_div: Rational Arithmetic. (line 22) -* mpq_div_2exp: Rational Arithmetic. (line 26) -* mpq_equal: Comparing Rationals. (line 33) -* mpq_get_d: Rational Conversions. - (line 6) -* mpq_get_den: Applying Integer Functions. - (line 22) -* mpq_get_num: Applying Integer Functions. - (line 21) -* mpq_get_str: Rational Conversions. - (line 21) -* mpq_init: Initializing Rationals. - (line 6) -* mpq_inits: Initializing Rationals. - (line 11) -* mpq_inp_str: I/O of Rationals. (line 32) -* mpq_inv: Rational Arithmetic. (line 36) -* mpq_mul: Rational Arithmetic. (line 14) -* mpq_mul_2exp: Rational Arithmetic. (line 18) -* mpq_neg: Rational Arithmetic. (line 30) -* mpq_numref: Applying Integer Functions. - (line 15) -* mpq_out_str: I/O of Rationals. (line 17) -* mpq_set: Initializing Rationals. - (line 23) -* mpq_set_d: Rational Conversions. - (line 16) -* mpq_set_den: Applying Integer Functions. - (line 24) -* mpq_set_f: Rational Conversions. - (line 17) -* mpq_set_num: Applying Integer Functions. - (line 23) -* mpq_set_si: Initializing Rationals. - (line 29) -* mpq_set_str: Initializing Rationals. - (line 35) -* mpq_set_ui: Initializing Rationals. - (line 27) -* mpq_set_z: Initializing Rationals. - (line 24) -* mpq_sgn: Comparing Rationals. (line 27) -* mpq_sub: Rational Arithmetic. (line 10) -* mpq_swap: Initializing Rationals. - (line 54) -* mpq_t: Nomenclature and Types. - (line 16) -* mpz_2fac_ui: Number Theoretic Functions. - (line 113) -* mpz_abs: Integer Arithmetic. (line 44) -* mpz_add: Integer Arithmetic. (line 6) -* mpz_addmul: Integer Arithmetic. (line 24) -* mpz_addmul_ui: Integer Arithmetic. (line 26) -* mpz_add_ui: Integer Arithmetic. (line 7) -* mpz_and: Integer Logic and Bit Fiddling. - (line 10) -* mpz_array_init: Integer Special Functions. - (line 9) -* mpz_bin_ui: Number Theoretic Functions. - (line 124) -* mpz_bin_uiui: Number Theoretic Functions. - (line 126) -* mpz_cdiv_q: Integer Division. (line 12) -* mpz_cdiv_qr: Integer Division. (line 14) -* mpz_cdiv_qr_ui: Integer Division. (line 21) -* mpz_cdiv_q_2exp: Integer Division. (line 26) -* mpz_cdiv_q_ui: Integer Division. (line 17) -* mpz_cdiv_r: Integer Division. (line 13) -* mpz_cdiv_r_2exp: Integer Division. (line 29) -* mpz_cdiv_r_ui: Integer Division. (line 19) -* mpz_cdiv_ui: Integer Division. (line 23) -* mpz_class: C++ Interface General. - (line 17) -* mpz_class::factorial: C++ Interface Integers. - (line 70) -* mpz_class::fibonacci: C++ Interface Integers. - (line 74) -* mpz_class::fits_sint_p: C++ Interface Integers. - (line 50) -* mpz_class::fits_slong_p: C++ Interface Integers. - (line 51) -* mpz_class::fits_sshort_p: C++ Interface Integers. - (line 52) -* mpz_class::fits_uint_p: C++ Interface Integers. - (line 54) -* mpz_class::fits_ulong_p: C++ Interface Integers. - (line 55) -* mpz_class::fits_ushort_p: C++ Interface Integers. - (line 56) -* mpz_class::get_d: C++ Interface Integers. - (line 58) -* mpz_class::get_mpz_t: C++ Interface General. - (line 63) -* mpz_class::get_si: C++ Interface Integers. - (line 59) -* mpz_class::get_str: C++ Interface Integers. - (line 60) -* mpz_class::get_ui: C++ Interface Integers. - (line 61) -* mpz_class::mpz_class: C++ Interface Integers. - (line 6) -* mpz_class::mpz_class <1>: C++ Interface Integers. - (line 14) -* mpz_class::mpz_class <2>: C++ Interface Integers. - (line 19) -* mpz_class::mpz_class <3>: C++ Interface Integers. - (line 21) -* mpz_class::primorial: C++ Interface Integers. - (line 72) -* mpz_class::set_str: C++ Interface Integers. - (line 63) -* mpz_class::set_str <1>: C++ Interface Integers. - (line 64) -* mpz_class::swap: C++ Interface Integers. - (line 77) -* mpz_clear: Initializing Integers. - (line 48) -* mpz_clears: Initializing Integers. - (line 52) -* mpz_clrbit: Integer Logic and Bit Fiddling. - (line 54) -* mpz_cmp: Integer Comparisons. (line 6) -* mpz_cmpabs: Integer Comparisons. (line 17) -* mpz_cmpabs_d: Integer Comparisons. (line 18) -* mpz_cmpabs_ui: Integer Comparisons. (line 19) -* mpz_cmp_d: Integer Comparisons. (line 7) -* mpz_cmp_si: Integer Comparisons. (line 8) -* mpz_cmp_ui: Integer Comparisons. (line 9) -* mpz_com: Integer Logic and Bit Fiddling. - (line 19) -* mpz_combit: Integer Logic and Bit Fiddling. - (line 57) -* mpz_congruent_2exp_p: Integer Division. (line 148) -* mpz_congruent_p: Integer Division. (line 144) -* mpz_congruent_ui_p: Integer Division. (line 146) -* mpz_divexact: Integer Division. (line 122) -* mpz_divexact_ui: Integer Division. (line 123) -* mpz_divisible_2exp_p: Integer Division. (line 135) -* mpz_divisible_p: Integer Division. (line 132) -* mpz_divisible_ui_p: Integer Division. (line 133) -* mpz_even_p: Miscellaneous Integer Functions. - (line 17) -* mpz_export: Integer Import and Export. - (line 43) -* mpz_fac_ui: Number Theoretic Functions. - (line 112) -* mpz_fdiv_q: Integer Division. (line 33) -* mpz_fdiv_qr: Integer Division. (line 35) -* mpz_fdiv_qr_ui: Integer Division. (line 42) -* mpz_fdiv_q_2exp: Integer Division. (line 47) -* mpz_fdiv_q_ui: Integer Division. (line 38) -* mpz_fdiv_r: Integer Division. (line 34) -* mpz_fdiv_r_2exp: Integer Division. (line 50) -* mpz_fdiv_r_ui: Integer Division. (line 40) -* mpz_fdiv_ui: Integer Division. (line 44) -* mpz_fib2_ui: Number Theoretic Functions. - (line 134) -* mpz_fib_ui: Number Theoretic Functions. - (line 133) -* mpz_fits_sint_p: Miscellaneous Integer Functions. - (line 9) -* mpz_fits_slong_p: Miscellaneous Integer Functions. - (line 7) -* mpz_fits_sshort_p: Miscellaneous Integer Functions. - (line 11) -* mpz_fits_uint_p: Miscellaneous Integer Functions. - (line 8) -* mpz_fits_ulong_p: Miscellaneous Integer Functions. - (line 6) -* mpz_fits_ushort_p: Miscellaneous Integer Functions. - (line 10) -* mpz_gcd: Number Theoretic Functions. - (line 29) -* mpz_gcdext: Number Theoretic Functions. - (line 45) -* mpz_gcd_ui: Number Theoretic Functions. - (line 35) -* mpz_getlimbn: Integer Special Functions. - (line 22) -* mpz_get_d: Converting Integers. (line 26) -* mpz_get_d_2exp: Converting Integers. (line 34) -* mpz_get_si: Converting Integers. (line 17) -* mpz_get_str: Converting Integers. (line 46) -* mpz_get_ui: Converting Integers. (line 10) -* mpz_hamdist: Integer Logic and Bit Fiddling. - (line 28) -* mpz_import: Integer Import and Export. - (line 9) -* mpz_init: Initializing Integers. - (line 25) -* mpz_init2: Initializing Integers. - (line 32) -* mpz_inits: Initializing Integers. - (line 28) -* mpz_init_set: Simultaneous Integer Init & Assign. - (line 26) -* mpz_init_set_d: Simultaneous Integer Init & Assign. - (line 29) -* mpz_init_set_si: Simultaneous Integer Init & Assign. - (line 28) -* mpz_init_set_str: Simultaneous Integer Init & Assign. - (line 33) -* mpz_init_set_ui: Simultaneous Integer Init & Assign. - (line 27) -* mpz_inp_raw: I/O of Integers. (line 61) -* mpz_inp_str: I/O of Integers. (line 30) -* mpz_invert: Number Theoretic Functions. - (line 72) -* mpz_ior: Integer Logic and Bit Fiddling. - (line 13) -* mpz_jacobi: Number Theoretic Functions. - (line 82) -* mpz_kronecker: Number Theoretic Functions. - (line 90) -* mpz_kronecker_si: Number Theoretic Functions. - (line 91) -* mpz_kronecker_ui: Number Theoretic Functions. - (line 92) -* mpz_lcm: Number Theoretic Functions. - (line 65) -* mpz_lcm_ui: Number Theoretic Functions. - (line 66) -* mpz_legendre: Number Theoretic Functions. - (line 85) -* mpz_limbs_finish: Integer Special Functions. - (line 47) -* mpz_limbs_modify: Integer Special Functions. - (line 40) -* mpz_limbs_read: Integer Special Functions. - (line 34) -* mpz_limbs_write: Integer Special Functions. - (line 39) -* mpz_lucnum2_ui: Number Theoretic Functions. - (line 145) -* mpz_lucnum_ui: Number Theoretic Functions. - (line 144) -* mpz_mfac_uiui: Number Theoretic Functions. - (line 114) -* mpz_mod: Integer Division. (line 112) -* mpz_mod_ui: Integer Division. (line 113) -* mpz_mul: Integer Arithmetic. (line 18) -* mpz_mul_2exp: Integer Arithmetic. (line 36) -* mpz_mul_si: Integer Arithmetic. (line 19) -* mpz_mul_ui: Integer Arithmetic. (line 20) -* mpz_neg: Integer Arithmetic. (line 41) -* mpz_nextprime: Number Theoretic Functions. - (line 22) -* mpz_odd_p: Miscellaneous Integer Functions. - (line 16) -* mpz_out_raw: I/O of Integers. (line 45) -* mpz_out_str: I/O of Integers. (line 17) -* mpz_perfect_power_p: Integer Roots. (line 27) -* mpz_perfect_square_p: Integer Roots. (line 36) -* mpz_popcount: Integer Logic and Bit Fiddling. - (line 22) -* mpz_powm: Integer Exponentiation. - (line 6) -* mpz_powm_sec: Integer Exponentiation. - (line 16) -* mpz_powm_ui: Integer Exponentiation. - (line 8) -* mpz_pow_ui: Integer Exponentiation. - (line 29) -* mpz_primorial_ui: Number Theoretic Functions. - (line 120) -* mpz_probab_prime_p: Number Theoretic Functions. - (line 6) -* mpz_random: Integer Random Numbers. - (line 41) -* mpz_random2: Integer Random Numbers. - (line 50) -* mpz_realloc2: Initializing Integers. - (line 56) -* mpz_remove: Number Theoretic Functions. - (line 106) -* mpz_roinit_n: Integer Special Functions. - (line 67) -* MPZ_ROINIT_N: Integer Special Functions. - (line 83) -* mpz_root: Integer Roots. (line 6) -* mpz_rootrem: Integer Roots. (line 12) -* mpz_rrandomb: Integer Random Numbers. - (line 29) -* mpz_scan0: Integer Logic and Bit Fiddling. - (line 35) -* mpz_scan1: Integer Logic and Bit Fiddling. - (line 37) -* mpz_set: Assigning Integers. (line 9) -* mpz_setbit: Integer Logic and Bit Fiddling. - (line 51) -* mpz_set_d: Assigning Integers. (line 12) -* mpz_set_f: Assigning Integers. (line 14) -* mpz_set_q: Assigning Integers. (line 13) -* mpz_set_si: Assigning Integers. (line 11) -* mpz_set_str: Assigning Integers. (line 20) -* mpz_set_ui: Assigning Integers. (line 10) -* mpz_sgn: Integer Comparisons. (line 27) -* mpz_size: Integer Special Functions. - (line 30) -* mpz_sizeinbase: Miscellaneous Integer Functions. - (line 22) -* mpz_si_kronecker: Number Theoretic Functions. - (line 93) -* mpz_sqrt: Integer Roots. (line 17) -* mpz_sqrtrem: Integer Roots. (line 20) -* mpz_sub: Integer Arithmetic. (line 11) -* mpz_submul: Integer Arithmetic. (line 30) -* mpz_submul_ui: Integer Arithmetic. (line 32) -* mpz_sub_ui: Integer Arithmetic. (line 12) -* mpz_swap: Assigning Integers. (line 36) -* mpz_t: Nomenclature and Types. - (line 6) -* mpz_tdiv_q: Integer Division. (line 54) -* mpz_tdiv_qr: Integer Division. (line 56) -* mpz_tdiv_qr_ui: Integer Division. (line 63) -* mpz_tdiv_q_2exp: Integer Division. (line 68) -* mpz_tdiv_q_ui: Integer Division. (line 59) -* mpz_tdiv_r: Integer Division. (line 55) -* mpz_tdiv_r_2exp: Integer Division. (line 71) -* mpz_tdiv_r_ui: Integer Division. (line 61) -* mpz_tdiv_ui: Integer Division. (line 65) -* mpz_tstbit: Integer Logic and Bit Fiddling. - (line 60) -* mpz_ui_kronecker: Number Theoretic Functions. - (line 94) -* mpz_ui_pow_ui: Integer Exponentiation. - (line 31) -* mpz_ui_sub: Integer Arithmetic. (line 14) -* mpz_urandomb: Integer Random Numbers. - (line 12) -* mpz_urandomm: Integer Random Numbers. - (line 21) -* mpz_xor: Integer Logic and Bit Fiddling. - (line 16) -* mp_bitcnt_t: Nomenclature and Types. - (line 42) -* mp_bits_per_limb: Useful Macros and Constants. - (line 7) -* mp_exp_t: Nomenclature and Types. - (line 27) -* mp_get_memory_functions: Custom Allocation. (line 86) -* mp_limb_t: Nomenclature and Types. - (line 31) -* mp_set_memory_functions: Custom Allocation. (line 14) -* mp_size_t: Nomenclature and Types. - (line 37) -* operator"": C++ Interface Integers. - (line 29) -* operator"" <1>: C++ Interface Rationals. - (line 36) -* operator"" <2>: C++ Interface Floats. - (line 55) -* operator%: C++ Interface Integers. - (line 34) -* operator/: C++ Interface Integers. - (line 33) -* operator<<: C++ Formatted Output. - (line 10) -* operator<< <1>: C++ Formatted Output. - (line 19) -* operator<< <2>: C++ Formatted Output. - (line 32) -* operator>>: C++ Formatted Input. (line 10) -* operator>> <1>: C++ Formatted Input. (line 13) -* operator>> <2>: C++ Formatted Input. (line 24) -* operator>> <3>: C++ Interface Rationals. - (line 86) -* primorial: C++ Interface Integers. - (line 73) -* sgn: C++ Interface Integers. - (line 65) -* sgn <1>: C++ Interface Rationals. - (line 56) -* sgn <2>: C++ Interface Floats. - (line 106) -* sqrt: C++ Interface Integers. - (line 66) -* sqrt <1>: C++ Interface Floats. - (line 107) -* swap: C++ Interface Integers. - (line 78) -* swap <1>: C++ Interface Rationals. - (line 59) -* swap <2>: C++ Interface Floats. - (line 110) -* trunc: C++ Interface Floats. - (line 111) - diff --git a/misc/builddeps/linux64/ode/bin/ode-config b/misc/builddeps/linux64/ode/bin/ode-config deleted file mode 100755 index a02e8b14..00000000 --- a/misc/builddeps/linux64/ode/bin/ode-config +++ /dev/null @@ -1,53 +0,0 @@ -#!/bin/sh - -prefix=/tmp/ode -exec_prefix=${prefix} -exec_prefix_set=no - -usage="\ -Usage: ode-config [--prefix[=DIR]] [--exec-prefix[=DIR]] [--version] [--cflags] [--libs]" - -if test $# -eq 0; then - echo "${usage}" 1>&2 - exit 1 -fi - -while test $# -gt 0; do - case "$1" in - -*=*) optarg=`echo "$1" | sed 's/[-_a-zA-Z0-9]*=//'` ;; - *) optarg= ;; - esac - - case $1 in - --prefix=*) - prefix=$optarg - if test $exec_prefix_set = no ; then - exec_prefix=$optarg - fi - ;; - --prefix) - echo $prefix - ;; - --exec-prefix=*) - exec_prefix=$optarg - exec_prefix_set=yes - ;; - --exec-prefix) - echo $exec_prefix - ;; - --version) - echo 0.16.2 - ;; - --cflags) - echo -I${prefix}/include - ;; - --libs) - echo -L${exec_prefix}/lib -lode - ;; - *) - echo "${usage}" 1>&2 - exit 1 - ;; - esac - shift -done diff --git a/misc/builddeps/linux64/ode/include/ode/collision.h b/misc/builddeps/linux64/ode/include/ode/collision.h deleted file mode 100644 index fef6e7b3..00000000 --- a/misc/builddeps/linux64/ode/include/ode/collision.h +++ /dev/null @@ -1,1526 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_COLLISION_H_ -#define _ODE_COLLISION_H_ - -#include -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - -/** - * @defgroup collide Collision Detection - * - * ODE has two main components: a dynamics simulation engine and a collision - * detection engine. The collision engine is given information about the - * shape of each body. At each time step it figures out which bodies touch - * each other and passes the resulting contact point information to the user. - * The user in turn creates contact joints between bodies. - * - * Using ODE's collision detection is optional - an alternative collision - * detection system can be used as long as it can supply the right kinds of - * contact information. - */ - - -/* ************************************************************************ */ -/* general functions */ - -/** - * @brief Destroy a geom, removing it from any space. - * - * Destroy a geom, removing it from any space it is in first. This one - * function destroys a geom of any type, but to create a geom you must call - * a creation function for that type. - * - * When a space is destroyed, if its cleanup mode is 1 (the default) then all - * the geoms in that space are automatically destroyed as well. - * - * @param geom the geom to be destroyed. - * @ingroup collide - */ -ODE_API void dGeomDestroy (dGeomID geom); - - -/** - * @brief Set the user-defined data pointer stored in the geom. - * - * @param geom the geom to hold the data - * @param data the data pointer to be stored - * @ingroup collide - */ -ODE_API void dGeomSetData (dGeomID geom, void* data); - - -/** - * @brief Get the user-defined data pointer stored in the geom. - * - * @param geom the geom containing the data - * @ingroup collide - */ -ODE_API void *dGeomGetData (dGeomID geom); - - -/** - * @brief Set the body associated with a placeable geom. - * - * Setting a body on a geom automatically combines the position vector and - * rotation matrix of the body and geom, so that setting the position or - * orientation of one will set the value for both objects. Setting a body - * ID of zero gives the geom its own position and rotation, independent - * from any body. If the geom was previously connected to a body then its - * new independent position/rotation is set to the current position/rotation - * of the body. - * - * Calling these functions on a non-placeable geom results in a runtime - * error in the debug build of ODE. - * - * @param geom the geom to connect - * @param body the body to attach to the geom - * @ingroup collide - */ -ODE_API void dGeomSetBody (dGeomID geom, dBodyID body); - - -/** - * @brief Get the body associated with a placeable geom. - * @param geom the geom to query. - * @sa dGeomSetBody - * @ingroup collide - */ -ODE_API dBodyID dGeomGetBody (dGeomID geom); - - -/** - * @brief Set the position vector of a placeable geom. - * - * If the geom is attached to a body, the body's position will also be changed. - * Calling this function on a non-placeable geom results in a runtime error in - * the debug build of ODE. - * - * @param geom the geom to set. - * @param x the new X coordinate. - * @param y the new Y coordinate. - * @param z the new Z coordinate. - * @sa dBodySetPosition - * @ingroup collide - */ -ODE_API void dGeomSetPosition (dGeomID geom, dReal x, dReal y, dReal z); - - -/** - * @brief Set the rotation matrix of a placeable geom. - * - * If the geom is attached to a body, the body's rotation will also be changed. - * Calling this function on a non-placeable geom results in a runtime error in - * the debug build of ODE. - * - * @param geom the geom to set. - * @param R the new rotation matrix. - * @sa dBodySetRotation - * @ingroup collide - */ -ODE_API void dGeomSetRotation (dGeomID geom, const dMatrix3 R); - - -/** - * @brief Set the rotation of a placeable geom. - * - * If the geom is attached to a body, the body's rotation will also be changed. - * - * Calling this function on a non-placeable geom results in a runtime error in - * the debug build of ODE. - * - * @param geom the geom to set. - * @param Q the new rotation. - * @sa dBodySetQuaternion - * @ingroup collide - */ -ODE_API void dGeomSetQuaternion (dGeomID geom, const dQuaternion Q); - - -/** - * @brief Get the position vector of a placeable geom. - * - * If the geom is attached to a body, the body's position will be returned. - * - * Calling this function on a non-placeable geom results in a runtime error in - * the debug build of ODE. - * - * @param geom the geom to query. - * @returns A pointer to the geom's position vector. - * @remarks The returned value is a pointer to the geom's internal - * data structure. It is valid until any changes are made - * to the geom. - * @sa dBodyGetPosition - * @ingroup collide - */ -ODE_API const dReal * dGeomGetPosition (dGeomID geom); - - -/** - * @brief Copy the position of a geom into a vector. - * @ingroup collide - * @param geom the geom to query - * @param pos a copy of the geom position - * @sa dGeomGetPosition - */ -ODE_API void dGeomCopyPosition (dGeomID geom, dVector3 pos); - - -/** - * @brief Get the rotation matrix of a placeable geom. - * - * If the geom is attached to a body, the body's rotation will be returned. - * - * Calling this function on a non-placeable geom results in a runtime error in - * the debug build of ODE. - * - * @param geom the geom to query. - * @returns A pointer to the geom's rotation matrix. - * @remarks The returned value is a pointer to the geom's internal - * data structure. It is valid until any changes are made - * to the geom. - * @sa dBodyGetRotation - * @ingroup collide - */ -ODE_API const dReal * dGeomGetRotation (dGeomID geom); - - -/** - * @brief Get the rotation matrix of a placeable geom. - * - * If the geom is attached to a body, the body's rotation will be returned. - * - * Calling this function on a non-placeable geom results in a runtime error in - * the debug build of ODE. - * - * @param geom the geom to query. - * @param R a copy of the geom rotation - * @sa dGeomGetRotation - * @ingroup collide - */ -ODE_API void dGeomCopyRotation(dGeomID geom, dMatrix3 R); - - -/** - * @brief Get the rotation quaternion of a placeable geom. - * - * If the geom is attached to a body, the body's quaternion will be returned. - * - * Calling this function on a non-placeable geom results in a runtime error in - * the debug build of ODE. - * - * @param geom the geom to query. - * @param result a copy of the rotation quaternion. - * @sa dBodyGetQuaternion - * @ingroup collide - */ -ODE_API void dGeomGetQuaternion (dGeomID geom, dQuaternion result); - - -/** - * @brief Return the axis-aligned bounding box. - * - * Return in aabb an axis aligned bounding box that surrounds the given geom. - * The aabb array has elements (minx, maxx, miny, maxy, minz, maxz). If the - * geom is a space, a bounding box that surrounds all contained geoms is - * returned. - * - * This function may return a pre-computed cached bounding box, if it can - * determine that the geom has not moved since the last time the bounding - * box was computed. - * - * @param geom the geom to query - * @param aabb the returned bounding box - * @ingroup collide - */ -ODE_API void dGeomGetAABB (dGeomID geom, dReal aabb[6]); - - -/** - * @brief Determing if a geom is a space. - * @param geom the geom to query - * @returns Non-zero if the geom is a space, zero otherwise. - * @ingroup collide - */ -ODE_API int dGeomIsSpace (dGeomID geom); - - -/** - * @brief Query for the space containing a particular geom. - * @param geom the geom to query - * @returns The space that contains the geom, or NULL if the geom is - * not contained by a space. - * @ingroup collide - */ -ODE_API dSpaceID dGeomGetSpace (dGeomID); - - -/** - * @brief Given a geom, this returns its class. - * - * The ODE classes are: - * @li dSphereClass - * @li dBoxClass - * @li dCylinderClass - * @li dPlaneClass - * @li dRayClass - * @li dConvexClass - * @li dGeomTransformClass - * @li dTriMeshClass - * @li dSimpleSpaceClass - * @li dHashSpaceClass - * @li dQuadTreeSpaceClass - * @li dFirstUserClass - * @li dLastUserClass - * - * User-defined class will return their own number. - * - * @param geom the geom to query - * @returns The geom class ID. - * @ingroup collide - */ -ODE_API int dGeomGetClass (dGeomID geom); - - -/** - * @brief Set the "category" bitfield for the given geom. - * - * The category bitfield is used by spaces to govern which geoms will - * interact with each other. The bitfield is guaranteed to be at least - * 32 bits wide. The default category values for newly created geoms - * have all bits set. - * - * @param geom the geom to set - * @param bits the new bitfield value - * @ingroup collide - */ -ODE_API void dGeomSetCategoryBits (dGeomID geom, unsigned long bits); - - -/** - * @brief Set the "collide" bitfield for the given geom. - * - * The collide bitfield is used by spaces to govern which geoms will - * interact with each other. The bitfield is guaranteed to be at least - * 32 bits wide. The default category values for newly created geoms - * have all bits set. - * - * @param geom the geom to set - * @param bits the new bitfield value - * @ingroup collide - */ -ODE_API void dGeomSetCollideBits (dGeomID geom, unsigned long bits); - - -/** - * @brief Get the "category" bitfield for the given geom. - * - * @param geom the geom to set - * @param bits the new bitfield value - * @sa dGeomSetCategoryBits - * @ingroup collide - */ -ODE_API unsigned long dGeomGetCategoryBits (dGeomID); - - -/** - * @brief Get the "collide" bitfield for the given geom. - * - * @param geom the geom to set - * @param bits the new bitfield value - * @sa dGeomSetCollideBits - * @ingroup collide - */ -ODE_API unsigned long dGeomGetCollideBits (dGeomID); - - -/** - * @brief Enable a geom. - * - * Disabled geoms are completely ignored by dSpaceCollide and dSpaceCollide2, - * although they can still be members of a space. New geoms are created in - * the enabled state. - * - * @param geom the geom to enable - * @sa dGeomDisable - * @sa dGeomIsEnabled - * @ingroup collide - */ -ODE_API void dGeomEnable (dGeomID geom); - - -/** - * @brief Disable a geom. - * - * Disabled geoms are completely ignored by dSpaceCollide and dSpaceCollide2, - * although they can still be members of a space. New geoms are created in - * the enabled state. - * - * @param geom the geom to disable - * @sa dGeomDisable - * @sa dGeomIsEnabled - * @ingroup collide - */ -ODE_API void dGeomDisable (dGeomID geom); - - -/** - * @brief Check to see if a geom is enabled. - * - * Disabled geoms are completely ignored by dSpaceCollide and dSpaceCollide2, - * although they can still be members of a space. New geoms are created in - * the enabled state. - * - * @param geom the geom to query - * @returns Non-zero if the geom is enabled, zero otherwise. - * @sa dGeomDisable - * @sa dGeomIsEnabled - * @ingroup collide - */ -ODE_API int dGeomIsEnabled (dGeomID geom); - - -enum -{ - dGeomCommonControlClass = 0, - dGeomColliderControlClass = 1 -}; - -enum -{ - dGeomCommonAnyControlCode = 0, - - dGeomColliderSetMergeSphereContactsControlCode = 1, - dGeomColliderGetMergeSphereContactsControlCode = 2 -}; - -enum -{ - dGeomColliderMergeContactsValue__Default = 0, /* Used with Set... to restore default value*/ - dGeomColliderMergeContactsValue_None = 1, - dGeomColliderMergeContactsValue_Normals = 2, - dGeomColliderMergeContactsValue_Full = 3 -}; - -/** - * @brief Execute low level control operation for geometry. - * - * The variable the dataSize points to must be initialized before the call. - * If the size does not match the one expected for the control class/code function - * changes it to the size expected and returns failure. This implies the function - * can be called with NULL data and zero size to test if control class/code is supported - * and obtain required data size for it. - * - * dGeomCommonAnyControlCode applies to any control class and returns success if - * at least one control code is available for the given class with given geom. - * - * Currently there are the folliwing control classes supported: - * @li dGeomColliderControlClass - * - * For dGeomColliderControlClass there are the following codes available: - * @li dGeomColliderSetMergeSphereContactsControlCode (arg of type int, dGeomColliderMergeContactsValue_*) - * @li dGeomColliderGetMergeSphereContactsControlCode (arg of type int, dGeomColliderMergeContactsValue_*) - * - * @param geom the geom to control - * @param controlClass the control class - * @param controlCode the control code for the class - * @param dataValue the control argument pointer - * @param dataSize the control argument size provided or expected - * @returns Boolean execution status - * @ingroup collide - */ -ODE_API int dGeomLowLevelControl (dGeomID geom, int controlClass, int controlCode, void *dataValue, int *dataSize); - - -/** - * @brief Get world position of a relative point on geom. - * - * Calling this function on a non-placeable geom results in the same point being - * returned. - * - * @ingroup collide - * @param result will contain the result. - */ -ODE_API void dGeomGetRelPointPos -( - dGeomID geom, dReal px, dReal py, dReal pz, - dVector3 result -); - -/** - * @brief takes a point in global coordinates and returns - * the point's position in geom-relative coordinates. - * - * Calling this function on a non-placeable geom results in the same point being - * returned. - * - * @remarks - * This is the inverse of dGeomGetRelPointPos() - * @ingroup collide - * @param result will contain the result. - */ -ODE_API void dGeomGetPosRelPoint -( - dGeomID geom, dReal px, dReal py, dReal pz, - dVector3 result -); - -/** - * @brief Convert from geom-local to world coordinates. - * - * Calling this function on a non-placeable geom results in the same vector being - * returned. - * - * @ingroup collide - * @param result will contain the result. - */ -ODE_API void dGeomVectorToWorld -( - dGeomID geom, dReal px, dReal py, dReal pz, - dVector3 result -); - -/** - * @brief Convert from world to geom-local coordinates. - * - * Calling this function on a non-placeable geom results in the same vector being - * returned. - * - * @ingroup collide - * @param result will contain the result. - */ -ODE_API void dGeomVectorFromWorld -( - dGeomID geom, dReal px, dReal py, dReal pz, - dVector3 result -); - - -/* ************************************************************************ */ -/* geom offset from body */ - -/** - * @brief Set the local offset position of a geom from its body. - * - * Sets the geom's positional offset in local coordinates. - * After this call, the geom will be at a new position determined from the - * body's position and the offset. - * The geom must be attached to a body. - * If the geom did not have an offset, it is automatically created. - * - * @param geom the geom to set. - * @param x the new X coordinate. - * @param y the new Y coordinate. - * @param z the new Z coordinate. - * @ingroup collide - */ -ODE_API void dGeomSetOffsetPosition (dGeomID geom, dReal x, dReal y, dReal z); - - -/** - * @brief Set the local offset rotation matrix of a geom from its body. - * - * Sets the geom's rotational offset in local coordinates. - * After this call, the geom will be at a new position determined from the - * body's position and the offset. - * The geom must be attached to a body. - * If the geom did not have an offset, it is automatically created. - * - * @param geom the geom to set. - * @param R the new rotation matrix. - * @ingroup collide - */ -ODE_API void dGeomSetOffsetRotation (dGeomID geom, const dMatrix3 R); - - -/** - * @brief Set the local offset rotation of a geom from its body. - * - * Sets the geom's rotational offset in local coordinates. - * After this call, the geom will be at a new position determined from the - * body's position and the offset. - * The geom must be attached to a body. - * If the geom did not have an offset, it is automatically created. - * - * @param geom the geom to set. - * @param Q the new rotation. - * @ingroup collide - */ -ODE_API void dGeomSetOffsetQuaternion (dGeomID geom, const dQuaternion Q); - - -/** - * @brief Set the offset position of a geom from its body. - * - * Sets the geom's positional offset to move it to the new world - * coordinates. - * After this call, the geom will be at the world position passed in, - * and the offset will be the difference from the current body position. - * The geom must be attached to a body. - * If the geom did not have an offset, it is automatically created. - * - * @param geom the geom to set. - * @param x the new X coordinate. - * @param y the new Y coordinate. - * @param z the new Z coordinate. - * @ingroup collide - */ -ODE_API void dGeomSetOffsetWorldPosition (dGeomID geom, dReal x, dReal y, dReal z); - - -/** - * @brief Set the offset rotation of a geom from its body. - * - * Sets the geom's rotational offset to orient it to the new world - * rotation matrix. - * After this call, the geom will be at the world orientation passed in, - * and the offset will be the difference from the current body orientation. - * The geom must be attached to a body. - * If the geom did not have an offset, it is automatically created. - * - * @param geom the geom to set. - * @param R the new rotation matrix. - * @ingroup collide - */ -ODE_API void dGeomSetOffsetWorldRotation (dGeomID geom, const dMatrix3 R); - - -/** - * @brief Set the offset rotation of a geom from its body. - * - * Sets the geom's rotational offset to orient it to the new world - * rotation matrix. - * After this call, the geom will be at the world orientation passed in, - * and the offset will be the difference from the current body orientation. - * The geom must be attached to a body. - * If the geom did not have an offset, it is automatically created. - * - * @param geom the geom to set. - * @param Q the new rotation. - * @ingroup collide - */ -ODE_API void dGeomSetOffsetWorldQuaternion (dGeomID geom, const dQuaternion); - - -/** - * @brief Clear any offset from the geom. - * - * If the geom has an offset, it is eliminated and the geom is - * repositioned at the body's position. If the geom has no offset, - * this function does nothing. - * This is more efficient than calling dGeomSetOffsetPosition(zero) - * and dGeomSetOffsetRotation(identiy), because this function actually - * eliminates the offset, rather than leaving it as the identity transform. - * - * @param geom the geom to have its offset destroyed. - * @ingroup collide - */ -ODE_API void dGeomClearOffset(dGeomID geom); - - -/** - * @brief Check to see whether the geom has an offset. - * - * This function will return non-zero if the offset has been created. - * Note that there is a difference between a geom with no offset, - * and a geom with an offset that is the identity transform. - * In the latter case, although the observed behaviour is identical, - * there is a unnecessary computation involved because the geom will - * be applying the transform whenever it needs to recalculate its world - * position. - * - * @param geom the geom to query. - * @returns Non-zero if the geom has an offset, zero otherwise. - * @ingroup collide - */ -ODE_API int dGeomIsOffset(dGeomID geom); - - -/** - * @brief Get the offset position vector of a geom. - * - * Returns the positional offset of the geom in local coordinates. - * If the geom has no offset, this function returns the zero vector. - * - * @param geom the geom to query. - * @returns A pointer to the geom's offset vector. - * @remarks The returned value is a pointer to the geom's internal - * data structure. It is valid until any changes are made - * to the geom. - * @ingroup collide - */ -ODE_API const dReal * dGeomGetOffsetPosition (dGeomID geom); - - -/** - * @brief Copy the offset position vector of a geom. - * - * Returns the positional offset of the geom in local coordinates. - * If the geom has no offset, this function returns the zero vector. - * - * @param geom the geom to query. - * @param pos returns the offset position - * @ingroup collide - */ -ODE_API void dGeomCopyOffsetPosition (dGeomID geom, dVector3 pos); - - -/** - * @brief Get the offset rotation matrix of a geom. - * - * Returns the rotational offset of the geom in local coordinates. - * If the geom has no offset, this function returns the identity - * matrix. - * - * @param geom the geom to query. - * @returns A pointer to the geom's offset rotation matrix. - * @remarks The returned value is a pointer to the geom's internal - * data structure. It is valid until any changes are made - * to the geom. - * @ingroup collide - */ -ODE_API const dReal * dGeomGetOffsetRotation (dGeomID geom); - - -/** - * @brief Copy the offset rotation matrix of a geom. - * - * Returns the rotational offset of the geom in local coordinates. - * If the geom has no offset, this function returns the identity - * matrix. - * - * @param geom the geom to query. - * @param R returns the rotation matrix. - * @ingroup collide - */ -ODE_API void dGeomCopyOffsetRotation (dGeomID geom, dMatrix3 R); - - -/** - * @brief Get the offset rotation quaternion of a geom. - * - * Returns the rotation offset of the geom as a quaternion. - * If the geom has no offset, the identity quaternion is returned. - * - * @param geom the geom to query. - * @param result a copy of the rotation quaternion. - * @ingroup collide - */ -ODE_API void dGeomGetOffsetQuaternion (dGeomID geom, dQuaternion result); - - -/* ************************************************************************ */ -/* collision detection */ - -/* - * Just generate any contacts (disables any contact refining). - */ -#define CONTACTS_UNIMPORTANT 0x80000000 - -/** - * - * @brief Given two geoms o1 and o2 that potentially intersect, - * generate contact information for them. - * - * Internally, this just calls the correct class-specific collision - * functions for o1 and o2. - * - * @param o1 The first geom to test. - * @param o2 The second geom to test. - * - * @param flags The flags specify how contacts should be generated if - * the geoms touch. The lower 16 bits of flags is an integer that - * specifies the maximum number of contact points to generate. You must - * ask for at least one contact. - * Additionally, following bits may be set: - * CONTACTS_UNIMPORTANT -- just generate any contacts (skip contact refining). - * All other bits in flags must be set to zero. In the future the other bits - * may be used to select from different contact generation strategies. - * - * @param contact Points to an array of dContactGeom structures. The array - * must be able to hold at least the maximum number of contacts. These - * dContactGeom structures may be embedded within larger structures in the - * array -- the skip parameter is the byte offset from one dContactGeom to - * the next in the array. If skip is sizeof(dContactGeom) then contact - * points to a normal (C-style) array. It is an error for skip to be smaller - * than sizeof(dContactGeom). - * - * @returns If the geoms intersect, this function returns the number of contact - * points generated (and updates the contact array), otherwise it returns 0 - * (and the contact array is not touched). - * - * @remarks If a space is passed as o1 or o2 then this function will collide - * all objects contained in o1 with all objects contained in o2, and return - * the resulting contact points. This method for colliding spaces with geoms - * (or spaces with spaces) provides no user control over the individual - * collisions. To get that control, use dSpaceCollide or dSpaceCollide2 instead. - * - * @remarks If o1 and o2 are the same geom then this function will do nothing - * and return 0. Technically speaking an object intersects with itself, but it - * is not useful to find contact points in this case. - * - * @remarks This function does not care if o1 and o2 are in the same space or not - * (or indeed if they are in any space at all). - * - * @ingroup collide - */ -ODE_API int dCollide (dGeomID o1, dGeomID o2, int flags, dContactGeom *contact, - int skip); - -/** - * @brief Determines which pairs of geoms in a space may potentially intersect, - * and calls the callback function for each candidate pair. - * - * @param space The space to test. - * - * @param data Passed from dSpaceCollide directly to the callback - * function. Its meaning is user defined. The o1 and o2 arguments are the - * geoms that may be near each other. - * - * @param callback A callback function is of type @ref dNearCallback. - * - * @remarks Other spaces that are contained within the colliding space are - * not treated specially, i.e. they are not recursed into. The callback - * function may be passed these contained spaces as one or both geom - * arguments. - * - * @remarks dSpaceCollide() is guaranteed to pass all intersecting geom - * pairs to the callback function, but may also pass close but - * non-intersecting pairs. The number of these calls depends on the - * internal algorithms used by the space. Thus you should not expect - * that dCollide will return contacts for every pair passed to the - * callback. - * - * @sa dSpaceCollide2 - * @ingroup collide - */ -ODE_API void dSpaceCollide (dSpaceID space, void *data, dNearCallback *callback); - - -/** - * @brief Determines which geoms from one space may potentially intersect with - * geoms from another space, and calls the callback function for each candidate - * pair. - * - * @param space1 The first space to test. - * - * @param space2 The second space to test. - * - * @param data Passed from dSpaceCollide directly to the callback - * function. Its meaning is user defined. The o1 and o2 arguments are the - * geoms that may be near each other. - * - * @param callback A callback function is of type @ref dNearCallback. - * - * @remarks This function can also test a single non-space geom against a - * space. This function is useful when there is a collision hierarchy, i.e. - * when there are spaces that contain other spaces. - * - * @remarks Other spaces that are contained within the colliding space are - * not treated specially, i.e. they are not recursed into. The callback - * function may be passed these contained spaces as one or both geom - * arguments. - * - * @remarks Sublevel value of space affects how the spaces are iterated. - * Both spaces are recursed only if their sublevels match. Otherwise, only - * the space with greater sublevel is recursed and the one with lesser sublevel - * is used as a geom itself. - * - * @remarks dSpaceCollide2() is guaranteed to pass all intersecting geom - * pairs to the callback function, but may also pass close but - * non-intersecting pairs. The number of these calls depends on the - * internal algorithms used by the space. Thus you should not expect - * that dCollide will return contacts for every pair passed to the - * callback. - * - * @sa dSpaceCollide - * @sa dSpaceSetSublevel - * @ingroup collide - */ -ODE_API void dSpaceCollide2 (dGeomID space1, dGeomID space2, void *data, dNearCallback *callback); - - -/* ************************************************************************ */ -/* standard classes */ - -/* the maximum number of user classes that are supported */ -enum { - dMaxUserClasses = 4 -}; - -/* class numbers - each geometry object needs a unique number */ -enum { - dSphereClass = 0, - dBoxClass, - dCapsuleClass, - dCylinderClass, - dPlaneClass, - dRayClass, - dConvexClass, - dGeomTransformClass, - dTriMeshClass, - dHeightfieldClass, - - dFirstSpaceClass, - dSimpleSpaceClass = dFirstSpaceClass, - dHashSpaceClass, - dSweepAndPruneSpaceClass, /* SAP */ - dQuadTreeSpaceClass, - dLastSpaceClass = dQuadTreeSpaceClass, - - dFirstUserClass, - dLastUserClass = dFirstUserClass + dMaxUserClasses - 1, - dGeomNumClasses -}; - - -/** - * @defgroup collide_sphere Sphere Class - * @ingroup collide - */ - -/** - * @brief Create a sphere geom of the given radius, and return its ID. - * - * @param space a space to contain the new geom. May be null. - * @param radius the radius of the sphere. - * - * @returns A new sphere geom. - * - * @remarks The point of reference for a sphere is its center. - * - * @sa dGeomDestroy - * @sa dGeomSphereSetRadius - * @ingroup collide_sphere - */ -ODE_API dGeomID dCreateSphere (dSpaceID space, dReal radius); - - -/** - * @brief Set the radius of a sphere geom. - * - * @param sphere the sphere to set. - * @param radius the new radius. - * - * @sa dGeomSphereGetRadius - * @ingroup collide_sphere - */ -ODE_API void dGeomSphereSetRadius (dGeomID sphere, dReal radius); - - -/** - * @brief Retrieves the radius of a sphere geom. - * - * @param sphere the sphere to query. - * - * @sa dGeomSphereSetRadius - * @ingroup collide_sphere - */ -ODE_API dReal dGeomSphereGetRadius (dGeomID sphere); - - -/** - * @brief Calculate the depth of the a given point within a sphere. - * - * @param sphere the sphere to query. - * @param x the X coordinate of the point. - * @param y the Y coordinate of the point. - * @param z the Z coordinate of the point. - * - * @returns The depth of the point. Points inside the sphere will have a - * positive depth, points outside it will have a negative depth, and points - * on the surface will have a depth of zero. - * - * @ingroup collide_sphere - */ -ODE_API dReal dGeomSpherePointDepth (dGeomID sphere, dReal x, dReal y, dReal z); - - -/*--> Convex Functions*/ -ODE_API dGeomID dCreateConvex (dSpaceID space, - const dReal *_planes, - unsigned int _planecount, - const dReal *_points, - unsigned int _pointcount, - const unsigned int *_polygons); - -ODE_API void dGeomSetConvex (dGeomID g, - const dReal *_planes, - unsigned int _count, - const dReal *_points, - unsigned int _pointcount, - const unsigned int *_polygons); -/*<-- Convex Functions*/ - -/** - * @defgroup collide_box Box Class - * @ingroup collide - */ - -/** - * @brief Create a box geom with the provided side lengths. - * - * @param space a space to contain the new geom. May be null. - * @param lx the length of the box along the X axis - * @param ly the length of the box along the Y axis - * @param lz the length of the box along the Z axis - * - * @returns A new box geom. - * - * @remarks The point of reference for a box is its center. - * - * @sa dGeomDestroy - * @sa dGeomBoxSetLengths - * @ingroup collide_box - */ -ODE_API dGeomID dCreateBox (dSpaceID space, dReal lx, dReal ly, dReal lz); - - -/** - * @brief Set the side lengths of the given box. - * - * @param box the box to set - * @param lx the length of the box along the X axis - * @param ly the length of the box along the Y axis - * @param lz the length of the box along the Z axis - * - * @sa dGeomBoxGetLengths - * @ingroup collide_box - */ -ODE_API void dGeomBoxSetLengths (dGeomID box, dReal lx, dReal ly, dReal lz); - - -/** - * @brief Get the side lengths of a box. - * - * @param box the box to query - * @param result the returned side lengths - * - * @sa dGeomBoxSetLengths - * @ingroup collide_box - */ -ODE_API void dGeomBoxGetLengths (dGeomID box, dVector3 result); - - -/** - * @brief Return the depth of a point in a box. - * - * @param box the box to query - * @param x the X coordinate of the point to test. - * @param y the Y coordinate of the point to test. - * @param z the Z coordinate of the point to test. - * - * @returns The depth of the point. Points inside the box will have a - * positive depth, points outside it will have a negative depth, and points - * on the surface will have a depth of zero. - */ -ODE_API dReal dGeomBoxPointDepth (dGeomID box, dReal x, dReal y, dReal z); - - -ODE_API dGeomID dCreatePlane (dSpaceID space, dReal a, dReal b, dReal c, dReal d); -ODE_API void dGeomPlaneSetParams (dGeomID plane, dReal a, dReal b, dReal c, dReal d); -ODE_API void dGeomPlaneGetParams (dGeomID plane, dVector4 result); -ODE_API dReal dGeomPlanePointDepth (dGeomID plane, dReal x, dReal y, dReal z); - -ODE_API dGeomID dCreateCapsule (dSpaceID space, dReal radius, dReal length); -ODE_API void dGeomCapsuleSetParams (dGeomID ccylinder, dReal radius, dReal length); -ODE_API void dGeomCapsuleGetParams (dGeomID ccylinder, dReal *radius, dReal *length); -ODE_API dReal dGeomCapsulePointDepth (dGeomID ccylinder, dReal x, dReal y, dReal z); - -/* For now we want to have a backwards compatible C-API, note: C++ API is not.*/ -#define dCreateCCylinder dCreateCapsule -#define dGeomCCylinderSetParams dGeomCapsuleSetParams -#define dGeomCCylinderGetParams dGeomCapsuleGetParams -#define dGeomCCylinderPointDepth dGeomCapsulePointDepth -#define dCCylinderClass dCapsuleClass - -ODE_API dGeomID dCreateCylinder (dSpaceID space, dReal radius, dReal length); -ODE_API void dGeomCylinderSetParams (dGeomID cylinder, dReal radius, dReal length); -ODE_API void dGeomCylinderGetParams (dGeomID cylinder, dReal *radius, dReal *length); - -ODE_API dGeomID dCreateRay (dSpaceID space, dReal length); -ODE_API void dGeomRaySetLength (dGeomID ray, dReal length); -ODE_API dReal dGeomRayGetLength (dGeomID ray); -ODE_API void dGeomRaySet (dGeomID ray, dReal px, dReal py, dReal pz, - dReal dx, dReal dy, dReal dz); -ODE_API void dGeomRayGet (dGeomID ray, dVector3 start, dVector3 dir); - -/* - * Set/get ray flags that influence ray collision detection. - * These flags are currently only noticed by the trimesh collider, because - * they can make a major differences there. - */ -ODE_API_DEPRECATED ODE_API void dGeomRaySetParams (dGeomID g, int FirstContact, int BackfaceCull); -ODE_API_DEPRECATED ODE_API void dGeomRayGetParams (dGeomID g, int *FirstContact, int *BackfaceCull); -ODE_API void dGeomRaySetFirstContact (dGeomID g, int firstContact); -ODE_API int dGeomRayGetFirstContact (dGeomID g); -ODE_API void dGeomRaySetBackfaceCull (dGeomID g, int backfaceCull); -ODE_API int dGeomRayGetBackfaceCull (dGeomID g); -ODE_API void dGeomRaySetClosestHit (dGeomID g, int closestHit); -ODE_API int dGeomRayGetClosestHit (dGeomID g); - -#include "collision_trimesh.h" - -ODE_API_DEPRECATED ODE_API dGeomID dCreateGeomTransform (dSpaceID space); -ODE_API_DEPRECATED ODE_API void dGeomTransformSetGeom (dGeomID g, dGeomID obj); -ODE_API_DEPRECATED ODE_API dGeomID dGeomTransformGetGeom (dGeomID g); -ODE_API_DEPRECATED ODE_API void dGeomTransformSetCleanup (dGeomID g, int mode); -ODE_API_DEPRECATED ODE_API int dGeomTransformGetCleanup (dGeomID g); -ODE_API_DEPRECATED ODE_API void dGeomTransformSetInfo (dGeomID g, int mode); -ODE_API_DEPRECATED ODE_API int dGeomTransformGetInfo (dGeomID g); - - -/* ************************************************************************ */ -/* heightfield functions */ - - -/* Data storage for heightfield data.*/ -struct dxHeightfieldData; -typedef struct dxHeightfieldData* dHeightfieldDataID; - - -/** - * @brief Callback prototype - * - * Used by the callback heightfield data type to sample a height for a - * given cell position. - * - * @param p_user_data User data specified when creating the dHeightfieldDataID - * @param x The index of a sample in the local x axis. It is a value - * in the range zero to ( nWidthSamples - 1 ). - * @param x The index of a sample in the local z axis. It is a value - * in the range zero to ( nDepthSamples - 1 ). - * - * @return The sample height which is then scaled and offset using the - * values specified when the heightfield data was created. - * - * @ingroup collide - */ -typedef dReal dHeightfieldGetHeight( void* p_user_data, int x, int z ); - - - -/** - * @brief Creates a heightfield geom. - * - * Uses the information in the given dHeightfieldDataID to construct - * a geom representing a heightfield in a collision space. - * - * @param space The space to add the geom to. - * @param data The dHeightfieldDataID created by dGeomHeightfieldDataCreate and - * setup by dGeomHeightfieldDataBuildCallback, dGeomHeightfieldDataBuildByte, - * dGeomHeightfieldDataBuildShort or dGeomHeightfieldDataBuildFloat. - * @param bPlaceable If non-zero this geom can be transformed in the world using the - * usual functions such as dGeomSetPosition and dGeomSetRotation. If the geom is - * not set as placeable, then it uses a fixed orientation where the global y axis - * represents the dynamic 'height' of the heightfield. - * - * @return A geom id to reference this geom in other calls. - * - * @ingroup collide - */ -ODE_API dGeomID dCreateHeightfield( dSpaceID space, - dHeightfieldDataID data, int bPlaceable ); - - -/** - * @brief Creates a new empty dHeightfieldDataID. - * - * Allocates a new dHeightfieldDataID and returns it. You must call - * dGeomHeightfieldDataDestroy to destroy it after the geom has been removed. - * The dHeightfieldDataID value is used when specifying a data format type. - * - * @return A dHeightfieldDataID for use with dGeomHeightfieldDataBuildCallback, - * dGeomHeightfieldDataBuildByte, dGeomHeightfieldDataBuildShort or - * dGeomHeightfieldDataBuildFloat. - * @ingroup collide - */ -ODE_API dHeightfieldDataID dGeomHeightfieldDataCreate(void); - - -/** - * @brief Destroys a dHeightfieldDataID. - * - * Deallocates a given dHeightfieldDataID and all managed resources. - * - * @param d A dHeightfieldDataID created by dGeomHeightfieldDataCreate - * @ingroup collide - */ -ODE_API void dGeomHeightfieldDataDestroy( dHeightfieldDataID d ); - - - -/** - * @brief Configures a dHeightfieldDataID to use a callback to - * retrieve height data. - * - * Before a dHeightfieldDataID can be used by a geom it must be - * configured to specify the format of the height data. - * This call specifies that the heightfield data is computed by - * the user and it should use the given callback when determining - * the height of a given element of it's shape. - * - * @param d A new dHeightfieldDataID created by dGeomHeightfieldDataCreate - * - * @param width Specifies the total 'width' of the heightfield along - * the geom's local x axis. - * @param depth Specifies the total 'depth' of the heightfield along - * the geom's local z axis. - * - * @param widthSamples Specifies the number of vertices to sample - * along the width of the heightfield. Each vertex has a corresponding - * height value which forms the overall shape. - * Naturally this value must be at least two or more. - * @param depthSamples Specifies the number of vertices to sample - * along the depth of the heightfield. - * - * @param scale A uniform scale applied to all raw height data. - * @param offset An offset applied to the scaled height data. - * - * @param thickness A value subtracted from the lowest height - * value which in effect adds an additional cuboid to the base of the - * heightfield. This is used to prevent geoms from looping under the - * desired terrain and not registering as a collision. Note that the - * thickness is not affected by the scale or offset parameters. - * - * @param bWrap If non-zero the heightfield will infinitely tile in both - * directions along the local x and z axes. If zero the heightfield is - * bounded from zero to width in the local x axis, and zero to depth in - * the local z axis. - * - * @ingroup collide - */ -ODE_API void dGeomHeightfieldDataBuildCallback( dHeightfieldDataID d, - void* pUserData, dHeightfieldGetHeight* pCallback, - dReal width, dReal depth, int widthSamples, int depthSamples, - dReal scale, dReal offset, dReal thickness, int bWrap ); - -/** - * @brief Configures a dHeightfieldDataID to use height data in byte format. - * - * Before a dHeightfieldDataID can be used by a geom it must be - * configured to specify the format of the height data. - * This call specifies that the heightfield data is stored as a rectangular - * array of bytes (8 bit unsigned) representing the height at each sample point. - * - * @param d A new dHeightfieldDataID created by dGeomHeightfieldDataCreate - * - * @param pHeightData A pointer to the height data. - * @param bCopyHeightData When non-zero the height data is copied to an - * internal store. When zero the height data is accessed by reference and - * so must persist throughout the lifetime of the heightfield. - * - * @param width Specifies the total 'width' of the heightfield along - * the geom's local x axis. - * @param depth Specifies the total 'depth' of the heightfield along - * the geom's local z axis. - * - * @param widthSamples Specifies the number of vertices to sample - * along the width of the heightfield. Each vertex has a corresponding - * height value which forms the overall shape. - * Naturally this value must be at least two or more. - * @param depthSamples Specifies the number of vertices to sample - * along the depth of the heightfield. - * - * @param scale A uniform scale applied to all raw height data. - * @param offset An offset applied to the scaled height data. - * - * @param thickness A value subtracted from the lowest height - * value which in effect adds an additional cuboid to the base of the - * heightfield. This is used to prevent geoms from looping under the - * desired terrain and not registering as a collision. Note that the - * thickness is not affected by the scale or offset parameters. - * - * @param bWrap If non-zero the heightfield will infinitely tile in both - * directions along the local x and z axes. If zero the heightfield is - * bounded from zero to width in the local x axis, and zero to depth in - * the local z axis. - * - * @ingroup collide - */ -ODE_API void dGeomHeightfieldDataBuildByte( dHeightfieldDataID d, - const unsigned char* pHeightData, int bCopyHeightData, - dReal width, dReal depth, int widthSamples, int depthSamples, - dReal scale, dReal offset, dReal thickness, int bWrap ); - -/** - * @brief Configures a dHeightfieldDataID to use height data in short format. - * - * Before a dHeightfieldDataID can be used by a geom it must be - * configured to specify the format of the height data. - * This call specifies that the heightfield data is stored as a rectangular - * array of shorts (16 bit signed) representing the height at each sample point. - * - * @param d A new dHeightfieldDataID created by dGeomHeightfieldDataCreate - * - * @param pHeightData A pointer to the height data. - * @param bCopyHeightData When non-zero the height data is copied to an - * internal store. When zero the height data is accessed by reference and - * so must persist throughout the lifetime of the heightfield. - * - * @param width Specifies the total 'width' of the heightfield along - * the geom's local x axis. - * @param depth Specifies the total 'depth' of the heightfield along - * the geom's local z axis. - * - * @param widthSamples Specifies the number of vertices to sample - * along the width of the heightfield. Each vertex has a corresponding - * height value which forms the overall shape. - * Naturally this value must be at least two or more. - * @param depthSamples Specifies the number of vertices to sample - * along the depth of the heightfield. - * - * @param scale A uniform scale applied to all raw height data. - * @param offset An offset applied to the scaled height data. - * - * @param thickness A value subtracted from the lowest height - * value which in effect adds an additional cuboid to the base of the - * heightfield. This is used to prevent geoms from looping under the - * desired terrain and not registering as a collision. Note that the - * thickness is not affected by the scale or offset parameters. - * - * @param bWrap If non-zero the heightfield will infinitely tile in both - * directions along the local x and z axes. If zero the heightfield is - * bounded from zero to width in the local x axis, and zero to depth in - * the local z axis. - * - * @ingroup collide - */ -ODE_API void dGeomHeightfieldDataBuildShort( dHeightfieldDataID d, - const short* pHeightData, int bCopyHeightData, - dReal width, dReal depth, int widthSamples, int depthSamples, - dReal scale, dReal offset, dReal thickness, int bWrap ); - -/** - * @brief Configures a dHeightfieldDataID to use height data in - * single precision floating point format. - * - * Before a dHeightfieldDataID can be used by a geom it must be - * configured to specify the format of the height data. - * This call specifies that the heightfield data is stored as a rectangular - * array of single precision floats representing the height at each - * sample point. - * - * @param d A new dHeightfieldDataID created by dGeomHeightfieldDataCreate - * - * @param pHeightData A pointer to the height data. - * @param bCopyHeightData When non-zero the height data is copied to an - * internal store. When zero the height data is accessed by reference and - * so must persist throughout the lifetime of the heightfield. - * - * @param width Specifies the total 'width' of the heightfield along - * the geom's local x axis. - * @param depth Specifies the total 'depth' of the heightfield along - * the geom's local z axis. - * - * @param widthSamples Specifies the number of vertices to sample - * along the width of the heightfield. Each vertex has a corresponding - * height value which forms the overall shape. - * Naturally this value must be at least two or more. - * @param depthSamples Specifies the number of vertices to sample - * along the depth of the heightfield. - * - * @param scale A uniform scale applied to all raw height data. - * @param offset An offset applied to the scaled height data. - * - * @param thickness A value subtracted from the lowest height - * value which in effect adds an additional cuboid to the base of the - * heightfield. This is used to prevent geoms from looping under the - * desired terrain and not registering as a collision. Note that the - * thickness is not affected by the scale or offset parameters. - * - * @param bWrap If non-zero the heightfield will infinitely tile in both - * directions along the local x and z axes. If zero the heightfield is - * bounded from zero to width in the local x axis, and zero to depth in - * the local z axis. - * - * @ingroup collide - */ -ODE_API void dGeomHeightfieldDataBuildSingle( dHeightfieldDataID d, - const float* pHeightData, int bCopyHeightData, - dReal width, dReal depth, int widthSamples, int depthSamples, - dReal scale, dReal offset, dReal thickness, int bWrap ); - -/** - * @brief Configures a dHeightfieldDataID to use height data in - * double precision floating point format. - * - * Before a dHeightfieldDataID can be used by a geom it must be - * configured to specify the format of the height data. - * This call specifies that the heightfield data is stored as a rectangular - * array of double precision floats representing the height at each - * sample point. - * - * @param d A new dHeightfieldDataID created by dGeomHeightfieldDataCreate - * - * @param pHeightData A pointer to the height data. - * @param bCopyHeightData When non-zero the height data is copied to an - * internal store. When zero the height data is accessed by reference and - * so must persist throughout the lifetime of the heightfield. - * - * @param width Specifies the total 'width' of the heightfield along - * the geom's local x axis. - * @param depth Specifies the total 'depth' of the heightfield along - * the geom's local z axis. - * - * @param widthSamples Specifies the number of vertices to sample - * along the width of the heightfield. Each vertex has a corresponding - * height value which forms the overall shape. - * Naturally this value must be at least two or more. - * @param depthSamples Specifies the number of vertices to sample - * along the depth of the heightfield. - * - * @param scale A uniform scale applied to all raw height data. - * @param offset An offset applied to the scaled height data. - * - * @param thickness A value subtracted from the lowest height - * value which in effect adds an additional cuboid to the base of the - * heightfield. This is used to prevent geoms from looping under the - * desired terrain and not registering as a collision. Note that the - * thickness is not affected by the scale or offset parameters. - * - * @param bWrap If non-zero the heightfield will infinitely tile in both - * directions along the local x and z axes. If zero the heightfield is - * bounded from zero to width in the local x axis, and zero to depth in - * the local z axis. - * - * @ingroup collide - */ -ODE_API void dGeomHeightfieldDataBuildDouble( dHeightfieldDataID d, - const double* pHeightData, int bCopyHeightData, - dReal width, dReal depth, int widthSamples, int depthSamples, - dReal scale, dReal offset, dReal thickness, int bWrap ); - -/** - * @brief Manually set the minimum and maximum height bounds. - * - * This call allows you to set explicit min / max values after initial - * creation typically for callback heightfields which default to +/- infinity, - * or those whose data has changed. This must be set prior to binding with a - * geom, as the the AABB is not recomputed after it's first generation. - * - * @remarks The minimum and maximum values are used to compute the AABB - * for the heightfield which is used for early rejection of collisions. - * A close fit will yield a more efficient collision check. - * - * @param d A dHeightfieldDataID created by dGeomHeightfieldDataCreate - * @param min_height The new minimum height value. Scale, offset and thickness is then applied. - * @param max_height The new maximum height value. Scale and offset is then applied. - * @ingroup collide - */ -ODE_API void dGeomHeightfieldDataSetBounds( dHeightfieldDataID d, - dReal minHeight, dReal maxHeight ); - - -/** - * @brief Assigns a dHeightfieldDataID to a heightfield geom. - * - * Associates the given dHeightfieldDataID with a heightfield geom. - * This is done without affecting the GEOM_PLACEABLE flag. - * - * @param g A geom created by dCreateHeightfield - * @param d A dHeightfieldDataID created by dGeomHeightfieldDataCreate - * @ingroup collide - */ -ODE_API void dGeomHeightfieldSetHeightfieldData( dGeomID g, dHeightfieldDataID d ); - - -/** - * @brief Gets the dHeightfieldDataID bound to a heightfield geom. - * - * Returns the dHeightfieldDataID associated with a heightfield geom. - * - * @param g A geom created by dCreateHeightfield - * @return The dHeightfieldDataID which may be NULL if none was assigned. - * @ingroup collide - */ -ODE_API dHeightfieldDataID dGeomHeightfieldGetHeightfieldData( dGeomID g ); - - - -/* ************************************************************************ */ -/* utility functions */ - -ODE_API void dClosestLineSegmentPoints (const dVector3 a1, const dVector3 a2, - const dVector3 b1, const dVector3 b2, - dVector3 cp1, dVector3 cp2); - -ODE_API int dBoxTouchesBox (const dVector3 _p1, const dMatrix3 R1, - const dVector3 side1, const dVector3 _p2, - const dMatrix3 R2, const dVector3 side2); - -/* The meaning of flags parameter is the same as in dCollide()*/ -ODE_API int dBoxBox (const dVector3 p1, const dMatrix3 R1, - const dVector3 side1, const dVector3 p2, - const dMatrix3 R2, const dVector3 side2, - dVector3 normal, dReal *depth, int *return_code, - int flags, dContactGeom *contact, int skip); - -ODE_API void dInfiniteAABB (dGeomID geom, dReal aabb[6]); - - -/* ************************************************************************ */ -/* custom classes */ - -typedef void dGetAABBFn (dGeomID, dReal aabb[6]); -typedef int dColliderFn (dGeomID o1, dGeomID o2, - int flags, dContactGeom *contact, int skip); -typedef dColliderFn * dGetColliderFnFn (int num); -typedef void dGeomDtorFn (dGeomID o); -typedef int dAABBTestFn (dGeomID o1, dGeomID o2, dReal aabb[6]); - -typedef struct dGeomClass { - int bytes; - dGetColliderFnFn *collider; - dGetAABBFn *aabb; - dAABBTestFn *aabb_test; - dGeomDtorFn *dtor; -} dGeomClass; - -ODE_API int dCreateGeomClass (const dGeomClass *classptr); -ODE_API void * dGeomGetClassData (dGeomID); -ODE_API dGeomID dCreateGeom (int classnum); - -/** - * @brief Sets a custom collider function for two geom classes. - * - * @param i The first geom class handled by this collider - * @param j The second geom class handled by this collider - * @param fn The collider function to use to determine collisions. - * @ingroup collide - */ -ODE_API void dSetColliderOverride (int i, int j, dColliderFn *fn); - - -/* ************************************************************************ */ - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/collision_space.h b/misc/builddeps/linux64/ode/include/ode/collision_space.h deleted file mode 100644 index 30cc536c..00000000 --- a/misc/builddeps/linux64/ode/include/ode/collision_space.h +++ /dev/null @@ -1,182 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_COLLISION_SPACE_H_ -#define _ODE_COLLISION_SPACE_H_ - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -struct dContactGeom; - -/** - * @brief User callback for geom-geom collision testing. - * - * @param data The user data object, as passed to dSpaceCollide. - * @param o1 The first geom being tested. - * @param o2 The second geom being test. - * - * @remarks The callback function can call dCollide on o1 and o2 to generate - * contact points between each pair. Then these contact points may be added - * to the simulation as contact joints. The user's callback function can of - * course chose not to call dCollide for any pair, e.g. if the user decides - * that those pairs should not interact. - * - * @ingroup collide - */ -typedef void dNearCallback (void *data, dGeomID o1, dGeomID o2); - - -ODE_API dSpaceID dSimpleSpaceCreate (dSpaceID space); -ODE_API dSpaceID dHashSpaceCreate (dSpaceID space); -ODE_API dSpaceID dQuadTreeSpaceCreate (dSpaceID space, const dVector3 Center, const dVector3 Extents, int Depth); - - -/* SAP */ -/* Order XZY or ZXY usually works best, if your Y is up. */ -#define dSAP_AXES_XYZ ((0)|(1<<2)|(2<<4)) -#define dSAP_AXES_XZY ((0)|(2<<2)|(1<<4)) -#define dSAP_AXES_YXZ ((1)|(0<<2)|(2<<4)) -#define dSAP_AXES_YZX ((1)|(2<<2)|(0<<4)) -#define dSAP_AXES_ZXY ((2)|(0<<2)|(1<<4)) -#define dSAP_AXES_ZYX ((2)|(1<<2)|(0<<4)) - -ODE_API dSpaceID dSweepAndPruneSpaceCreate( dSpaceID space, int axisorder ); - - - -ODE_API void dSpaceDestroy (dSpaceID); - -ODE_API void dHashSpaceSetLevels (dSpaceID space, int minlevel, int maxlevel); -ODE_API void dHashSpaceGetLevels (dSpaceID space, int *minlevel, int *maxlevel); - -ODE_API void dSpaceSetCleanup (dSpaceID space, int mode); -ODE_API int dSpaceGetCleanup (dSpaceID space); - -/** -* @brief Sets sublevel value for a space. -* -* Sublevel affects how the space is handled in dSpaceCollide2 when it is collided -* with another space. If sublevels of both spaces match, the function iterates -* geometries of both spaces and collides them with each other. If sublevel of one -* space is greater than the sublevel of another one, only the geometries of the -* space with greater sublevel are iterated, another space is passed into -* collision callback as a geometry itself. By default all the spaces are assigned -* zero sublevel. -* -* @note -* The space sublevel @e IS @e NOT automatically updated when one space is inserted -* into another or removed from one. It is a client's responsibility to update sublevel -* value if necessary. -* -* @param space the space to modify -* @param sublevel the sublevel value to be assigned -* @ingroup collide -* @see dSpaceGetSublevel -* @see dSpaceCollide2 -*/ -ODE_API void dSpaceSetSublevel (dSpaceID space, int sublevel); - -/** -* @brief Gets sublevel value of a space. -* -* Sublevel affects how the space is handled in dSpaceCollide2 when it is collided -* with another space. See @c dSpaceSetSublevel for more details. -* -* @param space the space to query -* @returns the sublevel value of the space -* @ingroup collide -* @see dSpaceSetSublevel -* @see dSpaceCollide2 -*/ -ODE_API int dSpaceGetSublevel (dSpaceID space); - - -/** -* @brief Sets manual cleanup flag for a space. -* -* Manual cleanup flag marks a space as eligible for manual thread data cleanup. -* This function should be called for every space object right after creation in -* case if ODE has been initialized with @c dInitFlagManualThreadCleanup flag. -* -* Failure to set manual cleanup flag for a space may lead to some resources -* remaining leaked until the program exit. -* -* @param space the space to modify -* @param mode 1 for manual cleanup mode and 0 for default cleanup mode -* @ingroup collide -* @see dSpaceGetManualCleanup -* @see dInitODE2 -*/ -ODE_API void dSpaceSetManualCleanup (dSpaceID space, int mode); - -/** -* @brief Get manual cleanup flag of a space. -* -* Manual cleanup flag marks a space space as eligible for manual thread data cleanup. -* See @c dSpaceSetManualCleanup for more details. -* -* @param space the space to query -* @returns 1 for manual cleanup mode and 0 for default cleanup mode of the space -* @ingroup collide -* @see dSpaceSetManualCleanup -* @see dInitODE2 -*/ -ODE_API int dSpaceGetManualCleanup (dSpaceID space); - -ODE_API void dSpaceAdd (dSpaceID, dGeomID); -ODE_API void dSpaceRemove (dSpaceID, dGeomID); -ODE_API int dSpaceQuery (dSpaceID, dGeomID); -ODE_API void dSpaceClean (dSpaceID); -ODE_API int dSpaceGetNumGeoms (dSpaceID); -ODE_API dGeomID dSpaceGetGeom (dSpaceID, int i); - -/** - * @brief Given a space, this returns its class. - * - * The ODE classes are: - * @li dSimpleSpaceClass - * @li dHashSpaceClass - * @li dSweepAndPruneSpaceClass - * @li dQuadTreeSpaceClass - * @li dFirstUserClass - * @li dLastUserClass - * - * The class id not defined by the user should be between - * dFirstSpaceClass and dLastSpaceClass. - * - * User-defined class will return their own number. - * - * @param space the space to query - * @returns The space class ID. - * @ingroup collide - */ -ODE_API int dSpaceGetClass(dSpaceID space); - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/collision_trimesh.h b/misc/builddeps/linux64/ode/include/ode/collision_trimesh.h deleted file mode 100644 index aa8f6245..00000000 --- a/misc/builddeps/linux64/ode/include/ode/collision_trimesh.h +++ /dev/null @@ -1,316 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -/* - * TriMesh code by Erwin de Vries. - * - * Trimesh data. - * This is where the actual vertexdata (pointers), and BV tree is stored. - * Vertices should be single precision! - * This should be more sophisticated, so that the user can easyly implement - * another collision library, but this is a lot of work, and also costs some - * performance because some data has to be copied. - */ - -#ifndef _ODE_COLLISION_TRIMESH_H_ -#define _ODE_COLLISION_TRIMESH_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * Data storage for triangle meshes. - */ -struct dxTriMeshData; -typedef struct dxTriMeshData* dTriMeshDataID; - - -typedef enum -{ - dMTV__MIN, - - dMTV_FIRST = dMTV__MIN, - dMTV_SECOND, - dMTV_THIRD, - - dMTV__MAX, - -} dMeshTriangleVertex; - -/* - * These don't make much sense now, but they will later when we add more - * features. - */ -ODE_API dTriMeshDataID dGeomTriMeshDataCreate(void); -ODE_API void dGeomTriMeshDataDestroy(dTriMeshDataID g); - - -/* - * The values of data_id that can be used with dGeomTriMeshDataSet/dGeomTriMeshDataGet - */ -enum -{ - dTRIMESHDATA__MIN, - - dTRIMESHDATA_FACE_NORMALS = dTRIMESHDATA__MIN, - dTRIMESHDATA_USE_FLAGS, - - dTRIMESHDATA__MAX, - -#ifndef TRIMESH_FACE_NORMALS // Define this name during the header inclusion if you need it for something else - // Included for backward compatibility -- please use the corrected name above. Sorry. - TRIMESH_FACE_NORMALS = dTRIMESHDATA_FACE_NORMALS, -#endif -}; - -/* - * The flags of the dTRIMESHDATA_USE_FLAGS data elements - */ -enum -{ - dMESHDATAUSE_EDGE1 = 0x01, - dMESHDATAUSE_EDGE2 = 0x02, - dMESHDATAUSE_EDGE3 = 0x04, - dMESHDATAUSE_VERTEX1 = 0x08, - dMESHDATAUSE_VERTEX2 = 0x10, - dMESHDATAUSE_VERTEX3 = 0x20, -}; - -/* - * Set and get the TriMeshData additional data - * Note: The data is NOT COPIED on assignment - */ -ODE_API void dGeomTriMeshDataSet(dTriMeshDataID g, int data_id, void *in_data); -ODE_API void *dGeomTriMeshDataGet(dTriMeshDataID g, int data_id); -ODE_API void *dGeomTriMeshDataGet2(dTriMeshDataID g, int data_id, dsizeint *pout_size/*=NULL*/); - - - -/** - * We need to set the last transform after each time step for - * accurate collision response. These functions get and set that transform. - * It is stored per geom instance, rather than per dTriMeshDataID. - */ -ODE_API void dGeomTriMeshSetLastTransform( dGeomID g, const dMatrix4 last_trans ); -ODE_API const dReal* dGeomTriMeshGetLastTransform( dGeomID g ); - -/* - * Build a TriMesh data object with single precision vertex data. - */ -ODE_API void dGeomTriMeshDataBuildSingle(dTriMeshDataID g, - const void* Vertices, int VertexStride, int VertexCount, - const void* Indices, int IndexCount, int TriStride); -/* same again with a normals array (used as trimesh-trimesh optimization) */ -ODE_API void dGeomTriMeshDataBuildSingle1(dTriMeshDataID g, - const void* Vertices, int VertexStride, int VertexCount, - const void* Indices, int IndexCount, int TriStride, - const void* Normals); -/* -* Build a TriMesh data object with double precision vertex data. -*/ -ODE_API void dGeomTriMeshDataBuildDouble(dTriMeshDataID g, - const void* Vertices, int VertexStride, int VertexCount, - const void* Indices, int IndexCount, int TriStride); -/* same again with a normals array (used as trimesh-trimesh optimization) */ -ODE_API void dGeomTriMeshDataBuildDouble1(dTriMeshDataID g, - const void* Vertices, int VertexStride, int VertexCount, - const void* Indices, int IndexCount, int TriStride, - const void* Normals); - -/* - * Simple build. Single/double precision based on dSINGLE/dDOUBLE! - */ -ODE_API void dGeomTriMeshDataBuildSimple(dTriMeshDataID g, - const dReal* Vertices, int VertexCount, - const dTriIndex* Indices, int IndexCount); -/* same again with a normals array (used as trimesh-trimesh optimization) */ -ODE_API void dGeomTriMeshDataBuildSimple1(dTriMeshDataID g, - const dReal* Vertices, int VertexCount, - const dTriIndex* Indices, int IndexCount, - const int* Normals); - - -/* - * Data preprocessing build request flags. - */ -enum -{ - dTRIDATAPREPROCESS_BUILD__MIN, - - dTRIDATAPREPROCESS_BUILD_CONCAVE_EDGES = dTRIDATAPREPROCESS_BUILD__MIN, // Used to optimize OPCODE trimesh-capsule collisions; allocates 1 byte per triangle; no extra data associated - dTRIDATAPREPROCESS_BUILD_FACE_ANGLES, // Used to aid trimesh-convex collisions; memory requirements depend on extra data - - dTRIDATAPREPROCESS_BUILD__MAX, -}; - -/* - * Data preprocessing extra values for dTRIDATAPREPROCESS_BUILD_FACE_ANGLES. - */ -enum -{ - dTRIDATAPREPROCESS_FACE_ANGLES_EXTRA__MIN, - - dTRIDATAPREPROCESS_FACE_ANGLES_EXTRA_BYTE_POSITIVE = dTRIDATAPREPROCESS_FACE_ANGLES_EXTRA__MIN, // Build angles for convex edges only and store as bytes; allocates 3 bytes per triangle; stores angles (0..180] in 1/254 fractions leaving two values for the flat and all the concaves - dTRIDATAPREPROCESS_FACE_ANGLES_EXTRA_BYTE_ALL, // Build angles for all the edges and store in bytes; allocates 3 bytes per triangle; stores angles [-180..0) and (0..180] in 1/127 fractions plus a value for the flat angle - dTRIDATAPREPROCESS_FACE_ANGLES_EXTRA_WORD_ALL, // Build angles for all the edges and store in words; allocates 6 bytes per triangle; stores angles [-180..0) and (0..180] in 1/32767 fractions plus a value for the flat angle - - dTRIDATAPREPROCESS_FACE_ANGLES_EXTRA__MAX, - - dTRIDATAPREPROCESS_FACE_ANGLES_EXTRA__DEFAULT = dTRIDATAPREPROCESS_FACE_ANGLES_EXTRA_BYTE_POSITIVE, // The default value assumed if the extra data is not provided -}; - - -/* - * Pre-process the trimesh data according to the request flags. - * - * buildRequestFlags is a bitmask of 1U << dTRIDATAPREPROCESS_BUILD_... - * It is allowed to call the function multiple times provided the bitmasks are different each time. - * - * requestExtraData is an optional pointer to array of extra parameters per bitmask bits - * (only the elements indexed by positions of raised bits are examined; - * defaults are assumed if the pointer is NULL) - * - * The function returns a boolean status the only failure reason being insufficient memory. - */ -ODE_API int dGeomTriMeshDataPreprocess2(dTriMeshDataID g, unsigned int buildRequestFlags, const dintptr *requestExtraData/*=NULL | const dintptr (*)[dTRIDATAPREPROCESS_BUILD__MAX]*/); - -/* - * Obsolete. Equivalent to calling dGeomTriMeshDataPreprocess2(g, (1U << dTRIDATAPREPROCESS_BUILD_CONCAVE_EDGES), NULL) - */ -ODE_API int dGeomTriMeshDataPreprocess(dTriMeshDataID g); - - - -/* - * Get and set the internal preprocessed trimesh data buffer (see the enumerated type above), for loading and saving - * These functions are deprecated. Use dGeomTriMeshDataSet/dGeomTriMeshDataGet2 with dTRIMESHDATA_USE_FLAGS instead. - */ -ODE_API_DEPRECATED ODE_API void dGeomTriMeshDataGetBuffer(dTriMeshDataID g, unsigned char** buf, int* bufLen); -ODE_API_DEPRECATED ODE_API void dGeomTriMeshDataSetBuffer(dTriMeshDataID g, unsigned char* buf); - - -/* - * Per triangle callback. Allows the user to say if he wants a collision with - * a particular triangle. - */ -typedef int dTriCallback(dGeomID TriMesh, dGeomID RefObject, int TriangleIndex); -ODE_API void dGeomTriMeshSetCallback(dGeomID g, dTriCallback* Callback); -ODE_API dTriCallback* dGeomTriMeshGetCallback(dGeomID g); - -/* - * Per object callback. Allows the user to get the list of triangles in 1 - * shot. Maybe we should remove this one. - */ -typedef void dTriArrayCallback(dGeomID TriMesh, dGeomID RefObject, const int* TriIndices, int TriCount); -ODE_API void dGeomTriMeshSetArrayCallback(dGeomID g, dTriArrayCallback* ArrayCallback); -ODE_API dTriArrayCallback* dGeomTriMeshGetArrayCallback(dGeomID g); - -/* - * Ray callback. - * Allows the user to say if a ray collides with a triangle on barycentric - * coords. The user can for example sample a texture with alpha transparency - * to determine if a collision should occur. - */ -typedef int dTriRayCallback(dGeomID TriMesh, dGeomID Ray, int TriangleIndex, dReal u, dReal v); -ODE_API void dGeomTriMeshSetRayCallback(dGeomID g, dTriRayCallback* Callback); -ODE_API dTriRayCallback* dGeomTriMeshGetRayCallback(dGeomID g); - -/* - * Triangle merging callback. - * Allows the user to generate a fake triangle index for a new contact generated - * from merging of two other contacts. That index could later be used by the - * user to determine attributes of original triangles used as sources for a - * merged contact. - */ -typedef int dTriTriMergeCallback(dGeomID TriMesh, int FirstTriangleIndex, int SecondTriangleIndex); -ODE_API void dGeomTriMeshSetTriMergeCallback(dGeomID g, dTriTriMergeCallback* Callback); -ODE_API dTriTriMergeCallback* dGeomTriMeshGetTriMergeCallback(dGeomID g); - -/* - * Trimesh class - * Construction. Callbacks are optional. - */ -ODE_API dGeomID dCreateTriMesh(dSpaceID space, dTriMeshDataID Data, dTriCallback* Callback, dTriArrayCallback* ArrayCallback, dTriRayCallback* RayCallback); - -ODE_API void dGeomTriMeshSetData(dGeomID g, dTriMeshDataID Data); -ODE_API dTriMeshDataID dGeomTriMeshGetData(dGeomID g); - - -/* enable/disable/check temporal coherence*/ -ODE_API void dGeomTriMeshEnableTC(dGeomID g, int geomClass, int enable); -ODE_API int dGeomTriMeshIsTCEnabled(dGeomID g, int geomClass); - -/* - * Clears the internal temporal coherence caches. When a geom has its - * collision checked with a trimesh once, data is stored inside the trimesh. - * With large worlds with lots of seperate objects this list could get huge. - * We should be able to do this automagically. - */ -ODE_API void dGeomTriMeshClearTCCache(dGeomID g); - - -/* - * returns the TriMeshDataID - */ -ODE_API dTriMeshDataID dGeomTriMeshGetTriMeshDataID(dGeomID g); - -/* - * Gets a triangle. - */ -ODE_API void dGeomTriMeshGetTriangle(dGeomID g, int Index, dVector3* v0, dVector3* v1, dVector3* v2); - -/* - * Gets the point on the requested triangle and the given barycentric - * coordinates. - */ -ODE_API void dGeomTriMeshGetPoint(dGeomID g, int Index, dReal u, dReal v, dVector3 Out); - -/* - -This is how the strided data works: - -struct StridedVertex{ - dVector3 Vertex; - // Userdata -}; -int VertexStride = sizeof(StridedVertex); - -struct StridedTri{ - int Indices[3]; - // Userdata -}; -int TriStride = sizeof(StridedTri); - -*/ - - -ODE_API int dGeomTriMeshGetTriangleCount (dGeomID g); - -ODE_API void dGeomTriMeshDataUpdate(dTriMeshDataID g); - -#ifdef __cplusplus -} -#endif - -#endif /* _ODE_COLLISION_TRIMESH_H_ */ - diff --git a/misc/builddeps/linux64/ode/include/ode/common.h b/misc/builddeps/linux64/ode/include/ode/common.h deleted file mode 100644 index b0a57934..00000000 --- a/misc/builddeps/linux64/ode/include/ode/common.h +++ /dev/null @@ -1,568 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_COMMON_H_ -#define _ODE_COMMON_H_ - -#include -#include - - -#ifdef __cplusplus -extern "C" { -#endif - - -/* configuration stuff */ - -/* constants */ - -/* pi and 1/sqrt(2) are defined here if necessary because they don't get - * defined in on some platforms (like MS-Windows) - */ - -#ifndef M_PI -#define M_PI REAL(3.1415926535897932384626433832795029) -#endif -#ifndef M_PI_2 -#define M_PI_2 REAL(1.5707963267948966192313216916398) -#endif -#ifndef M_SQRT1_2 -#define M_SQRT1_2 REAL(0.7071067811865475244008443621048490) -#endif - - -/* floating point data type, vector, matrix and quaternion types */ - -#if defined(dSINGLE) -typedef float dReal; -#ifdef dDOUBLE -#error You can only #define dSINGLE or dDOUBLE, not both. -#endif /* dDOUBLE */ -#elif defined(dDOUBLE) -typedef double dReal; -#else -#error You must #define dSINGLE or dDOUBLE -#endif - -/* Detect if we've got both trimesh engines enabled. */ -#if dTRIMESH_ENABLED -#if dTRIMESH_OPCODE && dTRIMESH_GIMPACT -#error You can only #define dTRIMESH_OPCODE or dTRIMESH_GIMPACT, not both. -#endif -#endif /* dTRIMESH_ENABLED */ - -/* - * Define a type for indices, either 16 or 32 bit, based on build option - * TODO: Currently GIMPACT only supports 32 bit indices. - */ -#if dTRIMESH_16BIT_INDICES -#if dTRIMESH_GIMPACT -typedef duint32 dTriIndex; -#else /* dTRIMESH_GIMPACT */ -typedef duint16 dTriIndex; -#endif /* dTRIMESH_GIMPACT */ -#else /* dTRIMESH_16BIT_INDICES */ -typedef duint32 dTriIndex; -#endif /* dTRIMESH_16BIT_INDICES */ - -/* round an integer up to a multiple of 4, except that 0 and 1 are unmodified - * (used to compute matrix leading dimensions) - */ -#define dPAD(a) (((a) > 1) ? (((a) + 3) & (int)(~3)) : (a)) - -typedef enum { - dSA__MIN, - - dSA_X = dSA__MIN, - dSA_Y, - dSA_Z, - - dSA__MAX, -} dSpaceAxis; - -typedef enum { - dMD__MIN, - - dMD_LINEAR = dMD__MIN, - dMD_ANGULAR, - - dMD__MAX, -} dMotionDynamics; - -typedef enum { - dDA__MIN, - - dDA__L_MIN = dDA__MIN + dMD_LINEAR * dSA__MAX, - - dDA_LX = dDA__L_MIN + dSA_X, - dDA_LY = dDA__L_MIN + dSA_Y, - dDA_LZ = dDA__L_MIN + dSA_Z, - - dDA__L_MAX = dDA__L_MIN + dSA__MAX, - - dDA__A_MIN = dDA__MIN + dMD_ANGULAR * dSA__MAX, - - dDA_AX = dDA__A_MIN + dSA_X, - dDA_AY = dDA__A_MIN + dSA_Y, - dDA_AZ = dDA__A_MIN + dSA_Z, - - dDA__A_MAX = dDA__A_MIN + dSA__MAX, - - dDA__MAX = dDA__MIN + dMD__MAX * dSA__MAX, -} dDynamicsAxis; - -typedef enum { - dV3E__MIN, - - dV3E__AXES_MIN = dV3E__MIN, - - dV3E_X = dV3E__AXES_MIN + dSA_X, - dV3E_Y = dV3E__AXES_MIN + dSA_Y, - dV3E_Z = dV3E__AXES_MIN + dSA_Z, - - dV3E__AXES_MAX = dV3E__AXES_MIN + dSA__MAX, - - dV3E_PAD = dV3E__AXES_MAX, - - dV3E__MAX, - - dV3E__AXES_COUNT = dV3E__AXES_MAX - dV3E__AXES_MIN, -} dVec3Element; - -typedef enum { - dV4E__MIN, - - dV4E_X = dV4E__MIN + dSA_X, - dV4E_Y = dV4E__MIN + dSA_Y, - dV4E_Z = dV4E__MIN + dSA_Z, - dV4E_O = dV4E__MIN + dSA__MAX, - - dV4E__MAX, -} dVec4Element; - -typedef enum { - dM3E__MIN, - - dM3E__X_MIN = dM3E__MIN + dSA_X * dV3E__MAX, - - dM3E__X_AXES_MIN = dM3E__X_MIN + dV3E__AXES_MIN, - - dM3E_XX = dM3E__X_MIN + dV3E_X, - dM3E_XY = dM3E__X_MIN + dV3E_Y, - dM3E_XZ = dM3E__X_MIN + dV3E_Z, - - dM3E__X_AXES_MAX = dM3E__X_MIN + dV3E__AXES_MAX, - - dM3E_XPAD = dM3E__X_MIN + dV3E_PAD, - - dM3E__X_MAX = dM3E__X_MIN + dV3E__MAX, - - dM3E__Y_MIN = dM3E__MIN + dSA_Y * dV3E__MAX, - - dM3E__Y_AXES_MIN = dM3E__Y_MIN + dV3E__AXES_MIN, - - dM3E_YX = dM3E__Y_MIN + dV3E_X, - dM3E_YY = dM3E__Y_MIN + dV3E_Y, - dM3E_YZ = dM3E__Y_MIN + dV3E_Z, - - dM3E__Y_AXES_MAX = dM3E__Y_MIN + dV3E__AXES_MAX, - - dM3E_YPAD = dM3E__Y_MIN + dV3E_PAD, - - dM3E__Y_MAX = dM3E__Y_MIN + dV3E__MAX, - - dM3E__Z_MIN = dM3E__MIN + dSA_Z * dV3E__MAX, - - dM3E__Z_AXES_MIN = dM3E__Z_MIN + dV3E__AXES_MIN, - - dM3E_ZX = dM3E__Z_MIN + dV3E_X, - dM3E_ZY = dM3E__Z_MIN + dV3E_Y, - dM3E_ZZ = dM3E__Z_MIN + dV3E_Z, - - dM3E__Z_AXES_MAX = dM3E__Z_MIN + dV3E__AXES_MAX, - - dM3E_ZPAD = dM3E__Z_MIN + dV3E_PAD, - - dM3E__Z_MAX = dM3E__Z_MIN + dV3E__MAX, - - dM3E__MAX = dM3E__MIN + dSA__MAX * dV3E__MAX, -} dMat3Element; - -typedef enum { - dM4E__MIN, - - dM4E__X_MIN = dM4E__MIN + dV4E_X * dV4E__MAX, - - dM4E_XX = dM4E__X_MIN + dV4E_X, - dM4E_XY = dM4E__X_MIN + dV4E_Y, - dM4E_XZ = dM4E__X_MIN + dV4E_Z, - dM4E_XO = dM4E__X_MIN + dV4E_O, - - dM4E__X_MAX = dM4E__X_MIN + dV4E__MAX, - - dM4E__Y_MIN = dM4E__MIN + dV4E_Y * dV4E__MAX, - - dM4E_YX = dM4E__Y_MIN + dV4E_X, - dM4E_YY = dM4E__Y_MIN + dV4E_Y, - dM4E_YZ = dM4E__Y_MIN + dV4E_Z, - dM4E_YO = dM4E__Y_MIN + dV4E_O, - - dM4E__Y_MAX = dM4E__Y_MIN + dV4E__MAX, - - dM4E__Z_MIN = dM4E__MIN + dV4E_Z * dV4E__MAX, - - dM4E_ZX = dM4E__Z_MIN + dV4E_X, - dM4E_ZY = dM4E__Z_MIN + dV4E_Y, - dM4E_ZZ = dM4E__Z_MIN + dV4E_Z, - dM4E_ZO = dM4E__Z_MIN + dV4E_O, - - dM4E__Z_MAX = dM4E__Z_MIN + dV4E__MAX, - - dM4E__O_MIN = dM4E__MIN + dV4E_O * dV4E__MAX, - - dM4E_OX = dM4E__O_MIN + dV4E_X, - dM4E_OY = dM4E__O_MIN + dV4E_Y, - dM4E_OZ = dM4E__O_MIN + dV4E_Z, - dM4E_OO = dM4E__O_MIN + dV4E_O, - - dM4E__O_MAX = dM4E__O_MIN + dV4E__MAX, - - dM4E__MAX = dM4E__MIN + dV4E__MAX * dV4E__MAX, -} dMat4Element; - -typedef enum { - dQUE__MIN, - - dQUE_R = dQUE__MIN, - - dQUE__AXIS_MIN, - - dQUE_I = dQUE__AXIS_MIN + dSA_X, - dQUE_J = dQUE__AXIS_MIN + dSA_Y, - dQUE_K = dQUE__AXIS_MIN + dSA_Z, - - dQUE__AXIS_MAX = dQUE__AXIS_MIN + dSA__MAX, - - dQUE__MAX = dQUE__AXIS_MAX, -} dQuatElement; - -/* these types are mainly just used in headers */ -typedef dReal dVector3[dV3E__MAX]; -typedef dReal dVector4[dV4E__MAX]; -typedef dReal dMatrix3[dM3E__MAX]; -typedef dReal dMatrix4[dM4E__MAX]; -typedef dReal dMatrix6[(dMD__MAX * dV3E__MAX) * (dMD__MAX * dSA__MAX)]; -typedef dReal dQuaternion[dQUE__MAX]; - - -/* precision dependent scalar math functions */ - -#if defined(dSINGLE) - -#define REAL(x) (x##f) /* form a constant */ -#define dRecip(x) ((1.0f/(x))) /* reciprocal */ -#define dSqrt(x) (sqrtf(x)) /* square root */ -#define dRecipSqrt(x) ((1.0f/sqrtf(x))) /* reciprocal square root */ -#define dSin(x) (sinf(x)) /* sine */ -#define dCos(x) (cosf(x)) /* cosine */ -#define dFabs(x) (fabsf(x)) /* absolute value */ -#define dAtan2(y,x) (atan2f(y,x)) /* arc tangent with 2 args */ -#define dAsin(x) (asinf(x)) -#define dAcos(x) (acosf(x)) -#define dFMod(a,b) (fmodf(a,b)) /* modulo */ -#define dFloor(x) floorf(x) /* floor */ -#define dCeil(x) ceilf(x) /* ceil */ -#define dCopySign(a,b) _ode_copysignf(a, b) /* copy value sign */ -#define dNextAfter(x, y) _ode_nextafterf(x, y) /* next value after */ - -#ifdef HAVE___ISNANF -#define dIsNan(x) (__isnanf(x)) -#elif defined(HAVE__ISNANF) -#define dIsNan(x) (_isnanf(x)) -#elif defined(HAVE_ISNANF) -#define dIsNan(x) (isnanf(x)) -#else - /* - fall back to _isnan which is the VC way, - this may seem redundant since we already checked - for _isnan before, but if isnan is detected by - configure but is not found during compilation - we should always make sure we check for __isnanf, - _isnanf and isnanf in that order before falling - back to a default - */ -#define dIsNan(x) (_isnan(x)) -#endif - -#elif defined(dDOUBLE) - -#define REAL(x) (x) -#define dRecip(x) (1.0/(x)) -#define dSqrt(x) sqrt(x) -#define dRecipSqrt(x) (1.0/sqrt(x)) -#define dSin(x) sin(x) -#define dCos(x) cos(x) -#define dFabs(x) fabs(x) -#define dAtan2(y,x) atan2((y),(x)) -#define dAsin(x) asin(x) -#define dAcos(x) acos(x) -#define dFMod(a,b) (fmod((a),(b))) -#define dFloor(x) floor(x) -#define dCeil(x) ceil(x) -#define dCopySign(a,b) _ode_copysign(a, b) -#define dNextAfter(x, y) _ode_nextafter(x, y) - -#ifdef HAVE___ISNAN -#define dIsNan(x) (__isnan(x)) -#elif defined(HAVE__ISNAN) -#define dIsNan(x) (_isnan(x)) -#elif defined(HAVE_ISNAN) -#define dIsNan(x) (isnan(x)) -#else -#define dIsNan(x) (_isnan(x)) -#endif - -#else -#error You must #define dSINGLE or dDOUBLE -#endif - -ODE_PURE_INLINE dReal dMin(dReal x, dReal y) { return x <= y ? x : y; } -ODE_PURE_INLINE dReal dMax(dReal x, dReal y) { return x <= y ? y : x; } - - -/* internal object types (all prefixed with `dx') */ - -struct dxWorld; /* dynamics world */ -struct dxSpace; /* collision space */ -struct dxBody; /* rigid body (dynamics object) */ -struct dxGeom; /* geometry (collision object) */ -struct dxJoint; /* joint */ -struct dxJointGroup;/* joint group */ - - -typedef struct dxWorld *dWorldID; -typedef struct dxSpace *dSpaceID; -typedef struct dxBody *dBodyID; -typedef struct dxGeom *dGeomID; -typedef struct dxJoint *dJointID; -typedef struct dxJointGroup *dJointGroupID; - - -/* error numbers */ - -enum { - d_ERR_UNKNOWN = 0, /* unknown error */ - d_ERR_IASSERT, /* internal assertion failed */ - d_ERR_UASSERT, /* user assertion failed */ - d_ERR_LCP /* user assertion failed */ -}; - - -/* joint type numbers */ - -typedef enum { - dJointTypeNone = 0, /* or "unknown" */ - dJointTypeBall, - dJointTypeHinge, - dJointTypeSlider, - dJointTypeContact, - dJointTypeUniversal, - dJointTypeHinge2, - dJointTypeFixed, - dJointTypeNull, - dJointTypeAMotor, - dJointTypeLMotor, - dJointTypePlane2D, - dJointTypePR, - dJointTypePU, - dJointTypePiston, - dJointTypeDBall, - dJointTypeDHinge, - dJointTypeTransmission, -} dJointType; - - -/* an alternative way of setting joint parameters, using joint parameter - * structures and member constants. we don't actually do this yet. - */ - -/* -typedef struct dLimot { - int mode; - dReal lostop, histop; - dReal vel, fmax; - dReal fudge_factor; - dReal bounce, soft; - dReal suspension_erp, suspension_cfm; -} dLimot; - -enum { - dLimotLoStop = 0x0001, - dLimotHiStop = 0x0002, - dLimotVel = 0x0004, - dLimotFMax = 0x0008, - dLimotFudgeFactor = 0x0010, - dLimotBounce = 0x0020, - dLimotSoft = 0x0040 -}; -*/ - - -/* standard joint parameter names. why are these here? - because we don't want - * to include all the joint function definitions in joint.cpp. hmmmm. - * MSVC complains if we call D_ALL_PARAM_NAMES_X with a blank second argument, - * which is why we have the D_ALL_PARAM_NAMES macro as well. please copy and - * paste between these two. - */ - -#define D_ALL_PARAM_NAMES(start) \ - /* parameters for limits and motors */ \ - dParamLoStop = start, \ - dParamHiStop, \ - dParamVel, \ - dParamLoVel, \ - dParamHiVel, \ - dParamFMax, \ - dParamFudgeFactor, \ - dParamBounce, \ - dParamCFM, \ - dParamStopERP, \ - dParamStopCFM, \ - /* parameters for suspension */ \ - dParamSuspensionERP, \ - dParamSuspensionCFM, \ - dParamERP, \ - - /* - * \enum D_ALL_PARAM_NAMES_X - * - * \var dParamGroup This is the starting value of the different group - * (i.e. dParamGroup1, dParamGroup2, dParamGroup3) - * It also helps in the use of parameter - * (dParamGroup2 | dParamFMax) == dParamFMax2 - */ -#define D_ALL_PARAM_NAMES_X(start,x) \ - dParamGroup ## x = start, \ - /* parameters for limits and motors */ \ - dParamLoStop ## x = start, \ - dParamHiStop ## x, \ - dParamVel ## x, \ - dParamLoVel ## x, \ - dParamHiVel ## x, \ - dParamFMax ## x, \ - dParamFudgeFactor ## x, \ - dParamBounce ## x, \ - dParamCFM ## x, \ - dParamStopERP ## x, \ - dParamStopCFM ## x, \ - /* parameters for suspension */ \ - dParamSuspensionERP ## x, \ - dParamSuspensionCFM ## x, \ - dParamERP ## x, - -enum { - D_ALL_PARAM_NAMES(0) - dParamsInGroup, /* < Number of parameter in a group */ - D_ALL_PARAM_NAMES_X(0x000,1) - D_ALL_PARAM_NAMES_X(0x100,2) - D_ALL_PARAM_NAMES_X(0x200,3) - - /* add a multiple of this constant to the basic parameter numbers to get - * the parameters for the second, third etc axes. - */ - dParamGroup=0x100 -}; - - -/* angular motor mode numbers */ - -enum { - dAMotorUser = 0, - dAMotorEuler = 1 -}; - -/* transmission joint mode numbers */ - -enum { - dTransmissionParallelAxes = 0, - dTransmissionIntersectingAxes = 1, - dTransmissionChainDrive = 2 -}; - - -/* joint force feedback information */ - -typedef struct dJointFeedback { - dVector3 f1; /* force applied to body 1 */ - dVector3 t1; /* torque applied to body 1 */ - dVector3 f2; /* force applied to body 2 */ - dVector3 t2; /* torque applied to body 2 */ -} dJointFeedback; - - -/* private functions that must be implemented by the collision library: - * (1) indicate that a geom has moved, (2) get the next geom in a body list. - * these functions are called whenever the position of geoms connected to a - * body have changed, e.g. with dBodySetPosition(), dBodySetRotation(), or - * when the ODE step function updates the body state. - */ - -void dGeomMoved (dGeomID); -dGeomID dGeomGetBodyNext (dGeomID); - -/** - * dGetConfiguration returns the specific ODE build configuration as - * a string of tokens. The string can be parsed in a similar way to - * the OpenGL extension mechanism, the naming convention should be - * familiar too. The following extensions are reported: - * - * ODE - * ODE_single_precision - * ODE_double_precision - * ODE_EXT_no_debug - * ODE_EXT_trimesh - * ODE_EXT_opcode - * ODE_EXT_gimpact - * ODE_OPC_16bit_indices - * ODE_OPC_new_collider - * ODE_EXT_mt_collisions - * ODE_EXT_threading - * ODE_THR_builtin_impl - */ -ODE_API const char* dGetConfiguration (void); - -/** - * Helper to check for a token in the ODE configuration string. - * Caution, this function is case sensitive. - * - * @param token A configuration token, see dGetConfiguration for details - * - * @return 1 if exact token is present, 0 if not present - */ -ODE_API int dCheckConfiguration( const char* token ); - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/compatibility.h b/misc/builddeps/linux64/ode/include/ode/compatibility.h deleted file mode 100644 index b3709866..00000000 --- a/misc/builddeps/linux64/ode/include/ode/compatibility.h +++ /dev/null @@ -1,40 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_COMPATIBILITY_H_ -#define _ODE_COMPATIBILITY_H_ - -/* - * ODE's backward compatibility system ensures that as ODE's API - * evolves, user code will not break. - */ - -/* - * These new rotation function names are more consistent with the - * rest of the API. - */ -#define dQtoR(q,R) dRfromQ((R),(q)) -#define dRtoQ(R,q) dQfromR((q),(R)) -#define dWtoDQ(w,q,dq) dDQfromW((dq),(w),(q)) - - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/contact.h b/misc/builddeps/linux64/ode/include/ode/contact.h deleted file mode 100644 index 9756f260..00000000 --- a/misc/builddeps/linux64/ode/include/ode/contact.h +++ /dev/null @@ -1,110 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_CONTACT_H_ -#define _ODE_CONTACT_H_ - -#include - -#ifdef __cplusplus -extern "C" { -#endif - - -enum { - dContactMu2 = 0x001, /**< Use axis dependent friction */ - dContactAxisDep = 0x001, /**< Same as above */ - dContactFDir1 = 0x002, /**< Use FDir for the first friction value */ - dContactBounce = 0x004, /**< Restore collision energy anti-parallel to the normal */ - dContactSoftERP = 0x008, /**< Don't use global erp for penetration reduction */ - dContactSoftCFM = 0x010, /**< Don't use global cfm for penetration constraint */ - dContactMotion1 = 0x020, /**< Use a non-zero target velocity for the constraint */ - dContactMotion2 = 0x040, - dContactMotionN = 0x080, - dContactSlip1 = 0x100, /**< Force-dependent slip. */ - dContactSlip2 = 0x200, - dContactRolling = 0x400, /**< Rolling/Angular friction */ - - dContactApprox0 = 0x0000, - dContactApprox1_1 = 0x1000, - dContactApprox1_2 = 0x2000, - dContactApprox1_N = 0x4000, /**< For rolling friction */ - dContactApprox1 = 0x7000 -}; - - -typedef struct dSurfaceParameters { - /* must always be defined */ - int mode; - dReal mu; - - /* only defined if the corresponding flag is set in mode */ - dReal mu2; - dReal rho; /**< Rolling friction */ - dReal rho2; - dReal rhoN; /**< Spinning friction */ - dReal bounce; /**< Coefficient of restitution */ - dReal bounce_vel; /**< Bouncing threshold */ - dReal soft_erp; - dReal soft_cfm; - dReal motion1,motion2,motionN; - dReal slip1,slip2; -} dSurfaceParameters; - - -/** - * @brief Describe the contact point between two geoms. - * - * If two bodies touch, or if a body touches a static feature in its - * environment, the contact is represented by one or more "contact - * points", described by dContactGeom. - * - * The convention is that if body 1 is moved along the normal vector by - * a distance depth (or equivalently if body 2 is moved the same distance - * in the opposite direction) then the contact depth will be reduced to - * zero. This means that the normal vector points "in" to body 1. - * - * @ingroup collide - */ -typedef struct dContactGeom { - dVector3 pos; /*< contact position*/ - dVector3 normal; /*< normal vector*/ - dReal depth; /*< penetration depth*/ - dGeomID g1,g2; /*< the colliding geoms*/ - int side1,side2; /*< (to be documented)*/ -} dContactGeom; - - -/* contact info used by contact joint */ - -typedef struct dContact { - dSurfaceParameters surface; - dContactGeom geom; - dVector3 fdir1; -} dContact; - - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/cooperative.h b/misc/builddeps/linux64/ode/include/ode/cooperative.h deleted file mode 100644 index 879477c7..00000000 --- a/misc/builddeps/linux64/ode/include/ode/cooperative.h +++ /dev/null @@ -1,229 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_COOPERATIVE_H_ -#define _ODE_COOPERATIVE_H_ - - -#include -#include - - -#ifdef __cplusplus -extern "C" { -#endif - -/** - * @defgroup coop Cooperative Algorithms - * - * Algorithms implemented as multiple threads doing work cooperatively. - */ - - -struct dxCooperative; -struct dxResourceRequirements; -struct dxResourceContainer; - -/** - * @brief A container for cooperative algorithms shared context - * - * The Cooperative is a container for cooperative algorithms shared context. - * At present it contains threading object (either a real one or a defaulted - * self-threading). - * - * Cooperative use in functions performing computations must be serialized. That is, - * functions referring to a single instance of Cooperative object must not be called in - * parallel. - */ -typedef struct dxCooperative *dCooperativeID; - - -/** - * @brief A container for resource requirements information - * - * The ResourceRequirements object is a container for descriptive information - * regarding what resources (memory, synchronization objects, etc.) need to be - * allocated for particular computations. The object can be used for accumulating - * resource requirement maxima over multiple functions and then allocating resources - * that would suffice for any of those function calls. - * - * ResourceRequirements objects maintain relations to Cooperative objects since - * amounts of resources that could be required can depend on characteristics of - * shared context, e.g. on maximal number of threads in the threading object. - * - * @ingroup coop - * @see dCooperativeID - * @see dResourceContainerID - */ -typedef struct dxResourceRequirements *dResourceRequirementsID; - -/** - * @brief A container for algorithm allocated resources - * - * The ResourceContainer object can contain resources allocated according to information - * in a ResourceRequirements. The resources inherit link to the threading object - * from the requirements they are allocated according to. - * - * @ingroup coop - * @see dResourceRequirementsID - * @see dCooperativeID - */ -typedef struct dxResourceContainer *dResourceContainerID; - - - /** - * @brief Creates a Cooperative object related to the specified threading. - * - * NULL's are allowed for the threading. In this case the default (global) self-threading - * object will be used. - * - * Use @c dCooperativeDestroy to destroy the object. The Cooperative object must exist - * until after all the objects referencing it are destroyed. - * - * @param functionInfo The threading functions to use - * @param threadingImpl The threading implementation object to use - * @returns The Cooperative object instance or NULL if allocation fails. - * @ingroup coop - * @see dCooperativeDestroy - */ -ODE_API dCooperativeID dCooperativeCreate(const dThreadingFunctionsInfo *functionInfo/*=NULL*/, dThreadingImplementationID threadingImpl/*=NULL*/); - - /** - * @brief Destroys Cooperative object. - * - * The Cooperative object can only be destroyed after all the objects referencing it. - * - * @param cooperative A Cooperative object to be deleted (NULL is allowed) - * @ingroup coop - * @see dCooperativeCreate - */ -ODE_API void dCooperativeDestroy(dCooperativeID cooperative); - - - /** - * @brief Creates a ResourceRequirements object related to a Cooperative. - * - * The object is purely descriptive and does not contain any resources by itself. - * The actual resources are allocated by means of ResourceContainer object. - * - * The object is created with empty requirements. It can be then used to accumulate - * requirements for one or more function calls and can be cloned or merged with others. - * The actual requirements information is added to the object by computation related - * functions. - * - * Use @c dResourceRequirementsDestroy to delete the object when it is no longer needed. - * - * @param cooperative A Cooperative object to be used - * @returns The ResourceRequirements object instance or NULL if allocation fails - * @ingroup coop - * @see dResourceRequirementsDestroy - * @see dResourceRequirementsClone - * @see dResourceRequirementsMergeIn - * @see dCooperativeCreate - * @see dResourceContainerAcquire - */ -ODE_API dResourceRequirementsID dResourceRequirementsCreate(dCooperativeID cooperative); - - /** - * @brief Destroys ResourceRequirements object. - * - * The ResourceRequirements object can be destroyed at any time with no regards - * to other objects' lifetime. - * - * @param requirements A ResourceRequirements object to be deleted (NULL is allowed) - * @ingroup coop - * @see dResourceRequirementsCreate - */ -ODE_API void dResourceRequirementsDestroy(dResourceRequirementsID requirements); - - /** - * @brief Clones ResourceRequirements object. - * - * The function creates a copy of the ResourceRequirements object with all the - * contents and the relation to Cooperative matching. The object passed in - * the parameter is not changed. - * - * The object created with the function must later be destroyed with @c dResourceRequirementsDestroy. - * - * @param requirements A ResourceRequirements object to be cloned - * @returns A handle to the new object or NULL if allocation fails - * @ingroup coop - * @see dResourceRequirementsCreate - * @see dResourceRequirementsDestroy - * @see dResourceRequirementsMergeIn - */ -ODE_API dResourceRequirementsID dResourceRequirementsClone(/*const */dResourceRequirementsID requirements); - - /** - * @brief Merges one ResourceRequirements object into another ResourceRequirements object. - * - * The function updates @a summaryRequirements requirements to be also sufficient - * for the purposes @a extraRequirements could be used for. The @a extraRequirements - * object is not changed. The both objects should normally have had been created - * with the same Cooperative object. - * - * @param summaryRequirements A ResourceRequirements object to be changed - * @param extraRequirements A ResourceRequirements the requirements to be taken from - * @ingroup coop - * @see dResourceRequirementsCreate - * @see dResourceRequirementsDestroy - * @see dResourceRequirementsClone - */ -ODE_API void dResourceRequirementsMergeIn(dResourceRequirementsID summaryRequirements, /*const */dResourceRequirementsID extraRequirements); - - - /** - * @brief Allocates resources as specified in ResourceRequirements object. - * - * The ResourceContainer object can be used in cooperative computation algorithms. - * - * The same @a requirements object can be passed to many resource allocations - * (with or without modifications) and can be deleted immediately, without waiting - * for the ResourceContainer object destruction. - * - * Use @c dResourceContainerDestroy to delete the object and release the resources - * when they are no longer needed. - * - * @param requirements The ResourceRequirements object to allocate resources according to - * @returns A ResourceContainer object instance with the resources allocated or NULL if allocation fails - * @ingroup coop - * @see dResourceContainerDestroy - * @see dResourceRequirementsCreate - */ -ODE_API dResourceContainerID dResourceContainerAcquire(/*const */dResourceRequirementsID requirements); - - /** - * @brief Destroys ResourceContainer object and releases resources allocated in it. - * - * @param resources A ResourceContainer object to be deleted (NULL is allowed) - * @ingroup coop - * @see dResourceContainerAcquire - */ -ODE_API void dResourceContainerDestroy(dResourceContainerID resources); - - -#ifdef __cplusplus -} // extern "C" -#endif - - -#endif // #ifndef _ODE_COOPERATIVE_H_ diff --git a/misc/builddeps/linux64/ode/include/ode/error.h b/misc/builddeps/linux64/ode/include/ode/error.h deleted file mode 100644 index ae511e70..00000000 --- a/misc/builddeps/linux64/ode/include/ode/error.h +++ /dev/null @@ -1,63 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -/* this comes from the `reuse' library. copy any changes back to the source */ - -#ifndef _ODE_ERROR_H_ -#define _ODE_ERROR_H_ - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -/* all user defined error functions have this type. error and debug functions - * should not return. - */ -typedef void dMessageFunction (int errnum, const char *msg, va_list ap); - -/* set a new error, debug or warning handler. if fn is 0, the default handlers - * are used. - */ -ODE_API void dSetErrorHandler (dMessageFunction *fn); -ODE_API void dSetDebugHandler (dMessageFunction *fn); -ODE_API void dSetMessageHandler (dMessageFunction *fn); - -/* return the current error, debug or warning handler. if the return value is - * 0, the default handlers are in place. - */ -ODE_API dMessageFunction *dGetErrorHandler(void); -ODE_API dMessageFunction *dGetDebugHandler(void); -ODE_API dMessageFunction *dGetMessageHandler(void); - -/* generate a fatal error, debug trap or a message. */ -ODE_API void ODE_NORETURN dError (int num, const char *msg, ...); -ODE_API void ODE_NORETURN dDebug (int num, const char *msg, ...); -ODE_API void dMessage (int num, const char *msg, ...); - - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/export-dif.h b/misc/builddeps/linux64/ode/include/ode/export-dif.h deleted file mode 100644 index f6578ac7..00000000 --- a/misc/builddeps/linux64/ode/include/ode/export-dif.h +++ /dev/null @@ -1,40 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_EXPORT_DIF_ -#define _ODE_EXPORT_DIF_ - -#include - - -#ifdef __cplusplus -extern "C" { -#endif - -ODE_API void dWorldExportDIF (dWorldID w, FILE *file, const char *world_name); - - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/mass.h b/misc/builddeps/linux64/ode/include/ode/mass.h deleted file mode 100644 index af89cb11..00000000 --- a/misc/builddeps/linux64/ode/include/ode/mass.h +++ /dev/null @@ -1,144 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_MASS_H_ -#define _ODE_MASS_H_ - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -struct dMass; -typedef struct dMass dMass; - -/** - * Check if a mass structure has valid value. - * The function check if the mass and innertia matrix are positive definits - * - * @param m A mass structure to check - * - * @return 1 if both codition are met - */ -ODE_API int dMassCheck(const dMass *m); - -ODE_API void dMassSetZero (dMass *); - -ODE_API void dMassSetParameters (dMass *, dReal themass, - dReal cgx, dReal cgy, dReal cgz, - dReal I11, dReal I22, dReal I33, - dReal I12, dReal I13, dReal I23); - -ODE_API void dMassSetSphere (dMass *, dReal density, dReal radius); -ODE_API void dMassSetSphereTotal (dMass *, dReal total_mass, dReal radius); - -ODE_API void dMassSetCapsule (dMass *, dReal density, int direction, - dReal radius, dReal length); -ODE_API void dMassSetCapsuleTotal (dMass *, dReal total_mass, int direction, - dReal radius, dReal length); - -ODE_API void dMassSetCylinder (dMass *, dReal density, int direction, - dReal radius, dReal length); -ODE_API void dMassSetCylinderTotal (dMass *, dReal total_mass, int direction, - dReal radius, dReal length); - -ODE_API void dMassSetBox (dMass *, dReal density, - dReal lx, dReal ly, dReal lz); -ODE_API void dMassSetBoxTotal (dMass *, dReal total_mass, - dReal lx, dReal ly, dReal lz); - -ODE_API void dMassSetTrimesh (dMass *, dReal density, dGeomID g); - -ODE_API void dMassSetTrimeshTotal (dMass *m, dReal total_mass, dGeomID g); - -ODE_API void dMassAdjust (dMass *, dReal newmass); - -ODE_API void dMassTranslate (dMass *, dReal x, dReal y, dReal z); - -ODE_API void dMassRotate (dMass *, const dMatrix3 R); - -ODE_API void dMassAdd (dMass *a, const dMass *b); - - -/* Backwards compatible API */ -ODE_API_DEPRECATED ODE_API void dMassSetCappedCylinder(dMass *a, dReal b, int c, dReal d, dReal e); -ODE_API_DEPRECATED ODE_API void dMassSetCappedCylinderTotal(dMass *a, dReal b, int c, dReal d, dReal e); - - -struct dMass { - dReal mass; - dVector3 c; - dMatrix3 I; - -#ifdef __cplusplus - dMass() - { dMassSetZero (this); } - void setZero() - { dMassSetZero (this); } - void setParameters (dReal themass, dReal cgx, dReal cgy, dReal cgz, - dReal I11, dReal I22, dReal I33, - dReal I12, dReal I13, dReal I23) - { dMassSetParameters (this,themass,cgx,cgy,cgz,I11,I22,I33,I12,I13,I23); } - - void setSphere (dReal density, dReal radius) - { dMassSetSphere (this,density,radius); } - void setSphereTotal (dReal total, dReal radius) - { dMassSetSphereTotal (this,total,radius); } - - void setCapsule (dReal density, int direction, dReal radius, dReal length) - { dMassSetCapsule (this,density,direction,radius,length); } - void setCapsuleTotal (dReal total, int direction, dReal radius, dReal length) - { dMassSetCapsule (this,total,direction,radius,length); } - - void setCylinder(dReal density, int direction, dReal radius, dReal length) - { dMassSetCylinder (this,density,direction,radius,length); } - void setCylinderTotal(dReal total, int direction, dReal radius, dReal length) - { dMassSetCylinderTotal (this,total,direction,radius,length); } - - void setBox (dReal density, dReal lx, dReal ly, dReal lz) - { dMassSetBox (this,density,lx,ly,lz); } - void setBoxTotal (dReal total, dReal lx, dReal ly, dReal lz) - { dMassSetBoxTotal (this,total,lx,ly,lz); } - - void setTrimesh(dReal density, dGeomID g) - { dMassSetTrimesh (this, density, g); } - void setTrimeshTotal(dReal total, dGeomID g) - { dMassSetTrimeshTotal (this, total, g); } - - void adjust (dReal newmass) - { dMassAdjust (this,newmass); } - void translate (dReal x, dReal y, dReal z) - { dMassTranslate (this,x,y,z); } - void rotate (const dMatrix3 R) - { dMassRotate (this,R); } - void add (const dMass *b) - { dMassAdd (this,b); } -#endif -}; - - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/matrix.h b/misc/builddeps/linux64/ode/include/ode/matrix.h deleted file mode 100644 index 65939b45..00000000 --- a/misc/builddeps/linux64/ode/include/ode/matrix.h +++ /dev/null @@ -1,200 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -/* optimized and unoptimized vector and matrix functions */ - -#ifndef _ODE_MATRIX_H_ -#define _ODE_MATRIX_H_ - -#include - - -#ifdef __cplusplus -extern "C" { -#endif - - -/* set a vector/matrix of size n to all zeros, or to a specific value. */ - -ODE_API void dSetZero (dReal *a, int n); -ODE_API void dSetValue (dReal *a, int n, dReal value); - - -/* get the dot product of two n*1 vectors. if n <= 0 then - * zero will be returned (in which case a and b need not be valid). - */ - -ODE_API dReal dDot (const dReal *a, const dReal *b, int n); - - -/* get the dot products of (a0,b), (a1,b), etc and return them in outsum. - * all vectors are n*1. if n <= 0 then zeroes will be returned (in which case - * the input vectors need not be valid). this function is somewhat faster - * than calling dDot() for all of the combinations separately. - */ - -/* NOT INCLUDED in the library for now. -void dMultidot2 (const dReal *a0, const dReal *a1, - const dReal *b, dReal *outsum, int n); -*/ - - -/* matrix multiplication. all matrices are stored in standard row format. - * the digit refers to the argument that is transposed: - * 0: A = B * C (sizes: A:p*r B:p*q C:q*r) - * 1: A = B' * C (sizes: A:p*r B:q*p C:q*r) - * 2: A = B * C' (sizes: A:p*r B:p*q C:r*q) - * case 1,2 are equivalent to saying that the operation is A=B*C but - * B or C are stored in standard column format. - */ - -ODE_API void dMultiply0 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r); -ODE_API void dMultiply1 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r); -ODE_API void dMultiply2 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r); - - -/* do an in-place cholesky decomposition on the lower triangle of the n*n - * symmetric matrix A (which is stored by rows). the resulting lower triangle - * will be such that L*L'=A. return 1 on success and 0 on failure (on failure - * the matrix is not positive definite). - */ - -ODE_API int dFactorCholesky (dReal *A, int n); - - -/* solve for x: L*L'*x = b, and put the result back into x. - * L is size n*n, b is size n*1. only the lower triangle of L is considered. - */ - -ODE_API void dSolveCholesky (const dReal *L, dReal *b, int n); - - -/* compute the inverse of the n*n positive definite matrix A and put it in - * Ainv. this is not especially fast. this returns 1 on success (A was - * positive definite) or 0 on failure (not PD). - */ - -ODE_API int dInvertPDMatrix (const dReal *A, dReal *Ainv, int n); - - -/* check whether an n*n matrix A is positive definite, return 1/0 (yes/no). - * positive definite means that x'*A*x > 0 for any x. this performs a - * cholesky decomposition of A. if the decomposition fails then the matrix - * is not positive definite. A is stored by rows. A is not altered. - */ - -ODE_API int dIsPositiveDefinite (const dReal *A, int n); - - -/* factorize a matrix A into L*D*L', where L is lower triangular with ones on - * the diagonal, and D is diagonal. - * A is an n*n matrix stored by rows, with a leading dimension of n rounded - * up to 4. L is written into the strict lower triangle of A (the ones are not - * written) and the reciprocal of the diagonal elements of D are written into - * d. - */ -ODE_API void dFactorLDLT (dReal *A, dReal *d, int n, int nskip); - - -/* solve L*x=b, where L is n*n lower triangular with ones on the diagonal, - * and x,b are n*1. b is overwritten with x. - * the leading dimension of L is `nskip'. - */ -ODE_API void dSolveL1 (const dReal *L, dReal *b, int n, int nskip); - - -/* solve L'*x=b, where L is n*n lower triangular with ones on the diagonal, - * and x,b are n*1. b is overwritten with x. - * the leading dimension of L is `nskip'. - */ -ODE_API void dSolveL1T (const dReal *L, dReal *b, int n, int nskip); - - -/* in matlab syntax: a(1:n) = a(1:n) .* d(1:n) - */ - -ODE_API void dScaleVector (dReal *a, const dReal *d, int n); - -/* The function is an alias for @c dScaleVector. - * It has been deprecated because of a wrong naming schema used. - */ -ODE_API_DEPRECATED ODE_API void dVectorScale (dReal *a, const dReal *d, int n); - - -/* given `L', a n*n lower triangular matrix with ones on the diagonal, - * and `d', a n*1 vector of the reciprocal diagonal elements of an n*n matrix - * D, solve L*D*L'*x=b where x,b are n*1. x overwrites b. - * the leading dimension of L is `nskip'. - */ - -ODE_API void dSolveLDLT (const dReal *L, const dReal *d, dReal *b, int n, int nskip); - - -/* given an L*D*L' factorization of an n*n matrix A, return the updated - * factorization L2*D2*L2' of A plus the following "top left" matrix: - * - * [ b a' ] <-- b is a[0] - * [ a 0 ] <-- a is a[1..n-1] - * - * - L has size n*n, its leading dimension is nskip. L is lower triangular - * with ones on the diagonal. only the lower triangle of L is referenced. - * - d has size n. d contains the reciprocal diagonal elements of D. - * - a has size n. - * the result is written into L, except that the left column of L and d[0] - * are not actually modified. see ldltaddTL.m for further comments. - */ -ODE_API void dLDLTAddTL (dReal *L, dReal *d, const dReal *a, int n, int nskip); - - -/* given an L*D*L' factorization of a permuted matrix A, produce a new - * factorization for row and column `r' removed. - * - A has size n1*n1, its leading dimension in nskip. A is symmetric and - * positive definite. only the lower triangle of A is referenced. - * A itself may actually be an array of row pointers. - * - L has size n2*n2, its leading dimension in nskip. L is lower triangular - * with ones on the diagonal. only the lower triangle of L is referenced. - * - d has size n2. d contains the reciprocal diagonal elements of D. - * - p is a permutation vector. it contains n2 indexes into A. each index - * must be in the range 0..n1-1. - * - r is the row/column of L to remove. - * the new L will be written within the old L, i.e. will have the same leading - * dimension. the last row and column of L, and the last element of d, are - * undefined on exit. - * - * a fast O(n^2) algorithm is used. see ldltremove.m for further comments. - */ -ODE_API void dLDLTRemove (dReal **A, const int *p, dReal *L, dReal *d, - int n1, int n2, int r, int nskip); - - -/* given an n*n matrix A (with leading dimension nskip), remove the r'th row - * and column by moving elements. the new matrix will have the same leading - * dimension. the last row and column of A are untouched on exit. - */ -ODE_API void dRemoveRowCol (dReal *A, int n, int nskip, int r); - -#ifdef __cplusplus -} -#endif - - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/matrix_coop.h b/misc/builddeps/linux64/ode/include/ode/matrix_coop.h deleted file mode 100644 index b38bf90f..00000000 --- a/misc/builddeps/linux64/ode/include/ode/matrix_coop.h +++ /dev/null @@ -1,291 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_MATRIX_COOP_H_ -#define _ODE_MATRIX_COOP_H_ - - -#include -#include -#include - - -#ifdef __cplusplus -extern "C" { -#endif - -/** - * @defgroup matrix_coop Matrix Cooperative Algorithms - * - * Cooperative algorithms operating on matrices and vectors. - * - * @ingroup coop - */ - - -/** - * @brief Estimates resource requirements for a @c dCooperativelyFactorLDLT call - * - * The function updates the contents of @a requirements to also suffice for calling - * @c dCooperativelyFactorLDLT with the given parameters. - * - * Note: The requirements that could have already been in the @a requirements parameter - * are never decreased. - * - * @param requirements The ResourceRequirements object to update - * @param maximalAllowedThreadCount Maximal value of allowedThreadCount parameter that is going to be used - * @param maximalRowCount Maximal value of rowCount parameter that is going to be used - * @ingroup matrix_coop - * @see dCooperativelyFactorLDLT - * @see dResourceRequirementsCreate - */ -ODE_API void dEstimateCooperativelyFactorLDLTResourceRequirements(dResourceRequirementsID requirements, - unsigned maximalAllowedThreadCount, unsigned maximalRowCount); - -/** - * @brief Cooperatively factorizes a matrix `A' into L*D*L' - * - * The function factorizes a matrix `A' into L*D*L', where `L' is lower triangular with ones on - * the diagonal, and `D' is diagonal. - * @a A is a rowCount*rowCount matrix stored by rows, with a leading dimension of @a rowCount rounded - * up at least to 4 elements. `L; is written into the strict lower triangle of @a A - * (the ones are not written) and the reciprocal of the diagonal elements of `D' are written into @a d. - * - * The @a resources must have had been allocated from a ResourceRequirements object - * estimated in @c dEstimateCooperativelyFactorLDLTResourceRequirements. - * - * The operation is performed cooperatively by up to @a allowedThreadCount threads - * from thread pool available in @a resources. The threading must must not be simultaneously - * used (via other @c dResourceContainerID instances) in other calls that employ its features. - * - * @param resources The resources allocated for the function - * @param allowedThreadCount Maximum thread count to use (the actual thread count could be less, depending on other parameters) - * @param A The `A' matrix - * @param d The `d' vector - * @param rowCount The row count in @a A and @a d - * @param rowskip The actual number of elements to be added to skip to next row in @a A - * @ingroup matrix_coop - * @see dEstimateCooperativelyFactorLDLTResourceRequirements - * @see dResourceContainerAcquire - * @see dCooperativelySolveLDLT - */ -ODE_API void dCooperativelyFactorLDLT(dResourceContainerID resources, unsigned allowedThreadCount, - dReal *A, dReal *d, unsigned rowCount, unsigned rowSkip); - - -/** - * @brief Estimates resource requirements for a @c dCooperativelySolveLDLT call - * - * The function updates the contents of @a requirements to also suffice for calling - * @c dCooperativelySolveLDLT with the given parameters. - * - * Note: The requirements that could have already been in the @a requirements parameter - * are never decreased. - * - * @param requirements The ResourceRequirements object to update - * @param maximalAllowedThreadCount Maximal value of allowedThreadCount parameter that is going to be used - * @param maximalRowCount Maximal value of rowCount parameter that is going to be used - * @ingroup matrix_coop - * @see dCooperativelySolveLDLT - * @see dResourceRequirementsCreate - */ -ODE_API void dEstimateCooperativelySolveLDLTResourceRequirements(dResourceRequirementsID requirements, - unsigned maximalAllowedThreadCount, unsigned maximalRowCount); - -/** - * @brief Cooperatively solves L*D*L'*x=b - * - * Given `L', a rowCount*rowCount lower triangular matrix with ones on the diagonal, - * and `d', a rowCount*1 vector of the reciprocal diagonal elements of a rowCount*rowCount matrix - * D, the function solves L*D*L'*x=b where `x' and `b' are rowCount*1. - * The leading dimension of @a L is @a rowSkip. The resulting vector `x' overwrites @a b. - * - * The @a resources must have had been allocated from a ResourceRequirements object - * estimated in @c dEstimateCooperativelySolveLDLTResourceRequirements. - * - * The operation is performed cooperatively by up to @a allowedThreadCount threads - * from thread pool available in @a resources. The threading must must not be simultaneously - * used (via other @c dResourceContainerID instances) in other calls that employ its features. - * - * @param resources The resources allocated for the function - * @param allowedThreadCount Maximum thread count to use (the actual thread count could be less, depending on other parameters) - * @param L The `L' matrix - * @param d The `d' vector - * @param b The `b' vector; also the result is stored here - * @param rowCount The row count in @a L, @a d and @a b - * @param rowskip The actual number of elements to be added to skip to next row in @a L - * @ingroup matrix_coop - * @see dEstimateCooperativelySolveLDLTResourceRequirements - * @see dResourceContainerAcquire - * @see dCooperativelyFactorLDLT - */ -ODE_API void dCooperativelySolveLDLT(dResourceContainerID resources, unsigned allowedThreadCount, - const dReal *L, const dReal *d, dReal *b, unsigned rowCount, unsigned rowSkip); - - -/** - * @brief Estimates resource requirements for a @c dCooperativelySolveL1Straight call - * - * The function updates the contents of @a requirements to also suffice for calling - * @c dCooperativelySolveL1Straight with the given parameters. - * - * Note: The requirements that could have already been in the @a requirements parameter - * are never decreased. - * - * @param requirements The ResourceRequirements object to update - * @param maximalAllowedThreadCount Maximal value of allowedThreadCount parameter that is going to be used - * @param maximalRowCount Maximal value of rowCount parameter that is going to be used - * @ingroup matrix_coop - * @see dCooperativelySolveL1Straight - * @see dResourceRequirementsCreate - */ -ODE_API void dEstimateCooperativelySolveL1StraightResourceRequirements(dResourceRequirementsID requirements, - unsigned maximalAllowedThreadCount, unsigned maximalRowCount); - -/** - * @brief Cooperatively solves L*x=b - * - * The function solves L*x=b, where `L' is rowCount*rowCount lower triangular with ones on the diagonal, - * and `x', `b' are rowCount*1. The leading dimension of @a L is @a rowSkip. - * @a b is overwritten with `x'. - * - * The @a resources must have had been allocated from a ResourceRequirements object - * estimated in @c dEstimateCooperativelySolveL1StraightResourceRequirements. - * - * The operation is performed cooperatively by up to @a allowedThreadCount threads - * from thread pool available in @a resources. The threading must must not be simultaneously - * used (via other @c dResourceContainerID instances) in other calls that employ its features. - * - * @param resources The resources allocated for the function - * @param allowedThreadCount Maximum thread count to use (the actual thread count could be less, depending on other parameters) - * @param L The `L' matrix - * @param b The `b' vector; also the result is stored here - * @param rowCount The row count in @a L and @a b - * @param rowskip The actual number of elements to be added to skip to next row in @a L - * @ingroup matrix_coop - * @see dEstimateCooperativelySolveL1StraightResourceRequirements - * @see dResourceContainerAcquire - * @see dCooperativelyFactorLDLT - */ -ODE_API void dCooperativelySolveL1Straight(dResourceContainerID resources, unsigned allowedThreadCount, - const dReal *L, dReal *b, unsigned rowCount, unsigned rowSkip); - - -/** - * @brief Estimates resource requirements for a @c dCooperativelySolveL1Transposed call - * - * The function updates the contents of @a requirements to also suffice for calling - * @c dCooperativelySolveL1Transposed with the given parameters. - * - * Note: The requirements that could have already been in the @a requirements parameter - * are never decreased. - * - * @param requirements The ResourceRequirements object to update - * @param maximalAllowedThreadCount Maximal value of allowedThreadCount parameter that is going to be used - * @param maximalRowCount Maximal value of rowCount parameter that is going to be used - * @ingroup matrix_coop - * @see dCooperativelySolveL1Transposed - * @see dResourceRequirementsCreate - */ -ODE_API void dEstimateCooperativelySolveL1TransposedResourceRequirements(dResourceRequirementsID requirements, - unsigned maximalAllowedThreadCount, unsigned maximalRowCount); - -/** - * @brief Cooperatively solves L'*x=b - * - * The function solves L'*x=b, where `L' is rowCount*rowCount lower triangular with ones on the diagonal, - * and `x', b are rowCount*1. The leading dimension of @a L is @a rowSkip. - * @a b is overwritten with `x'. - * - * The @a resources must have had been allocated from a ResourceRequirements object - * estimated in @c dEstimateCooperativelySolveL1TransposedResourceRequirements. - * - * The operation is performed cooperatively by up to @a allowedThreadCount threads - * from thread pool available in @a resources. The threading must must not be simultaneously - * used (via other @c dResourceContainerID instances) in other calls that employ its features. - * - * @param resources The resources allocated for the function - * @param allowedThreadCount Maximum thread count to use (the actual thread count could be less, depending on other parameters) - * @param L The `L' matrix - * @param b The `b' vector; also the result is stored here - * @param rowCount The row count in @a L and @a b - * @param rowskip The actual number of elements to be added to skip to next row in @a L - * @ingroup matrix_coop - * @see dEstimateCooperativelySolveL1TransposedResourceRequirements - * @see dResourceContainerAcquire - * @see dCooperativelyFactorLDLT - */ -ODE_API void dCooperativelySolveL1Transposed(dResourceContainerID resources, unsigned allowedThreadCount, - const dReal *L, dReal *b, unsigned rowCount, unsigned rowSkip); - - -/** - * @brief Estimates resource requirements for a @c dCooperativelyScaleVector call - * - * The function updates the contents of @a requirements to also suffice for calling - * @c dCooperativelyScaleVector with the given parameters. - * - * Note: The requirements that could have already been in the @a requirements parameter - * are never decreased. - * - * @param requirements The ResourceRequirements object to update - * @param maximalAllowedThreadCount Maximal value of allowedThreadCount parameter that is going to be used - * @param maximalElementCount Maximal value of elementCount parameter that is going to be used - * @ingroup matrix_coop - * @see dCooperativelyScaleVector - * @see dResourceRequirementsCreate - */ -ODE_API void dEstimateCooperativelyScaleVectorResourceRequirements(dResourceRequirementsID requirements, - unsigned maximalAllowedThreadCount, unsigned maximalElementCount); - -/** - * @brief Multiplies elements of one vector by corresponding element of another one - * - * In matlab syntax, the operation performed is: dataVector(1:elementCount) = dataVector(1:elementCount) .* scaleVector(1:elementCount) - * - * The @a resources must have had been allocated from a ResourceRequirements object - * estimated in @c dEstimateCooperativelyScaleVectorResourceRequirements. - * - * The operation is performed cooperatively by up to @a allowedThreadCount threads - * from thread pool available in @a resources. The threading must must not be simultaneously - * used (via other @c dResourceContainerID instances) in other calls that employ its features. - * - * @param resources The resources allocated for the function - * @param allowedThreadCount Maximum thread count to use (the actual thread count could be less, depending on other parameters) - * @param dataVector The vector to be scaled in place - * @param scaleVector The scale vector - * @param elementCount The number of elements in @a dataVector and @a scaleVector - * @ingroup matrix_coop - * @see dEstimateCooperativelyScaleVectorResourceRequirements - * @see dResourceContainerAcquire - * @see dCooperativelyFactorLDLT - */ -ODE_API void dCooperativelyScaleVector(dResourceContainerID resources, unsigned allowedThreadCount, - dReal *dataVector, const dReal *scaleVector, unsigned elementCount); - - -#ifdef __cplusplus -} // extern "C" -#endif - - -#endif // #ifndef _ODE_MATRIX_COOP_H_ diff --git a/misc/builddeps/linux64/ode/include/ode/memory.h b/misc/builddeps/linux64/ode/include/ode/memory.h deleted file mode 100644 index 8e49202c..00000000 --- a/misc/builddeps/linux64/ode/include/ode/memory.h +++ /dev/null @@ -1,59 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -/* this comes from the `reuse' library. copy any changes back to the source */ - -#ifndef _ODE_MEMORY_H_ -#define _ODE_MEMORY_H_ - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -/* function types to allocate and free memory */ -typedef void * dAllocFunction (dsizeint size); -typedef void * dReallocFunction (void *ptr, dsizeint oldsize, dsizeint newsize); -typedef void dFreeFunction (void *ptr, dsizeint size); - -/* set new memory management functions. if fn is 0, the default handlers are - * used. */ -ODE_API void dSetAllocHandler (dAllocFunction *fn); -ODE_API void dSetReallocHandler (dReallocFunction *fn); -ODE_API void dSetFreeHandler (dFreeFunction *fn); - -/* get current memory management functions */ -ODE_API dAllocFunction *dGetAllocHandler (void); -ODE_API dReallocFunction *dGetReallocHandler (void); -ODE_API dFreeFunction *dGetFreeHandler (void); - -/* allocate and free memory. */ -ODE_API void * dAlloc (dsizeint size); -ODE_API void * dRealloc (void *ptr, dsizeint oldsize, dsizeint newsize); -ODE_API void dFree (void *ptr, dsizeint size); - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/misc.h b/misc/builddeps/linux64/ode/include/ode/misc.h deleted file mode 100644 index 01655eac..00000000 --- a/misc/builddeps/linux64/ode/include/ode/misc.h +++ /dev/null @@ -1,86 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -/* miscellaneous math functions. these are mostly useful for testing */ - -#ifndef _ODE_MISC_H_ -#define _ODE_MISC_H_ - -#include - - -#ifdef __cplusplus -extern "C" { -#endif - - -/* return 1 if the random number generator is working. */ -ODE_API int dTestRand(void); - -/* return next 32 bit random number. this uses a not-very-random linear - * congruential method. - */ -ODE_API unsigned long dRand(void); - -/* get and set the current random number seed. */ -ODE_API unsigned long dRandGetSeed(void); -ODE_API void dRandSetSeed (unsigned long s); - -/* return a random integer between 0..n-1. the distribution will get worse - * as n approaches 2^32. - */ -ODE_API int dRandInt (int n); - -/* return a random real number between 0..1 */ -ODE_API dReal dRandReal(void); - -/* print out a matrix */ -ODE_API void dPrintMatrix (const dReal *A, int n, int m, const char *fmt, FILE *f); - -/* make a random vector with entries between +/- range. A has n elements. */ -ODE_API void dMakeRandomVector (dReal *A, int n, dReal range); - -/* make a random matrix with entries between +/- range. A has size n*m. */ -ODE_API void dMakeRandomMatrix (dReal *A, int n, int m, dReal range); - -/* clear the upper triangle of a square matrix */ -ODE_API void dClearUpperTriangle (dReal *A, int n); - -/* return the maximum element difference between the two n*m matrices */ -ODE_API dReal dMaxDifference (const dReal *A, const dReal *B, int n, int m); - -/* return the maximum element difference between the lower triangle of two - * n*n matrices */ -ODE_API dReal dMaxDifferenceLowerTriangle (const dReal *A, const dReal *B, int n); - - -#ifdef __cplusplus -} -#endif - - -#ifdef __cplusplus -static inline void dPrintMatrix (const dReal *A, int n, int m, const char *fmt="%10.4f ") { dPrintMatrix(A, n, m, fmt, stdout); } -#endif - - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/objects.h b/misc/builddeps/linux64/ode/include/ode/objects.h deleted file mode 100644 index 4796d563..00000000 --- a/misc/builddeps/linux64/ode/include/ode/objects.h +++ /dev/null @@ -1,3396 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_OBJECTS_H_ -#define _ODE_OBJECTS_H_ - -#include -#include -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - -/** - * @defgroup world World - * - * The world object is a container for rigid bodies and joints. Objects in - * different worlds can not interact, for example rigid bodies from two - * different worlds can not collide. - * - * All the objects in a world exist at the same point in time, thus one - * reason to use separate worlds is to simulate systems at different rates. - * Most applications will only need one world. - */ - -/** - * @brief Create a new, empty world and return its ID number. - * @return an identifier - * @ingroup world - */ -ODE_API dWorldID dWorldCreate(void); - - -/** - * @brief Destroy a world and everything in it. - * - * This includes all bodies, and all joints that are not part of a joint - * group. Joints that are part of a joint group will be deactivated, and - * can be destroyed by calling, for example, dJointGroupEmpty(). - * @ingroup world - * @param world the identifier for the world the be destroyed. - */ -ODE_API void dWorldDestroy (dWorldID world); - - -/** - * @brief Set the user-data pointer - * @param world the world to set the data on - * @param data - * @ingroup world - */ -ODE_API void dWorldSetData (dWorldID world, void* data); - - -/** - * @brief Get the user-data pointer - * @param world the world to set the data on - * @param data - * @ingroup world - */ -ODE_API void* dWorldGetData (dWorldID world); - - -/** - * @brief Set the world's global gravity vector. - * - * The units are m/s^2, so Earth's gravity vector would be (0,0,-9.81), - * assuming that +z is up. The default is no gravity, i.e. (0,0,0). - * - * @ingroup world - */ -ODE_API void dWorldSetGravity (dWorldID, dReal x, dReal y, dReal z); - - -/** - * @brief Get the gravity vector for a given world. - * @ingroup world - */ -ODE_API void dWorldGetGravity (dWorldID, dVector3 gravity); - - -/** - * @brief Set the global ERP value, that controls how much error - * correction is performed in each time step. - * @ingroup world - * @param dWorldID the identifier of the world. - * @param erp Typical values are in the range 0.1--0.8. The default is 0.2. - */ -ODE_API void dWorldSetERP (dWorldID, dReal erp); - -/** - * @brief Get the error reduction parameter. - * @ingroup world - * @return ERP value - */ -ODE_API dReal dWorldGetERP (dWorldID); - - -/** - * @brief Set the global CFM (constraint force mixing) value. - * @ingroup world - * @param cfm Typical values are in the range @m{10^{-9}} -- 1. - * The default is 10^-5 if single precision is being used, or 10^-10 - * if double precision is being used. - */ -ODE_API void dWorldSetCFM (dWorldID, dReal cfm); - -/** - * @brief Get the constraint force mixing value. - * @ingroup world - * @return CFM value - */ -ODE_API dReal dWorldGetCFM (dWorldID); - - -#define dWORLDSTEP_THREADCOUNT_UNLIMITED dTHREADING_THREAD_COUNT_UNLIMITED - -/** - * @brief Set maximum threads to be used for island stepping - * - * The actual number of threads that is going to be used will be the minimum - * of this limit and number of threads in the threading pool. By default - * there is no limit (@c dWORLDSTEP_THREADCOUNT_UNLIMITED). - * - * @warning - * WARNING! Running island stepping in multiple threads requires allocating - * individual stepping memory buffer for each of those threads. The size of buffers - * allocated is the size needed to handle the largest island in the world. - * - * Note: Setting a limit for island stepping does not affect threading at lower - * levels in stepper functions. The sub-calls scheduled from them can be executed - * in as many threads as there are available in the pool. - * - * @param w The world affected - * @param count Thread count limit value for island stepping - * @ingroup world - * @see dWorldGetStepIslandsProcessingMaxThreadCount - */ -ODE_API void dWorldSetStepIslandsProcessingMaxThreadCount(dWorldID w, unsigned count); -/** - * @brief Get maximum threads that are allowed to be used for island stepping. - * - * Please read commentaries to @c dWorldSetStepIslandsProcessingMaxThreadCount for - * important information regarding the value returned. - * - * @param w The world queried - * @returns Current thread count limit value for island stepping - * @ingroup world - * @see dWorldSetStepIslandsProcessingMaxThreadCount - */ -ODE_API unsigned dWorldGetStepIslandsProcessingMaxThreadCount(dWorldID w); - -/** - * @brief Set the world to use shared working memory along with another world. - * - * The worlds allocate working memory internally for simulation stepping. This - * memory is cached among the calls to @c dWordStep and @c dWorldQuickStep. - * Similarly, several worlds can be set up to share this memory caches thus - * reducing overall memory usage by cost of making worlds inappropriate for - * simultaneous simulation in multiple threads. - * - * If null value is passed for @a from_world parameter the world is detached from - * sharing and returns to defaults for working memory, reservation policy and - * memory manager as if just created. This can also be used to enable use of shared - * memory for a world that has already had working memory allocated privately. - * Normally using shared memory after a world has its private working memory allocated - * is prohibited. - * - * Allocation policy used can only increase world's internal reserved memory size - * and never decreases it. @c dWorldCleanupWorkingMemory can be used to release - * working memory for a world in case if number of objects/joint decreases - * significantly in it. - * - * With sharing working memory worlds also automatically share memory reservation - * policy and memory manager. Thus, these parameters need to be customized for - * initial world to be used as sharing source only. - * - * If worlds share working memory they must also use compatible threading implementations - * (i.e. it is illegal for one world to perform stepping with self-threaded implementation - * when the other world is assigned a multi-threaded implementation). - * For more information read section about threading approaches in ODE. - * - * Failure result status means a memory allocation failure. - * - * @param w The world to use the shared memory with. - * @param from_world Null or the world the shared memory is to be used from. - * @returns 1 for success and 0 for failure. - * - * @ingroup world - * @see dWorldCleanupWorkingMemory - * @see dWorldSetStepMemoryReservationPolicy - * @see dWorldSetStepMemoryManager - */ -ODE_API int dWorldUseSharedWorkingMemory(dWorldID w, dWorldID from_world/*=NULL*/); - -/** - * @brief Release internal working memory allocated for world - * - * The worlds allocate working memory internally for simulation stepping. This - * function can be used to free world's internal memory cache in case if number of - * objects/joints in the world decreases significantly. By default, internal - * allocation policy is used to only increase cache size as necessary and never - * decrease it. - * - * If a world shares its working memory with other worlds the cache deletion - * affects all the linked worlds. However the shared status itself remains intact. - * - * The function call does affect neither memory reservation policy nor memory manager. - * - * @param w The world to release working memory for. - * - * @ingroup world - * @see dWorldUseSharedWorkingMemory - * @see dWorldSetStepMemoryReservationPolicy - * @see dWorldSetStepMemoryManager - */ -ODE_API void dWorldCleanupWorkingMemory(dWorldID w); - - -#define dWORLDSTEP_RESERVEFACTOR_DEFAULT 1.2f -#define dWORLDSTEP_RESERVESIZE_DEFAULT 65536U - -/** - * @struct dWorldStepReserveInfo - * @brief Memory reservation policy descriptor structure for world stepping functions. - * - * @c struct_size should be assigned the size of the structure. - * - * @c reserve_factor is a quotient that is multiplied by required memory size - * to allocate extra reserve whenever reallocation is needed. - * - * @c reserve_minimum is a minimum size that is checked against whenever reallocation - * is needed to allocate expected working memory minimum at once without extra - * reallocations as number of bodies/joints grows. - * - * @ingroup world - * @see dWorldSetStepMemoryReservationPolicy - */ -typedef struct -{ - unsigned struct_size; - float reserve_factor; /* Use float as precision does not matter here*/ - unsigned reserve_minimum; - -} dWorldStepReserveInfo; - -/** - * @brief Set memory reservation policy for world to be used with simulation stepping functions - * - * The function allows to customize reservation policy to be used for internal - * memory which is allocated to aid simulation for a world. By default, values - * of @c dWORLDSTEP_RESERVEFACTOR_DEFAULT and @c dWORLDSTEP_RESERVESIZE_DEFAULT - * are used. - * - * Passing @a policyinfo argument as NULL results in reservation policy being - * reset to defaults as if the world has been just created. The content of - * @a policyinfo structure is copied internally and does not need to remain valid - * after the call returns. - * - * If the world uses working memory sharing, changing memory reservation policy - * affects all the worlds linked together. - * - * Failure result status means a memory allocation failure. - * - * @param w The world to change memory reservation policy for. - * @param policyinfo Null or a pointer to policy descriptor structure. - * @returns 1 for success and 0 for failure. - * - * @ingroup world - * @see dWorldUseSharedWorkingMemory - */ -ODE_API int dWorldSetStepMemoryReservationPolicy(dWorldID w, const dWorldStepReserveInfo *policyinfo/*=NULL*/); - -/** -* @struct dWorldStepMemoryFunctionsInfo -* @brief World stepping memory manager descriptor structure -* -* This structure is intended to define the functions of memory manager to be used -* with world stepping functions. -* -* @c struct_size should be assigned the size of the structure -* -* @c alloc_block is a function to allocate memory block of given size. -* -* @c shrink_block is a function to shrink existing memory block to a smaller size. -* It must preserve the contents of block head while shrinking. The new block size -* is guaranteed to be always less than the existing one. -* -* @c free_block is a function to delete existing memory block. -* -* @ingroup init -* @see dWorldSetStepMemoryManager -*/ -typedef struct -{ - unsigned struct_size; - void *(*alloc_block)(dsizeint block_size); - void *(*shrink_block)(void *block_pointer, dsizeint block_current_size, dsizeint block_smaller_size); - void (*free_block)(void *block_pointer, dsizeint block_current_size); - -} dWorldStepMemoryFunctionsInfo; - -/** -* @brief Set memory manager for world to be used with simulation stepping functions -* -* The function allows to customize memory manager to be used for internal -* memory allocation during simulation for a world. By default, @c dAlloc/@c dRealloc/@c dFree -* based memory manager is used. -* -* Passing @a memfuncs argument as NULL results in memory manager being -* reset to default one as if the world has been just created. The content of -* @a memfuncs structure is copied internally and does not need to remain valid -* after the call returns. -* -* If the world uses working memory sharing, changing memory manager -* affects all the worlds linked together. -* -* Failure result status means a memory allocation failure. -* -* @param w The world to change memory reservation policy for. -* @param memfuncs Null or a pointer to memory manager descriptor structure. -* @returns 1 for success and 0 for failure. -* -* @ingroup world -* @see dWorldUseSharedWorkingMemory -*/ -ODE_API int dWorldSetStepMemoryManager(dWorldID w, const dWorldStepMemoryFunctionsInfo *memfuncs); - -/** - * @brief Assign threading implementation to be used for [quick]stepping the world. - * - * @warning It is not recommended to assign the same threading implementation to - * different worlds if they are going to be called in parallel. In particular this - * makes resources preallocation for threaded calls to lose its sense. - * Built-in threading implementation is likely to crash if misused this way. - * - * @param w The world to change threading implementation for. - * @param functions_info Pointer to threading functions structure - * @param threading_impl ID of threading implementation object - * - * @ingroup world - */ -ODE_API void dWorldSetStepThreadingImplementation(dWorldID w, const dThreadingFunctionsInfo *functions_info, dThreadingImplementationID threading_impl); - -/** - * @brief Step the world. - * - * This uses a "big matrix" method that takes time on the order of m^3 - * and memory on the order of m^2, where m is the total number of constraint - * rows. For large systems this will use a lot of memory and can be very slow, - * but this is currently the most accurate method. - * - * Failure result status means that the memory allocation has failed for operation. - * In such a case all the objects remain in unchanged state and simulation can be - * retried as soon as more memory is available. - * - * @param w The world to be stepped - * @param stepsize The number of seconds that the simulation has to advance. - * @returns 1 for success and 0 for failure - * - * @ingroup world - */ -ODE_API int dWorldStep (dWorldID w, dReal stepsize); - -/** - * @brief Quick-step the world. - * - * This uses an iterative method that takes time on the order of m*N - * and memory on the order of m, where m is the total number of constraint - * rows N is the number of iterations. - * For large systems this is a lot faster than dWorldStep(), - * but it is less accurate. - * - * QuickStep is great for stacks of objects especially when the - * auto-disable feature is used as well. - * However, it has poor accuracy for near-singular systems. - * Near-singular systems can occur when using high-friction contacts, motors, - * or certain articulated structures. For example, a robot with multiple legs - * sitting on the ground may be near-singular. - * - * There are ways to help overcome QuickStep's inaccuracy problems: - * - * \li Increase CFM. - * \li Reduce the number of contacts in your system (e.g. use the minimum - * number of contacts for the feet of a robot or creature). - * \li Don't use excessive friction in the contacts. - * \li Use contact slip if appropriate - * \li Avoid kinematic loops (however, kinematic loops are inevitable in - * legged creatures). - * \li Don't use excessive motor strength. - * \liUse force-based motors instead of velocity-based motors. - * - * Increasing the number of QuickStep iterations may help a little bit, but - * it is not going to help much if your system is really near singular. - * - * Failure result status means that the memory allocation has failed for operation. - * In such a case all the objects remain in unchanged state and simulation can be - * retried as soon as more memory is available. - * - * @param w The world to be stepped - * @param stepsize The number of seconds that the simulation has to advance. - * @returns 1 for success and 0 for failure - * - * @ingroup world - */ -ODE_API int dWorldQuickStep (dWorldID w, dReal stepsize); - - -/** -* @brief Converts an impulse to a force. -* @ingroup world -* @remarks -* If you want to apply a linear or angular impulse to a rigid body, -* instead of a force or a torque, then you can use this function to convert -* the desired impulse into a force/torque vector before calling the -* BodyAdd... function. -* The current algorithm simply scales the impulse by 1/stepsize, -* where stepsize is the step size for the next step that will be taken. -* This function is given a dWorldID because, in the future, the force -* computation may depend on integrator parameters that are set as -* properties of the world. -*/ -ODE_API void dWorldImpulseToForce -( - dWorldID, dReal stepsize, - dReal ix, dReal iy, dReal iz, dVector3 force - ); - - -/** - * @brief Set the number of iterations that the QuickStep method performs per - * step. - * @ingroup world - * @remarks - * More iterations will give a more accurate solution, but will take - * longer to compute. - * @param num The default is 20 iterations. - */ -ODE_API void dWorldSetQuickStepNumIterations (dWorldID, int num); - - -/** - * @brief Get the number of iterations that the QuickStep method performs per - * step. - * @ingroup world - * @return nr of iterations - */ -ODE_API int dWorldGetQuickStepNumIterations (dWorldID); - -/** - * @brief Set the SOR over-relaxation parameter - * @ingroup world - * @param over_relaxation value to use by SOR - */ -ODE_API void dWorldSetQuickStepW (dWorldID, dReal over_relaxation); - -/** - * @brief Get the SOR over-relaxation parameter - * @ingroup world - * @returns the over-relaxation setting - */ -ODE_API dReal dWorldGetQuickStepW (dWorldID); - -/* World contact parameter functions */ - -/** - * @brief Set the maximum correcting velocity that contacts are allowed - * to generate. - * @ingroup world - * @param vel The default value is infinity (i.e. no limit). - * @remarks - * Reducing this value can help prevent "popping" of deeply embedded objects. - */ -ODE_API void dWorldSetContactMaxCorrectingVel (dWorldID, dReal vel); - -/** - * @brief Get the maximum correcting velocity that contacts are allowed - * to generated. - * @ingroup world - */ -ODE_API dReal dWorldGetContactMaxCorrectingVel (dWorldID); - -/** - * @brief Set the depth of the surface layer around all geometry objects. - * @ingroup world - * @remarks - * Contacts are allowed to sink into the surface layer up to the given - * depth before coming to rest. - * @param depth The default value is zero. - * @remarks - * Increasing this to some small value (e.g. 0.001) can help prevent - * jittering problems due to contacts being repeatedly made and broken. - */ -ODE_API void dWorldSetContactSurfaceLayer (dWorldID, dReal depth); - -/** - * @brief Get the depth of the surface layer around all geometry objects. - * @ingroup world - * @returns the depth - */ -ODE_API dReal dWorldGetContactSurfaceLayer (dWorldID); - - -/** - * @defgroup disable Automatic Enabling and Disabling - * @ingroup world bodies - * - * Every body can be enabled or disabled. Enabled bodies participate in the - * simulation, while disabled bodies are turned off and do not get updated - * during a simulation step. New bodies are always created in the enabled state. - * - * A disabled body that is connected through a joint to an enabled body will be - * automatically re-enabled at the next simulation step. - * - * Disabled bodies do not consume CPU time, therefore to speed up the simulation - * bodies should be disabled when they come to rest. This can be done automatically - * with the auto-disable feature. - * - * If a body has its auto-disable flag turned on, it will automatically disable - * itself when - * @li It has been idle for a given number of simulation steps. - * @li It has also been idle for a given amount of simulation time. - * - * A body is considered to be idle when the magnitudes of both its - * linear average velocity and angular average velocity are below given thresholds. - * The sample size for the average defaults to one and can be disabled by setting - * to zero with - * - * Thus, every body has six auto-disable parameters: an enabled flag, a idle step - * count, an idle time, linear/angular average velocity thresholds, and the - * average samples count. - * - * Newly created bodies get these parameters from world. - */ - -/** - * @brief Get auto disable linear average threshold for newly created bodies. - * @ingroup disable - * @return the threshold - */ -ODE_API dReal dWorldGetAutoDisableLinearThreshold (dWorldID); - -/** - * @brief Set auto disable linear average threshold for newly created bodies. - * @param linear_average_threshold default is 0.01 - * @ingroup disable - */ -ODE_API void dWorldSetAutoDisableLinearThreshold (dWorldID, dReal linear_average_threshold); - -/** - * @brief Get auto disable angular average threshold for newly created bodies. - * @ingroup disable - * @return the threshold - */ -ODE_API dReal dWorldGetAutoDisableAngularThreshold (dWorldID); - -/** - * @brief Set auto disable angular average threshold for newly created bodies. - * @param linear_average_threshold default is 0.01 - * @ingroup disable - */ -ODE_API void dWorldSetAutoDisableAngularThreshold (dWorldID, dReal angular_average_threshold); - -/** - * @brief Get auto disable sample count for newly created bodies. - * @ingroup disable - * @return number of samples used - */ -ODE_API int dWorldGetAutoDisableAverageSamplesCount (dWorldID); - -/** - * @brief Set auto disable average sample count for newly created bodies. - * @ingroup disable - * @param average_samples_count Default is 1, meaning only instantaneous velocity is used. - * Set to zero to disable sampling and thus prevent any body from auto-disabling. - */ -ODE_API void dWorldSetAutoDisableAverageSamplesCount (dWorldID, unsigned int average_samples_count ); - -/** - * @brief Get auto disable steps for newly created bodies. - * @ingroup disable - * @return nr of steps - */ -ODE_API int dWorldGetAutoDisableSteps (dWorldID); - -/** - * @brief Set auto disable steps for newly created bodies. - * @ingroup disable - * @param steps default is 10 - */ -ODE_API void dWorldSetAutoDisableSteps (dWorldID, int steps); - -/** - * @brief Get auto disable time for newly created bodies. - * @ingroup disable - * @return nr of seconds - */ -ODE_API dReal dWorldGetAutoDisableTime (dWorldID); - -/** - * @brief Set auto disable time for newly created bodies. - * @ingroup disable - * @param time default is 0 seconds - */ -ODE_API void dWorldSetAutoDisableTime (dWorldID, dReal time); - -/** - * @brief Get auto disable flag for newly created bodies. - * @ingroup disable - * @return 0 or 1 - */ -ODE_API int dWorldGetAutoDisableFlag (dWorldID); - -/** - * @brief Set auto disable flag for newly created bodies. - * @ingroup disable - * @param do_auto_disable default is false. - */ -ODE_API void dWorldSetAutoDisableFlag (dWorldID, int do_auto_disable); - - -/** - * @defgroup damping Damping - * @ingroup bodies world - * - * Damping serves two purposes: reduce simulation instability, and to allow - * the bodies to come to rest (and possibly auto-disabling them). - * - * Bodies are constructed using the world's current damping parameters. Setting - * the scales to 0 disables the damping. - * - * Here is how it is done: after every time step linear and angular - * velocities are tested against the corresponding thresholds. If they - * are above, they are multiplied by (1 - scale). So a negative scale value - * will actually increase the speed, and values greater than one will - * make the object oscillate every step; both can make the simulation unstable. - * - * To disable damping just set the damping scale to zero. - * - * You can also limit the maximum angular velocity. In contrast to the damping - * functions, the angular velocity is affected before the body is moved. - * This means that it will introduce errors in joints that are forcing the body - * to rotate too fast. Some bodies have naturally high angular velocities - * (like cars' wheels), so you may want to give them a very high (like the default, - * dInfinity) limit. - * - * @note The velocities are damped after the stepper function has moved the - * object. Otherwise the damping could introduce errors in joints. First the - * joint constraints are processed by the stepper (moving the body), then - * the damping is applied. - * - * @note The damping happens right after the moved callback is called; this way - * it still possible use the exact velocities the body has acquired during the - * step. You can even use the callback to create your own customized damping. - */ - -/** - * @brief Get the world's linear damping threshold. - * @ingroup damping - */ -ODE_API dReal dWorldGetLinearDampingThreshold (dWorldID w); - -/** - * @brief Set the world's linear damping threshold. - * @param threshold The damping won't be applied if the linear speed is - * below this threshold. Default is 0.01. - * @ingroup damping - */ -ODE_API void dWorldSetLinearDampingThreshold(dWorldID w, dReal threshold); - -/** - * @brief Get the world's angular damping threshold. - * @ingroup damping - */ -ODE_API dReal dWorldGetAngularDampingThreshold (dWorldID w); - -/** - * @brief Set the world's angular damping threshold. - * @param threshold The damping won't be applied if the angular speed is - * below this threshold. Default is 0.01. - * @ingroup damping - */ -ODE_API void dWorldSetAngularDampingThreshold(dWorldID w, dReal threshold); - -/** - * @brief Get the world's linear damping scale. - * @ingroup damping - */ -ODE_API dReal dWorldGetLinearDamping (dWorldID w); - -/** - * @brief Set the world's linear damping scale. - * @param scale The linear damping scale that is to be applied to bodies. - * Default is 0 (no damping). Should be in the interval [0, 1]. - * @ingroup damping - */ -ODE_API void dWorldSetLinearDamping (dWorldID w, dReal scale); - -/** - * @brief Get the world's angular damping scale. - * @ingroup damping - */ -ODE_API dReal dWorldGetAngularDamping (dWorldID w); - -/** - * @brief Set the world's angular damping scale. - * @param scale The angular damping scale that is to be applied to bodies. - * Default is 0 (no damping). Should be in the interval [0, 1]. - * @ingroup damping - */ -ODE_API void dWorldSetAngularDamping(dWorldID w, dReal scale); - -/** - * @brief Convenience function to set body linear and angular scales. - * @param linear_scale The linear damping scale that is to be applied to bodies. - * @param angular_scale The angular damping scale that is to be applied to bodies. - * @ingroup damping - */ -ODE_API void dWorldSetDamping(dWorldID w, - dReal linear_scale, - dReal angular_scale); - -/** - * @brief Get the default maximum angular speed. - * @ingroup damping - * @sa dBodyGetMaxAngularSpeed() - */ -ODE_API dReal dWorldGetMaxAngularSpeed (dWorldID w); - - -/** - * @brief Set the default maximum angular speed for new bodies. - * @ingroup damping - * @sa dBodySetMaxAngularSpeed() - */ -ODE_API void dWorldSetMaxAngularSpeed (dWorldID w, dReal max_speed); - - - -/** - * @defgroup bodies Rigid Bodies - * - * A rigid body has various properties from the point of view of the - * simulation. Some properties change over time: - * - * @li Position vector (x,y,z) of the body's point of reference. - * Currently the point of reference must correspond to the body's center of mass. - * @li Linear velocity of the point of reference, a vector (vx,vy,vz). - * @li Orientation of a body, represented by a quaternion (qs,qx,qy,qz) or - * a 3x3 rotation matrix. - * @li Angular velocity vector (wx,wy,wz) which describes how the orientation - * changes over time. - * - * Other body properties are usually constant over time: - * - * @li Mass of the body. - * @li Position of the center of mass with respect to the point of reference. - * In the current implementation the center of mass and the point of - * reference must coincide. - * @li Inertia matrix. This is a 3x3 matrix that describes how the body's mass - * is distributed around the center of mass. Conceptually each body has an - * x-y-z coordinate frame embedded in it that moves and rotates with the body. - * - * The origin of this coordinate frame is the body's point of reference. Some values - * in ODE (vectors, matrices etc) are relative to the body coordinate frame, and others - * are relative to the global coordinate frame. - * - * Note that the shape of a rigid body is not a dynamical property (except insofar as - * it influences the various mass properties). It is only collision detection that cares - * about the detailed shape of the body. - */ - - -/** - * @brief Get auto disable linear average threshold. - * @ingroup bodies disable - * @return the threshold - */ -ODE_API dReal dBodyGetAutoDisableLinearThreshold (dBodyID); - -/** - * @brief Set auto disable linear average threshold. - * @ingroup bodies disable - * @return the threshold - */ -ODE_API void dBodySetAutoDisableLinearThreshold (dBodyID, dReal linear_average_threshold); - -/** - * @brief Get auto disable angular average threshold. - * @ingroup bodies disable - * @return the threshold - */ -ODE_API dReal dBodyGetAutoDisableAngularThreshold (dBodyID); - -/** - * @brief Set auto disable angular average threshold. - * @ingroup bodies disable - * @return the threshold - */ -ODE_API void dBodySetAutoDisableAngularThreshold (dBodyID, dReal angular_average_threshold); - -/** - * @brief Get auto disable average size (samples count). - * @ingroup bodies disable - * @return the nr of steps/size. - */ -ODE_API int dBodyGetAutoDisableAverageSamplesCount (dBodyID); - -/** - * @brief Set auto disable average buffer size (average steps). - * @ingroup bodies disable - * @param average_samples_count the nr of samples to review. - */ -ODE_API void dBodySetAutoDisableAverageSamplesCount (dBodyID, unsigned int average_samples_count); - - -/** - * @brief Get auto steps a body must be thought of as idle to disable - * @ingroup bodies disable - * @return the nr of steps - */ -ODE_API int dBodyGetAutoDisableSteps (dBodyID); - -/** - * @brief Set auto disable steps. - * @ingroup bodies disable - * @param steps the nr of steps. - */ -ODE_API void dBodySetAutoDisableSteps (dBodyID, int steps); - -/** - * @brief Get auto disable time. - * @ingroup bodies disable - * @return nr of seconds - */ -ODE_API dReal dBodyGetAutoDisableTime (dBodyID); - -/** - * @brief Set auto disable time. - * @ingroup bodies disable - * @param time nr of seconds. - */ -ODE_API void dBodySetAutoDisableTime (dBodyID, dReal time); - -/** - * @brief Get auto disable flag. - * @ingroup bodies disable - * @return 0 or 1 - */ -ODE_API int dBodyGetAutoDisableFlag (dBodyID); - -/** - * @brief Set auto disable flag. - * @ingroup bodies disable - * @param do_auto_disable 0 or 1 - */ -ODE_API void dBodySetAutoDisableFlag (dBodyID, int do_auto_disable); - -/** - * @brief Set auto disable defaults. - * @remarks - * Set the values for the body to those set as default for the world. - * @ingroup bodies disable - */ -ODE_API void dBodySetAutoDisableDefaults (dBodyID); - - -/** - * @brief Retrieves the world attached to te given body. - * @remarks - * - * @ingroup bodies - */ -ODE_API dWorldID dBodyGetWorld (dBodyID); - -/** - * @brief Create a body in given world. - * @remarks - * Default mass parameters are at position (0,0,0). - * @ingroup bodies - */ -ODE_API dBodyID dBodyCreate (dWorldID); - -/** - * @brief Destroy a body. - * @remarks - * All joints that are attached to this body will be put into limbo: - * i.e. unattached and not affecting the simulation, but they will NOT be - * deleted. - * @ingroup bodies - */ -ODE_API void dBodyDestroy (dBodyID); - -/** - * @brief Set the body's user-data pointer. - * @ingroup bodies - * @param data arbitraty pointer - */ -ODE_API void dBodySetData (dBodyID, void *data); - -/** - * @brief Get the body's user-data pointer. - * @ingroup bodies - * @return a pointer to the user's data. - */ -ODE_API void *dBodyGetData (dBodyID); - -/** - * @brief Set position of a body. - * @remarks - * After setting, the outcome of the simulation is undefined - * if the new configuration is inconsistent with the joints/constraints - * that are present. - * @ingroup bodies - */ -ODE_API void dBodySetPosition (dBodyID, dReal x, dReal y, dReal z); - -/** - * @brief Set the orientation of a body. - * @ingroup bodies - * @remarks - * After setting, the outcome of the simulation is undefined - * if the new configuration is inconsistent with the joints/constraints - * that are present. - */ -ODE_API void dBodySetRotation (dBodyID, const dMatrix3 R); - -/** - * @brief Set the orientation of a body. - * @ingroup bodies - * @remarks - * After setting, the outcome of the simulation is undefined - * if the new configuration is inconsistent with the joints/constraints - * that are present. - */ -ODE_API void dBodySetQuaternion (dBodyID, const dQuaternion q); - -/** - * @brief Set the linear velocity of a body. - * @ingroup bodies - */ -ODE_API void dBodySetLinearVel (dBodyID, dReal x, dReal y, dReal z); - -/** - * @brief Set the angular velocity of a body. - * @ingroup bodies - */ -ODE_API void dBodySetAngularVel (dBodyID, dReal x, dReal y, dReal z); - -/** - * @brief Get the position of a body. - * @ingroup bodies - * @remarks - * When getting, the returned values are pointers to internal data structures, - * so the vectors are valid until any changes are made to the rigid body - * system structure. - * @sa dBodyCopyPosition - */ -ODE_API const dReal * dBodyGetPosition (dBodyID); - - -/** - * @brief Copy the position of a body into a vector. - * @ingroup bodies - * @param body the body to query - * @param pos a copy of the body position - * @sa dBodyGetPosition - */ -ODE_API void dBodyCopyPosition (dBodyID body, dVector3 pos); - - -/** - * @brief Get the rotation of a body. - * @ingroup bodies - * @return pointer to a 4x3 rotation matrix. - */ -ODE_API const dReal * dBodyGetRotation (dBodyID); - - -/** - * @brief Copy the rotation of a body. - * @ingroup bodies - * @param body the body to query - * @param R a copy of the rotation matrix - * @sa dBodyGetRotation - */ -ODE_API void dBodyCopyRotation (dBodyID, dMatrix3 R); - - -/** - * @brief Get the rotation of a body. - * @ingroup bodies - * @return pointer to 4 scalars that represent the quaternion. - */ -ODE_API const dReal * dBodyGetQuaternion (dBodyID); - - -/** - * @brief Copy the orientation of a body into a quaternion. - * @ingroup bodies - * @param body the body to query - * @param quat a copy of the orientation quaternion - * @sa dBodyGetQuaternion - */ -ODE_API void dBodyCopyQuaternion(dBodyID body, dQuaternion quat); - - -/** - * @brief Get the linear velocity of a body. - * @ingroup bodies - */ -ODE_API const dReal * dBodyGetLinearVel (dBodyID); - -/** - * @brief Get the angular velocity of a body. - * @ingroup bodies - */ -ODE_API const dReal * dBodyGetAngularVel (dBodyID); - -/** - * @brief Set the mass of a body. - * @ingroup bodies - */ -ODE_API void dBodySetMass (dBodyID, const dMass *mass); - -/** - * @brief Get the mass of a body. - * @ingroup bodies - */ -ODE_API void dBodyGetMass (dBodyID, dMass *mass); - -/** - * @brief Add force at centre of mass of body in absolute coordinates. - * @ingroup bodies - */ -ODE_API void dBodyAddForce (dBodyID, dReal fx, dReal fy, dReal fz); - -/** - * @brief Add torque at centre of mass of body in absolute coordinates. - * @ingroup bodies - */ -ODE_API void dBodyAddTorque (dBodyID, dReal fx, dReal fy, dReal fz); - -/** - * @brief Add force at centre of mass of body in coordinates relative to body. - * @ingroup bodies - */ -ODE_API void dBodyAddRelForce (dBodyID, dReal fx, dReal fy, dReal fz); - -/** - * @brief Add torque at centre of mass of body in coordinates relative to body. - * @ingroup bodies - */ -ODE_API void dBodyAddRelTorque (dBodyID, dReal fx, dReal fy, dReal fz); - -/** - * @brief Add force at specified point in body in global coordinates. - * @ingroup bodies - */ -ODE_API void dBodyAddForceAtPos (dBodyID, dReal fx, dReal fy, dReal fz, - dReal px, dReal py, dReal pz); -/** - * @brief Add force at specified point in body in local coordinates. - * @ingroup bodies - */ -ODE_API void dBodyAddForceAtRelPos (dBodyID, dReal fx, dReal fy, dReal fz, - dReal px, dReal py, dReal pz); -/** - * @brief Add force at specified point in body in global coordinates. - * @ingroup bodies - */ -ODE_API void dBodyAddRelForceAtPos (dBodyID, dReal fx, dReal fy, dReal fz, - dReal px, dReal py, dReal pz); -/** - * @brief Add force at specified point in body in local coordinates. - * @ingroup bodies - */ -ODE_API void dBodyAddRelForceAtRelPos (dBodyID, dReal fx, dReal fy, dReal fz, - dReal px, dReal py, dReal pz); - -/** - * @brief Return the current accumulated force vector. - * @return points to an array of 3 reals. - * @remarks - * The returned values are pointers to internal data structures, so - * the vectors are only valid until any changes are made to the rigid - * body system. - * @ingroup bodies - */ -ODE_API const dReal * dBodyGetForce (dBodyID); - -/** - * @brief Return the current accumulated torque vector. - * @return points to an array of 3 reals. - * @remarks - * The returned values are pointers to internal data structures, so - * the vectors are only valid until any changes are made to the rigid - * body system. - * @ingroup bodies - */ -ODE_API const dReal * dBodyGetTorque (dBodyID); - -/** - * @brief Set the body force accumulation vector. - * @remarks - * This is mostly useful to zero the force and torque for deactivated bodies - * before they are reactivated, in the case where the force-adding functions - * were called on them while they were deactivated. - * @ingroup bodies - */ -ODE_API void dBodySetForce (dBodyID b, dReal x, dReal y, dReal z); - -/** - * @brief Set the body torque accumulation vector. - * @remarks - * This is mostly useful to zero the force and torque for deactivated bodies - * before they are reactivated, in the case where the force-adding functions - * were called on them while they were deactivated. - * @ingroup bodies - */ -ODE_API void dBodySetTorque (dBodyID b, dReal x, dReal y, dReal z); - -/** - * @brief Get world position of a relative point on body. - * @ingroup bodies - * @param result will contain the result. - */ -ODE_API void dBodyGetRelPointPos -( - dBodyID, dReal px, dReal py, dReal pz, - dVector3 result -); - -/** - * @brief Get velocity vector in global coords of a relative point on body. - * @ingroup bodies - * @param result will contain the result. - */ -ODE_API void dBodyGetRelPointVel -( - dBodyID, dReal px, dReal py, dReal pz, - dVector3 result -); - -/** - * @brief Get velocity vector in global coords of a globally - * specified point on a body. - * @ingroup bodies - * @param result will contain the result. - */ -ODE_API void dBodyGetPointVel -( - dBodyID, dReal px, dReal py, dReal pz, - dVector3 result -); - -/** - * @brief takes a point in global coordinates and returns - * the point's position in body-relative coordinates. - * @remarks - * This is the inverse of dBodyGetRelPointPos() - * @ingroup bodies - * @param result will contain the result. - */ -ODE_API void dBodyGetPosRelPoint -( - dBodyID, dReal px, dReal py, dReal pz, - dVector3 result -); - -/** - * @brief Convert from local to world coordinates. - * @ingroup bodies - * @param result will contain the result. - */ -ODE_API void dBodyVectorToWorld -( - dBodyID, dReal px, dReal py, dReal pz, - dVector3 result -); - -/** - * @brief Convert from world to local coordinates. - * @ingroup bodies - * @param result will contain the result. - */ -ODE_API void dBodyVectorFromWorld -( - dBodyID, dReal px, dReal py, dReal pz, - dVector3 result -); - -/** - * @brief controls the way a body's orientation is updated at each timestep. - * @ingroup bodies - * @param mode can be 0 or 1: - * \li 0: An ``infinitesimal'' orientation update is used. - * This is fast to compute, but it can occasionally cause inaccuracies - * for bodies that are rotating at high speed, especially when those - * bodies are joined to other bodies. - * This is the default for every new body that is created. - * \li 1: A ``finite'' orientation update is used. - * This is more costly to compute, but will be more accurate for high - * speed rotations. - * @remarks - * Note however that high speed rotations can result in many types of - * error in a simulation, and the finite mode will only fix one of those - * sources of error. - */ -ODE_API void dBodySetFiniteRotationMode (dBodyID, int mode); - -/** - * @brief sets the finite rotation axis for a body. - * @ingroup bodies - * @remarks - * This is axis only has meaning when the finite rotation mode is set - * If this axis is zero (0,0,0), full finite rotations are performed on - * the body. - * If this axis is nonzero, the body is rotated by performing a partial finite - * rotation along the axis direction followed by an infinitesimal rotation - * along an orthogonal direction. - * @remarks - * This can be useful to alleviate certain sources of error caused by quickly - * spinning bodies. For example, if a car wheel is rotating at high speed - * you can call this function with the wheel's hinge axis as the argument to - * try and improve its behavior. - */ -ODE_API void dBodySetFiniteRotationAxis (dBodyID, dReal x, dReal y, dReal z); - -/** - * @brief Get the way a body's orientation is updated each timestep. - * @ingroup bodies - * @return the mode 0 (infitesimal) or 1 (finite). - */ -ODE_API int dBodyGetFiniteRotationMode (dBodyID); - -/** - * @brief Get the finite rotation axis. - * @param result will contain the axis. - * @ingroup bodies - */ -ODE_API void dBodyGetFiniteRotationAxis (dBodyID, dVector3 result); - -/** - * @brief Get the number of joints that are attached to this body. - * @ingroup bodies - * @return nr of joints - */ -ODE_API int dBodyGetNumJoints (dBodyID b); - -/** - * @brief Return a joint attached to this body, given by index. - * @ingroup bodies - * @param index valid range is 0 to n-1 where n is the value returned by - * dBodyGetNumJoints(). - */ -ODE_API dJointID dBodyGetJoint (dBodyID, int index); - - - - -/** - * @brief Set rigid body to dynamic state (default). - * @param dBodyID identification of body. - * @ingroup bodies - */ -ODE_API void dBodySetDynamic (dBodyID); - -/** - * @brief Set rigid body to kinematic state. - * When in kinematic state the body isn't simulated as a dynamic - * body (it's "unstoppable", doesn't respond to forces), - * but can still affect dynamic bodies (e.g. in joints). - * Kinematic bodies can be controlled by position and velocity. - * @note A kinematic body has infinite mass. If you set its mass - * to something else, it loses the kinematic state and behaves - * as a normal dynamic body. - * @param dBodyID identification of body. - * @ingroup bodies - */ -ODE_API void dBodySetKinematic (dBodyID); - -/** - * @brief Check wether a body is in kinematic state. - * @ingroup bodies - * @return 1 if a body is kinematic or 0 if it is dynamic. - */ -ODE_API int dBodyIsKinematic (dBodyID); - -/** - * @brief Manually enable a body. - * @param dBodyID identification of body. - * @ingroup bodies - */ -ODE_API void dBodyEnable (dBodyID); - -/** - * @brief Manually disable a body. - * @ingroup bodies - * @remarks - * A disabled body that is connected through a joint to an enabled body will - * be automatically re-enabled at the next simulation step. - */ -ODE_API void dBodyDisable (dBodyID); - -/** - * @brief Check wether a body is enabled. - * @ingroup bodies - * @return 1 if a body is currently enabled or 0 if it is disabled. - */ -ODE_API int dBodyIsEnabled (dBodyID); - -/** - * @brief Set whether the body is influenced by the world's gravity or not. - * @ingroup bodies - * @param mode when nonzero gravity affects this body. - * @remarks - * Newly created bodies are always influenced by the world's gravity. - */ -ODE_API void dBodySetGravityMode (dBodyID b, int mode); - -/** - * @brief Get whether the body is influenced by the world's gravity or not. - * @ingroup bodies - * @return nonzero means gravity affects this body. - */ -ODE_API int dBodyGetGravityMode (dBodyID b); - -/** - * @brief Set the 'moved' callback of a body. - * - * Whenever a body has its position or rotation changed during the - * timestep, the callback will be called (with body as the argument). - * Use it to know which body may need an update in an external - * structure (like a 3D engine). - * - * @param b the body that needs to be watched. - * @param callback the callback to be invoked when the body moves. Set to zero - * to disable. - * @ingroup bodies - */ -ODE_API void dBodySetMovedCallback(dBodyID b, void (*callback)(dBodyID)); - - -/** - * @brief Return the first geom associated with the body. - * - * You can traverse through the geoms by repeatedly calling - * dBodyGetNextGeom(). - * - * @return the first geom attached to this body, or 0. - * @ingroup bodies - */ -ODE_API dGeomID dBodyGetFirstGeom (dBodyID b); - - -/** - * @brief returns the next geom associated with the same body. - * @param g a geom attached to some body. - * @return the next geom attached to the same body, or 0. - * @sa dBodyGetFirstGeom - * @ingroup bodies - */ -ODE_API dGeomID dBodyGetNextGeom (dGeomID g); - - -/** - * @brief Resets the damping settings to the current world's settings. - * @ingroup bodies damping - */ -ODE_API void dBodySetDampingDefaults(dBodyID b); - -/** - * @brief Get the body's linear damping scale. - * @ingroup bodies damping - */ -ODE_API dReal dBodyGetLinearDamping (dBodyID b); - -/** - * @brief Set the body's linear damping scale. - * @param scale The linear damping scale. Should be in the interval [0, 1]. - * @ingroup bodies damping - * @remarks From now on the body will not use the world's linear damping - * scale until dBodySetDampingDefaults() is called. - * @sa dBodySetDampingDefaults() - */ -ODE_API void dBodySetLinearDamping(dBodyID b, dReal scale); - -/** - * @brief Get the body's angular damping scale. - * @ingroup bodies damping - * @remarks If the body's angular damping scale was not set, this function - * returns the world's angular damping scale. - */ -ODE_API dReal dBodyGetAngularDamping (dBodyID b); - -/** - * @brief Set the body's angular damping scale. - * @param scale The angular damping scale. Should be in the interval [0, 1]. - * @ingroup bodies damping - * @remarks From now on the body will not use the world's angular damping - * scale until dBodyResetAngularDamping() is called. - * @sa dBodyResetAngularDamping() - */ -ODE_API void dBodySetAngularDamping(dBodyID b, dReal scale); - -/** - * @brief Convenience function to set linear and angular scales at once. - * @param linear_scale The linear damping scale. Should be in the interval [0, 1]. - * @param angular_scale The angular damping scale. Should be in the interval [0, 1]. - * @ingroup bodies damping - * @sa dBodySetLinearDamping() dBodySetAngularDamping() - */ -ODE_API void dBodySetDamping(dBodyID b, dReal linear_scale, dReal angular_scale); - -/** - * @brief Get the body's linear damping threshold. - * @ingroup bodies damping - */ -ODE_API dReal dBodyGetLinearDampingThreshold (dBodyID b); - -/** - * @brief Set the body's linear damping threshold. - * @param threshold The linear threshold to be used. Damping - * is only applied if the linear speed is above this limit. - * @ingroup bodies damping - */ -ODE_API void dBodySetLinearDampingThreshold(dBodyID b, dReal threshold); - -/** - * @brief Get the body's angular damping threshold. - * @ingroup bodies damping - */ -ODE_API dReal dBodyGetAngularDampingThreshold (dBodyID b); - -/** - * @brief Set the body's angular damping threshold. - * @param threshold The angular threshold to be used. Damping is - * only used if the angular speed is above this limit. - * @ingroup bodies damping - */ -ODE_API void dBodySetAngularDampingThreshold(dBodyID b, dReal threshold); - -/** - * @brief Get the body's maximum angular speed. - * @ingroup damping bodies - * @sa dWorldGetMaxAngularSpeed() - */ -ODE_API dReal dBodyGetMaxAngularSpeed (dBodyID b); - -/** - * @brief Set the body's maximum angular speed. - * @ingroup damping bodies - * @sa dWorldSetMaxAngularSpeed() dBodyResetMaxAngularSpeed() - * The default value is dInfinity, but it's a good idea to limit - * it at less than 500 if the body has the gyroscopic term - * enabled. - */ -ODE_API void dBodySetMaxAngularSpeed(dBodyID b, dReal max_speed); - - - -/** - * @brief Get the body's gyroscopic state. - * - * @return nonzero if gyroscopic term computation is enabled (default), - * zero otherwise. - * @ingroup bodies - */ -ODE_API int dBodyGetGyroscopicMode(dBodyID b); - - -/** - * @brief Enable/disable the body's gyroscopic term. - * - * Disabling the gyroscopic term of a body usually improves - * stability. It also helps turning spining objects, like cars' - * wheels. - * - * @param enabled nonzero (default) to enable gyroscopic term, 0 - * to disable. - * @ingroup bodies - */ -ODE_API void dBodySetGyroscopicMode(dBodyID b, int enabled); - - - - -/** - * @defgroup joints Joints - * - * In real life a joint is something like a hinge, that is used to connect two - * objects. - * In ODE a joint is very similar: It is a relationship that is enforced between - * two bodies so that they can only have certain positions and orientations - * relative to each other. - * This relationship is called a constraint -- the words joint and - * constraint are often used interchangeably. - * - * A joint has a set of parameters that can be set. These include: - * - * - * \li dParamLoStop Low stop angle or position. Setting this to - * -dInfinity (the default value) turns off the low stop. - * For rotational joints, this stop must be greater than -pi to be - * effective. - * \li dParamHiStop High stop angle or position. Setting this to - * dInfinity (the default value) turns off the high stop. - * For rotational joints, this stop must be less than pi to be - * effective. - * If the high stop is less than the low stop then both stops will - * be ineffective. - * \li dParamVel Desired motor velocity (this will be an angular or - * linear velocity). - * \li dParamFMax The maximum force or torque that the motor will use to - * achieve the desired velocity. - * This must always be greater than or equal to zero. - * Setting this to zero (the default value) turns off the motor. - * \li dParamFudgeFactor The current joint stop/motor implementation has - * a small problem: - * when the joint is at one stop and the motor is set to move it away - * from the stop, too much force may be applied for one time step, - * causing a ``jumping'' motion. - * This fudge factor is used to scale this excess force. - * It should have a value between zero and one (the default value). - * If the jumping motion is too visible in a joint, the value can be - * reduced. - * Making this value too small can prevent the motor from being able to - * move the joint away from a stop. - * \li dParamBounce The bouncyness of the stops. - * This is a restitution parameter in the range 0..1. - * 0 means the stops are not bouncy at all, 1 means maximum bouncyness. - * \li dParamCFM The constraint force mixing (CFM) value used when not - * at a stop. - * \li dParamStopERP The error reduction parameter (ERP) used by the - * stops. - * \li dParamStopCFM The constraint force mixing (CFM) value used by the - * stops. Together with the ERP value this can be used to get spongy or - * soft stops. - * Note that this is intended for unpowered joints, it does not really - * work as expected when a powered joint reaches its limit. - * \li dParamSuspensionERP Suspension error reduction parameter (ERP). - * Currently this is only implemented on the hinge-2 joint. - * \li dParamSuspensionCFM Suspension constraint force mixing (CFM) value. - * Currently this is only implemented on the hinge-2 joint. - * - * If a particular parameter is not implemented by a given joint, setting it - * will have no effect. - * These parameter names can be optionally followed by a digit (2 or 3) - * to indicate the second or third set of parameters, e.g. for the second axis - * in a hinge-2 joint, or the third axis in an AMotor joint. - */ - - -/** - * @brief Create a new joint of the ball type. - * @ingroup joints - * @remarks - * The joint is initially in "limbo" (i.e. it has no effect on the simulation) - * because it does not connect to any bodies. - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateBall (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the hinge type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateHinge (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the slider type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateSlider (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the contact type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateContact (dWorldID, dJointGroupID, const dContact *); - -/** - * @brief Create a new joint of the hinge2 type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateHinge2 (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the universal type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateUniversal (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the PR (Prismatic and Rotoide) type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreatePR (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the PU (Prismatic and Universal) type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreatePU (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the Piston type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given - * joint group. - */ -ODE_API dJointID dJointCreatePiston (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the fixed type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateFixed (dWorldID, dJointGroupID); - -ODE_API dJointID dJointCreateNull (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the A-motor type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateAMotor (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the L-motor type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateLMotor (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the plane-2d type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreatePlane2D (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the double ball type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateDBall (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the double hinge type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateDHinge (dWorldID, dJointGroupID); - -/** - * @brief Create a new joint of the Transmission type. - * @ingroup joints - * @param dJointGroupID set to 0 to allocate the joint normally. - * If it is nonzero the joint is allocated in the given joint group. - */ -ODE_API dJointID dJointCreateTransmission (dWorldID, dJointGroupID); - - -/** - * @brief Destroy a joint. - * @ingroup joints - * - * disconnects it from its attached bodies and removing it from the world. - * However, if the joint is a member of a group then this function has no - * effect - to destroy that joint the group must be emptied or destroyed. - */ -ODE_API void dJointDestroy (dJointID); - - -/** - * @brief Create a joint group - * @ingroup joints - * @param max_size deprecated. Set to 0. - */ -ODE_API dJointGroupID dJointGroupCreate (int max_size); - -/** - * @brief Destroy a joint group. - * @ingroup joints - * - * All joints in the joint group will be destroyed. - */ -ODE_API void dJointGroupDestroy (dJointGroupID); - -/** - * @brief Empty a joint group. - * @ingroup joints - * - * All joints in the joint group will be destroyed, - * but the joint group itself will not be destroyed. - */ -ODE_API void dJointGroupEmpty (dJointGroupID); - -/** - * @brief Return the number of bodies attached to the joint - * @ingroup joints - */ -ODE_API int dJointGetNumBodies(dJointID); - -/** - * @brief Attach the joint to some new bodies. - * @ingroup joints - * - * If the joint is already attached, it will be detached from the old bodies - * first. - * To attach this joint to only one body, set body1 or body2 to zero - a zero - * body refers to the static environment. - * Setting both bodies to zero puts the joint into "limbo", i.e. it will - * have no effect on the simulation. - * @remarks - * Some joints, like hinge-2 need to be attached to two bodies to work. - */ -ODE_API void dJointAttach (dJointID, dBodyID body1, dBodyID body2); - -/** - * @brief Manually enable a joint. - * @param dJointID identification of joint. - * @ingroup joints - */ -ODE_API void dJointEnable (dJointID); - -/** - * @brief Manually disable a joint. - * @ingroup joints - * @remarks - * A disabled joint will not affect the simulation, but will maintain the anchors and - * axes so it can be enabled later. - */ -ODE_API void dJointDisable (dJointID); - -/** - * @brief Check wether a joint is enabled. - * @ingroup joints - * @return 1 if a joint is currently enabled or 0 if it is disabled. - */ -ODE_API int dJointIsEnabled (dJointID); - -/** - * @brief Set the user-data pointer - * @ingroup joints - */ -ODE_API void dJointSetData (dJointID, void *data); - -/** - * @brief Get the user-data pointer - * @ingroup joints - */ -ODE_API void *dJointGetData (dJointID); - -/** - * @brief Get the type of the joint - * @ingroup joints - * @return the type, being one of these: - * \li dJointTypeBall - * \li dJointTypeHinge - * \li dJointTypeSlider - * \li dJointTypeContact - * \li dJointTypeUniversal - * \li dJointTypeHinge2 - * \li dJointTypeFixed - * \li dJointTypeNull - * \li dJointTypeAMotor - * \li dJointTypeLMotor - * \li dJointTypePlane2D - * \li dJointTypePR - * \li dJointTypePU - * \li dJointTypePiston - */ -ODE_API dJointType dJointGetType (dJointID); - -/** - * @brief Return the bodies that this joint connects. - * @ingroup joints - * @param index return the first (0) or second (1) body. - * @remarks - * If one of these returned body IDs is zero, the joint connects the other body - * to the static environment. - * If both body IDs are zero, the joint is in ``limbo'' and has no effect on - * the simulation. - */ -ODE_API dBodyID dJointGetBody (dJointID, int index); - -/** - * @brief Sets the datastructure that is to receive the feedback. - * - * The feedback can be used by the user, so that it is known how - * much force an individual joint exerts. - * @ingroup joints - */ -ODE_API void dJointSetFeedback (dJointID, dJointFeedback *); - -/** - * @brief Gets the datastructure that is to receive the feedback. - * @ingroup joints - */ -ODE_API dJointFeedback *dJointGetFeedback (dJointID); - -/** - * @brief Set the joint anchor point. - * @ingroup joints - * - * The joint will try to keep this point on each body - * together. The input is specified in world coordinates. - */ -ODE_API void dJointSetBallAnchor (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief Set the joint anchor point. - * @ingroup joints - */ -ODE_API void dJointSetBallAnchor2 (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief Param setting for Ball joints - * @ingroup joints - */ -ODE_API void dJointSetBallParam (dJointID, int parameter, dReal value); - -/** - * @brief Set hinge anchor parameter. - * @ingroup joints - */ -ODE_API void dJointSetHingeAnchor (dJointID, dReal x, dReal y, dReal z); - -ODE_API void dJointSetHingeAnchorDelta (dJointID, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az); - -/** - * @brief Set hinge axis. - * @ingroup joints - */ -ODE_API void dJointSetHingeAxis (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief Set the Hinge axis as if the 2 bodies were already at angle appart. - * @ingroup joints - * - * This function initialize the Axis and the relative orientation of each body - * as if body1 was rotated around the axis by the angle value. \br - * Ex: - *
- * dJointSetHingeAxis(jId, 1, 0, 0);
- * // If you request the position you will have: dJointGetHingeAngle(jId) == 0
- * dJointSetHingeAxisDelta(jId, 1, 0, 0, 0.23);
- * // If you request the position you will have: dJointGetHingeAngle(jId) == 0.23
- * 
- - * @param j The Hinge joint ID for which the axis will be set - * @param x The X component of the axis in world frame - * @param y The Y component of the axis in world frame - * @param z The Z component of the axis in world frame - * @param angle The angle for the offset of the relative orientation. - * As if body1 was rotated by angle when the Axis was set (see below). - * The rotation is around the new Hinge axis. - * - * @note Usually the function dJointSetHingeAxis set the current position of body1 - * and body2 as the zero angle position. This function set the current position - * as the if the 2 bodies where \b angle appart. - * @warning Calling dJointSetHingeAnchor or dJointSetHingeAxis will reset the "zero" - * angle position. - */ -ODE_API void dJointSetHingeAxisOffset (dJointID j, dReal x, dReal y, dReal z, dReal angle); - -/** - * @brief set joint parameter - * @ingroup joints - */ -ODE_API void dJointSetHingeParam (dJointID, int parameter, dReal value); - -/** - * @brief Applies the torque about the hinge axis. - * - * That is, it applies a torque with specified magnitude in the direction - * of the hinge axis, to body 1, and with the same magnitude but in opposite - * direction to body 2. This function is just a wrapper for dBodyAddTorque()} - * @ingroup joints - */ -ODE_API void dJointAddHingeTorque(dJointID joint, dReal torque); - -/** - * @brief set the joint axis - * @ingroup joints - */ -ODE_API void dJointSetSliderAxis (dJointID, dReal x, dReal y, dReal z); - -/** - * @ingroup joints - */ -ODE_API void dJointSetSliderAxisDelta (dJointID, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az); - -/** - * @brief set joint parameter - * @ingroup joints - */ -ODE_API void dJointSetSliderParam (dJointID, int parameter, dReal value); - -/** - * @brief Applies the given force in the slider's direction. - * - * That is, it applies a force with specified magnitude, in the direction of - * slider's axis, to body1, and with the same magnitude but opposite - * direction to body2. This function is just a wrapper for dBodyAddForce(). - * @ingroup joints - */ -ODE_API void dJointAddSliderForce(dJointID joint, dReal force); - -/** - * @brief set anchor - * @ingroup joints - */ -ODE_API void dJointSetHinge2Anchor (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set both axes (optionally) - * - * This can change both axes at once avoiding transitions via invalid states - * while changing axes one by one and having the first changed axis coincide - * with the other axis existing direction. - * - * At least one of the axes must be not NULL. If NULL is passed, the corresponding - * axis retains its existing value. - * - * @ingroup joints - */ -ODE_API void dJointSetHinge2Axes (dJointID j, const dReal *axis1/*=[dSA__MAX],=NULL*/, const dReal *axis2/*=[dSA__MAX],=NULL*/); - -/** - * @brief set axis - * - * Deprecated. Use @fn dJointSetHinge2Axes instead. - * - * @ingroup joints - * @see dJointSetHinge2Axes - */ -ODE_API_DEPRECATED ODE_API void dJointSetHinge2Axis1 (dJointID j, dReal x, dReal y, dReal z); - -/** - * @brief set axis - * - * Deprecated. Use @fn dJointSetHinge2Axes instead. - * - * @ingroup joints - * @see dJointSetHinge2Axes - */ -ODE_API_DEPRECATED ODE_API void dJointSetHinge2Axis2 (dJointID j, dReal x, dReal y, dReal z); - -/** - * @brief set joint parameter - * @ingroup joints - */ -ODE_API void dJointSetHinge2Param (dJointID, int parameter, dReal value); - -/** - * @brief Applies torque1 about the hinge2's axis 1, torque2 about the - * hinge2's axis 2. - * @remarks This function is just a wrapper for dBodyAddTorque(). - * @ingroup joints - */ -ODE_API void dJointAddHinge2Torques(dJointID joint, dReal torque1, dReal torque2); - -/** - * @brief set anchor - * @ingroup joints - */ -ODE_API void dJointSetUniversalAnchor (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set axis - * @ingroup joints - */ -ODE_API void dJointSetUniversalAxis1 (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief Set the Universal axis1 as if the 2 bodies were already at - * offset1 and offset2 appart with respect to axis1 and axis2. - * @ingroup joints - * - * This function initialize the axis1 and the relative orientation of - * each body as if body1 was rotated around the new axis1 by the offset1 - * value and as if body2 was rotated around the axis2 by offset2. \br - * Ex: -*
- * dJointSetHuniversalAxis1(jId, 1, 0, 0);
- * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0
- * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0
- * dJointSetHuniversalAxis1Offset(jId, 1, 0, 0, 0.2, 0.17);
- * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0.2
- * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0.17
- * 
- * - * @param j The Hinge joint ID for which the axis will be set - * @param x The X component of the axis in world frame - * @param y The Y component of the axis in world frame - * @param z The Z component of the axis in world frame - * @param angle The angle for the offset of the relative orientation. - * As if body1 was rotated by angle when the Axis was set (see below). - * The rotation is around the new Hinge axis. - * - * @note Usually the function dJointSetHingeAxis set the current position of body1 - * and body2 as the zero angle position. This function set the current position - * as the if the 2 bodies where \b offsets appart. - * - * @note Any previous offsets are erased. - * - * @warning Calling dJointSetUniversalAnchor, dJointSetUnivesalAxis1, - * dJointSetUniversalAxis2, dJointSetUniversalAxis2Offset - * will reset the "zero" angle position. - */ -ODE_API void dJointSetUniversalAxis1Offset (dJointID, dReal x, dReal y, dReal z, - dReal offset1, dReal offset2); - -/** - * @brief set axis - * @ingroup joints - */ -ODE_API void dJointSetUniversalAxis2 (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief Set the Universal axis2 as if the 2 bodies were already at - * offset1 and offset2 appart with respect to axis1 and axis2. - * @ingroup joints - * - * This function initialize the axis2 and the relative orientation of - * each body as if body1 was rotated around the axis1 by the offset1 - * value and as if body2 was rotated around the new axis2 by offset2. \br - * Ex: - *
- * dJointSetHuniversalAxis2(jId, 0, 1, 0);
- * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0
- * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0
- * dJointSetHuniversalAxis2Offset(jId, 0, 1, 0, 0.2, 0.17);
- * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0.2
- * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0.17
- * 
- - * @param j The Hinge joint ID for which the axis will be set - * @param x The X component of the axis in world frame - * @param y The Y component of the axis in world frame - * @param z The Z component of the axis in world frame - * @param angle The angle for the offset of the relative orientation. - * As if body1 was rotated by angle when the Axis was set (see below). - * The rotation is around the new Hinge axis. - * - * @note Usually the function dJointSetHingeAxis set the current position of body1 - * and body2 as the zero angle position. This function set the current position - * as the if the 2 bodies where \b offsets appart. - * - * @note Any previous offsets are erased. - * - * @warning Calling dJointSetUniversalAnchor, dJointSetUnivesalAxis1, - * dJointSetUniversalAxis2, dJointSetUniversalAxis2Offset - * will reset the "zero" angle position. - */ - - -ODE_API void dJointSetUniversalAxis2Offset (dJointID, dReal x, dReal y, dReal z, - dReal offset1, dReal offset2); - -/** - * @brief set joint parameter - * @ingroup joints - */ -ODE_API void dJointSetUniversalParam (dJointID, int parameter, dReal value); - -/** - * @brief Applies torque1 about the universal's axis 1, torque2 about the - * universal's axis 2. - * @remarks This function is just a wrapper for dBodyAddTorque(). - * @ingroup joints - */ -ODE_API void dJointAddUniversalTorques(dJointID joint, dReal torque1, dReal torque2); - - -/** - * @brief set anchor - * @ingroup joints - */ -ODE_API void dJointSetPRAnchor (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set the axis for the prismatic articulation - * @ingroup joints - */ -ODE_API void dJointSetPRAxis1 (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set the axis for the rotoide articulation - * @ingroup joints - */ -ODE_API void dJointSetPRAxis2 (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set joint parameter - * @ingroup joints - * - * @note parameterX where X equal 2 refer to parameter for the rotoide articulation - */ -ODE_API void dJointSetPRParam (dJointID, int parameter, dReal value); - -/** - * @brief Applies the torque about the rotoide axis of the PR joint - * - * That is, it applies a torque with specified magnitude in the direction - * of the rotoide axis, to body 1, and with the same magnitude but in opposite - * direction to body 2. This function is just a wrapper for dBodyAddTorque()} - * @ingroup joints - */ -ODE_API void dJointAddPRTorque (dJointID j, dReal torque); - - -/** -* @brief set anchor -* @ingroup joints -*/ -ODE_API void dJointSetPUAnchor (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set anchor - * @ingroup joints - */ -ODE_API_DEPRECATED ODE_API void dJointSetPUAnchorDelta (dJointID, dReal x, dReal y, dReal z, - dReal dx, dReal dy, dReal dz); - -/** - * @brief Set the PU anchor as if the 2 bodies were already at [dx, dy, dz] appart. - * @ingroup joints - * - * This function initialize the anchor and the relative position of each body - * as if the position between body1 and body2 was already the projection of [dx, dy, dz] - * along the Piston axis. (i.e as if the body1 was at its current position - [dx,dy,dy] when the - * axis is set). - * Ex: - *
- * dReal offset = 3;
- * dVector3 axis;
- * dJointGetPUAxis(jId, axis);
- * dJointSetPUAnchor(jId, 0, 0, 0);
- * // If you request the position you will have: dJointGetPUPosition(jId) == 0
- * dJointSetPUAnchorOffset(jId, 0, 0, 0, axis[X]*offset, axis[Y]*offset, axis[Z]*offset);
- * // If you request the position you will have: dJointGetPUPosition(jId) == offset
- * 
- * @param j The PU joint for which the anchor point will be set - * @param x The X position of the anchor point in world frame - * @param y The Y position of the anchor point in world frame - * @param z The Z position of the anchor point in world frame - * @param dx A delta to be substracted to the X position as if the anchor was set - * when body1 was at current_position[X] - dx - * @param dx A delta to be substracted to the Y position as if the anchor was set - * when body1 was at current_position[Y] - dy - * @param dx A delta to be substracted to the Z position as if the anchor was set - * when body1 was at current_position[Z] - dz - */ -ODE_API void dJointSetPUAnchorOffset (dJointID, dReal x, dReal y, dReal z, - dReal dx, dReal dy, dReal dz); - -/** - * @brief set the axis for the first axis or the universal articulation - * @ingroup joints - */ -ODE_API void dJointSetPUAxis1 (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set the axis for the second axis or the universal articulation - * @ingroup joints - */ -ODE_API void dJointSetPUAxis2 (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set the axis for the prismatic articulation - * @ingroup joints - */ -ODE_API void dJointSetPUAxis3 (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set the axis for the prismatic articulation - * @ingroup joints - * @note This function was added for convenience it is the same as - * dJointSetPUAxis3 - */ -ODE_API void dJointSetPUAxisP (dJointID id, dReal x, dReal y, dReal z); - - - -/** - * @brief set joint parameter - * @ingroup joints - * - * @note parameterX where X equal 2 refer to parameter for second axis of the - * universal articulation - * @note parameterX where X equal 3 refer to parameter for prismatic - * articulation - */ -ODE_API void dJointSetPUParam (dJointID, int parameter, dReal value); - -/** - * @brief Applies the torque about the rotoide axis of the PU joint - * - * That is, it applies a torque with specified magnitude in the direction - * of the rotoide axis, to body 1, and with the same magnitude but in opposite - * direction to body 2. This function is just a wrapper for dBodyAddTorque()} - * @ingroup joints - */ -ODE_API void dJointAddPUTorque (dJointID j, dReal torque); - - - - -/** - * @brief set the joint anchor - * @ingroup joints - */ -ODE_API void dJointSetPistonAnchor (dJointID, dReal x, dReal y, dReal z); - -/** - * @brief Set the Piston anchor as if the 2 bodies were already at [dx,dy, dz] appart. - * @ingroup joints - * - * This function initialize the anchor and the relative position of each body - * as if the position between body1 and body2 was already the projection of [dx, dy, dz] - * along the Piston axis. (i.e as if the body1 was at its current position - [dx,dy,dy] when the - * axis is set). - * Ex: - *
- * dReal offset = 3;
- * dVector3 axis;
- * dJointGetPistonAxis(jId, axis);
- * dJointSetPistonAnchor(jId, 0, 0, 0);
- * // If you request the position you will have: dJointGetPistonPosition(jId) == 0
- * dJointSetPistonAnchorOffset(jId, 0, 0, 0, axis[X]*offset, axis[Y]*offset, axis[Z]*offset);
- * // If you request the position you will have: dJointGetPistonPosition(jId) == offset
- * 
- * @param j The Piston joint for which the anchor point will be set - * @param x The X position of the anchor point in world frame - * @param y The Y position of the anchor point in world frame - * @param z The Z position of the anchor point in world frame - * @param dx A delta to be substracted to the X position as if the anchor was set - * when body1 was at current_position[X] - dx - * @param dx A delta to be substracted to the Y position as if the anchor was set - * when body1 was at current_position[Y] - dy - * @param dx A delta to be substracted to the Z position as if the anchor was set - * when body1 was at current_position[Z] - dz - */ -ODE_API void dJointSetPistonAnchorOffset(dJointID j, dReal x, dReal y, dReal z, - dReal dx, dReal dy, dReal dz); - - /** - * @brief set the joint axis - * @ingroup joints - */ -ODE_API void dJointSetPistonAxis (dJointID, dReal x, dReal y, dReal z); - -/** - * This function set prismatic axis of the joint and also set the position - * of the joint. - * - * @ingroup joints - * @param j The joint affected by this function - * @param x The x component of the axis - * @param y The y component of the axis - * @param z The z component of the axis - * @param dx The Initial position of the prismatic join in the x direction - * @param dy The Initial position of the prismatic join in the y direction - * @param dz The Initial position of the prismatic join in the z direction - */ -ODE_API_DEPRECATED ODE_API void dJointSetPistonAxisDelta (dJointID j, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az); - -/** - * @brief set joint parameter - * @ingroup joints - */ -ODE_API void dJointSetPistonParam (dJointID, int parameter, dReal value); - -/** - * @brief Applies the given force in the slider's direction. - * - * That is, it applies a force with specified magnitude, in the direction of - * prismatic's axis, to body1, and with the same magnitude but opposite - * direction to body2. This function is just a wrapper for dBodyAddForce(). - * @ingroup joints - */ -ODE_API void dJointAddPistonForce (dJointID joint, dReal force); - - -/** - * @brief Call this on the fixed joint after it has been attached to - * remember the current desired relative offset and desired relative - * rotation between the bodies. - * @ingroup joints - */ -ODE_API void dJointSetFixed (dJointID); - -/* - * @brief Sets joint parameter - * - * @ingroup joints - */ -ODE_API void dJointSetFixedParam (dJointID, int parameter, dReal value); - -/** - * @brief set the nr of axes - * @param num 0..3 - * @ingroup joints - */ -ODE_API void dJointSetAMotorNumAxes (dJointID, int num); - -/** - * @brief set axis - * @ingroup joints - */ -ODE_API void dJointSetAMotorAxis (dJointID, int anum, int rel, - dReal x, dReal y, dReal z); - -/** - * @brief Tell the AMotor what the current angle is along axis anum. - * - * This function should only be called in dAMotorUser mode, because in this - * mode the AMotor has no other way of knowing the joint angles. - * The angle information is needed if stops have been set along the axis, - * but it is not needed for axis motors. - * @ingroup joints - */ -ODE_API void dJointSetAMotorAngle (dJointID, int anum, dReal angle); - -/** - * @brief set joint parameter - * @ingroup joints - */ -ODE_API void dJointSetAMotorParam (dJointID, int parameter, dReal value); - -/** - * @brief set mode - * @ingroup joints - */ -ODE_API void dJointSetAMotorMode (dJointID, int mode); - -/** - * @brief Applies torque0 about the AMotor's axis 0, torque1 about the - * AMotor's axis 1, and torque2 about the AMotor's axis 2. - * @remarks - * If the motor has fewer than three axes, the higher torques are ignored. - * This function is just a wrapper for dBodyAddTorque(). - * @ingroup joints - */ -ODE_API void dJointAddAMotorTorques (dJointID, dReal torque1, dReal torque2, dReal torque3); - -/** - * @brief Set the number of axes that will be controlled by the LMotor. - * @param num can range from 0 (which effectively deactivates the joint) to 3. - * @ingroup joints - */ -ODE_API void dJointSetLMotorNumAxes (dJointID, int num); - -/** - * @brief Set the AMotor axes. - * @param anum selects the axis to change (0,1 or 2). - * @param rel Each axis can have one of three ``relative orientation'' modes - * \li 0: The axis is anchored to the global frame. - * \li 1: The axis is anchored to the first body. - * \li 2: The axis is anchored to the second body. - * @remarks The axis vector is always specified in global coordinates - * regardless of the setting of rel. - * @ingroup joints - */ -ODE_API void dJointSetLMotorAxis (dJointID, int anum, int rel, dReal x, dReal y, dReal z); - -/** - * @brief set joint parameter - * @ingroup joints - */ -ODE_API void dJointSetLMotorParam (dJointID, int parameter, dReal value); - -/** - * @ingroup joints - */ -ODE_API void dJointSetPlane2DXParam (dJointID, int parameter, dReal value); - -/** - * @ingroup joints - */ - -ODE_API void dJointSetPlane2DYParam (dJointID, int parameter, dReal value); - -/** - * @ingroup joints - */ -ODE_API void dJointSetPlane2DAngleParam (dJointID, int parameter, dReal value); - -/** - * @brief Get the joint anchor point, in world coordinates. - * - * This returns the point on body 1. If the joint is perfectly satisfied, - * this will be the same as the point on body 2. - */ -ODE_API void dJointGetBallAnchor (dJointID, dVector3 result); - -/** - * @brief Get the joint anchor point, in world coordinates. - * - * This returns the point on body 2. You can think of a ball and socket - * joint as trying to keep the result of dJointGetBallAnchor() and - * dJointGetBallAnchor2() the same. If the joint is perfectly satisfied, - * this function will return the same value as dJointGetBallAnchor() to - * within roundoff errors. dJointGetBallAnchor2() can be used, along with - * dJointGetBallAnchor(), to see how far the joint has come apart. - */ -ODE_API void dJointGetBallAnchor2 (dJointID, dVector3 result); - -/** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetBallParam (dJointID, int parameter); - -/** - * @brief Get the hinge anchor point, in world coordinates. - * - * This returns the point on body 1. If the joint is perfectly satisfied, - * this will be the same as the point on body 2. - * @ingroup joints - */ -ODE_API void dJointGetHingeAnchor (dJointID, dVector3 result); - -/** - * @brief Get the joint anchor point, in world coordinates. - * @return The point on body 2. If the joint is perfectly satisfied, - * this will return the same value as dJointGetHingeAnchor(). - * If not, this value will be slightly different. - * This can be used, for example, to see how far the joint has come apart. - * @ingroup joints - */ -ODE_API void dJointGetHingeAnchor2 (dJointID, dVector3 result); - -/** - * @brief get axis - * @ingroup joints - */ -ODE_API void dJointGetHingeAxis (dJointID, dVector3 result); - -/** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetHingeParam (dJointID, int parameter); - -/** - * @brief Get the hinge angle. - * - * The angle is measured between the two bodies, or between the body and - * the static environment. - * The angle will be between -pi..pi. - * Give the relative rotation with respect to the Hinge axis of Body 1 with - * respect to Body 2. - * When the hinge anchor or axis is set, the current position of the attached - * bodies is examined and that position will be the zero angle. - * @ingroup joints - */ -ODE_API dReal dJointGetHingeAngle (dJointID); - -/** - * @brief Get the hinge angle time derivative. - * @ingroup joints - */ -ODE_API dReal dJointGetHingeAngleRate (dJointID); - -/** - * @brief Get the slider linear position (i.e. the slider's extension) - * - * When the axis is set, the current position of the attached bodies is - * examined and that position will be the zero position. - - * The position is the distance, with respect to the zero position, - * along the slider axis of body 1 with respect to - * body 2. (A NULL body is replaced by the world). - * @ingroup joints - */ -ODE_API dReal dJointGetSliderPosition (dJointID); - -/** - * @brief Get the slider linear position's time derivative. - * @ingroup joints - */ -ODE_API dReal dJointGetSliderPositionRate (dJointID); - -/** - * @brief Get the slider axis - * @ingroup joints - */ -ODE_API void dJointGetSliderAxis (dJointID, dVector3 result); - -/** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetSliderParam (dJointID, int parameter); - -/** - * @brief Get the joint anchor point, in world coordinates. - * @return the point on body 1. If the joint is perfectly satisfied, - * this will be the same as the point on body 2. - * @ingroup joints - */ -ODE_API void dJointGetHinge2Anchor (dJointID, dVector3 result); - -/** - * @brief Get the joint anchor point, in world coordinates. - * This returns the point on body 2. If the joint is perfectly satisfied, - * this will return the same value as dJointGetHinge2Anchor. - * If not, this value will be slightly different. - * This can be used, for example, to see how far the joint has come apart. - * @ingroup joints - */ -ODE_API void dJointGetHinge2Anchor2 (dJointID, dVector3 result); - -/** - * @brief Get joint axis - * @ingroup joints - */ -ODE_API void dJointGetHinge2Axis1 (dJointID, dVector3 result); - -/** - * @brief Get joint axis - * @ingroup joints - */ -ODE_API void dJointGetHinge2Axis2 (dJointID, dVector3 result); - -/** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetHinge2Param (dJointID, int parameter); - -/** - * @brief Get angle - * @ingroup joints - */ -ODE_API dReal dJointGetHinge2Angle1 (dJointID); - -/** - * @brief Get angle - * @ingroup joints - */ -ODE_API dReal dJointGetHinge2Angle2 (dJointID); - -/** - * @brief Get time derivative of angle - * @ingroup joints - */ -ODE_API dReal dJointGetHinge2Angle1Rate (dJointID); - -/** - * @brief Get time derivative of angle - * @ingroup joints - */ -ODE_API dReal dJointGetHinge2Angle2Rate (dJointID); - -/** - * @brief Get the joint anchor point, in world coordinates. - * @return the point on body 1. If the joint is perfectly satisfied, - * this will be the same as the point on body 2. - * @ingroup joints - */ -ODE_API void dJointGetUniversalAnchor (dJointID, dVector3 result); - -/** - * @brief Get the joint anchor point, in world coordinates. - * @return This returns the point on body 2. - * @remarks - * You can think of the ball and socket part of a universal joint as - * trying to keep the result of dJointGetBallAnchor() and - * dJointGetBallAnchor2() the same. If the joint is - * perfectly satisfied, this function will return the same value - * as dJointGetUniversalAnchor() to within roundoff errors. - * dJointGetUniversalAnchor2() can be used, along with - * dJointGetUniversalAnchor(), to see how far the joint has come apart. - * @ingroup joints - */ -ODE_API void dJointGetUniversalAnchor2 (dJointID, dVector3 result); - -/** - * @brief Get axis - * @ingroup joints - */ -ODE_API void dJointGetUniversalAxis1 (dJointID, dVector3 result); - -/** - * @brief Get axis - * @ingroup joints - */ -ODE_API void dJointGetUniversalAxis2 (dJointID, dVector3 result); - - -/** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetUniversalParam (dJointID, int parameter); - -/** - * @brief Get both angles at the same time. - * @ingroup joints - * - * @param joint The universal joint for which we want to calculate the angles - * @param angle1 The angle between the body1 and the axis 1 - * @param angle2 The angle between the body2 and the axis 2 - * - * @note This function combine getUniversalAngle1 and getUniversalAngle2 together - * and try to avoid redundant calculation - */ -ODE_API void dJointGetUniversalAngles (dJointID, dReal *angle1, dReal *angle2); - -/** - * @brief Get angle - * @ingroup joints - */ -ODE_API dReal dJointGetUniversalAngle1 (dJointID); - -/** - * @brief Get angle - * @ingroup joints - */ -ODE_API dReal dJointGetUniversalAngle2 (dJointID); - -/** - * @brief Get time derivative of angle - * @ingroup joints - */ -ODE_API dReal dJointGetUniversalAngle1Rate (dJointID); - -/** - * @brief Get time derivative of angle - * @ingroup joints - */ -ODE_API dReal dJointGetUniversalAngle2Rate (dJointID); - - - -/** - * @brief Get the joint anchor point, in world coordinates. - * @return the point on body 1. If the joint is perfectly satisfied, - * this will be the same as the point on body 2. - * @ingroup joints - */ -ODE_API void dJointGetPRAnchor (dJointID, dVector3 result); - -/** - * @brief Get the PR linear position (i.e. the prismatic's extension) - * - * When the axis is set, the current position of the attached bodies is - * examined and that position will be the zero position. - * - * The position is the "oriented" length between the - * position = (Prismatic axis) dot_product [(body1 + offset) - (body2 + anchor2)] - * - * @ingroup joints - */ -ODE_API dReal dJointGetPRPosition (dJointID); - -/** - * @brief Get the PR linear position's time derivative - * - * @ingroup joints - */ -ODE_API dReal dJointGetPRPositionRate (dJointID); - - -/** - * @brief Get the PR angular position (i.e. the twist between the 2 bodies) - * - * When the axis is set, the current position of the attached bodies is - * examined and that position will be the zero position. - * @ingroup joints - */ -ODE_API dReal dJointGetPRAngle (dJointID); - -/** - * @brief Get the PR angular position's time derivative - * - * @ingroup joints - */ -ODE_API dReal dJointGetPRAngleRate (dJointID); - - -/** - * @brief Get the prismatic axis - * @ingroup joints - */ -ODE_API void dJointGetPRAxis1 (dJointID, dVector3 result); - -/** - * @brief Get the Rotoide axis - * @ingroup joints - */ -ODE_API void dJointGetPRAxis2 (dJointID, dVector3 result); - -/** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetPRParam (dJointID, int parameter); - - - -/** - * @brief Get the joint anchor point, in world coordinates. - * @return the point on body 1. If the joint is perfectly satisfied, - * this will be the same as the point on body 2. - * @ingroup joints - */ -ODE_API void dJointGetPUAnchor (dJointID, dVector3 result); - -/** - * @brief Get the PU linear position (i.e. the prismatic's extension) - * - * When the axis is set, the current position of the attached bodies is - * examined and that position will be the zero position. - * - * The position is the "oriented" length between the - * position = (Prismatic axis) dot_product [(body1 + offset) - (body2 + anchor2)] - * - * @ingroup joints - */ -ODE_API dReal dJointGetPUPosition (dJointID); - -/** - * @brief Get the PR linear position's time derivative - * - * @ingroup joints - */ -ODE_API dReal dJointGetPUPositionRate (dJointID); - -/** - * @brief Get the first axis of the universal component of the joint - * @ingroup joints - */ -ODE_API void dJointGetPUAxis1 (dJointID, dVector3 result); - -/** - * @brief Get the second axis of the Universal component of the joint - * @ingroup joints - */ -ODE_API void dJointGetPUAxis2 (dJointID, dVector3 result); - -/** - * @brief Get the prismatic axis - * @ingroup joints - */ -ODE_API void dJointGetPUAxis3 (dJointID, dVector3 result); - -/** - * @brief Get the prismatic axis - * @ingroup joints - * - * @note This function was added for convenience it is the same as - * dJointGetPUAxis3 - */ -ODE_API void dJointGetPUAxisP (dJointID id, dVector3 result); - - - - -/** - * @brief Get both angles at the same time. - * @ingroup joints - * - * @param joint The Prismatic universal joint for which we want to calculate the angles - * @param angle1 The angle between the body1 and the axis 1 - * @param angle2 The angle between the body2 and the axis 2 - * - * @note This function combine dJointGetPUAngle1 and dJointGetPUAngle2 together - * and try to avoid redundant calculation - */ -ODE_API void dJointGetPUAngles (dJointID, dReal *angle1, dReal *angle2); - -/** - * @brief Get angle - * @ingroup joints - */ -ODE_API dReal dJointGetPUAngle1 (dJointID); - -/** - * @brief * @brief Get time derivative of angle1 - * - * @ingroup joints - */ -ODE_API dReal dJointGetPUAngle1Rate (dJointID); - - -/** - * @brief Get angle - * @ingroup joints - */ -ODE_API dReal dJointGetPUAngle2 (dJointID); - -/** - * @brief * @brief Get time derivative of angle2 - * - * @ingroup joints - */ -ODE_API dReal dJointGetPUAngle2Rate (dJointID); - - /** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetPUParam (dJointID, int parameter); - - - - - -/** - * @brief Get the Piston linear position (i.e. the piston's extension) - * - * When the axis is set, the current position of the attached bodies is - * examined and that position will be the zero position. - * @ingroup joints - */ -ODE_API dReal dJointGetPistonPosition (dJointID); - -/** - * @brief Get the piston linear position's time derivative. - * @ingroup joints - */ -ODE_API dReal dJointGetPistonPositionRate (dJointID); - -/** - * @brief Get the Piston angular position (i.e. the twist between the 2 bodies) - * - * When the axis is set, the current position of the attached bodies is - * examined and that position will be the zero position. - * @ingroup joints - */ -ODE_API dReal dJointGetPistonAngle (dJointID); - -/** - * @brief Get the piston angular position's time derivative. - * @ingroup joints - */ -ODE_API dReal dJointGetPistonAngleRate (dJointID); - - -/** - * @brief Get the joint anchor - * - * This returns the point on body 1. If the joint is perfectly satisfied, - * this will be the same as the point on body 2 in direction perpendicular - * to the prismatic axis. - * - * @ingroup joints - */ -ODE_API void dJointGetPistonAnchor (dJointID, dVector3 result); - -/** - * @brief Get the joint anchor w.r.t. body 2 - * - * This returns the point on body 2. You can think of a Piston - * joint as trying to keep the result of dJointGetPistonAnchor() and - * dJointGetPistonAnchor2() the same in the direction perpendicular to the - * pirsmatic axis. If the joint is perfectly satisfied, - * this function will return the same value as dJointGetPistonAnchor() to - * within roundoff errors. dJointGetPistonAnchor2() can be used, along with - * dJointGetPistonAnchor(), to see how far the joint has come apart. - * - * @ingroup joints - */ -ODE_API void dJointGetPistonAnchor2 (dJointID, dVector3 result); - -/** - * @brief Get the prismatic axis (This is also the rotoide axis. - * @ingroup joints - */ -ODE_API void dJointGetPistonAxis (dJointID, dVector3 result); - -/** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetPistonParam (dJointID, int parameter); - - -/** - * @brief Get the number of angular axes that will be controlled by the - * AMotor. - * @param num can range from 0 (which effectively deactivates the - * joint) to 3. - * This is automatically set to 3 in dAMotorEuler mode. - * @ingroup joints - */ -ODE_API int dJointGetAMotorNumAxes (dJointID); - -/** - * @brief Get the AMotor axes. - * @param anum selects the axis to change (0,1 or 2). - * @param rel Each axis can have one of three ``relative orientation'' modes. - * \li 0: The axis is anchored to the global frame. - * \li 1: The axis is anchored to the first body. - * \li 2: The axis is anchored to the second body. - * @ingroup joints - */ -ODE_API void dJointGetAMotorAxis (dJointID, int anum, dVector3 result); - -/** - * @brief Get axis - * @remarks - * The axis vector is always specified in global coordinates regardless - * of the setting of rel. - * There are two GetAMotorAxis functions, one to return the axis and one to - * return the relative mode. - * - * For dAMotorEuler mode: - * \li Only axes 0 and 2 need to be set. Axis 1 will be determined - automatically at each time step. - * \li Axes 0 and 2 must be perpendicular to each other. - * \li Axis 0 must be anchored to the first body, axis 2 must be anchored - to the second body. - * @ingroup joints - */ -ODE_API int dJointGetAMotorAxisRel (dJointID, int anum); - -/** - * @brief Get the current angle for axis. - * @remarks - * In dAMotorUser mode this is simply the value that was set with - * dJointSetAMotorAngle(). - * In dAMotorEuler mode this is the corresponding euler angle. - * @ingroup joints - */ -ODE_API dReal dJointGetAMotorAngle (dJointID, int anum); - -/** - * @brief Get the current angle rate for axis anum. - * @remarks - * In dAMotorUser mode this is always zero, as not enough information is - * available. - * In dAMotorEuler mode this is the corresponding euler angle rate. - * @ingroup joints - */ -ODE_API dReal dJointGetAMotorAngleRate (dJointID, int anum); - -/** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetAMotorParam (dJointID, int parameter); - -/** - * @brief Get the angular motor mode. - * @param mode must be one of the following constants: - * \li dAMotorUser The AMotor axes and joint angle settings are entirely - * controlled by the user. This is the default mode. - * \li dAMotorEuler Euler angles are automatically computed. - * The axis a1 is also automatically computed. - * The AMotor axes must be set correctly when in this mode, - * as described below. - * When this mode is initially set the current relative orientations - * of the bodies will correspond to all euler angles at zero. - * @ingroup joints - */ -ODE_API int dJointGetAMotorMode (dJointID); - -/** - * @brief Get nr of axes. - * @ingroup joints - */ -ODE_API int dJointGetLMotorNumAxes (dJointID); - -/** - * @brief Get axis. - * @ingroup joints - */ -ODE_API void dJointGetLMotorAxis (dJointID, int anum, dVector3 result); - -/** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetLMotorParam (dJointID, int parameter); - -/** - * @brief get joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetFixedParam (dJointID, int parameter); - - -/** - * @brief get the contact point of the first wheel of the Transmission joint. - * @ingroup joints - */ -ODE_API void dJointGetTransmissionContactPoint1(dJointID, dVector3 result); - -/** - * @brief get contact point of the second wheel of the Transmission joint. - * @ingroup joints - */ -ODE_API void dJointGetTransmissionContactPoint2(dJointID, dVector3 result); - -/** - * @brief set the first axis for the Transmission joint - * @remarks This is the axis around which the first body is allowed to - * revolve and is attached to it. It is given in global coordinates - * and can only be set explicitly in intersecting-axes mode. For the - * parallel-axes and chain modes which share one common axis of - * revolution for both gears dJointSetTransmissionAxis should be used. - * @ingroup joints - */ -ODE_API void dJointSetTransmissionAxis1(dJointID, dReal x, dReal y, dReal z); - -/** - * @brief get first axis for the Transmission joint - * @remarks In parallel-axes and chain mode the common axis with - * respect to the first body is returned. If the joint constraint is - * satisfied it should be the same as the axis return with - * dJointGetTransmissionAxis2 or dJointGetTransmissionAxis. - * @ingroup joints - */ -ODE_API void dJointGetTransmissionAxis1(dJointID, dVector3 result); - -/** - * @brief set second axis for the Transmission joint - * @remarks This is the axis around which the second body is allowed - * to revolve and is attached to it. It is given in global - * coordinates and can only be set explicitly in intersecting-axes - * mode. For the parallel-axes and chain modes which share one common - * axis of revolution for both gears dJointSetTransmissionAxis should - * be used. - * @ingroup joints - */ -ODE_API void dJointSetTransmissionAxis2(dJointID, dReal x, dReal y, dReal z); - -/** - * @brief get second axis for the Transmission joint - * @remarks In parallel-axes and chain mode the common axis with - * respect to the second body is returned. If the joint constraint is - * satisfied it should be the same as the axis return with - * dJointGetTransmissionAxis1 or dJointGetTransmissionAxis. - * @ingroup joints - */ -ODE_API void dJointGetTransmissionAxis2(dJointID, dVector3 result); - -/** - * @brief set the first anchor for the Transmission joint - * @remarks This is the point of attachment of the wheel on the - * first body. It is given in global coordinates. - * @ingroup joints - */ -ODE_API void dJointSetTransmissionAnchor1(dJointID, dReal x, dReal y, dReal z); - -/** - * @brief get the first anchor of the Transmission joint - * @ingroup joints - */ -ODE_API void dJointGetTransmissionAnchor1(dJointID, dVector3 result); - -/** - * @brief set the second anchor for the Transmission joint - * @remarks This is the point of attachment of the wheel on the - * second body. It is given in global coordinates. - * @ingroup joints - */ -ODE_API void dJointSetTransmissionAnchor2(dJointID, dReal x, dReal y, dReal z); - -/** - * @brief get the second anchor for the Transmission joint - * @ingroup joints - */ -ODE_API void dJointGetTransmissionAnchor2(dJointID, dVector3 result); - -/** - * @brief set a Transmission joint parameter - * @ingroup joints - */ -ODE_API void dJointSetTransmissionParam(dJointID, int parameter, dReal value); - -/** - * @brief get a Transmission joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetTransmissionParam(dJointID, int parameter); - -/** - * @brief set the Transmission joint mode - * @remarks The mode can be one of dTransmissionParallelAxes, - * dTransmissionIntersectingAxes and dTransmissionChainDrive simulating a - * set of parallel-axes gears, intersecting-axes beveled gears or - * chain and sprockets respectively. - * @ingroup joints - */ -ODE_API void dJointSetTransmissionMode( dJointID j, int mode ); - -/** - * @brief get the Transmission joint mode - * @ingroup joints - */ -ODE_API int dJointGetTransmissionMode( dJointID j ); - -/** - * @brief set the Transmission ratio - * @remarks This is the ratio of the angular speed of the first gear - * to that of the second gear. It can only be set explicitly in - * parallel-axes mode. In intersecting-axes mode the ratio is defined - * implicitly by the initial configuration of the wheels and in chain - * mode it is defined implicitly be the wheel radii. - * @ingroup joints - */ -ODE_API void dJointSetTransmissionRatio( dJointID j, dReal ratio ); - -/** - * @brief get the Transmission joint ratio - * @ingroup joints - */ -ODE_API dReal dJointGetTransmissionRatio( dJointID j ); - -/** - * @brief set the common axis for both wheels of the Transmission joint - * @remarks This sets the common axis of revolution for both wheels - * and should only be used in parallel-axes or chain mode. For - * intersecting-axes mode where each wheel axis needs to be specified - * individually dJointSetTransmissionAxis1 and - * dJointSetTransmissionAxis2 should be used. The axis is given in - * global coordinates - * @ingroup joints - */ -ODE_API void dJointSetTransmissionAxis( dJointID j, dReal x, dReal y, dReal z ); - -/** - * @brief get the common axis for both wheels of the Transmission joint - * @ingroup joints - */ -ODE_API void dJointGetTransmissionAxis( dJointID j, dVector3 result ); - -/** - * @brief get the phase, that is the traversed angle for the first - * wheel of the Transmission joint - * @ingroup joints - */ -ODE_API dReal dJointGetTransmissionAngle1( dJointID j ); - -/** - * @brief get the phase, that is the traversed angle for the second - * wheel of the Transmission joint - * @ingroup joints - */ -ODE_API dReal dJointGetTransmissionAngle2( dJointID j ); - -/** - * @brief get the radius of the first wheel of the Transmission joint - * @ingroup joints - */ -ODE_API dReal dJointGetTransmissionRadius1( dJointID j ); - -/** - * @brief get the radius of the second wheel of the Transmission joint - * @ingroup joints - */ -ODE_API dReal dJointGetTransmissionRadius2( dJointID j ); - -/** - * @brief set the radius of the first wheel of the Transmission joint - * @remarks The wheel radii can only be set explicitly in chain mode. - * In the other modes they're defined implicitly by the initial - * configuration and ratio of the wheels. - * @ingroup joints - */ -ODE_API void dJointSetTransmissionRadius1( dJointID j, dReal radius ); - -/** - * @brief set the radius of the second wheel of the Transmission joint - * @remarks The wheel radii can only be set explicitly in chain mode. - * In the other modes they're defined implicitly by the initial - * configuration and ratio of the wheels. - * @ingroup joints - */ -ODE_API void dJointSetTransmissionRadius2( dJointID j, dReal radius ); - -/** - * @brief get the backlash of the Transmission joint - * @ingroup joints - */ -ODE_API dReal dJointGetTransmissionBacklash( dJointID j ); - -/** - * @brief set the backlash of the Transmission joint - * @remarks Backlash is the clearance in the mesh of the wheels of the - * transmission and is defined as the maximum distance that the - * geometric contact point can travel without any actual contact or - * transfer of power between the wheels. This can be converted in - * degrees of revolution for each wheel by dividing by the wheel's - * radius. To further illustrate this consider the situation where a - * wheel of radius r_1 is driving another wheel of radius r_2 and - * there is an amount of backlash equal to b in their mesh. If the - * driving wheel were to instantaneously stop there would be no - * contact and hence the driven wheel would continue to turn for - * another b / r_2 radians until all the backlash in the mesh was take - * up and contact restored with the relationship of driving and driven - * wheel reversed. The backlash is therefore given in untis of - * length. - * @ingroup joints - */ -ODE_API void dJointSetTransmissionBacklash( dJointID j, dReal backlash ); - -/** - * @brief set anchor1 for double ball joint - * @ingroup joints - */ -ODE_API void dJointSetDBallAnchor1(dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set anchor2 for double ball joint - * @ingroup joints - */ -ODE_API void dJointSetDBallAnchor2(dJointID, dReal x, dReal y, dReal z); - -/** - * @brief get anchor1 from double ball joint - * @ingroup joints - */ -ODE_API void dJointGetDBallAnchor1(dJointID, dVector3 result); - -/** - * @brief get anchor2 from double ball joint - * @ingroup joints - */ -ODE_API void dJointGetDBallAnchor2(dJointID, dVector3 result); - -/** - * @brief get the target distance from double ball joint - * @ingroup joints - */ -ODE_API dReal dJointGetDBallDistance(dJointID); - -/** - * @brief set the target distance for the double ball joint - * @ingroup joints - */ -ODE_API void dJointSetDBallDistance(dJointID, dReal dist); - -/** - * @brief set double ball joint parameter - * @ingroup joints - */ -ODE_API void dJointSetDBallParam(dJointID, int parameter, dReal value); - -/** - * @brief get double ball joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetDBallParam(dJointID, int parameter); - -/** - * @brief set axis for double hinge joint - * @ingroup joints - */ -ODE_API void dJointSetDHingeAxis(dJointID, dReal x, dReal y, dReal z); - -/** - * @brief get axis for double hinge joint - * @ingroup joints - */ -ODE_API void dJointGetDHingeAxis(dJointID, dVector3 result); - -/** - * @brief set anchor1 for double hinge joint - * @ingroup joints - */ -ODE_API void dJointSetDHingeAnchor1(dJointID, dReal x, dReal y, dReal z); - -/** - * @brief set anchor2 for double hinge joint - * @ingroup joints - */ -ODE_API void dJointSetDHingeAnchor2(dJointID, dReal x, dReal y, dReal z); - -/** - * @brief get anchor1 from double hinge joint - * @ingroup joints - */ -ODE_API void dJointGetDHingeAnchor1(dJointID, dVector3 result); - -/** - * @brief get anchor2 from double hinge joint - * @ingroup joints - */ -ODE_API void dJointGetDHingeAnchor2(dJointID, dVector3 result); - -/** - * @brief get the set distance from double hinge joint - * @ingroup joints - */ -ODE_API dReal dJointGetDHingeDistance(dJointID); - -/** - * @brief set double hinge joint parameter - * @ingroup joints - */ -ODE_API void dJointSetDHingeParam(dJointID, int parameter, dReal value); - -/** - * @brief get double hinge joint parameter - * @ingroup joints - */ -ODE_API dReal dJointGetDHingeParam(dJointID, int parameter); - - - - -/** - * @ingroup joints - */ -ODE_API dJointID dConnectingJoint (dBodyID, dBodyID); - -/** - * @ingroup joints - */ -ODE_API int dConnectingJointList (dBodyID, dBodyID, dJointID*); - -/** - * @brief Utility function - * @return 1 if the two bodies are connected together by - * a joint, otherwise return 0. - * @ingroup joints - */ -ODE_API int dAreConnected (dBodyID, dBodyID); - -/** - * @brief Utility function - * @return 1 if the two bodies are connected together by - * a joint that does not have type @arg{joint_type}, otherwise return 0. - * @param body1 A body to check. - * @param body2 A body to check. - * @param joint_type is a dJointTypeXXX constant. - * This is useful for deciding whether to add contact joints between two bodies: - * if they are already connected by non-contact joints then it may not be - * appropriate to add contacts, however it is okay to add more contact between- - * bodies that already have contacts. - * @ingroup joints - */ -ODE_API int dAreConnectedExcluding (dBodyID body1, dBodyID body2, int joint_type); - - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/ode.h b/misc/builddeps/linux64/ode/include/ode/ode.h deleted file mode 100644 index a69f46a7..00000000 --- a/misc/builddeps/linux64/ode/include/ode/ode.h +++ /dev/null @@ -1,56 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_ODE_H_ -#define _ODE_ODE_H_ - -/* include *everything* here */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#ifdef __cplusplus -# include -# include -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/odeconfig.h b/misc/builddeps/linux64/ode/include/ode/odeconfig.h deleted file mode 100644 index 1a0c7476..00000000 --- a/misc/builddeps/linux64/ode/include/ode/odeconfig.h +++ /dev/null @@ -1,218 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_ODECONFIG_H_ -#define _ODE_ODECONFIG_H_ - -/* Pull in the standard headers */ -#include -#include -#include -#include -#include -#include -#include -#include - - -#include - - -#if defined(ODE_DLL) || defined(ODE_LIB) -#define __ODE__ -#endif - -/* Define a DLL export symbol for those platforms that need it */ -#if defined(_MSC_VER) || (defined(__GNUC__) && defined(_WIN32)) - #if defined(ODE_DLL) - #define ODE_API __declspec(dllexport) - #else - #define ODE_API - #endif -#endif - -#if !defined(ODE_API) - #define ODE_API -#endif - -#if defined(_MSC_VER) -# define ODE_API_DEPRECATED __declspec(deprecated) -#elif defined (__GNUC__) && ( (__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1)) ) -# define ODE_API_DEPRECATED __attribute__((__deprecated__)) -#else -# define ODE_API_DEPRECATED -#endif - -#define ODE_PURE_INLINE static __inline -#define ODE_INLINE __inline - -#if defined(__cplusplus) - #define ODE_EXTERN_C extern "C" -#else - #define ODE_EXTERN_C -#endif - -#if defined(__GNUC__) -#define ODE_NORETURN __attribute__((noreturn)) -#elif defined(_MSC_VER) -#define ODE_NORETURN __declspec(noreturn) -#else // #if !defined(_MSC_VER) -#define ODE_NORETURN -#endif // #if !defined(__GNUC__) - - -/* Well-defined common data types...need to be defined for 64 bit systems */ -#if defined(__aarch64__) || defined(__alpha__) || defined(__ppc64__) \ - || defined(__s390__) || defined(__s390x__) || defined(__zarch__) \ - || defined(__mips__) || defined(__powerpc64__) || defined(__riscv) \ - || (defined(__sparc__) && defined(__arch64__)) - #include - typedef int64_t dint64; - typedef uint64_t duint64; - typedef int32_t dint32; - typedef uint32_t duint32; - typedef int16_t dint16; - typedef uint16_t duint16; - typedef int8_t dint8; - typedef uint8_t duint8; - - typedef intptr_t dintptr; - typedef uintptr_t duintptr; - typedef ptrdiff_t ddiffint; - typedef size_t dsizeint; - -#elif (defined(_M_IA64) || defined(__ia64__) || defined(_M_AMD64) || defined(__x86_64__)) && !defined(__ILP32__) && !defined(_ILP32) - #define X86_64_SYSTEM 1 -#if defined(_MSC_VER) - typedef __int64 dint64; - typedef unsigned __int64 duint64; -#else -#if defined(_LP64) || defined(__LP64__) -typedef long dint64; -typedef unsigned long duint64; -#else - typedef long long dint64; - typedef unsigned long long duint64; -#endif -#endif - typedef int dint32; - typedef unsigned int duint32; - typedef short dint16; - typedef unsigned short duint16; - typedef signed char dint8; - typedef unsigned char duint8; - - typedef dint64 dintptr; - typedef duint64 duintptr; - typedef dint64 ddiffint; - typedef duint64 dsizeint; - -#else -#if defined(_MSC_VER) - typedef __int64 dint64; - typedef unsigned __int64 duint64; -#else - typedef long long dint64; - typedef unsigned long long duint64; -#endif - typedef int dint32; - typedef unsigned int duint32; - typedef short dint16; - typedef unsigned short duint16; - typedef signed char dint8; - typedef unsigned char duint8; - - typedef dint32 dintptr; - typedef duint32 duintptr; - typedef dint32 ddiffint; - typedef duint32 dsizeint; - -#endif - - -/* Define the dInfinity macro */ -#ifdef INFINITY - #ifdef dSINGLE - #define dInfinity ((float)INFINITY) - #else - #define dInfinity ((double)INFINITY) - #endif -#elif defined(HUGE_VAL) - #ifdef dSINGLE - #ifdef HUGE_VALF - #define dInfinity HUGE_VALF - #else - #define dInfinity ((float)HUGE_VAL) - #endif - #else - #define dInfinity HUGE_VAL - #endif -#else - #ifdef dSINGLE - #define dInfinity ((float)(1.0/0.0)) - #else - #define dInfinity (1.0/0.0) - #endif -#endif - - -/* Define the dNaN macro */ -#if defined(NAN) - #define dNaN NAN -#elif defined(__GNUC__) - #define dNaN ({ union { duint32 m_ui; float m_f; } un; un.m_ui = 0x7FC00000; un.m_f; }) -#elif defined(__cplusplus) - union _dNaNUnion - { - _dNaNUnion(): m_ui(0x7FC00000) {} - duint32 m_ui; - float m_f; - }; - #define dNaN (_dNaNUnion().m_f) -#else - #ifdef dSINGLE - #define dNaN ((float)(dInfinity - dInfinity)) - #else - #define dNaN (dInfinity - dInfinity) - #endif -#endif - - - /* Visual C does not define these functions */ -#if defined(_MSC_VER) - #define _ode_copysignf(x, y) ((float)_copysign(x, y)) - #define _ode_copysign(x, y) _copysign(x, y) - #define _ode_nextafterf(x, y) _nextafterf(x, y) - #define _ode_nextafter(x, y) _nextafter(x, y) - #if !defined(_WIN64) && defined(dSINGLE) - #define _ODE__NEXTAFTERF_REQUIRED - ODE_EXTERN_C float _nextafterf(float x, float y); - #endif -#else - #define _ode_copysignf(x, y) copysignf(x, y) - #define _ode_copysign(x, y) copysign(x, y) - #define _ode_nextafterf(x, y) nextafterf(x, y) - #define _ode_nextafter(x, y) nextafter(x, y) -#endif - - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/odecpp.h b/misc/builddeps/linux64/ode/include/ode/odecpp.h deleted file mode 100644 index f604d0d3..00000000 --- a/misc/builddeps/linux64/ode/include/ode/odecpp.h +++ /dev/null @@ -1,1355 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -/* C++ interface for non-collision stuff */ - - -#ifndef _ODE_ODECPP_H_ -#define _ODE_ODECPP_H_ -#ifdef __cplusplus - - - - -//namespace ode { - - -class dWorldSimpleIDContainer { -protected: - dWorldID _id; - - dWorldSimpleIDContainer(): _id(0) {} - ~dWorldSimpleIDContainer() { destroy(); } - - void destroy() { - if (_id) { - dWorldDestroy(_id); - _id = 0; - } - } -}; - -class dWorldDynamicIDContainer: public dWorldSimpleIDContainer { -protected: - virtual ~dWorldDynamicIDContainer() {} -}; - -template -class dWorldTemplate: public dWorldTemplateBase { - // intentionally undefined, don't use these - dWorldTemplate (const dWorldTemplate &); - void operator= (const dWorldTemplate &); - -protected: - dWorldID get_id() const { return dWorldTemplateBase::_id; } - void set_id(dWorldID value) { dWorldTemplateBase::_id = value; } - -public: - dWorldTemplate() - { set_id(dWorldCreate()); } - - dWorldID id() const - { return get_id(); } - operator dWorldID() const - { return get_id(); } - - void setGravity (dReal x, dReal y, dReal z) - { dWorldSetGravity (get_id(), x, y, z); } - void setGravity (const dVector3 g) - { setGravity (g[0], g[1], g[2]); } - void getGravity (dVector3 g) const - { dWorldGetGravity (get_id(), g); } - - void setERP (dReal erp) - { dWorldSetERP(get_id(), erp); } - dReal getERP() const - { return dWorldGetERP(get_id()); } - - void setCFM (dReal cfm) - { dWorldSetCFM(get_id(), cfm); } - dReal getCFM() const - { return dWorldGetCFM(get_id()); } - - void step (dReal stepsize) - { dWorldStep (get_id(), stepsize); } - - void quickStep(dReal stepsize) - { dWorldQuickStep (get_id(), stepsize); } - void setQuickStepNumIterations(int num) - { dWorldSetQuickStepNumIterations (get_id(), num); } - int getQuickStepNumIterations() const - { return dWorldGetQuickStepNumIterations (get_id()); } - void setQuickStepW(dReal over_relaxation) - { dWorldSetQuickStepW (get_id(), over_relaxation); } - dReal getQuickStepW() const - { return dWorldGetQuickStepW (get_id()); } - - void setAutoDisableLinearThreshold (dReal threshold) - { dWorldSetAutoDisableLinearThreshold (get_id(), threshold); } - dReal getAutoDisableLinearThreshold() const - { return dWorldGetAutoDisableLinearThreshold (get_id()); } - void setAutoDisableAngularThreshold (dReal threshold) - { dWorldSetAutoDisableAngularThreshold (get_id(), threshold); } - dReal getAutoDisableAngularThreshold() const - { return dWorldGetAutoDisableAngularThreshold (get_id()); } - void setAutoDisableSteps (int steps) - { dWorldSetAutoDisableSteps (get_id(), steps); } - int getAutoDisableSteps() const - { return dWorldGetAutoDisableSteps (get_id()); } - void setAutoDisableTime (dReal time) - { dWorldSetAutoDisableTime (get_id(), time); } - dReal getAutoDisableTime() const - { return dWorldGetAutoDisableTime (get_id()); } - void setAutoDisableFlag (int do_auto_disable) - { dWorldSetAutoDisableFlag (get_id(), do_auto_disable); } - int getAutoDisableFlag() const - { return dWorldGetAutoDisableFlag (get_id()); } - - dReal getLinearDampingThreshold() const - { return dWorldGetLinearDampingThreshold(get_id()); } - void setLinearDampingThreshold(dReal threshold) - { dWorldSetLinearDampingThreshold(get_id(), threshold); } - dReal getAngularDampingThreshold() const - { return dWorldGetAngularDampingThreshold(get_id()); } - void setAngularDampingThreshold(dReal threshold) - { dWorldSetAngularDampingThreshold(get_id(), threshold); } - dReal getLinearDamping() const - { return dWorldGetLinearDamping(get_id()); } - void setLinearDamping(dReal scale) - { dWorldSetLinearDamping(get_id(), scale); } - dReal getAngularDamping() const - { return dWorldGetAngularDamping(get_id()); } - void setAngularDamping(dReal scale) - { dWorldSetAngularDamping(get_id(), scale); } - void setDamping(dReal linear_scale, dReal angular_scale) - { dWorldSetDamping(get_id(), linear_scale, angular_scale); } - - dReal getMaxAngularSpeed() const - { return dWorldGetMaxAngularSpeed(get_id()); } - void setMaxAngularSpeed(dReal max_speed) - { dWorldSetMaxAngularSpeed(get_id(), max_speed); } - - void setContactSurfaceLayer(dReal depth) - { dWorldSetContactSurfaceLayer (get_id(), depth); } - dReal getContactSurfaceLayer() const - { return dWorldGetContactSurfaceLayer (get_id()); } - - void impulseToForce (dReal stepsize, dReal ix, dReal iy, dReal iz, - dVector3 force) - { dWorldImpulseToForce (get_id(), stepsize, ix, iy, iz, force); } -}; - - -class dBodySimpleIDContainer { -protected: - dBodyID _id; - - dBodySimpleIDContainer(): _id(0) {} - ~dBodySimpleIDContainer() { destroy(); } - - void destroy() { - if (_id) { - dBodyDestroy(_id); - _id = 0; - } - } -}; - -class dBodyDynamicIDContainer: public dBodySimpleIDContainer { -protected: - virtual ~dBodyDynamicIDContainer() {} -}; - -template -class dBodyTemplate: public dBodyTemplateBase { - // intentionally undefined, don't use these - dBodyTemplate (const dBodyTemplate &); - void operator= (const dBodyTemplate &); - -protected: - dBodyID get_id() const { return dBodyTemplateBase::_id; } - void set_id(dBodyID value) { dBodyTemplateBase::_id = value; } - - void destroy() { dBodyTemplateBase::destroy(); } - -public: - dBodyTemplate() - { } - dBodyTemplate (dWorldID world) - { set_id(dBodyCreate(world)); } - dBodyTemplate (dWorldTemplate& world) - { set_id(dBodyCreate(world.id())); } - - void create (dWorldID world) { - destroy(); - set_id(dBodyCreate(world)); - } - void create (dWorldTemplate& world) { - create(world.id()); - } - - dBodyID id() const - { return get_id(); } - operator dBodyID() const - { return get_id(); } - - void setData (void *data) - { dBodySetData (get_id(), data); } - void *getData() const - { return dBodyGetData (get_id()); } - - void setPosition (dReal x, dReal y, dReal z) - { dBodySetPosition (get_id(), x, y, z); } - void setPosition (const dVector3 p) - { setPosition(p[0], p[1], p[2]); } - - void setRotation (const dMatrix3 R) - { dBodySetRotation (get_id(), R); } - void setQuaternion (const dQuaternion q) - { dBodySetQuaternion (get_id(), q); } - void setLinearVel (dReal x, dReal y, dReal z) - { dBodySetLinearVel (get_id(), x, y, z); } - void setLinearVel (const dVector3 v) - { setLinearVel(v[0], v[1], v[2]); } - void setAngularVel (dReal x, dReal y, dReal z) - { dBodySetAngularVel (get_id(), x, y, z); } - void setAngularVel (const dVector3 v) - { setAngularVel (v[0], v[1], v[2]); } - - const dReal * getPosition() const - { return dBodyGetPosition (get_id()); } - const dReal * getRotation() const - { return dBodyGetRotation (get_id()); } - const dReal * getQuaternion() const - { return dBodyGetQuaternion (get_id()); } - const dReal * getLinearVel() const - { return dBodyGetLinearVel (get_id()); } - const dReal * getAngularVel() const - { return dBodyGetAngularVel (get_id()); } - - void setMass (const dMass *mass) - { dBodySetMass (get_id(), mass); } - void setMass (const dMass &mass) - { setMass (&mass); } - dMass getMass () const - { dMass mass; dBodyGetMass (get_id(), &mass); return mass; } - - void addForce (dReal fx, dReal fy, dReal fz) - { dBodyAddForce (get_id(), fx, fy, fz); } - void addForce (const dVector3 f) - { addForce (f[0], f[1], f[2]); } - void addTorque (dReal fx, dReal fy, dReal fz) - { dBodyAddTorque (get_id(), fx, fy, fz); } - void addTorque (const dVector3 t) - { addTorque(t[0], t[1], t[2]); } - - void addRelForce (dReal fx, dReal fy, dReal fz) - { dBodyAddRelForce (get_id(), fx, fy, fz); } - void addRelForce (const dVector3 f) - { addRelForce (f[0], f[1], f[2]); } - void addRelTorque (dReal fx, dReal fy, dReal fz) - { dBodyAddRelTorque (get_id(), fx, fy, fz); } - void addRelTorque (const dVector3 t) - { addRelTorque (t[0], t[1], t[2]); } - - void addForceAtPos (dReal fx, dReal fy, dReal fz, - dReal px, dReal py, dReal pz) - { dBodyAddForceAtPos (get_id(), fx, fy, fz, px, py, pz); } - void addForceAtPos (const dVector3 f, const dVector3 p) - { addForceAtPos (f[0], f[1], f[2], p[0], p[1], p[2]); } - - void addForceAtRelPos (dReal fx, dReal fy, dReal fz, - dReal px, dReal py, dReal pz) - { dBodyAddForceAtRelPos (get_id(), fx, fy, fz, px, py, pz); } - void addForceAtRelPos (const dVector3 f, const dVector3 p) - { addForceAtRelPos (f[0], f[1], f[2], p[0], p[1], p[2]); } - - void addRelForceAtPos (dReal fx, dReal fy, dReal fz, - dReal px, dReal py, dReal pz) - { dBodyAddRelForceAtPos (get_id(), fx, fy, fz, px, py, pz); } - void addRelForceAtPos (const dVector3 f, const dVector3 p) - { addRelForceAtPos (f[0], f[1], f[2], p[0], p[1], p[2]); } - - void addRelForceAtRelPos (dReal fx, dReal fy, dReal fz, - dReal px, dReal py, dReal pz) - { dBodyAddRelForceAtRelPos (get_id(), fx, fy, fz, px, py, pz); } - void addRelForceAtRelPos (const dVector3 f, const dVector3 p) - { addRelForceAtRelPos (f[0], f[1], f[2], p[0], p[1], p[2]); } - - const dReal * getForce() const - { return dBodyGetForce(get_id()); } - const dReal * getTorque() const - { return dBodyGetTorque(get_id()); } - void setForce (dReal x, dReal y, dReal z) - { dBodySetForce (get_id(), x, y, z); } - void setForce (const dVector3 f) - { setForce (f[0], f[1], f[2]); } - void setTorque (dReal x, dReal y, dReal z) - { dBodySetTorque (get_id(), x, y, z); } - void setTorque (const dVector3 t) - { setTorque (t[0], t[1], t[2]); } - - void setDynamic() - { dBodySetDynamic (get_id()); } - void setKinematic() - { dBodySetKinematic (get_id()); } - bool isKinematic() const - { return dBodyIsKinematic (get_id()) != 0; } - - void enable() - { dBodyEnable (get_id()); } - void disable() - { dBodyDisable (get_id()); } - bool isEnabled() const - { return dBodyIsEnabled (get_id()) != 0; } - - void getRelPointPos (dReal px, dReal py, dReal pz, dVector3 result) const - { dBodyGetRelPointPos (get_id(), px, py, pz, result); } - void getRelPointPos (const dVector3 p, dVector3 result) const - { getRelPointPos (p[0], p[1], p[2], result); } - - void getRelPointVel (dReal px, dReal py, dReal pz, dVector3 result) const - { dBodyGetRelPointVel (get_id(), px, py, pz, result); } - void getRelPointVel (const dVector3 p, dVector3 result) const - { getRelPointVel (p[0], p[1], p[2], result); } - - void getPointVel (dReal px, dReal py, dReal pz, dVector3 result) const - { dBodyGetPointVel (get_id(), px, py, pz, result); } - void getPointVel (const dVector3 p, dVector3 result) const - { getPointVel (p[0], p[1], p[2], result); } - - void getPosRelPoint (dReal px, dReal py, dReal pz, dVector3 result) const - { dBodyGetPosRelPoint (get_id(), px, py, pz, result); } - void getPosRelPoint (const dVector3 p, dVector3 result) const - { getPosRelPoint (p[0], p[1], p[2], result); } - - void vectorToWorld (dReal px, dReal py, dReal pz, dVector3 result) const - { dBodyVectorToWorld (get_id(), px, py, pz, result); } - void vectorToWorld (const dVector3 p, dVector3 result) const - { vectorToWorld (p[0], p[1], p[2], result); } - - void vectorFromWorld (dReal px, dReal py, dReal pz, dVector3 result) const - { dBodyVectorFromWorld (get_id(), px, py, pz, result); } - void vectorFromWorld (const dVector3 p, dVector3 result) const - { vectorFromWorld (p[0], p[1], p[2], result); } - - void setFiniteRotationMode (bool mode) - { dBodySetFiniteRotationMode (get_id(), mode); } - - void setFiniteRotationAxis (dReal x, dReal y, dReal z) - { dBodySetFiniteRotationAxis (get_id(), x, y, z); } - void setFiniteRotationAxis (const dVector3 a) - { setFiniteRotationAxis (a[0], a[1], a[2]); } - - bool getFiniteRotationMode() const - { return dBodyGetFiniteRotationMode (get_id()) != 0; } - void getFiniteRotationAxis (dVector3 result) const - { dBodyGetFiniteRotationAxis (get_id(), result); } - - int getNumJoints() const - { return dBodyGetNumJoints (get_id()); } - dJointID getJoint (int index) const - { return dBodyGetJoint (get_id(), index); } - - void setGravityMode (bool mode) - { dBodySetGravityMode (get_id(), mode); } - bool getGravityMode() const - { return dBodyGetGravityMode (get_id()) != 0; } - - bool isConnectedTo (dBodyID body) const - { return dAreConnected (get_id(), body) != 0; } - - void setAutoDisableLinearThreshold (dReal threshold) - { dBodySetAutoDisableLinearThreshold (get_id(), threshold); } - dReal getAutoDisableLinearThreshold() const - { return dBodyGetAutoDisableLinearThreshold (get_id()); } - void setAutoDisableAngularThreshold (dReal threshold) - { dBodySetAutoDisableAngularThreshold (get_id(), threshold); } - dReal getAutoDisableAngularThreshold() const - { return dBodyGetAutoDisableAngularThreshold (get_id()); } - void setAutoDisableSteps (int steps) - { dBodySetAutoDisableSteps (get_id(), steps); } - int getAutoDisableSteps() const - { return dBodyGetAutoDisableSteps (get_id()); } - void setAutoDisableTime (dReal time) - { dBodySetAutoDisableTime (get_id(), time); } - dReal getAutoDisableTime() const - { return dBodyGetAutoDisableTime (get_id()); } - void setAutoDisableFlag (bool do_auto_disable) - { dBodySetAutoDisableFlag (get_id(), do_auto_disable); } - bool getAutoDisableFlag() const - { return dBodyGetAutoDisableFlag (get_id()) != 0; } - - dReal getLinearDamping() const - { return dBodyGetLinearDamping(get_id()); } - void setLinearDamping(dReal scale) - { dBodySetLinearDamping(get_id(), scale); } - dReal getAngularDamping() const - { return dBodyGetAngularDamping(get_id()); } - void setAngularDamping(dReal scale) - { dBodySetAngularDamping(get_id(), scale); } - void setDamping(dReal linear_scale, dReal angular_scale) - { dBodySetDamping(get_id(), linear_scale, angular_scale); } - dReal getLinearDampingThreshold() const - { return dBodyGetLinearDampingThreshold(get_id()); } - void setLinearDampingThreshold(dReal threshold) const - { dBodySetLinearDampingThreshold(get_id(), threshold); } - dReal getAngularDampingThreshold() const - { return dBodyGetAngularDampingThreshold(get_id()); } - void setAngularDampingThreshold(dReal threshold) - { dBodySetAngularDampingThreshold(get_id(), threshold); } - void setDampingDefaults() - { dBodySetDampingDefaults(get_id()); } - - dReal getMaxAngularSpeed() const - { return dBodyGetMaxAngularSpeed(get_id()); } - void setMaxAngularSpeed(dReal max_speed) - { dBodySetMaxAngularSpeed(get_id(), max_speed); } - - bool getGyroscopicMode() const - { return dBodyGetGyroscopicMode(get_id()) != 0; } - void setGyroscopicMode(bool mode) - { dBodySetGyroscopicMode(get_id(), mode); } - -}; - - -class dJointGroupSimpleIDContainer { -protected: - dJointGroupID _id; - - dJointGroupSimpleIDContainer(): _id(0) {} - ~dJointGroupSimpleIDContainer() { destroy(); } - - void destroy() { - if (_id) { - dJointGroupDestroy(_id); - _id = 0; - } - } -}; - -class dJointGroupDynamicIDContainer: public dJointGroupSimpleIDContainer { -protected: - virtual ~dJointGroupDynamicIDContainer() {} -}; - -template -class dJointGroupTemplate: public dJointGroupTemplateBase { - // intentionally undefined, don't use these - dJointGroupTemplate (const dJointGroupTemplate &); - void operator= (const dJointGroupTemplate &); - -protected: - dJointGroupID get_id() const { return dJointGroupTemplateBase::_id; } - void set_id(dJointGroupID value) { dJointGroupTemplateBase::_id = value; } - - void destroy() { dJointGroupTemplateBase::destroy(); } - -public: - dJointGroupTemplate () - { set_id(dJointGroupCreate(0)); } - - void create () { - destroy(); - set_id(dJointGroupCreate(0)); - } - - dJointGroupID id() const - { return get_id(); } - operator dJointGroupID() const - { return get_id(); } - - void empty() - { dJointGroupEmpty (get_id()); } - void clear() - { empty(); } -}; - - -class dJointSimpleIDContainer { -protected: - dJointID _id; - - dJointSimpleIDContainer(): _id(0) {} - ~dJointSimpleIDContainer() { destroy(); } - - void destroy() { - if (_id) { - dJointDestroy (_id); - _id = 0; - } - } -}; - -class dJointDynamicIDContainer: public dJointSimpleIDContainer { -protected: - virtual ~dJointDynamicIDContainer() {} -}; - -template -class dJointTemplate: public dJointTemplateBase { -private: - // intentionally undefined, don't use these - dJointTemplate (const dJointTemplate &) ; - void operator= (const dJointTemplate &); - -protected: - dJointID get_id() const { return dJointTemplateBase::_id; } - void set_id(dJointID value) { dJointTemplateBase::_id = value; } - - void destroy() { dJointTemplateBase::destroy(); } - -protected: - dJointTemplate() // don't let user construct pure dJointTemplate objects - { } - -public: - dJointID id() const - { return get_id(); } - operator dJointID() const - { return get_id(); } - - int getNumBodies() const - { return dJointGetNumBodies(get_id()); } - - void attach (dBodyID body1, dBodyID body2) - { dJointAttach (get_id(), body1, body2); } - void attach (dBodyTemplate& body1, dBodyTemplate& body2) - { attach(body1.id(), body2.id()); } - - void enable() - { dJointEnable (get_id()); } - void disable() - { dJointDisable (get_id()); } - bool isEnabled() const - { return dJointIsEnabled (get_id()) != 0; } - - void setData (void *data) - { dJointSetData (get_id(), data); } - void *getData() const - { return dJointGetData (get_id()); } - - dJointType getType() const - { return dJointGetType (get_id()); } - - dBodyID getBody (int index) const - { return dJointGetBody (get_id(), index); } - - void setFeedback(dJointFeedback *fb) - { dJointSetFeedback(get_id(), fb); } - dJointFeedback *getFeedback() const - { return dJointGetFeedback(get_id()); } - - // If not implemented it will do nothing as describe in the doc - virtual void setParam (int, dReal) {}; - virtual dReal getParam (int) const { return 0; } -}; - - -template -class dBallJointTemplate : public dJointTemplate { -private: - // intentionally undefined, don't use these - dBallJointTemplate (const dBallJointTemplate &); - void operator= (const dBallJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dBallJointTemplate() { } - dBallJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreateBall(world, group)); } - dBallJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreateBall(world.id(), group)); } - - void create (dWorldID world, dJointGroupID group=0) { - destroy(); - set_id(dJointCreateBall(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void setAnchor (dReal x, dReal y, dReal z) - { dJointSetBallAnchor (get_id(), x, y, z); } - void setAnchor (const dVector3 a) - { setAnchor (a[0], a[1], a[2]); } - void getAnchor (dVector3 result) const - { dJointGetBallAnchor (get_id(), result); } - void getAnchor2 (dVector3 result) const - { dJointGetBallAnchor2 (get_id(), result); } - virtual void setParam (int parameter, dReal value) - { dJointSetBallParam (get_id(), parameter, value); } - virtual dReal getParam (int parameter) const - { return dJointGetBallParam (get_id(), parameter); } - // TODO: expose params through methods -} ; - - -template -class dHingeJointTemplate : public dJointTemplate { -private: - // intentionally undefined, don't use these - dHingeJointTemplate (const dHingeJointTemplate &); - void operator = (const dHingeJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dHingeJointTemplate() { } - dHingeJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreateHinge(world, group)); } - dHingeJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreateHinge(world.id(), group)); } - - void create (dWorldID world, dJointGroupID group=0) { - destroy(); - set_id(dJointCreateHinge (world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void setAnchor (dReal x, dReal y, dReal z) - { dJointSetHingeAnchor (get_id(), x, y, z); } - void setAnchor (const dVector3 a) - { setAnchor (a[0], a[1], a[2]); } - void getAnchor (dVector3 result) const - { dJointGetHingeAnchor (get_id(), result); } - void getAnchor2 (dVector3 result) const - { dJointGetHingeAnchor2 (get_id(), result); } - - void setAxis (dReal x, dReal y, dReal z) - { dJointSetHingeAxis (get_id(), x, y, z); } - void setAxis (const dVector3 a) - { setAxis(a[0], a[1], a[2]); } - void getAxis (dVector3 result) const - { dJointGetHingeAxis (get_id(), result); } - - dReal getAngle() const - { return dJointGetHingeAngle (get_id()); } - dReal getAngleRate() const - { return dJointGetHingeAngleRate (get_id()); } - - virtual void setParam (int parameter, dReal value) - { dJointSetHingeParam (get_id(), parameter, value); } - virtual dReal getParam (int parameter) const - { return dJointGetHingeParam (get_id(), parameter); } - // TODO: expose params through methods - - void addTorque (dReal torque) - { dJointAddHingeTorque(get_id(), torque); } -}; - - -template -class dSliderJointTemplate : public dJointTemplate { -private: - // intentionally undefined, don't use these - dSliderJointTemplate (const dSliderJointTemplate &); - void operator = (const dSliderJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dSliderJointTemplate() { } - dSliderJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreateSlider(world, group)); } - dSliderJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreateSlider(world.id(), group)); } - - void create (dWorldID world, dJointGroupID group=0) { - destroy(); - set_id(dJointCreateSlider(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void setAxis (dReal x, dReal y, dReal z) - { dJointSetSliderAxis (get_id(), x, y, z); } - void setAxis (const dVector3 a) - { setAxis (a[0], a[1], a[2]); } - void getAxis (dVector3 result) const - { dJointGetSliderAxis (get_id(), result); } - - dReal getPosition() const - { return dJointGetSliderPosition (get_id()); } - dReal getPositionRate() const - { return dJointGetSliderPositionRate (get_id()); } - - virtual void setParam (int parameter, dReal value) - { dJointSetSliderParam (get_id(), parameter, value); } - virtual dReal getParam (int parameter) const - { return dJointGetSliderParam (get_id(), parameter); } - // TODO: expose params through methods - - void addForce (dReal force) - { dJointAddSliderForce(get_id(), force); } -}; - - -template -class dUniversalJointTemplate : public dJointTemplate { -private: - // intentionally undefined, don't use these - dUniversalJointTemplate (const dUniversalJointTemplate &); - void operator = (const dUniversalJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dUniversalJointTemplate() { } - dUniversalJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreateUniversal(world, group)); } - dUniversalJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreateUniversal(world.id(), group)); } - - void create (dWorldID world, dJointGroupID group=0) { - destroy(); - set_id(dJointCreateUniversal(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void setAnchor (dReal x, dReal y, dReal z) - { dJointSetUniversalAnchor (get_id(), x, y, z); } - void setAnchor (const dVector3 a) - { setAnchor(a[0], a[1], a[2]); } - void setAxis1 (dReal x, dReal y, dReal z) - { dJointSetUniversalAxis1 (get_id(), x, y, z); } - void setAxis1 (const dVector3 a) - { setAxis1 (a[0], a[1], a[2]); } - void setAxis2 (dReal x, dReal y, dReal z) - { dJointSetUniversalAxis2 (get_id(), x, y, z); } - void setAxis2 (const dVector3 a) - { setAxis2 (a[0], a[1], a[2]); } - - void getAnchor (dVector3 result) const - { dJointGetUniversalAnchor (get_id(), result); } - void getAnchor2 (dVector3 result) const - { dJointGetUniversalAnchor2 (get_id(), result); } - void getAxis1 (dVector3 result) const - { dJointGetUniversalAxis1 (get_id(), result); } - void getAxis2 (dVector3 result) const - { dJointGetUniversalAxis2 (get_id(), result); } - - virtual void setParam (int parameter, dReal value) - { dJointSetUniversalParam (get_id(), parameter, value); } - virtual dReal getParam (int parameter) const - { return dJointGetUniversalParam (get_id(), parameter); } - // TODO: expose params through methods - - void getAngles(dReal *angle1, dReal *angle2) const - { dJointGetUniversalAngles (get_id(), angle1, angle2); } - - dReal getAngle1() const - { return dJointGetUniversalAngle1 (get_id()); } - dReal getAngle1Rate() const - { return dJointGetUniversalAngle1Rate (get_id()); } - dReal getAngle2() const - { return dJointGetUniversalAngle2 (get_id()); } - dReal getAngle2Rate() const - { return dJointGetUniversalAngle2Rate (get_id()); } - - void addTorques (dReal torque1, dReal torque2) - { dJointAddUniversalTorques(get_id(), torque1, torque2); } -}; - - -template -class dHinge2JointTemplate : public dJointTemplate { -private: - // intentionally undefined, don't use these - dHinge2JointTemplate (const dHinge2JointTemplate &); - void operator = (const dHinge2JointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dHinge2JointTemplate() { } - dHinge2JointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreateHinge2(world, group)); } - dHinge2JointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreateHinge2(world.id(), group)); } - - void create (dWorldID world, dJointGroupID group=0) { - destroy(); - set_id(dJointCreateHinge2(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void setAnchor (dReal x, dReal y, dReal z) - { dJointSetHinge2Anchor (get_id(), x, y, z); } - void setAnchor (const dVector3 a) - { setAnchor(a[0], a[1], a[2]); } - void setAxes (const dReal *axis1/*=NULL*/, const dReal *axis2/*=NULL*/) - { dJointSetHinge2Axes (get_id(), axis1, axis2); } - ODE_API_DEPRECATED void setAxis1 (dReal x, dReal y, dReal z) - { dVector3 a = { x, y, z }; dJointSetHinge2Axes (get_id(), a, NULL); } - ODE_API_DEPRECATED void setAxis1 (const dVector3 a) - { dJointSetHinge2Axes (get_id(), a, NULL); } - ODE_API_DEPRECATED void setAxis2 (dReal x, dReal y, dReal z) - { dVector3 a = { x, y, z }; dJointSetHinge2Axes (get_id(), NULL, a); } - ODE_API_DEPRECATED void setAxis2 (const dVector3 a) - { dJointSetHinge2Axes (get_id(), NULL, a); } - - void getAnchor (dVector3 result) const - { dJointGetHinge2Anchor (get_id(), result); } - void getAnchor2 (dVector3 result) const - { dJointGetHinge2Anchor2 (get_id(), result); } - void getAxis1 (dVector3 result) const - { dJointGetHinge2Axis1 (get_id(), result); } - void getAxis2 (dVector3 result) const - { dJointGetHinge2Axis2 (get_id(), result); } - - dReal getAngle1() const - { return dJointGetHinge2Angle1 (get_id()); } - dReal getAngle1Rate() const - { return dJointGetHinge2Angle1Rate (get_id()); } - dReal getAngle2Rate() const - { return dJointGetHinge2Angle2Rate (get_id()); } - - virtual void setParam (int parameter, dReal value) - { dJointSetHinge2Param (get_id(), parameter, value); } - virtual dReal getParam (int parameter) const - { return dJointGetHinge2Param (get_id(), parameter); } - // TODO: expose params through methods - - void addTorques(dReal torque1, dReal torque2) - { dJointAddHinge2Torques(get_id(), torque1, torque2); } -}; - - -template -class dPRJointTemplate : public dJointTemplate { -private: - // intentionally undefined, don't use these - dPRJointTemplate (const dPRJointTemplate &); - void operator = (const dPRJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dPRJointTemplate() { } - dPRJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreatePR(world, group)); } - dPRJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreatePR(world.id(), group)); } - - void create (dWorldID world, dJointGroupID group=0) { - destroy(); - set_id(dJointCreatePR(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void setAnchor (dReal x, dReal y, dReal z) - { dJointSetPRAnchor (get_id(), x, y, z); } - void setAnchor (const dVector3 a) - { setAnchor (a[0], a[1], a[2]); } - void setAxis1 (dReal x, dReal y, dReal z) - { dJointSetPRAxis1 (get_id(), x, y, z); } - void setAxis1 (const dVector3 a) - { setAxis1(a[0], a[1], a[2]); } - void setAxis2 (dReal x, dReal y, dReal z) - { dJointSetPRAxis2 (get_id(), x, y, z); } - void setAxis2 (const dVector3 a) - { setAxis2(a[0], a[1], a[2]); } - - void getAnchor (dVector3 result) const - { dJointGetPRAnchor (get_id(), result); } - void getAxis1 (dVector3 result) const - { dJointGetPRAxis1 (get_id(), result); } - void getAxis2 (dVector3 result) const - { dJointGetPRAxis2 (get_id(), result); } - - dReal getPosition() const - { return dJointGetPRPosition (get_id()); } - dReal getPositionRate() const - { return dJointGetPRPositionRate (get_id()); } - - dReal getAngle() const - { return dJointGetPRAngle (get_id()); } - dReal getAngleRate() const - { return dJointGetPRAngleRate (get_id()); } - - virtual void setParam (int parameter, dReal value) - { dJointSetPRParam (get_id(), parameter, value); } - virtual dReal getParam (int parameter) const - { return dJointGetPRParam (get_id(), parameter); } -}; - - - -template -class dPUJointTemplate : public dJointTemplate -{ -private: - // intentionally undefined, don't use these - dPUJointTemplate (const dPUJointTemplate &); - void operator = (const dPUJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dPUJointTemplate() { } - dPUJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreatePU(world, group)); } - dPUJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreatePU(world.id(), group)); } - - void create (dWorldID world, dJointGroupID group=0) - { - destroy(); - set_id(dJointCreatePU(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void setAnchor (dReal x, dReal y, dReal z) - { dJointSetPUAnchor (get_id(), x, y, z); } - void setAnchor (const dVector3 a) - { setAnchor (a[0], a[1], a[2]); } - void setAxis1 (dReal x, dReal y, dReal z) - { dJointSetPUAxis1 (get_id(), x, y, z); } - void setAxis1 (const dVector3 a) - { setAxis1(a[0], a[1], a[2]); } - void setAxis2 (dReal x, dReal y, dReal z) - { dJointSetPUAxis2 (get_id(), x, y, z); } - void setAxis3 (dReal x, dReal y, dReal z) - { dJointSetPUAxis3 (get_id(), x, y, z); } - void setAxis3 (const dVector3 a) - { setAxis3(a[0], a[1], a[2]); } - void setAxisP (dReal x, dReal y, dReal z) - { dJointSetPUAxis3 (get_id(), x, y, z); } - void setAxisP (const dVector3 a) - { setAxisP(a[0], a[1], a[2]); } - - virtual void getAnchor (dVector3 result) const - { dJointGetPUAnchor (get_id(), result); } - void getAxis1 (dVector3 result) const - { dJointGetPUAxis1 (get_id(), result); } - void getAxis2 (dVector3 result) const - { dJointGetPUAxis2 (get_id(), result); } - void getAxis3 (dVector3 result) const - { dJointGetPUAxis3 (get_id(), result); } - void getAxisP (dVector3 result) const - { dJointGetPUAxis3 (get_id(), result); } - - dReal getAngle1() const - { return dJointGetPUAngle1 (get_id()); } - dReal getAngle1Rate() const - { return dJointGetPUAngle1Rate (get_id()); } - dReal getAngle2() const - { return dJointGetPUAngle2 (get_id()); } - dReal getAngle2Rate() const - { return dJointGetPUAngle2Rate (get_id()); } - - dReal getPosition() const - { return dJointGetPUPosition (get_id()); } - dReal getPositionRate() const - { return dJointGetPUPositionRate (get_id()); } - - virtual void setParam (int parameter, dReal value) - { dJointSetPUParam (get_id(), parameter, value); } - virtual dReal getParam (int parameter) const - { return dJointGetPUParam (get_id(), parameter); } - // TODO: expose params through methods -}; - - - - - -template -class dPistonJointTemplate : public dJointTemplate -{ -private: - // intentionally undefined, don't use these - dPistonJointTemplate (const dPistonJointTemplate &); - void operator = (const dPistonJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dPistonJointTemplate() { } - dPistonJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreatePiston(world, group)); } - dPistonJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreatePiston(world, group)); } - - void create (dWorldID world, dJointGroupID group=0) - { - destroy(); - set_id(dJointCreatePiston(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void setAnchor (dReal x, dReal y, dReal z) - { dJointSetPistonAnchor (get_id(), x, y, z); } - void setAnchor (const dVector3 a) - { setAnchor (a[0], a[1], a[2]); } - void getAnchor (dVector3 result) const - { dJointGetPistonAnchor (get_id(), result); } - void getAnchor2 (dVector3 result) const - { dJointGetPistonAnchor2 (get_id(), result); } - - void setAxis (dReal x, dReal y, dReal z) - { dJointSetPistonAxis (get_id(), x, y, z); } - void setAxis (const dVector3 a) - { setAxis(a[0], a[1], a[2]); } - void getAxis (dVector3 result) const - { dJointGetPistonAxis (get_id(), result); } - - dReal getPosition() const - { return dJointGetPistonPosition (get_id()); } - dReal getPositionRate() const - { return dJointGetPistonPositionRate (get_id()); } - - virtual void setParam (int parameter, dReal value) - { dJointSetPistonParam (get_id(), parameter, value); } - virtual dReal getParam (int parameter) const - { return dJointGetPistonParam (get_id(), parameter); } - // TODO: expose params through methods - - void addForce (dReal force) - { dJointAddPistonForce (get_id(), force); } -}; - - - -template -class dFixedJointTemplate : public dJointTemplate -{ -private: - // intentionally undefined, don't use these - dFixedJointTemplate (const dFixedJointTemplate &); - void operator = (const dFixedJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dFixedJointTemplate() { } - dFixedJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreateFixed(world, group)); } - dFixedJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreateFixed(world, group)); } - - void create (dWorldID world, dJointGroupID group=0) { - destroy(); - set_id(dJointCreateFixed(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void set() - { dJointSetFixed (get_id()); } - - virtual void setParam (int parameter, dReal value) - { dJointSetFixedParam (get_id(), parameter, value); } - - virtual dReal getParam (int parameter) const - { return dJointGetFixedParam (get_id(), parameter); } - // TODO: expose params through methods -}; - - -template -class dContactJointTemplate : public dJointTemplate { -private: - // intentionally undefined, don't use these - dContactJointTemplate (const dContactJointTemplate &); - void operator = (const dContactJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dContactJointTemplate() { } - dContactJointTemplate (dWorldID world, dJointGroupID group, dContact *contact) - { set_id(dJointCreateContact(world, group, contact)); } - dContactJointTemplate (dWorldTemplate& world, dJointGroupID group, dContact *contact) - { set_id(dJointCreateContact(world.id(), group, contact)); } - - void create (dWorldID world, dJointGroupID group, dContact *contact) { - destroy(); - set_id(dJointCreateContact(world, group, contact)); - } - - void create (dWorldTemplate& world, dJointGroupID group, dContact *contact) - { create(world.id(), group, contact); } -}; - - -template -class dNullJointTemplate : public dJointTemplate { -private: - // intentionally undefined, don't use these - dNullJointTemplate (const dNullJointTemplate &); - void operator = (const dNullJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dNullJointTemplate() { } - dNullJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreateNull(world, group)); } - dNullJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreateNull (world.id(), group)); } - - void create (dWorldID world, dJointGroupID group=0) { - destroy(); - set_id(dJointCreateNull(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } -}; - - -template -class dAMotorJointTemplate : public dJointTemplate { -private: - // intentionally undefined, don't use these - dAMotorJointTemplate (const dAMotorJointTemplate &); - void operator = (const dAMotorJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dAMotorJointTemplate() { } - dAMotorJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreateAMotor(world, group)); } - dAMotorJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreateAMotor(world.id(), group)); } - - void create (dWorldID world, dJointGroupID group=0) { - destroy(); - set_id(dJointCreateAMotor(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void setMode (int mode) - { dJointSetAMotorMode (get_id(), mode); } - int getMode() const - { return dJointGetAMotorMode (get_id()); } - - void setNumAxes (int num) - { dJointSetAMotorNumAxes (get_id(), num); } - int getNumAxes() const - { return dJointGetAMotorNumAxes (get_id()); } - - void setAxis (int anum, int rel, dReal x, dReal y, dReal z) - { dJointSetAMotorAxis (get_id(), anum, rel, x, y, z); } - void setAxis (int anum, int rel, const dVector3 a) - { setAxis(anum, rel, a[0], a[1], a[2]); } - void getAxis (int anum, dVector3 result) const - { dJointGetAMotorAxis (get_id(), anum, result); } - int getAxisRel (int anum) const - { return dJointGetAMotorAxisRel (get_id(), anum); } - - void setAngle (int anum, dReal angle) - { dJointSetAMotorAngle (get_id(), anum, angle); } - dReal getAngle (int anum) const - { return dJointGetAMotorAngle (get_id(), anum); } - dReal getAngleRate (int anum) - { return dJointGetAMotorAngleRate (get_id(), anum); } - - void setParam (int parameter, dReal value) - { dJointSetAMotorParam (get_id(), parameter, value); } - dReal getParam (int parameter) const - { return dJointGetAMotorParam (get_id(), parameter); } - // TODO: expose params through methods - - void addTorques(dReal torque1, dReal torque2, dReal torque3) - { dJointAddAMotorTorques(get_id(), torque1, torque2, torque3); } -}; - - -template -class dLMotorJointTemplate : public dJointTemplate { -private: - // intentionally undefined, don't use these - dLMotorJointTemplate (const dLMotorJointTemplate &); - void operator = (const dLMotorJointTemplate &); - -protected: - typedef dJointTemplate dBaseTemplate; - - dJointID get_id() const { return dBaseTemplate::get_id(); } - void set_id(dJointID value) { dBaseTemplate::set_id(value); } - - void destroy() { dBaseTemplate::destroy(); } - -public: - dLMotorJointTemplate() { } - dLMotorJointTemplate (dWorldID world, dJointGroupID group=0) - { set_id(dJointCreateLMotor(world, group)); } - dLMotorJointTemplate (dWorldTemplate& world, dJointGroupID group=0) - { set_id(dJointCreateLMotor(world.id(), group)); } - - void create (dWorldID world, dJointGroupID group=0) { - destroy(); - set_id(dJointCreateLMotor(world, group)); - } - void create (dWorldTemplate& world, dJointGroupID group=0) - { create(world.id(), group); } - - void setNumAxes (int num) - { dJointSetLMotorNumAxes (get_id(), num); } - int getNumAxes() const - { return dJointGetLMotorNumAxes (get_id()); } - - void setAxis (int anum, int rel, dReal x, dReal y, dReal z) - { dJointSetLMotorAxis (get_id(), anum, rel, x, y, z); } - void setAxis (int anum, int rel, const dVector3 a) - { setAxis(anum, rel, a[0], a[1], a[2]); } - void getAxis (int anum, dVector3 result) const - { dJointGetLMotorAxis (get_id(), anum, result); } - - void setParam (int parameter, dReal value) - { dJointSetLMotorParam (get_id(), parameter, value); } - dReal getParam (int parameter) const - { return dJointGetLMotorParam (get_id(), parameter); } - // TODO: expose params through methods -}; - -//} - -#if !defined(dODECPP_WORLD_TEMPLATE_BASE) - -#if defined(dODECPP_BODY_TEMPLATE_BASE) || defined(dODECPP_JOINTGROUP_TEMPLATE_BASE) || defined(dODECPP_JOINT_TEMPLATE_BASE) -#error All the odecpp template bases must be defined or not defined together -#endif - -#define dODECPP_WORLD_TEMPLATE_BASE dWorldDynamicIDContainer -#define dODECPP_BODY_TEMPLATE_BASE dBodyDynamicIDContainer -#define dODECPP_JOINTGROUP_TEMPLATE_BASE dJointGroupDynamicIDContainer -#define dODECPP_JOINT_TEMPLATE_BASE dJointDynamicIDContainer - -#else // #if defined(dODECPP_WORLD_TEMPLATE_BASE) - -#if !defined(dODECPP_BODY_TEMPLATE_BASE) || !defined(dODECPP_JOINTGROUP_TEMPLATE_BASE) || !defined(dODECPP_JOINT_TEMPLATE_BASE) -#error All the odecpp template bases must be defined or not defined together -#endif - -#endif // #if defined(dODECPP_WORLD_TEMPLATE_BASE) - - -typedef dWorldTemplate dWorld; -typedef dBodyTemplate dBody; -typedef dJointGroupTemplate dJointGroup; -typedef dJointTemplate dJoint; -typedef dBallJointTemplate dBallJoint; -typedef dHingeJointTemplate dHingeJoint; -typedef dSliderJointTemplate dSliderJoint; -typedef dUniversalJointTemplate dUniversalJoint; -typedef dHinge2JointTemplate dHinge2Joint; -typedef dPRJointTemplate dPRJoint; -typedef dPUJointTemplate dPUJoint; -typedef dPistonJointTemplate dPistonJoint; -typedef dFixedJointTemplate dFixedJoint; -typedef dContactJointTemplate dContactJoint; -typedef dNullJointTemplate dNullJoint; -typedef dAMotorJointTemplate dAMotorJoint; -typedef dLMotorJointTemplate dLMotorJoint; - - -#endif -#endif - -// Local variables: -// mode:c++ -// c-basic-offset:2 -// End: diff --git a/misc/builddeps/linux64/ode/include/ode/odecpp_collision.h b/misc/builddeps/linux64/ode/include/ode/odecpp_collision.h deleted file mode 100644 index f2c7725c..00000000 --- a/misc/builddeps/linux64/ode/include/ode/odecpp_collision.h +++ /dev/null @@ -1,467 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -/* C++ interface for new collision API */ - - -#ifndef _ODE_ODECPP_COLLISION_H_ -#define _ODE_ODECPP_COLLISION_H_ -#ifdef __cplusplus - -//#include - -//namespace ode { - -class dGeom { - // intentionally undefined, don't use these - dGeom (dGeom &); - void operator= (dGeom &); - -protected: - dGeomID _id; - - dGeom() - { _id = 0; } -public: - ~dGeom() - { if (_id) dGeomDestroy (_id); } - - dGeomID id() const - { return _id; } - operator dGeomID() const - { return _id; } - - void destroy() { - if (_id) dGeomDestroy (_id); - _id = 0; - } - - int getClass() const - { return dGeomGetClass (_id); } - - dSpaceID getSpace() const - { return dGeomGetSpace (_id); } - - void setData (void *data) - { dGeomSetData (_id,data); } - void *getData() const - { return dGeomGetData (_id); } - - void setBody (dBodyID b) - { dGeomSetBody (_id,b); } - dBodyID getBody() const - { return dGeomGetBody (_id); } - - void setPosition (dReal x, dReal y, dReal z) - { dGeomSetPosition (_id,x,y,z); } - const dReal * getPosition() const - { return dGeomGetPosition (_id); } - - void setRotation (const dMatrix3 R) - { dGeomSetRotation (_id,R); } - const dReal * getRotation() const - { return dGeomGetRotation (_id); } - - void setQuaternion (const dQuaternion quat) - { dGeomSetQuaternion (_id,quat); } - void getQuaternion (dQuaternion quat) const - { dGeomGetQuaternion (_id,quat); } - - void getAABB (dReal aabb[6]) const - { dGeomGetAABB (_id, aabb); } - - int isSpace() - { return dGeomIsSpace (_id); } - - void setCategoryBits (unsigned long bits) - { dGeomSetCategoryBits (_id, bits); } - void setCollideBits (unsigned long bits) - { dGeomSetCollideBits (_id, bits); } - unsigned long getCategoryBits() - { return dGeomGetCategoryBits (_id); } - unsigned long getCollideBits() - { return dGeomGetCollideBits (_id); } - - void enable() - { dGeomEnable (_id); } - void disable() - { dGeomDisable (_id); } - int isEnabled() - { return dGeomIsEnabled (_id); } - - void getRelPointPos (dReal px, dReal py, dReal pz, dVector3 result) const - { dGeomGetRelPointPos (_id, px, py, pz, result); } - void getRelPointPos (const dVector3 p, dVector3 result) const - { getRelPointPos (p[0], p[1], p[2], result); } - - void getPosRelPoint (dReal px, dReal py, dReal pz, dVector3 result) const - { dGeomGetPosRelPoint (_id, px, py, pz, result); } - void getPosRelPoint (const dVector3 p, dVector3 result) const - { getPosRelPoint (p[0], p[1], p[2], result); } - - void vectorToWorld (dReal px, dReal py, dReal pz, dVector3 result) const - { dGeomVectorToWorld (_id, px, py, pz, result); } - void vectorToWorld (const dVector3 p, dVector3 result) const - { vectorToWorld (p[0], p[1], p[2], result); } - - void vectorFromWorld (dReal px, dReal py, dReal pz, dVector3 result) const - { dGeomVectorFromWorld (_id, px, py, pz, result); } - void vectorFromWorld (const dVector3 p, dVector3 result) const - { vectorFromWorld (p[0], p[1], p[2], result); } - - void collide2 (dGeomID g, void *data, dNearCallback *callback) - { dSpaceCollide2 (_id,g,data,callback); } -}; - - -class dSpace : public dGeom { - // intentionally undefined, don't use these - dSpace (dSpace &); - void operator= (dSpace &); - -protected: - // the default constructor is protected so that you - // can't instance this class. you must instance one - // of its subclasses instead. - dSpace () { _id = 0; } - -public: - dSpaceID id() const - { return (dSpaceID) _id; } - operator dSpaceID() const - { return (dSpaceID) _id; } - - void setCleanup (int mode) - { dSpaceSetCleanup (id(), mode); } - int getCleanup() - { return dSpaceGetCleanup (id()); } - - void add (dGeomID x) - { dSpaceAdd (id(), x); } - void remove (dGeomID x) - { dSpaceRemove (id(), x); } - int query (dGeomID x) - { return dSpaceQuery (id(),x); } - - int getNumGeoms() - { return dSpaceGetNumGeoms (id()); } - dGeomID getGeom (int i) - { return dSpaceGetGeom (id(),i); } - - void collide (void *data, dNearCallback *callback) - { dSpaceCollide (id(),data,callback); } -}; - - -class dSimpleSpace : public dSpace { - // intentionally undefined, don't use these - dSimpleSpace (dSimpleSpace &); - void operator= (dSimpleSpace &); - -public: - dSimpleSpace () - { _id = (dGeomID) dSimpleSpaceCreate (0); } - dSimpleSpace (dSpace &space) - { _id = (dGeomID) dSimpleSpaceCreate (space.id()); } - dSimpleSpace (dSpaceID space) - { _id = (dGeomID) dSimpleSpaceCreate (space); } -}; - - -class dHashSpace : public dSpace { - // intentionally undefined, don't use these - dHashSpace (dHashSpace &); - void operator= (dHashSpace &); - -public: - dHashSpace () - { _id = (dGeomID) dHashSpaceCreate (0); } - dHashSpace (dSpace &space) - { _id = (dGeomID) dHashSpaceCreate (space.id()); } - dHashSpace (dSpaceID space) - { _id = (dGeomID) dHashSpaceCreate (space); } - - void setLevels (int minlevel, int maxlevel) - { dHashSpaceSetLevels (id(),minlevel,maxlevel); } -}; - - -class dQuadTreeSpace : public dSpace { - // intentionally undefined, don't use these - dQuadTreeSpace (dQuadTreeSpace &); - void operator= (dQuadTreeSpace &); - -public: - dQuadTreeSpace (const dVector3 center, const dVector3 extents, int depth) - { _id = (dGeomID) dQuadTreeSpaceCreate (0,center,extents,depth); } - dQuadTreeSpace (dSpace &space, const dVector3 center, const dVector3 extents, int depth) - { _id = (dGeomID) dQuadTreeSpaceCreate (space.id(),center,extents,depth); } - dQuadTreeSpace (dSpaceID space, const dVector3 center, const dVector3 extents, int depth) - { _id = (dGeomID) dQuadTreeSpaceCreate (space,center,extents,depth); } -}; - - -class dSphere : public dGeom { - // intentionally undefined, don't use these - dSphere (dSphere &); - void operator= (dSphere &); - -public: - dSphere () { } - dSphere (dReal radius) - { _id = dCreateSphere (0, radius); } - dSphere (dSpace &space, dReal radius) - { _id = dCreateSphere (space.id(), radius); } - dSphere (dSpaceID space, dReal radius) - { _id = dCreateSphere (space, radius); } - - void create (dSpaceID space, dReal radius) { - if (_id) dGeomDestroy (_id); - _id = dCreateSphere (space, radius); - } - - void setRadius (dReal radius) - { dGeomSphereSetRadius (_id, radius); } - dReal getRadius() const - { return dGeomSphereGetRadius (_id); } -}; - - -class dBox : public dGeom { - // intentionally undefined, don't use these - dBox (dBox &); - void operator= (dBox &); - -public: - dBox () { } - dBox (dReal lx, dReal ly, dReal lz) - { _id = dCreateBox (0,lx,ly,lz); } - dBox (dSpace &space, dReal lx, dReal ly, dReal lz) - { _id = dCreateBox (space,lx,ly,lz); } - dBox (dSpaceID space, dReal lx, dReal ly, dReal lz) - { _id = dCreateBox (space,lx,ly,lz); } - - void create (dSpaceID space, dReal lx, dReal ly, dReal lz) { - if (_id) dGeomDestroy (_id); - _id = dCreateBox (space,lx,ly,lz); - } - - void setLengths (dReal lx, dReal ly, dReal lz) - { dGeomBoxSetLengths (_id, lx, ly, lz); } - void getLengths (dVector3 result) const - { dGeomBoxGetLengths (_id,result); } -}; - - -class dPlane : public dGeom { - // intentionally undefined, don't use these - dPlane (dPlane &); - void operator= (dPlane &); - -public: - dPlane() { } - dPlane (dReal a, dReal b, dReal c, dReal d) - { _id = dCreatePlane (0,a,b,c,d); } - dPlane (dSpace &space, dReal a, dReal b, dReal c, dReal d) - { _id = dCreatePlane (space.id(),a,b,c,d); } - dPlane (dSpaceID space, dReal a, dReal b, dReal c, dReal d) - { _id = dCreatePlane (space,a,b,c,d); } - - void create (dSpaceID space, dReal a, dReal b, dReal c, dReal d) { - if (_id) dGeomDestroy (_id); - _id = dCreatePlane (space,a,b,c,d); - } - - void setParams (dReal a, dReal b, dReal c, dReal d) - { dGeomPlaneSetParams (_id, a, b, c, d); } - void getParams (dVector4 result) const - { dGeomPlaneGetParams (_id,result); } -}; - - -class dCapsule : public dGeom { - // intentionally undefined, don't use these - dCapsule (dCapsule &); - void operator= (dCapsule &); - -public: - dCapsule() { } - dCapsule (dReal radius, dReal length) - { _id = dCreateCapsule (0,radius,length); } - dCapsule (dSpace &space, dReal radius, dReal length) - { _id = dCreateCapsule (space.id(),radius,length); } - dCapsule (dSpaceID space, dReal radius, dReal length) - { _id = dCreateCapsule (space,radius,length); } - - void create (dSpaceID space, dReal radius, dReal length) { - if (_id) dGeomDestroy (_id); - _id = dCreateCapsule (space,radius,length); - } - - void setParams (dReal radius, dReal length) - { dGeomCapsuleSetParams (_id, radius, length); } - void getParams (dReal *radius, dReal *length) const - { dGeomCapsuleGetParams (_id,radius,length); } -}; - - -class dCylinder : public dGeom { - // intentionally undefined, don't use these - dCylinder (dCylinder &); - void operator= (dCylinder &); - -public: - dCylinder() { } - dCylinder (dReal radius, dReal length) - { _id = dCreateCylinder (0,radius,length); } - dCylinder (dSpace &space, dReal radius, dReal length) - { _id = dCreateCylinder (space.id(),radius,length); } - dCylinder (dSpaceID space, dReal radius, dReal length) - { _id = dCreateCylinder (space,radius,length); } - - void create (dSpaceID space, dReal radius, dReal length) { - if (_id) dGeomDestroy (_id); - _id = dCreateCylinder (space,radius,length); - } - - void setParams (dReal radius, dReal length) - { dGeomCylinderSetParams (_id, radius, length); } - void getParams (dReal *radius, dReal *length) const - { dGeomCylinderGetParams (_id,radius,length); } -}; - - -class dRay : public dGeom { - // intentionally undefined, don't use these - dRay (dRay &); - void operator= (dRay &); - -public: - dRay() { } - dRay (dReal length) - { _id = dCreateRay (0,length); } - dRay (dSpace &space, dReal length) - { _id = dCreateRay (space.id(),length); } - dRay (dSpaceID space, dReal length) - { _id = dCreateRay (space,length); } - - void create (dSpaceID space, dReal length) { - if (_id) dGeomDestroy (_id); - _id = dCreateRay (space,length); - } - - void setLength (dReal length) - { dGeomRaySetLength (_id, length); } - dReal getLength() - { return dGeomRayGetLength (_id); } - - void set (dReal px, dReal py, dReal pz, dReal dx, dReal dy, dReal dz) - { dGeomRaySet (_id, px, py, pz, dx, dy, dz); } - void get (dVector3 start, dVector3 dir) - { dGeomRayGet (_id, start, dir); } - -#ifdef WIN32 -#pragma warning( push ) -#pragma warning( disable : 4996 ) -#else -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wdeprecated-declarations" -#endif - ODE_API_DEPRECATED - void setParams (int firstContact, int backfaceCull) - { dGeomRaySetParams (_id, firstContact, backfaceCull); } - - ODE_API_DEPRECATED - void getParams (int *firstContact, int *backfaceCull) - { dGeomRayGetParams (_id, firstContact, backfaceCull); } -#ifdef WIN32 -#pragma warning( pop ) -#else -#pragma GCC diagnostic pop -#endif - void setBackfaceCull (int backfaceCull) - { dGeomRaySetBackfaceCull (_id, backfaceCull); } - int getBackfaceCull() - { return dGeomRayGetBackfaceCull (_id); } - - void setFirstContact (int firstContact) - { dGeomRaySetFirstContact (_id, firstContact); } - int getFirstContact() - { return dGeomRayGetFirstContact (_id); } - - void setClosestHit (int closestHit) - { dGeomRaySetClosestHit (_id, closestHit); } - int getClosestHit() - { return dGeomRayGetClosestHit (_id); } -}; - -#ifdef WIN32 -#pragma warning( push ) -#pragma warning( disable : 4996 ) -#else -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wdeprecated-declarations" -#endif - -class ODE_API_DEPRECATED dGeomTransform : public dGeom { - // intentionally undefined, don't use these - dGeomTransform (dGeomTransform &); - void operator= (dGeomTransform &); - -public: - dGeomTransform() { } - dGeomTransform (dSpace &space) - { _id = dCreateGeomTransform (space.id()); } - dGeomTransform (dSpaceID space) - { _id = dCreateGeomTransform (space); } - - void create (dSpaceID space=0) { - if (_id) dGeomDestroy (_id); - _id = dCreateGeomTransform (space); - } - - void setGeom (dGeomID geom) - { dGeomTransformSetGeom (_id, geom); } - dGeomID getGeom() const - { return dGeomTransformGetGeom (_id); } - - void setCleanup (int mode) - { dGeomTransformSetCleanup (_id,mode); } - int getCleanup () - { return dGeomTransformGetCleanup (_id); } - - void setInfo (int mode) - { dGeomTransformSetInfo (_id,mode); } - int getInfo() - { return dGeomTransformGetInfo (_id); } -}; - -#ifdef WIN32 -#pragma warning( pop ) -#else -#pragma GCC diagnostic pop -#endif - -//} - -#endif -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/odeinit.h b/misc/builddeps/linux64/ode/include/ode/odeinit.h deleted file mode 100644 index 645ca42b..00000000 --- a/misc/builddeps/linux64/ode/include/ode/odeinit.h +++ /dev/null @@ -1,236 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -/* Library initialization/finalization functions. */ - -#ifndef _ODE_ODEINIT_H_ -#define _ODE_ODEINIT_H_ - -#include - - -#ifdef __cplusplus -extern "C" { -#endif - - -/* ************************************************************************ */ -/* Library initialization */ - -/** - * @defgroup init Library Initialization - * - * Library initialization functions prepare ODE internal data structures for use - * and release allocated resources after ODE is not needed any more. - */ - - -/** - * @brief Library initialization flags. - * - * These flags define ODE library initialization options. - * - * @c dInitFlagManualThreadCleanup indicates that resources allocated in TLS for threads - * using ODE are to be cleared by library client with explicit call to @c dCleanupODEAllDataForThread. - * If this flag is not specified the automatic resource tracking algorithm is used. - * - * With automatic resource tracking, On Windows, memory allocated for a thread may - * remain not freed for some time after the thread exits. The resources may be - * released when one of other threads calls @c dAllocateODEDataForThread. Ultimately, - * the resources are released when library is closed with @c dCloseODE. On other - * operating systems resources are always released by the thread itself on its exit - * or on library closure with @c dCloseODE. - * - * With manual thread data cleanup mode every collision space object must be - * explicitly switched to manual cleanup mode with @c dSpaceSetManualCleanup - * after creation. See description of the function for more details. - * - * If @c dInitFlagManualThreadCleanup was not specified during initialization, - * calls to @c dCleanupODEAllDataForThread are not allowed. - * - * @see dInitODE2 - * @see dAllocateODEDataForThread - * @see dSpaceSetManualCleanup - * @see dCloseODE - * @ingroup init - */ -enum dInitODEFlags { - dInitFlagManualThreadCleanup = 0x00000001 /*@< Thread local data is to be cleared explicitly on @c dCleanupODEAllDataForThread function call*/ -}; - -/** - * @brief Initializes ODE library. - * - * @c dInitODE is obsolete. @c dInitODE2 is to be used for library initialization. - * - * A call to @c dInitODE is equal to the following initialization sequence - * @code - * dInitODE2(0); - * dAllocateODEDataForThread(dAllocateMaskAll); - * @endcode - * - * @see dInitODE2 - * @see dAllocateODEDataForThread - * @ingroup init - */ -ODE_API void dInitODE(void); - -/** - * @brief Initializes ODE library. - * @param uiInitFlags Initialization options bitmask - * @return A nonzero if initialization succeeded and zero otherwise. - * - * This function must be called to initialize ODE library before first use. If - * initialization succeeds the function may not be called again until library is - * closed with a call to @c dCloseODE. - * - * The @a uiInitFlags parameter specifies initialization options to be used. These - * can be combination of zero or more @c dInitODEFlags flags. - * - * @note - * If @c dInitFlagManualThreadCleanup flag is used for initialization, - * @c dSpaceSetManualCleanup must be called to set manual cleanup mode for every - * space object right after creation. Failure to do so may lead to resource leaks. - * - * @see dInitODEFlags - * @see dCloseODE - * @see dSpaceSetManualCleanup - * @ingroup init - */ -ODE_API int dInitODE2(unsigned int uiInitFlags/*=0*/); - - -/** - * @brief ODE data allocation flags. - * - * These flags are used to indicate which data is to be pre-allocated in call to - * @c dAllocateODEDataForThread. - * - * @c dAllocateFlagBasicData tells to allocate the basic data set required for - * normal library operation. This flag is equal to zero and is always implicitly - * included. - * - * @c dAllocateFlagCollisionData tells that collision detection data is to be allocated. - * Collision detection functions may not be called if the data has not be allocated - * in advance. If collision detection is not going to be used, it is not necessary - * to specify this flag. - * - * @c dAllocateMaskAll is a mask that can be used for for allocating all possible - * data in cases when it is not known what exactly features of ODE will be used. - * The mask may not be used in combination with other flags. It is guaranteed to - * include all the current and future legal allocation flags. However, mature - * applications should use explicit flags they need rather than allocating everything. - * - * @see dAllocateODEDataForThread - * @ingroup init - */ -enum dAllocateODEDataFlags { - dAllocateFlagBasicData = 0, /*@< Allocate basic data required for library to operate*/ - - dAllocateFlagCollisionData = 0x00000001, /*@< Allocate data for collision detection*/ - - dAllocateMaskAll = ~0 /*@< Allocate all the possible data that is currently defined or will be defined in the future.*/ -}; - -/** - * @brief Allocate thread local data to allow the thread calling ODE. - * @param uiAllocateFlags Allocation options bitmask. - * @return A nonzero if allocation succeeded and zero otherwise. - * - * The function is required to be called for every thread that is going to use - * ODE. This function allocates the data that is required for accessing ODE from - * current thread along with optional data required for particular ODE subsystems. - * - * @a uiAllocateFlags parameter can contain zero or more flags from @c dAllocateODEDataFlags - * enumerated type. Multiple calls with different allocation flags are allowed. - * The flags that are already allocated are ignored in subsequent calls. If zero - * is passed as the parameter, it means to only allocate the set of most important - * data the library can not operate without. - * - * If the function returns failure status it means that none of the requested - * data has been allocated. The client may retry allocation attempt with the same - * flags when more system resources are available. - * - * @see dAllocateODEDataFlags - * @see dCleanupODEAllDataForThread - * @ingroup init - */ -ODE_API int dAllocateODEDataForThread(unsigned int uiAllocateFlags); - -/** - * @brief Free thread local data that was allocated for current thread. - * - * If library was initialized with @c dInitFlagManualThreadCleanup flag the function - * is required to be called on exit of every thread that was calling @c dAllocateODEDataForThread. - * Failure to call @c dCleanupODEAllDataForThread may result in some resources remaining - * not freed until program exit. The function may also be called when ODE is still - * being used to release resources allocated for all the current subsystems and - * possibly proceed with data pre-allocation for other subsystems. - * - * The function can safely be called several times in a row. The function can be - * called without prior invocation of @c dAllocateODEDataForThread. The function - * may not be called before ODE is initialized with @c dInitODE2 or after library - * has been closed with @c dCloseODE. A call to @c dCloseODE implicitly releases - * all the thread local resources that might be allocated for all the threads that - * were using ODE. - * - * If library was initialized without @c dInitFlagManualThreadCleanup flag - * @c dCleanupODEAllDataForThread must not be called. - * - * @see dAllocateODEDataForThread - * @see dInitODE2 - * @see dCloseODE - * @ingroup init - */ -ODE_API void dCleanupODEAllDataForThread(); - - -/** - * @brief Close ODE after it is not needed any more. - * - * The function is required to be called when program does not need ODE features any more. - * The call to @c dCloseODE releases all the resources allocated for library - * including all the thread local data that might be allocated for all the threads - * that were using ODE. - * - * @c dCloseODE is a paired function for @c dInitODE2 and must only be called - * after successful library initialization. - * - * @note Important! - * Make sure that all the threads that were using ODE have already terminated - * before calling @c dCloseODE. In particular it is not allowed to call - * @c dCleanupODEAllDataForThread after @c dCloseODE. - * - * @see dInitODE2 - * @see dCleanupODEAllDataForThread - * @ingroup init - */ -ODE_API void dCloseODE(void); - - - -#ifdef __cplusplus -} /* extern "C" */ -#endif - - -#endif /* _ODE_ODEINIT_H_ */ diff --git a/misc/builddeps/linux64/ode/include/ode/odemath.h b/misc/builddeps/linux64/ode/include/ode/odemath.h deleted file mode 100644 index d4461b3b..00000000 --- a/misc/builddeps/linux64/ode/include/ode/odemath.h +++ /dev/null @@ -1,545 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_ODEMATH_H_ -#define _ODE_ODEMATH_H_ - -#include - -/* - * macro to access elements i,j in an NxM matrix A, independent of the - * matrix storage convention. - */ -#define dACCESS33(A,i,j) ((A)[(i)*4+(j)]) - -/* - * Macro to test for valid floating point values - */ -#define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]))) -#define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3]))) -#define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]))) -#define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) )) - - -ODE_PURE_INLINE void dZeroVector3(dVector3 res) -{ - res[dV3E_X] = REAL(0.0); - res[dV3E_Y] = REAL(0.0); - res[dV3E_Z] = REAL(0.0); -} - -ODE_PURE_INLINE void dAssignVector3(dVector3 res, dReal x, dReal y, dReal z) -{ - res[dV3E_X] = x; - res[dV3E_Y] = y; - res[dV3E_Z] = z; -} - -ODE_PURE_INLINE void dZeroMatrix3(dMatrix3 res) -{ - res[dM3E_XX] = REAL(0.0); res[dM3E_XY] = REAL(0.0); res[dM3E_XZ] = REAL(0.0); - res[dM3E_YX] = REAL(0.0); res[dM3E_YY] = REAL(0.0); res[dM3E_YZ] = REAL(0.0); - res[dM3E_ZX] = REAL(0.0); res[dM3E_ZY] = REAL(0.0); res[dM3E_ZZ] = REAL(0.0); -} - -ODE_PURE_INLINE void dZeroMatrix4(dMatrix4 res) -{ - res[dM4E_XX] = REAL(0.0); res[dM4E_XY] = REAL(0.0); res[dM4E_XZ] = REAL(0.0); res[dM4E_XO] = REAL(0.0); - res[dM4E_YX] = REAL(0.0); res[dM4E_YY] = REAL(0.0); res[dM4E_YZ] = REAL(0.0); res[dM4E_YO] = REAL(0.0); - res[dM4E_ZX] = REAL(0.0); res[dM4E_ZY] = REAL(0.0); res[dM4E_ZZ] = REAL(0.0); res[dM4E_ZO] = REAL(0.0); - res[dM4E_OX] = REAL(0.0); res[dM4E_OY] = REAL(0.0); res[dM4E_OZ] = REAL(0.0); res[dM4E_OO] = REAL(0.0); -} - -/* Some vector math */ -ODE_PURE_INLINE void dAddVectors3(dReal *res, const dReal *a, const dReal *b) -{ - const dReal res_0 = a[0] + b[0]; - const dReal res_1 = a[1] + b[1]; - const dReal res_2 = a[2] + b[2]; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE void dSubtractVectors3(dReal *res, const dReal *a, const dReal *b) -{ - const dReal res_0 = a[0] - b[0]; - const dReal res_1 = a[1] - b[1]; - const dReal res_2 = a[2] - b[2]; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE void dAddVectorScaledVector3(dReal *res, const dReal *a, const dReal *b, dReal b_scale) -{ - const dReal res_0 = a[0] + b_scale * b[0]; - const dReal res_1 = a[1] + b_scale * b[1]; - const dReal res_2 = a[2] + b_scale * b[2]; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE void dAddScaledVectors3(dReal *res, const dReal *a, const dReal *b, dReal a_scale, dReal b_scale) -{ - const dReal res_0 = a_scale * a[0] + b_scale * b[0]; - const dReal res_1 = a_scale * a[1] + b_scale * b[1]; - const dReal res_2 = a_scale * a[2] + b_scale * b[2]; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE void dAddThreeScaledVectors3(dReal *res, const dReal *a, const dReal *b, const dReal *c, dReal a_scale, dReal b_scale, dReal c_scale) -{ - const dReal res_0 = a_scale * a[0] + b_scale * b[0] + c_scale * c[0]; - const dReal res_1 = a_scale * a[1] + b_scale * b[1] + c_scale * c[1]; - const dReal res_2 = a_scale * a[2] + b_scale * b[2] + c_scale * c[2]; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE void dScaleVector3(dReal *res, dReal nScale) -{ - res[0] *= nScale ; - res[1] *= nScale ; - res[2] *= nScale ; -} - -ODE_PURE_INLINE void dNegateVector3(dReal *res) -{ - res[0] = -res[0]; - res[1] = -res[1]; - res[2] = -res[2]; -} - -ODE_PURE_INLINE void dCopyVector3(dReal *res, const dReal *a) -{ - const dReal res_0 = a[0]; - const dReal res_1 = a[1]; - const dReal res_2 = a[2]; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE void dCopyScaledVector3(dReal *res, const dReal *a, dReal nScale) -{ - const dReal res_0 = a[0] * nScale; - const dReal res_1 = a[1] * nScale; - const dReal res_2 = a[2] * nScale; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE void dCopyNegatedVector3(dReal *res, const dReal *a) -{ - const dReal res_0 = -a[0]; - const dReal res_1 = -a[1]; - const dReal res_2 = -a[2]; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE void dCopyVector4(dReal *res, const dReal *a) -{ - const dReal res_0 = a[0]; - const dReal res_1 = a[1]; - const dReal res_2 = a[2]; - const dReal res_3 = a[3]; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; res[3] = res_3; -} - -ODE_PURE_INLINE void dCopyMatrix4x4(dReal *res, const dReal *a) -{ - dCopyVector4(res + 0, a + 0); - dCopyVector4(res + 4, a + 4); - dCopyVector4(res + 8, a + 8); -} - -ODE_PURE_INLINE void dCopyMatrix4x3(dReal *res, const dReal *a) -{ - dCopyVector3(res + 0, a + 0); - dCopyVector3(res + 4, a + 4); - dCopyVector3(res + 8, a + 8); -} - -ODE_PURE_INLINE void dGetMatrixColumn3(dReal *res, const dReal *a, unsigned n) -{ - const dReal res_0 = a[n + 0]; - const dReal res_1 = a[n + 4]; - const dReal res_2 = a[n + 8]; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE dReal dCalcVectorLength3(const dReal *a) -{ - return dSqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); -} - -ODE_PURE_INLINE dReal dCalcVectorLengthSquare3(const dReal *a) -{ - return (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); -} - -ODE_PURE_INLINE dReal dCalcPointDepth3(const dReal *test_p, const dReal *plane_p, const dReal *plane_n) -{ - return (plane_p[0] - test_p[0]) * plane_n[0] + (plane_p[1] - test_p[1]) * plane_n[1] + (plane_p[2] - test_p[2]) * plane_n[2]; -} - - -/* -* 3-way dot product. _dCalcVectorDot3 means that elements of `a' and `b' are spaced -* step_a and step_b indexes apart respectively. dCalcVectorDot3() means dDot311. -*/ - -ODE_PURE_INLINE dReal _dCalcVectorDot3(const dReal *a, const dReal *b, unsigned step_a, unsigned step_b) -{ - return a[0] * b[0] + a[step_a] * b[step_b] + a[2 * step_a] * b[2 * step_b]; -} - - -ODE_PURE_INLINE dReal dCalcVectorDot3 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,1); } -ODE_PURE_INLINE dReal dCalcVectorDot3_13 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,3); } -ODE_PURE_INLINE dReal dCalcVectorDot3_31 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,1); } -ODE_PURE_INLINE dReal dCalcVectorDot3_33 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,3); } -ODE_PURE_INLINE dReal dCalcVectorDot3_14 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,4); } -ODE_PURE_INLINE dReal dCalcVectorDot3_41 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,1); } -ODE_PURE_INLINE dReal dCalcVectorDot3_44 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,4); } - - -/* - * cross product, set res = a x b. _dCalcVectorCross3 means that elements of `res', `a' - * and `b' are spaced step_res, step_a and step_b indexes apart respectively. - * dCalcVectorCross3() means dCross3111. - */ - -ODE_PURE_INLINE void _dCalcVectorCross3(dReal *res, const dReal *a, const dReal *b, unsigned step_res, unsigned step_a, unsigned step_b) -{ - const dReal res_0 = a[ step_a]*b[2*step_b] - a[2*step_a]*b[ step_b]; - const dReal res_1 = a[2*step_a]*b[ 0] - a[ 0]*b[2*step_b]; - const dReal res_2 = a[ 0]*b[ step_b] - a[ step_a]*b[ 0]; - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[ 0] = res_0; - res[ step_res] = res_1; - res[2*step_res] = res_2; -} - -ODE_PURE_INLINE void dCalcVectorCross3 (dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 1); } -ODE_PURE_INLINE void dCalcVectorCross3_114(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 4); } -ODE_PURE_INLINE void dCalcVectorCross3_141(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 1); } -ODE_PURE_INLINE void dCalcVectorCross3_144(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 4); } -ODE_PURE_INLINE void dCalcVectorCross3_411(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 1); } -ODE_PURE_INLINE void dCalcVectorCross3_414(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 4); } -ODE_PURE_INLINE void dCalcVectorCross3_441(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 1); } -ODE_PURE_INLINE void dCalcVectorCross3_444(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 4); } - -ODE_PURE_INLINE void dAddVectorCross3(dReal *res, const dReal *a, const dReal *b) -{ - dReal tmp[3]; - dCalcVectorCross3(tmp, a, b); - dAddVectors3(res, res, tmp); -} - -ODE_PURE_INLINE void dSubtractVectorCross3(dReal *res, const dReal *a, const dReal *b) -{ - dReal tmp[3]; - dCalcVectorCross3(tmp, a, b); - dSubtractVectors3(res, res, tmp); -} - - -/* - * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b. - * A is stored by rows, and has `skip' elements per row. the matrix is - * assumed to be already zero, so this does not write zero elements! - * if (plus,minus) is (+,-) then a positive version will be written. - * if (plus,minus) is (-,+) then a negative version will be written. - */ - -ODE_PURE_INLINE void dSetCrossMatrixPlus(dReal *res, const dReal *a, unsigned skip) -{ - const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2]; - res[1] = -a_2; - res[2] = +a_1; - res[skip+0] = +a_2; - res[skip+2] = -a_0; - res[2*skip+0] = -a_1; - res[2*skip+1] = +a_0; -} - -ODE_PURE_INLINE void dSetCrossMatrixMinus(dReal *res, const dReal *a, unsigned skip) -{ - const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2]; - res[1] = +a_2; - res[2] = -a_1; - res[skip+0] = -a_2; - res[skip+2] = +a_0; - res[2*skip+0] = +a_1; - res[2*skip+1] = -a_0; -} - - -/* - * compute the distance between two 3D-vectors - */ - -ODE_PURE_INLINE dReal dCalcPointsDistance3(const dReal *a, const dReal *b) -{ - dReal res; - dReal tmp[3]; - dSubtractVectors3(tmp, a, b); - res = dCalcVectorLength3(tmp); - return res; -} - -/* - * special case matrix multiplication, with operator selection - */ - -ODE_PURE_INLINE void dMultiplyHelper0_331(dReal *res, const dReal *a, const dReal *b) -{ - const dReal res_0 = dCalcVectorDot3(a, b); - const dReal res_1 = dCalcVectorDot3(a + 4, b); - const dReal res_2 = dCalcVectorDot3(a + 8, b); - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE void dMultiplyHelper1_331(dReal *res, const dReal *a, const dReal *b) -{ - const dReal res_0 = dCalcVectorDot3_41(a, b); - const dReal res_1 = dCalcVectorDot3_41(a + 1, b); - const dReal res_2 = dCalcVectorDot3_41(a + 2, b); - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -ODE_PURE_INLINE void dMultiplyHelper0_133(dReal *res, const dReal *a, const dReal *b) -{ - dMultiplyHelper1_331(res, b, a); -} - -ODE_PURE_INLINE void dMultiplyHelper1_133(dReal *res, const dReal *a, const dReal *b) -{ - const dReal res_0 = dCalcVectorDot3_44(a, b); - const dReal res_1 = dCalcVectorDot3_44(a + 1, b); - const dReal res_2 = dCalcVectorDot3_44(a + 2, b); - /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ - res[0] = res_0; res[1] = res_1; res[2] = res_2; -} - -/* -Note: NEVER call any of these functions/macros with the same variable for A and C, -it is not equivalent to A*=B. -*/ - -ODE_PURE_INLINE void dMultiply0_331(dReal *res, const dReal *a, const dReal *b) -{ - dMultiplyHelper0_331(res, a, b); -} - -ODE_PURE_INLINE void dMultiply1_331(dReal *res, const dReal *a, const dReal *b) -{ - dMultiplyHelper1_331(res, a, b); -} - -ODE_PURE_INLINE void dMultiply0_133(dReal *res, const dReal *a, const dReal *b) -{ - dMultiplyHelper0_133(res, a, b); -} - -ODE_PURE_INLINE void dMultiply0_333(dReal *res, const dReal *a, const dReal *b) -{ - dMultiplyHelper0_133(res + 0, a + 0, b); - dMultiplyHelper0_133(res + 4, a + 4, b); - dMultiplyHelper0_133(res + 8, a + 8, b); -} - -ODE_PURE_INLINE void dMultiply1_333(dReal *res, const dReal *a, const dReal *b) -{ - dMultiplyHelper1_133(res + 0, b, a + 0); - dMultiplyHelper1_133(res + 4, b, a + 1); - dMultiplyHelper1_133(res + 8, b, a + 2); -} - -ODE_PURE_INLINE void dMultiply2_333(dReal *res, const dReal *a, const dReal *b) -{ - dMultiplyHelper0_331(res + 0, b, a + 0); - dMultiplyHelper0_331(res + 4, b, a + 4); - dMultiplyHelper0_331(res + 8, b, a + 8); -} - -ODE_PURE_INLINE void dMultiplyAdd0_331(dReal *res, const dReal *a, const dReal *b) -{ - dReal tmp[3]; - dMultiplyHelper0_331(tmp, a, b); - dAddVectors3(res, res, tmp); -} - -ODE_PURE_INLINE void dMultiplyAdd1_331(dReal *res, const dReal *a, const dReal *b) -{ - dReal tmp[3]; - dMultiplyHelper1_331(tmp, a, b); - dAddVectors3(res, res, tmp); -} - -ODE_PURE_INLINE void dMultiplyAdd0_133(dReal *res, const dReal *a, const dReal *b) -{ - dReal tmp[3]; - dMultiplyHelper0_133(tmp, a, b); - dAddVectors3(res, res, tmp); -} - -ODE_PURE_INLINE void dMultiplyAdd0_333(dReal *res, const dReal *a, const dReal *b) -{ - dReal tmp[3]; - dMultiplyHelper0_133(tmp, a + 0, b); - dAddVectors3(res+ 0, res + 0, tmp); - dMultiplyHelper0_133(tmp, a + 4, b); - dAddVectors3(res + 4, res + 4, tmp); - dMultiplyHelper0_133(tmp, a + 8, b); - dAddVectors3(res + 8, res + 8, tmp); -} - -ODE_PURE_INLINE void dMultiplyAdd1_333(dReal *res, const dReal *a, const dReal *b) -{ - dReal tmp[3]; - dMultiplyHelper1_133(tmp, b, a + 0); - dAddVectors3(res + 0, res + 0, tmp); - dMultiplyHelper1_133(tmp, b, a + 1); - dAddVectors3(res + 4, res + 4, tmp); - dMultiplyHelper1_133(tmp, b, a + 2); - dAddVectors3(res + 8, res + 8, tmp); -} - -ODE_PURE_INLINE void dMultiplyAdd2_333(dReal *res, const dReal *a, const dReal *b) -{ - dReal tmp[3]; - dMultiplyHelper0_331(tmp, b, a + 0); - dAddVectors3(res + 0, res + 0, tmp); - dMultiplyHelper0_331(tmp, b, a + 4); - dAddVectors3(res + 4, res + 4, tmp); - dMultiplyHelper0_331(tmp, b, a + 8); - dAddVectors3(res + 8, res + 8, tmp); -} - -ODE_PURE_INLINE dReal dCalcMatrix3Det( const dReal* mat ) -{ - dReal det; - - det = mat[0] * ( mat[5]*mat[10] - mat[9]*mat[6] ) - - mat[1] * ( mat[4]*mat[10] - mat[8]*mat[6] ) - + mat[2] * ( mat[4]*mat[9] - mat[8]*mat[5] ); - - return( det ); -} - -/** - Closed form matrix inversion, copied from - collision_util.h for use in the stepper. - - Returns the determinant. - returns 0 and does nothing - if the matrix is singular. -*/ -ODE_PURE_INLINE dReal dInvertMatrix3(dReal *dst, const dReal *ma) -{ - dReal det; - dReal detRecip; - - det = dCalcMatrix3Det( ma ); - - - /* Setting an arbitrary non-zero threshold - for the determinant doesn't do anyone - any favors. The condition number is the - important thing. If all the eigen-values - of the matrix are small, so is the - determinant, but it can still be well - conditioned. - A single extremely large eigen-value could - push the determinant over threshold, but - produce a very unstable result if the other - eigen-values are small. So we just say that - the determinant must be non-zero and trust the - caller to provide well-conditioned matrices. - */ - if ( det == 0 ) - { - return 0; - } - - detRecip = dRecip(det); - - dst[0] = ( ma[5]*ma[10] - ma[6]*ma[9] ) * detRecip; - dst[1] = ( ma[9]*ma[2] - ma[1]*ma[10] ) * detRecip; - dst[2] = ( ma[1]*ma[6] - ma[5]*ma[2] ) * detRecip; - - dst[4] = ( ma[6]*ma[8] - ma[4]*ma[10] ) * detRecip; - dst[5] = ( ma[0]*ma[10] - ma[8]*ma[2] ) * detRecip; - dst[6] = ( ma[4]*ma[2] - ma[0]*ma[6] ) * detRecip; - - dst[8] = ( ma[4]*ma[9] - ma[8]*ma[5] ) * detRecip; - dst[9] = ( ma[8]*ma[1] - ma[0]*ma[9] ) * detRecip; - dst[10] = ( ma[0]*ma[5] - ma[1]*ma[4] ) * detRecip; - - return det; -} - - -/* Include legacy macros here */ -#include - - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length) - */ - -/* For DLL export*/ -ODE_API int dSafeNormalize3 (dVector3 a); -ODE_API int dSafeNormalize4 (dVector4 a); -ODE_API void dNormalize3 (dVector3 a); /* Potentially asserts on zero vec*/ -ODE_API void dNormalize4 (dVector4 a); /* Potentially asserts on zero vec*/ - -/* - * given a unit length "normal" vector n, generate vectors p and q vectors - * that are an orthonormal basis for the plane space perpendicular to n. - * i.e. this makes p,q such that n,p,q are all perpendicular to each other. - * q will equal n x p. if n is not unit length then p will be unit length but - * q wont be. - */ - -ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q); -/* Makes sure the matrix is a proper rotation, returns a boolean status */ -ODE_API int dOrthogonalizeR(dMatrix3 m); - - - -#ifdef __cplusplus -} -#endif - - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/odemath_legacy.h b/misc/builddeps/linux64/ode/include/ode/odemath_legacy.h deleted file mode 100644 index a389588d..00000000 --- a/misc/builddeps/linux64/ode/include/ode/odemath_legacy.h +++ /dev/null @@ -1,162 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_ODEMATH_LEGACY_H_ -#define _ODE_ODEMATH_LEGACY_H_ - - -/* - * These macros are not used any more inside of ODE - * They are kept for backward compatibility with external code that - * might still be using them. - */ - -/* - * General purpose vector operations with other vectors or constants. - */ - -#define dOP(a,op,b,c) do { \ - (a)[0] = ((b)[0]) op ((c)[0]); \ - (a)[1] = ((b)[1]) op ((c)[1]); \ - (a)[2] = ((b)[2]) op ((c)[2]); \ -} while (0) -#define dOPC(a,op,b,c) do { \ - (a)[0] = ((b)[0]) op (c); \ - (a)[1] = ((b)[1]) op (c); \ - (a)[2] = ((b)[2]) op (c); \ -} while (0) -#define dOPE(a,op,b) do {\ - (a)[0] op ((b)[0]); \ - (a)[1] op ((b)[1]); \ - (a)[2] op ((b)[2]); \ -} while (0) -#define dOPEC(a,op,c) do { \ - (a)[0] op (c); \ - (a)[1] op (c); \ - (a)[2] op (c); \ -} while (0) - -/* Define an equation with operators - * For example this function can be used to replace - *
- * for (int i=0; i<3; ++i)
- *   a[i] += b[i] + c[i];
- * 
- */ -#define dOPE2(a,op1,b,op2,c) do { \ - (a)[0] op1 ((b)[0]) op2 ((c)[0]); \ - (a)[1] op1 ((b)[1]) op2 ((c)[1]); \ - (a)[2] op1 ((b)[2]) op2 ((c)[2]); \ -} while (0) - - -#define dLENGTHSQUARED(a) dCalcVectorLengthSquare3(a) -#define dLENGTH(a) dCalcVectorLength3(a) -#define dDISTANCE(a, b) dCalcPointsDistance3(a, b) - - -#define dDOT(a, b) dCalcVectorDot3(a, b) -#define dDOT13(a, b) dCalcVectorDot3_13(a, b) -#define dDOT31(a, b) dCalcVectorDot3_31(a, b) -#define dDOT33(a, b) dCalcVectorDot3_33(a, b) -#define dDOT14(a, b) dCalcVectorDot3_14(a, b) -#define dDOT41(a, b) dCalcVectorDot3_41(a, b) -#define dDOT44(a, b) dCalcVectorDot3_44(a, b) - - -/* - * cross product, set a = b x c. dCROSSpqr means that elements of `a', `b' - * and `c' are spaced p, q and r indexes apart respectively. - * dCROSS() means dCROSS111. `op' is normally `=', but you can set it to - * +=, -= etc to get other effects. - */ - -#define dCROSS(a,op,b,c) \ - do { \ - (a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \ - (a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \ - (a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]); \ - } while(0) -#define dCROSSpqr(a,op,b,c,p,q,r) \ - do { \ - (a)[ 0] op ((b)[ q]*(c)[2*r] - (b)[2*q]*(c)[ r]); \ - (a)[ p] op ((b)[2*q]*(c)[ 0] - (b)[ 0]*(c)[2*r]); \ - (a)[2*p] op ((b)[ 0]*(c)[ r] - (b)[ q]*(c)[ 0]); \ - } while(0) -#define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4) -#define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1) -#define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4) -#define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1) -#define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4) -#define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1) -#define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4) - - -/* -* set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b. -* A is stored by rows, and has `skip' elements per row. the matrix is -* assumed to be already zero, so this does not write zero elements! -* if (plus,minus) is (+,-) then a positive version will be written. -* if (plus,minus) is (-,+) then a negative version will be written. -*/ - -#define dCROSSMAT(A,a,skip,plus,minus) \ - do { \ - (A)[1] = minus (a)[2]; \ - (A)[2] = plus (a)[1]; \ - (A)[(skip)+0] = plus (a)[2]; \ - (A)[(skip)+2] = minus (a)[0]; \ - (A)[2*(skip)+0] = minus (a)[1]; \ - (A)[2*(skip)+1] = plus (a)[0]; \ - } while(0) - - - - -/* -Note: NEVER call any of these functions/macros with the same variable for A and C, -it is not equivalent to A*=B. -*/ - -#define dMULTIPLY0_331(A, B, C) dMultiply0_331(A, B, C) -#define dMULTIPLY1_331(A, B, C) dMultiply1_331(A, B, C) -#define dMULTIPLY0_133(A, B, C) dMultiply0_133(A, B, C) -#define dMULTIPLY0_333(A, B, C) dMultiply0_333(A, B, C) -#define dMULTIPLY1_333(A, B, C) dMultiply1_333(A, B, C) -#define dMULTIPLY2_333(A, B, C) dMultiply2_333(A, B, C) - -#define dMULTIPLYADD0_331(A, B, C) dMultiplyAdd0_331(A, B, C) -#define dMULTIPLYADD1_331(A, B, C) dMultiplyAdd1_331(A, B, C) -#define dMULTIPLYADD0_133(A, B, C) dMultiplyAdd0_133(A, B, C) -#define dMULTIPLYADD0_333(A, B, C) dMultiplyAdd0_333(A, B, C) -#define dMULTIPLYADD1_333(A, B, C) dMultiplyAdd1_333(A, B, C) -#define dMULTIPLYADD2_333(A, B, C) dMultiplyAdd2_333(A, B, C) - - -/* - * These macros are not used any more inside of ODE - * They are kept for backward compatibility with external code that - * might still be using them. - */ - - -#endif /* #ifndef _ODE_ODEMATH_LEGACY_H_ */ diff --git a/misc/builddeps/linux64/ode/include/ode/precision.h b/misc/builddeps/linux64/ode/include/ode/precision.h deleted file mode 100644 index af81c107..00000000 --- a/misc/builddeps/linux64/ode/include/ode/precision.h +++ /dev/null @@ -1,16 +0,0 @@ -#ifndef _ODE_PRECISION_H_ -#define _ODE_PRECISION_H_ - -/* Define dSINGLE for single precision, dDOUBLE for double precision, - * but never both! - */ - -#if defined(dIDESINGLE) -#define dSINGLE -#elif defined(dIDEDOUBLE) -#define dDOUBLE -#else -#define dDOUBLE -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/rotation.h b/misc/builddeps/linux64/ode/include/ode/rotation.h deleted file mode 100644 index a72be27f..00000000 --- a/misc/builddeps/linux64/ode/include/ode/rotation.h +++ /dev/null @@ -1,70 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_ROTATION_H_ -#define _ODE_ROTATION_H_ - -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - - -ODE_API void dRSetIdentity (dMatrix3 R); - -ODE_API void dRFromAxisAndAngle (dMatrix3 R, dReal ax, dReal ay, dReal az, - dReal angle); - -ODE_API void dRFromEulerAngles (dMatrix3 R, dReal phi, dReal theta, dReal psi); - -ODE_API void dRFrom2Axes (dMatrix3 R, dReal ax, dReal ay, dReal az, - dReal bx, dReal by, dReal bz); - -ODE_API void dRFromZAxis (dMatrix3 R, dReal ax, dReal ay, dReal az); - -ODE_API void dQSetIdentity (dQuaternion q); - -ODE_API void dQFromAxisAndAngle (dQuaternion q, dReal ax, dReal ay, dReal az, - dReal angle); - -/* Quaternion multiplication, analogous to the matrix multiplication routines. */ -/* qa = rotate by qc, then qb */ -ODE_API void dQMultiply0 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc); -/* qa = rotate by qc, then by inverse of qb */ -ODE_API void dQMultiply1 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc); -/* qa = rotate by inverse of qc, then by qb */ -ODE_API void dQMultiply2 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc); -/* qa = rotate by inverse of qc, then by inverse of qb */ -ODE_API void dQMultiply3 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc); - -ODE_API void dRfromQ (dMatrix3 R, const dQuaternion q); -ODE_API void dQfromR (dQuaternion q, const dMatrix3 R); -ODE_API void dDQfromW (dReal dq[4], const dVector3 w, const dQuaternion q); - - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/threading.h b/misc/builddeps/linux64/ode/include/ode/threading.h deleted file mode 100644 index 9602b8ff..00000000 --- a/misc/builddeps/linux64/ode/include/ode/threading.h +++ /dev/null @@ -1,412 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * Threading support header file. * - * Copyright (C) 2011-2019 Oleh Derevenko. All rights reserved. * - * e-mail: odar@eleks.com (change all "a" to "e") * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -/* - * ODE threading support interfaces - */ - - -#ifndef _ODE_THREADING_H_ -#define _ODE_THREADING_H_ - -#include -// Include since time_t is used and it is not available by default in some OSes -#include - - -#ifdef __cplusplus -extern "C" { -#endif - - -struct dxThreadingImplementation; -typedef struct dxThreadingImplementation *dThreadingImplementationID; - -typedef unsigned dmutexindex_t; -struct dxMutexGroup; -typedef struct dxMutexGroup *dMutexGroupID; - - -#define dTHREADING_THREAD_COUNT_UNLIMITED 0U - - - -/** - * @brief Allocates a group of muteces. - * - * The Mutex allocated do not need to support recursive locking. - * - * The Mutex names are provided to aid in debugging and thread state tracking. - * - * @param impl Threading implementation ID - * @param Mutex_count Number of Mutex to create - * @Mutex_names_ptr Pointer to optional Mutex names array to be associated with individual Mutex - * @returns MutexGroup ID or NULL if error occurred. - * - * @ingroup threading - * @see dMutexGroupFreeFunction - * @see dMutexGroupMutexLockFunction - * @see dMutexGroupMutexUnlockFunction - */ -typedef dMutexGroupID dMutexGroupAllocFunction (dThreadingImplementationID impl, dmutexindex_t Mutex_count, const char *const *Mutex_names_ptr/*=NULL*/); - -/** - * @brief Deletes a group of muteces. - * - * @param impl Threading implementation ID - * @param mutex_group Mutex group to deallocate - * - * @ingroup threading - * @see dMutexGroupAllocFunction - * @see dMutexGroupMutexLockFunction - * @see dMutexGroupMutexUnlockFunction - */ -typedef void dMutexGroupFreeFunction (dThreadingImplementationID impl, dMutexGroupID mutex_group); - -/** - * @brief Locks a mutex in a group of muteces. - * - * The function is to block execution until requested mutex can be locked. - * - * Note: Mutex provided may not support recursive locking. Calling this function - * while mutex is already locked by current thread will result in unpredictable behavior. - * - * @param impl Threading implementation ID - * @param mutex_group Mutex group to use for locking - * @param mutex_index The index of mutex to be locked (0..Mutex_count - 1) - * - * @ingroup threading - * @see dMutexGroupAllocFunction - * @see dMutexGroupFreeFunction - * @see dMutexGroupMutexUnlockFunction - */ -typedef void dMutexGroupMutexLockFunction (dThreadingImplementationID impl, dMutexGroupID mutex_group, dmutexindex_t mutex_index); - -/** - * @brief Attempts to lock a mutex in a group of muteces. - * - * The function is to lock the requested mutex if it is unoccupied or - * immediately return failure if mutex is already locked by other thread. - * - * Note: Mutex provided may not support recursive locking. Calling this function - * while mutex is already locked by current thread will result in unpredictable behavior. - * - * @param impl Threading implementation ID - * @param mutex_group Mutex group to use for locking - * @param mutex_index The index of mutex to be locked (0..Mutex_count - 1) - * @returns 1 for success (mutex is locked) and 0 for failure (mutex is not locked) - * - * @ingroup threading - * @see dMutexGroupAllocFunction - * @see dMutexGroupFreeFunction - * @see dMutexGroupMutexLockFunction - * @see dMutexGroupMutexUnlockFunction - */ -/* typedef int dMutexGroupMutexTryLockFunction (dThreadingImplementationID impl, dMutexGroupID mutex_group, dmutexindex_t mutex_index);*/ - -/** - * @brief Unlocks a mutex in a group of muteces. - * - * The function is to unlock the given mutex provided it had been locked before. - * - * @param impl Threading implementation ID - * @param mutex_group Mutex group to use for unlocking - * @param mutex_index The index of mutex to be unlocked (0..Mutex_count - 1) - * - * @ingroup threading - * @see dMutexGroupAllocFunction - * @see dMutexGroupFreeFunction - * @see dMutexGroupMutexLockFunction - */ -typedef void dMutexGroupMutexUnlockFunction (dThreadingImplementationID impl, dMutexGroupID mutex_group, dmutexindex_t mutex_index); - - -struct dxCallReleasee; -typedef struct dxCallReleasee *dCallReleaseeID; - -struct dxCallWait; -typedef struct dxCallWait *dCallWaitID; - -typedef dsizeint ddependencycount_t; -typedef ddiffint ddependencychange_t; -typedef dsizeint dcallindex_t; -typedef int dThreadedCallFunction(void *call_context, dcallindex_t instance_index, - dCallReleaseeID this_releasee); - -typedef struct dxThreadedWaitTime -{ - time_t wait_sec; - unsigned long wait_nsec; - -} dThreadedWaitTime; - - -/** - * @brief Allocates a Wait ID that can be used to wait for a call. - * - * @param impl Threading implementation ID - * @returns Wait ID or NULL if error occurred - * - * @ingroup threading - * @see dThreadedCallWaitResetFunction - * @see dThreadedCallWaitFreeFunction - * @see dThreadedCallPostFunction - * @see dThreadedCallWaitFunction - */ -typedef dCallWaitID dThreadedCallWaitAllocFunction(dThreadingImplementationID impl); - -/** - * @brief Resets a Wait ID so that it could be used to wait for another call. - * - * @param impl Threading implementation ID - * @param call_wait Wait ID to reset - * - * @ingroup threading - * @see dThreadedCallWaitAllocFunction - * @see dThreadedCallWaitFreeFunction - * @see dThreadedCallPostFunction - * @see dThreadedCallWaitFunction - */ -typedef void dThreadedCallWaitResetFunction(dThreadingImplementationID impl, dCallWaitID call_wait); - -/** - * @brief Frees a Wait ID. - * - * @param impl Threading implementation ID - * @param call_wait Wait ID to delete - * - * @ingroup threading - * @see dThreadedCallWaitAllocFunction - * @see dThreadedCallPostFunction - * @see dThreadedCallWaitFunction - */ -typedef void dThreadedCallWaitFreeFunction(dThreadingImplementationID impl, dCallWaitID call_wait); - - -/** - * @brief Post a function to be called in another thread. - * - * A call is scheduled to be executed asynchronously. - * - * A @a out_summary_fault variable can be provided for call to accumulate any - * possible faults from its execution and execution of any possible sub-calls. - * This variable gets result that @a call_func returns. Also, if dependent calls - * are executed after the call already exits, the variable is also going to be - * updated with results of all those calls before control is released to master. - * - * @a out_post_releasee parameter receives a value of @c dCallReleaseeID that can - * later be used for @a dependent_releasee while scheduling sub-calls to make - * current call depend on them. The value is only returned if @a dependencies_count - * is not zero (i.e. if any dependencies are expected at all). The call is not going - * to start until all its dependencies complete. - * - * In case if number of dependencies is unknown in advance 1 can be passed on call - * scheduling. Then @c dThreadedCallDependenciesCountAlterFunction can be used to - * add one more extra dependencies before scheduling each subcall. And then, after - * all sub-calls had been scheduled, @c dThreadedCallDependenciesCountAlterFunction - * can be used again to subtract initial extra dependency from total number. - * Adding one dependency in advance is necessary to obtain releasee ID and to make - * sure the call will not start and will not terminate before all sub-calls are scheduled. - * - * Extra dependencies can also be added from the call itself after it has already - * been started (with parameter received in @c dThreadedCallFunction). - * In that case those dependencies will start immediately or after call returns - * but the call's master will not be released/notified until all additional - * dependencies complete. This can be used to schedule sub-calls from a call and - * then pass own job to another sub-call dependent on those initial sub-calls. - * - * By using @ call_wait it is possible to assign a Wait ID that can later - * be passed into @c dThreadedCallWaitFunction to wait for call completion. - * - * If @a call_name is available (and it should!) the string must remain valid until - * after call completion. In most cases this should be a static string literal. - * - * Since the function is an analogue of normal method call it is not supposed to fail. - * Any complications with resource allocation on call scheduling should be - * anticipated, avoided and worked around by implementation. - * - * @param impl Threading implementation ID - * @param out_summary_fault Optional pointer to variable to be set to 1 if function - * call (or any sub-call) fails internally, or 0 if all calls return success - * @param out_post_releasee Optional pointer to variable to receive releasee ID - * associated with the call - * @param dependencies_count Number of dependencies that are going to reference - * this call as dependent releasee - * @param dependent_releasee Optional releasee ID to reference with this call - * @param call_wait Optional Wait ID that can later be used to wait for the call - * @param call_func Pointer to function to be called - * @param call_context Context parameter to be passed into the call - * @param instance_index Index parameter to be passed into the call - * @param call_name Optional name to be associated with the call (for debugging and state tracking) - * - * @ingroup threading - * @see dThreadedCallWaitFunction - * @see dThreadedCallDependenciesCountAlterFunction - * @see dThreadingImplResourcesForCallsPreallocateFunction - */ -typedef void dThreadedCallPostFunction(dThreadingImplementationID impl, int *out_summary_fault/*=NULL*/, - dCallReleaseeID *out_post_releasee/*=NULL*/, ddependencycount_t dependencies_count, dCallReleaseeID dependent_releasee/*=NULL*/, - dCallWaitID call_wait/*=NULL*/, - dThreadedCallFunction *call_func, void *call_context, dcallindex_t instance_index, - const char *call_name/*=NULL*/); - -/** - * @brief Add or remove extra dependencies from call that has been scheduled - * or is in process of execution. - * - * Extra dependencies can be added to a call if exact number of sub-calls is - * not known in advance at the moment the call is scheduled. Also, some dependencies - * can be removed if sub-calls were planned but then dropped. - * - * In case if total dependency count of a call reaches zero by result of invoking - * this function, the call is free to start executing immediately. - * - * After the call execution had been started, any additional dependencies can only - * be added from the call function itself! - * - * @param impl Threading implementation ID - * @param target_releasee ID of releasee to apply dependencies count change to - * @param dependencies_count_change Number of dependencies to add or remove - * - * @ingroup threading - * @see dThreadedCallPostFunction - */ -typedef void dThreadedCallDependenciesCountAlterFunction(dThreadingImplementationID impl, dCallReleaseeID target_releasee, - ddependencychange_t dependencies_count_change); - -/** - * @brief Wait for a posted call to complete. - * - * Function blocks until a call identified by @a call_wait completes or - * timeout elapses. - * - * IT IS ILLEGAL TO INVOKE THIS FUNCTION FROM WITHIN A THREADED CALL! - * This is because doing so will block a physical thread and will require - * increasing worker thread count to avoid starvation. Use call dependencies - * if it is necessary make sure sub-calls have been completed instead! - * - * If @a timeout_time_ptr is NULL, the function waits without time limit. If @a timeout_time_ptr - * points to zero value, the function only checks status and does not block. - * - * If @a wait_name is available (and it should!) the string must remain valid for - * the duration of wait. In most cases this should be a static string literal. - * - * Function is not expected to return failures caused by system call faults as - * those are hardly ever possible to be handled in this case anyway. In event of - * system call fault the function is supposed to terminate application. - * - * @param impl Threading implementation ID - * @param out_wait_status Optional pointer to variable to receive 1 if waiting succeeded - * or 0 in case of timeout - * @param call_wait Wait ID that had been passed to scheduling a call that needs to be waited for - * @param timeout_time_ptr Optional pointer to time specification the wait must not - * last longer than (pass NULL for infinite timeout) - * @param wait_name Optional name to be associated with the wait (for debugging and state tracking) - * - * @ingroup threading - * @see dThreadedCallPostFunction - */ -typedef void dThreadedCallWaitFunction(dThreadingImplementationID impl, int *out_wait_status/*=NULL*/, - dCallWaitID call_wait, const dThreadedWaitTime *timeout_time_ptr/*=NULL*/, - const char *wait_name/*=NULL*/); - -/** - * @brief Retrieve number of active threads that serve the implementation. - * - * @param impl Threading implementation ID - * @returns Number of active threads - * - * @ingroup threading - */ -typedef unsigned dThreadingImplThreadCountRetrieveFunction(dThreadingImplementationID impl); - -/** - * @brief Preallocate resources to handle posted calls. - * - * The function is intended to make sure enough resources is preallocated for the - * implementation to be able to handle posted calls. Then @c max_simultaneous_calls_estimate - * is an estimate of how many posted calls can potentially be active or scheduled - * at the same time. The value is usually derived from the way the calls are posted - * in library code and dependencies between them. - * - * @warning While working on an implementation be prepared that the estimate provided - * yet rarely but theoretically can be exceeded due to unpredictability of thread execution. - * - * This function is normally going to be invoked by library each time it is entered - * from outside to do the job but before any threaded calls are going to be posted. - * - * @param impl Threading implementation ID - * @param max_simultaneous_calls_estimate An estimated number of calls that can be posted simultaneously - * @returns 1 or 0 to indicate success or failure - * - * @ingroup threading - * @see dThreadedCallPostFunction - */ -typedef int dThreadingImplResourcesForCallsPreallocateFunction(dThreadingImplementationID impl, - ddependencycount_t max_simultaneous_calls_estimate); - - -/** - * @brief An interface structure with function pointers to be provided by threading implementation. - */ -typedef struct dxThreadingFunctionsInfo -{ - unsigned struct_size; - - dMutexGroupAllocFunction *alloc_mutex_group; - dMutexGroupFreeFunction *free_mutex_group; - dMutexGroupMutexLockFunction *lock_group_mutex; - dMutexGroupMutexUnlockFunction *unlock_group_mutex; - - dThreadedCallWaitAllocFunction *alloc_call_wait; - dThreadedCallWaitResetFunction *reset_call_wait; - dThreadedCallWaitFreeFunction *free_call_wait; - - dThreadedCallPostFunction *post_call; - dThreadedCallDependenciesCountAlterFunction *alter_call_dependencies_count; - dThreadedCallWaitFunction *wait_call; - - dThreadingImplThreadCountRetrieveFunction *retrieve_thread_count; - dThreadingImplResourcesForCallsPreallocateFunction *preallocate_resources_for_calls; - - /* - * Beware of Jon Watte's anger if you dare to uncomment this! - * May cryptic text below be you a warning! - * Стародавні легенди розказують, що кожного сміливця, хто наважиться порушити табу - * і відкрити заборонений код, спіткає страшне прокляття і він відразу почне робити - * одні лиш помилки. - * - * dMutexGroupMutexTryLockFunction *trylock_group_mutex; - */ - -} dThreadingFunctionsInfo; - - -#ifdef __cplusplus -} -#endif - -#endif /* #ifndef _ODE_THREADING_H_ */ diff --git a/misc/builddeps/linux64/ode/include/ode/threading_impl.h b/misc/builddeps/linux64/ode/include/ode/threading_impl.h deleted file mode 100644 index 0781d6a9..00000000 --- a/misc/builddeps/linux64/ode/include/ode/threading_impl.h +++ /dev/null @@ -1,292 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * Builtin ODE threading implementation header. * - * Copyright (C) 2011-2019 Oleh Derevenko. All rights reserved. * - * e-mail: odar@eleks.com (change all "a" to "e") * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -/* - * A threading implementation built into ODE for those who does not care to - * or can't implement an own one. - */ - -#ifndef _ODE_THREADING_IMPL_H_ -#define _ODE_THREADING_IMPL_H_ - - -#include -#include - - -#ifdef __cplusplus -extern "C" { -#endif - - -struct dxThreadingThreadPool; -typedef struct dxThreadingThreadPool *dThreadingThreadPoolID; - - -/** - * @brief Allocates built-in self-threaded threading implementation object. - * - * A self-threaded implementation is a type of implementation that performs - * processing of posted calls by means of caller thread itself. This type of - * implementation does not need thread pool to serve it. - * - * Note that since May 9th, 2017 (rev. #2066) the Self-Threaded implementation - * returns 0 rather than 1 as available thread count to distinguish from - * thread pools with just one thread in them. - * - * The processing is arranged in a way to prevent call stack depth growth - * as more and more nested calls are posted. - * - * Note that it is not necessary to create and assign a self-threaded - * implementation to a world, as there is a global one used by default - * if no implementation is explicitly assigned. You should only assign - * each world an individual threading implementation instance if simulations - * need to be run in parallel in multiple threads for the worlds. - * - * @returns ID of object allocated or NULL on failure - * - * @ingroup threading - * @see dThreadingAllocateMultiThreadedImplementation - * @see dThreadingFreeImplementation - */ -ODE_API dThreadingImplementationID dThreadingAllocateSelfThreadedImplementation(); - -/** - * @brief Allocates built-in multi-threaded threading implementation object. - * - * A multi-threaded implementation is a type of implementation that has to be - * served with a thread pool. The thread pool can be either the built-in ODE object - * or set of external threads that dedicate themselves to this purpose and stay - * in ODE until implementation releases them. - * - * @returns ID of object allocated or NULL on failure - * - * @ingroup threading - * @see dThreadingThreadPoolServeMultiThreadedImplementation - * @see dExternalThreadingServeMultiThreadedImplementation - * @see dThreadingFreeImplementation - */ -ODE_API dThreadingImplementationID dThreadingAllocateMultiThreadedImplementation(); - -/** - * @brief Retrieves the functions record of a built-in threading implementation. - * - * The implementation can be the one allocated by ODE (from @c dThreadingAllocateMultiThreadedImplementation). - * Do not use this function with self-made custom implementations - - * they should be bundled with their own set of functions. - * - * @param impl Threading implementation ID - * @returns Pointer to associated functions structure - * - * @ingroup threading - * @see dThreadingAllocateMultiThreadedImplementation - */ -ODE_API const dThreadingFunctionsInfo *dThreadingImplementationGetFunctions(dThreadingImplementationID impl); - -/** - * @brief Requests a built-in implementation to release threads serving it. - * - * The function unblocks threads employed in implementation serving and lets them - * return to from where they originate. It's the responsibility of external code - * to make sure all the calls to ODE that might be dependent on given threading - * implementation object had already returned before this call is made. If threading - * implementation is still processing some posted calls while this function is - * invoked the behavior is implementation dependent. - * - * This call is to be used to request the threads to be released before waiting - * for them in host pool or before waiting for them to exit. Implementation object - * must not be destroyed before it is known that all the serving threads have already - * returned from it. If implementation needs to be reused after this function is called - * and all the threads have exited from it a call to @c dThreadingImplementationCleanupForRestart - * must be made to restore internal state of the object. - * - * If this function is called for self-threaded built-in threading implementation - * the call has no effect. - * - * @param impl Threading implementation ID - * - * @ingroup threading - * @see dThreadingAllocateMultiThreadedImplementation - * @see dThreadingImplementationCleanupForRestart - */ -ODE_API void dThreadingImplementationShutdownProcessing(dThreadingImplementationID impl); - -/** - * @brief Restores built-in implementation's state to let it be reused after shutdown. - * - * If a multi-threaded built-in implementation needs to be reused after a call - * to @c dThreadingImplementationShutdownProcessing this call is to be made to - * restore object's internal state. After that the implementation can be served again. - * - * If this function is called for self-threaded built-in threading implementation - * the call has no effect. - * - * @param impl Threading implementation ID - * - * @ingroup threading - * @see dThreadingAllocateMultiThreadedImplementation - * @see dThreadingImplementationShutdownProcessing - */ -ODE_API void dThreadingImplementationCleanupForRestart(dThreadingImplementationID impl); - -/** - * @brief Deletes an instance of built-in threading implementation. - * - * @warning A care must be taken to make sure the implementation is unassigned - * from all the objects it was assigned to and that there are no more threads - * serving it before attempting to call this function. - * - * @param impl Threading implementation ID - * - * @ingroup threading - * @see dThreadingAllocateMultiThreadedImplementation - */ -ODE_API void dThreadingFreeImplementation(dThreadingImplementationID impl); - - -typedef void (dThreadReadyToServeCallback)(void *callback_context); - -/** - * @brief An entry point for external threads that would like to serve a built-in - * threading implementation object. - * - * A thread that calls this function remains blocked in ODE and serves implementation - * object @p impl until being released with @c dThreadingImplementationShutdownProcessing call. - * This function can be used to provide external threads instead of ODE's built-in - * thread pools. - * - * The optional callback @readiness_callback is called after the thread has reached - * and has registered within the implementation. The implementation should not - * be used until all dedicated threads register within it as otherwise it will not - * have accurate view of the execution resources available. - * - * @param impl Threading implementation ID - * @param readiness_callback Optional readiness callback to be called after thread enters the implementation - * @param callback_context A value to be passed as parameter to readiness callback - * - * @ingroup threading - * @see dThreadingAllocateMultiThreadedImplementation - * @see dThreadingImplementationShutdownProcessing - */ -ODE_API void dExternalThreadingServeMultiThreadedImplementation(dThreadingImplementationID impl, - dThreadReadyToServeCallback *readiness_callback/*=NULL*/, void *callback_context/*=NULL*/); - - -/** - * @brief Creates an instance of built-in thread pool object that can be used to serve - * multi-threaded threading implementations. - * - * The threads allocated inherit priority of caller thread. Their affinity is not - * explicitly adjusted and gets the value the system assigns by default. Threads - * have their stack memory fully committed immediately on start. On POSIX platforms - * threads are started with all the possible signals blocked. Threads execute - * calls to @c dAllocateODEDataForThread with @p ode_data_allocate_flags - * on initialization. - * - * On POSIX platforms this function must be called with signals masked - * or other measures must be taken to prevent reception of signals by calling thread - * for the duration of the call. - * - * @param thread_count Number of threads to start in pool - * @param stack_size Size of stack to be used for every thread or 0 for system default value - * @param ode_data_allocate_flags Flags to be passed to @c dAllocateODEDataForThread on behalf of each thread - * @returns ID of object allocated or NULL on failure - * - * @ingroup threading - * @see dThreadingAllocateMultiThreadedImplementation - * @see dThreadingImplementationShutdownProcessing - * @see dThreadingFreeThreadPool - */ -ODE_API dThreadingThreadPoolID dThreadingAllocateThreadPool(unsigned thread_count, - dsizeint stack_size, unsigned int ode_data_allocate_flags, void *reserved/*=NULL*/); - -/** - * @brief Commands an instance of built-in thread pool to serve a built-in multi-threaded - * threading implementation. - * - * A pool can only serve one threading implementation at a time. - * Call @c dThreadingImplementationShutdownProcessing to release pool threads - * from implementation serving and make them idle. Pool threads must be released - * from any implementations before pool is attempted to be deleted. - * - * This function waits for threads to register within implementation before returning. - * So, after the function call exits the implementation can be used immediately. - * - * @param pool Thread pool ID to serve the implementation - * @param impl Implementation ID of implementation to be served - * - * @ingroup threading - * @see dThreadingAllocateThreadPool - * @see dThreadingAllocateMultiThreadedImplementation - * @see dThreadingImplementationShutdownProcessing - */ -ODE_API void dThreadingThreadPoolServeMultiThreadedImplementation(dThreadingThreadPoolID pool, dThreadingImplementationID impl); - -/** - * @brief Waits until all pool threads are released from threading implementation - * they might be serving. - * - * The function can be used after a call to @c dThreadingImplementationShutdownProcessing - * to make sure all the threads have already been released by threading implementation - * and it can be deleted or it can be cleaned up for restart and served by another pool - * or this pool's threads can be used to serve another threading implementation. - * - * Note that is it not necessary to call this function before pool destruction - * since @c dThreadingFreeThreadPool performs similar wait operation implicitly on its own. - * - * It is OK to call this function even if pool was not serving any threading implementation - * in which case the call exits immediately with minimal delay. - * - * @param pool Thread pool ID to wait for - * - * @ingroup threading - * @see dThreadingAllocateThreadPool - * @see dThreadingImplementationShutdownProcessing - * @see dThreadingFreeThreadPool - */ -ODE_API void dThreadingThreadPoolWaitIdleState(dThreadingThreadPoolID pool); - -/** - * @brief Deletes a built-in thread pool instance. - * - * The pool threads must be released from any implementations they might be serving - * before this function is called. Otherwise the call is going to block - * and wait until pool's threads return. - * - * @param pool Thread pool ID to delete - * - * @ingroup threading - * @see dThreadingAllocateThreadPool - * @see dThreadingImplementationShutdownProcessing - */ -ODE_API void dThreadingFreeThreadPool(dThreadingThreadPoolID pool); - - -#ifdef __cplusplus -} -#endif - -#endif /* #ifndef _ODE_THREADING_IMPL_H_ */ diff --git a/misc/builddeps/linux64/ode/include/ode/timer.h b/misc/builddeps/linux64/ode/include/ode/timer.h deleted file mode 100644 index fe1483f7..00000000 --- a/misc/builddeps/linux64/ode/include/ode/timer.h +++ /dev/null @@ -1,76 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#ifndef _ODE_TIMER_H_ -#define _ODE_TIMER_H_ - -#include - -#ifdef __cplusplus -extern "C" { -#endif - - -/* stop watch objects */ - -typedef struct dStopwatch { - double time; /* total clock count */ - unsigned long cc[2]; /* clock count since last `start' */ -} dStopwatch; - -ODE_API void dStopwatchReset (dStopwatch *); -ODE_API void dStopwatchStart (dStopwatch *); -ODE_API void dStopwatchStop (dStopwatch *); -ODE_API double dStopwatchTime (dStopwatch *); /* returns total time in secs */ - - -/* code timers */ - -ODE_API void dTimerStart (const char *description); /* pass a static string here */ -ODE_API void dTimerNow (const char *description); /* pass a static string here */ -ODE_API void dTimerEnd(void); - -/* print out a timer report. if `average' is nonzero, print out the average - * time for each slot (this is only meaningful if the same start-now-end - * calls are being made repeatedly. - */ -ODE_API void dTimerReport (FILE *fout, int average); - - -/* resolution */ - -/* returns the timer ticks per second implied by the timing hardware or API. - * the actual timer resolution may not be this great. - */ -ODE_API double dTimerTicksPerSecond(void); - -/* returns an estimate of the actual timer resolution, in seconds. this may - * be greater than 1/ticks_per_second. - */ -ODE_API double dTimerResolution(void); - - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/misc/builddeps/linux64/ode/include/ode/version.h b/misc/builddeps/linux64/ode/include/ode/version.h deleted file mode 100644 index 312a38ce..00000000 --- a/misc/builddeps/linux64/ode/include/ode/version.h +++ /dev/null @@ -1,6 +0,0 @@ -#ifndef _ODE_VERSION_H_ -#define _ODE_VERSION_H_ - -#define dODE_VERSION "0.16.2" - -#endif diff --git a/misc/builddeps/linux64/ode/lib/libode.a b/misc/builddeps/linux64/ode/lib/libode.a deleted file mode 100644 index b4f15dd8..00000000 Binary files a/misc/builddeps/linux64/ode/lib/libode.a and /dev/null differ diff --git a/misc/builddeps/linux64/ode/lib/libode.la b/misc/builddeps/linux64/ode/lib/libode.la deleted file mode 100755 index 7e772af1..00000000 --- a/misc/builddeps/linux64/ode/lib/libode.la +++ /dev/null @@ -1,41 +0,0 @@ -# libode.la - a libtool library file -# Generated by libtool (GNU libtool) 2.4.6 Debian-2.4.6-0.1 -# -# Please DO NOT delete this file! -# It is necessary for linking the library. - -# The name that we can dlopen(3). -dlname='' - -# Names of this library. -library_names='' - -# The name of the static archive. -old_library='libode.a' - -# Linker flags that cannot go in dependency_libs. -inherited_linker_flags='' - -# Libraries that this one depends upon. -dependency_libs=' -lrt -lpthread' - -# Names of additional weak libraries provided by this library -weak_library_names='' - -# Version information for libode. -current=8 -age=0 -revision=2 - -# Is this an already installed library? -installed=yes - -# Should we warn about portability when linking against -modules? -shouldnotlink=no - -# Files to dlopen/dlpreopen -dlopen='' -dlpreopen='' - -# Directory that this library needs to be installed in: -libdir='/tmp/ode/lib' diff --git a/misc/builddeps/linux64/ode/lib/pkgconfig/ode.pc b/misc/builddeps/linux64/ode/lib/pkgconfig/ode.pc deleted file mode 100644 index b6f34b06..00000000 --- a/misc/builddeps/linux64/ode/lib/pkgconfig/ode.pc +++ /dev/null @@ -1,12 +0,0 @@ -prefix=/tmp/ode -exec_prefix=${prefix} -libdir=${exec_prefix}/lib -includedir=${prefix}/include -precision=dDOUBLE - -Name: ode -Description: Open Dynamics Engine -Version: 0.16.2 -Libs: -L${libdir} -lode -Libs.private: -lstdc++ -lm -Cflags: -I${includedir}