]> de.git.xonotic.org Git - xonotic/darkplaces.git/blob - cl_particles.c
reduced size of viewblend triangle from 64000 units to 64 units, in hopes of curing...
[xonotic/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define CL_PointQ1Contents(v) (Mod_PointInLeaf(v,cl.worldmodel)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeam_Vertex3f (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_vieworigin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_vieworigin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 3] = org1[0] - width * right1[0];
65         vert[ 4] = org1[1] - width * right1[1];
66         vert[ 5] = org1[2] - width * right1[2];
67         vert[ 6] = org2[0] - width * right2[0];
68         vert[ 7] = org2[1] - width * right2[1];
69         vert[ 8] = org2[2] - width * right2[2];
70         vert[ 9] = org2[0] + width * right2[0];
71         vert[10] = org2[1] + width * right2[1];
72         vert[11] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #if QW
152 #include "pmove.h"
153 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
154 #endif
155 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int hitbmodels, void **hitent, int hitsupercontentsmask)
156 {
157 #if QW
158         pmtrace_t trace;
159 #else
160         trace_t trace;
161 #endif
162         memset (&trace, 0, sizeof(trace));
163         trace.fraction = 1;
164         VectorCopy (end, trace.endpos);
165 #if QW
166         PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace);
167 #else
168         RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace);
169 #endif
170         VectorCopy(trace.endpos, impact);
171         VectorCopy(trace.plane.normal, normal);
172         return trace.fraction;
173 }
174 #else
175 #include "cl_collision.h"
176 #endif
177
178 #define MAX_PARTICLES                   32768   // default max # of particles at one time
179 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
180
181 typedef enum
182 {
183         pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal, pt_decalfade
184 }
185 ptype_t;
186
187 typedef enum
188 {
189         PARTICLE_BILLBOARD = 0,
190         PARTICLE_SPARK = 1,
191         PARTICLE_ORIENTED_DOUBLESIDED = 2,
192         PARTICLE_BEAM = 3
193 }
194 porientation_t;
195
196 typedef enum
197 {
198         PBLEND_ALPHA = 0,
199         PBLEND_ADD = 1,
200         PBLEND_MOD = 2
201 }
202 pblend_t;
203
204 typedef struct particle_s
205 {
206         ptype_t         type;
207         int                     orientation;
208         int                     texnum;
209         int                     blendmode;
210         vec3_t          org;
211         vec3_t          vel;
212         float           die;
213         float           scalex;
214         float           scaley;
215         float           alpha; // 0-255
216         float           alphafade; // how much alpha reduces per second
217         float           time2; // used for various things (snow fluttering, for example)
218         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
219         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
220         vec3_t          oldorg;
221         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
222         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
223         float           pressure; // if non-zero, apply pressure to other particles
224         qbyte           color[4];
225 #ifndef WORKINGLQUAKE
226         entity_render_t *owner; // decal stuck to this entity
227         model_t         *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive)
228         vec3_t          relativeorigin; // decal at this location in entity's coordinate space
229         vec3_t          relativedirection; // decal oriented this way relative to entity's coordinate space
230 #endif
231 }
232 particle_t;
233
234 static int particlepalette[256] =
235 {
236         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
237         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
238         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
239         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
240         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
241         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
242         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
243         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
244         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
245         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
246         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
247         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
248         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
249         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
250         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
251         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
252         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
253         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
254         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
255         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
256         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
257         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
258         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
259         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
260         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
261         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
262         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
263         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
264         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
265         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
266         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
267         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
268 };
269
270 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
271
272 // texture numbers in particle font
273 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
274 static const int tex_bulletdecal[8] = {8, 9, 10, 11, 12, 13, 14, 15};
275 static const int tex_blooddecal[8] = {16, 17, 18, 19, 20, 21, 22, 23};
276 static const int tex_bloodparticle[8] = {24, 25, 26, 27, 28, 29, 30, 31};
277 static const int tex_rainsplash[16] = {32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47};
278 static const int tex_particle = 63;
279 static const int tex_bubble = 62;
280 static const int tex_raindrop = 61;
281 static const int tex_beam = 60;
282
283 static int                      cl_maxparticles;
284 static int                      cl_numparticles;
285 static particle_t       *particles;
286 static particle_t       **freeparticles; // list used only in compacting particles array
287
288 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
289 cvar_t cl_particles_quality = {CVAR_SAVE, "cl_particles_quality", "1"};
290 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
291 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
292 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
293 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
294 cvar_t cl_particles_blood_bloodhack = {CVAR_SAVE, "cl_particles_blood_bloodhack", "1"};
295 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
296 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
297 cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5"};
298 cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55"};
299 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
300 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
301 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
302 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
303 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
304
305 #ifndef WORKINGLQUAKE
306 static mempool_t *cl_part_mempool;
307 #endif
308
309 void CL_Particles_Clear(void)
310 {
311         cl_numparticles = 0;
312 }
313
314 /*
315 ===============
316 CL_InitParticles
317 ===============
318 */
319 void CL_ReadPointFile_f (void);
320 void CL_Particles_Init (void)
321 {
322         int             i;
323
324         i = COM_CheckParm ("-particles");
325
326         if (i && i < com_argc - 1)
327         {
328                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
329                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
330                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
331         }
332         else
333                 cl_maxparticles = MAX_PARTICLES;
334
335         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
336
337         Cvar_RegisterVariable (&cl_particles);
338         Cvar_RegisterVariable (&cl_particles_quality);
339         Cvar_RegisterVariable (&cl_particles_size);
340         Cvar_RegisterVariable (&cl_particles_bloodshowers);
341         Cvar_RegisterVariable (&cl_particles_blood);
342         Cvar_RegisterVariable (&cl_particles_blood_alpha);
343         Cvar_RegisterVariable (&cl_particles_blood_bloodhack);
344         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
345         Cvar_RegisterVariable (&cl_particles_smoke);
346         Cvar_RegisterVariable (&cl_particles_smoke_alpha);
347         Cvar_RegisterVariable (&cl_particles_smoke_alphafade);
348         Cvar_RegisterVariable (&cl_particles_sparks);
349         Cvar_RegisterVariable (&cl_particles_bubbles);
350         Cvar_RegisterVariable (&cl_decals);
351         Cvar_RegisterVariable (&cl_decals_time);
352         Cvar_RegisterVariable (&cl_decals_fadetime);
353
354 #ifdef WORKINGLQUAKE
355         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
356         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
357 #else
358         cl_part_mempool = Mem_AllocPool("CL_Part");
359         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
360         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
361 #endif
362         cl_numparticles = 0;
363 }
364
365 // list of all 26 parameters:
366 // ptype - any of the pt_ enum values (pt_static, pt_blood, etc), see ptype_t near the top of this file
367 // porientation - PARTICLE_ enum values (PARTICLE_BILLBOARD, PARTICLE_SPARK, etc)
368 // pcolor1,pcolor2 - minimum and maximum ranges of color, randomly interpolated to decide particle color
369 // ptex - any of the tex_ values such as tex_smoke[rand()&7] or tex_particle
370 // plight - no longer used (this used to turn on particle lighting)
371 // pblendmode - PBLEND_ enum values (PBLEND_ALPHA, PBLEND_ADD, etc)
372 // pscalex,pscaley - width and height of particle (according to orientation), these are normally the same except when making sparks and beams
373 // palpha - opacity of particle as 0-255 (can be more than 255)
374 // palphafade - rate of fade per second (so 256 would mean a 256 alpha particle would fade to nothing in 1 second)
375 // ptime - how long the particle can live (note it is also removed if alpha drops to nothing)
376 // pgravity - how much effect gravity has on the particle (0-1)
377 // pbounce - how much bounce the particle has when it hits a surface (0-1), -1 makes a blood splat when it hits a surface, 0 does not even check for collisions
378 // px,py,pz - starting origin of particle
379 // pvx,pvy,pvz - starting velocity of particle
380 // ptime2 - extra time parameter for certain particle types (pt_decal delayed fades and pt_rain snowflutter use this)
381 // pvx2,pvy2,pvz2 - for PARTICLE_ORIENTED_DOUBLESIDED this is the surface normal of the orientation (forward vector), pt_rain uses this for snow fluttering
382 // pfriction - how much the particle slows down per second (0-1 typically, can slowdown faster than 1)
383 // ppressure - pushes other particles away if they are within 64 units distance, the force is based on scalex, this feature is supported but not currently used
384 particle_t *particle(ptype_t ptype, porientation_t porientation, int pcolor1, int pcolor2, int ptex, int plight, pblend_t pblendmode, float pscalex, float pscaley, float palpha, float palphafade, float ptime, float pgravity, float pbounce, float px, float py, float pz, float pvx, float pvy, float pvz, float ptime2, float pvx2, float pvy2, float pvz2, float pfriction, float ppressure)
385 {
386         if (cl_numparticles < cl_maxparticles)
387         {
388                 particle_t *part;
389                 int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;
390                 ptempcolor = (pcolor1);
391                 ptempcolor2 = (pcolor2);
392                 pcr2 = ((ptempcolor2) >> 16) & 0xFF;
393                 pcg2 = ((ptempcolor2) >> 8) & 0xFF;
394                 pcb2 = (ptempcolor2) & 0xFF;
395                 if (ptempcolor != ptempcolor2)
396                 {
397                         pcr1 = ((ptempcolor) >> 16) & 0xFF;
398                         pcg1 = ((ptempcolor) >> 8) & 0xFF;
399                         pcb1 = (ptempcolor) & 0xFF;
400                         ptempcolor = rand() & 0xFF;
401                         pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;
402                         pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;
403                         pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;
404                 }
405                 part = &particles[cl_numparticles++];
406                 memset(part, 0, sizeof(*part));
407                 part->type = (ptype);
408                 part->color[0] = pcr2;
409                 part->color[1] = pcg2;
410                 part->color[2] = pcb2;
411                 part->color[3] = 0xFF;
412                 part->orientation = porientation;
413                 part->texnum = ptex;
414                 part->blendmode = pblendmode;
415                 part->scalex = (pscalex);
416                 part->scaley = (pscaley);
417                 part->alpha = (palpha);
418                 part->alphafade = (palphafade);
419                 part->die = cl.time + (ptime);
420                 part->gravity = (pgravity);
421                 part->bounce = (pbounce);
422                 part->org[0] = (px);
423                 part->org[1] = (py);
424                 part->org[2] = (pz);
425                 part->vel[0] = (pvx);
426                 part->vel[1] = (pvy);
427                 part->vel[2] = (pvz);
428                 part->time2 = (ptime2);
429                 part->vel2[0] = (pvx2);
430                 part->vel2[1] = (pvy2);
431                 part->vel2[2] = (pvz2);
432                 part->friction = (pfriction);
433                 part->pressure = (ppressure);
434                 return part;
435         }
436         return NULL;
437 }
438
439 void CL_SpawnDecalParticleForSurface(void *hitent, const vec3_t org, const vec3_t normal, int color1, int color2, int texnum, float size, float alpha)
440 {
441         particle_t *p;
442         if (!cl_decals.integer)
443                 return;
444         p = particle(pt_decal, PARTICLE_ORIENTED_DOUBLESIDED, color1, color2, texnum, false, PBLEND_MOD, size, size, alpha, 0, cl_decals_time.value + cl_decals_fadetime.value, 0, 0, org[0] + normal[0], org[1] + normal[1], org[2] + normal[2], 0, 0, 0, cl.time + cl_decals_time.value, normal[0], normal[1], normal[2], 0, 0);
445 #ifndef WORKINGLQUAKE
446         if (p)
447         {
448                 p->owner = hitent;
449                 p->ownermodel = p->owner->model;
450                 Matrix4x4_Transform(&p->owner->inversematrix, org, p->relativeorigin);
451                 Matrix4x4_Transform3x3(&p->owner->inversematrix, normal, p->relativedirection);
452                 VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
453         }
454 #endif
455 }
456
457 void CL_SpawnDecalParticleForPoint(const vec3_t org, float maxdist, float size, float alpha, int texnum, int color1, int color2)
458 {
459         int i;
460         float bestfrac, bestorg[3], bestnormal[3];
461         float frac, v[3], normal[3], org2[3];
462 #ifdef WORKINGLQUAKE
463         void *besthitent = NULL, *hitent;
464 #else
465         entity_render_t *besthitent = NULL, *hitent;
466 #endif
467         bestfrac = 10;
468         for (i = 0;i < 32;i++)
469         {
470                 VectorRandom(org2);
471                 VectorMA(org, maxdist, org2, org2);
472                 frac = CL_TraceLine(org, org2, v, normal, true, &hitent, SUPERCONTENTS_SOLID);
473                 if (bestfrac > frac)
474                 {
475                         bestfrac = frac;
476                         besthitent = hitent;
477                         VectorCopy(v, bestorg);
478                         VectorCopy(normal, bestnormal);
479                 }
480         }
481         if (bestfrac < 1)
482                 CL_SpawnDecalParticleForSurface(besthitent, bestorg, bestnormal, color1, color2, texnum, size, alpha);
483 }
484
485 /*
486 ===============
487 CL_EntityParticles
488 ===============
489 */
490 void CL_EntityParticles (entity_t *ent)
491 {
492         int                     i;
493         float           angle;
494         float           sp, sy, cp, cy;
495         vec3_t          forward;
496         float           dist;
497         float           beamlength;
498         static vec3_t avelocities[NUMVERTEXNORMALS];
499         if (!cl_particles.integer) return;
500
501         dist = 64;
502         beamlength = 16;
503
504         if (!avelocities[0][0])
505                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
506                         avelocities[0][i] = (rand()&255) * 0.01;
507
508         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
509         {
510                 angle = cl.time * avelocities[i][0];
511                 sy = sin(angle);
512                 cy = cos(angle);
513                 angle = cl.time * avelocities[i][1];
514                 sp = sin(angle);
515                 cp = cos(angle);
516
517                 forward[0] = cp*cy;
518                 forward[1] = cp*sy;
519                 forward[2] = -sp;
520
521 #ifdef WORKINGLQUAKE
522                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
523 #else
524                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
525 #endif
526         }
527 }
528
529
530 void CL_ReadPointFile_f (void)
531 {
532         vec3_t org, leakorg;
533         int r, c, s;
534         char *pointfile = NULL, *pointfilepos, *t, tchar;
535         char name[MAX_OSPATH];
536
537         if (!cl.worldmodel)
538                 return;
539
540         FS_StripExtension (cl.worldmodel->name, name, sizeof (name));
541         strlcat (name, ".pts", sizeof (name));
542 #if WORKINGLQUAKE
543         pointfile = COM_LoadTempFile (name);
544 #else
545         pointfile = FS_LoadFile(name, true);
546 #endif
547         if (!pointfile)
548         {
549                 Con_Printf ("Could not open %s\n", name);
550                 return;
551         }
552
553         Con_Printf ("Reading %s...\n", name);
554         c = 0;
555         s = 0;
556         pointfilepos = pointfile;
557         while (*pointfilepos)
558         {
559                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
560                         pointfilepos++;
561                 if (!*pointfilepos)
562                         break;
563                 t = pointfilepos;
564                 while (*t && *t != '\n' && *t != '\r')
565                         t++;
566                 tchar = *t;
567                 *t = 0;
568                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
569                 *t = tchar;
570                 pointfilepos = t;
571                 if (r != 3)
572                         break;
573                 if (c == 0)
574                         VectorCopy(org, leakorg);
575                 c++;
576
577                 if (cl_numparticles < cl_maxparticles - 3)
578                 {
579                         s++;
580                         particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
581                 }
582         }
583 #ifndef WORKINGLQUAKE
584         Mem_Free(pointfile);
585 #endif
586         VectorCopy(leakorg, org);
587         Con_Printf ("%i points read (%i particles spawned)\nLeak at %f %f %f\n", c, s, org[0], org[1], org[2]);
588
589         particle(pt_static, PARTICLE_BEAM, 0xFF0000, 0xFF0000, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0] - 4096, org[1], org[2], 0, 0, 0, 0, org[0] + 4096, org[1], org[2], 0, 0);
590         particle(pt_static, PARTICLE_BEAM, 0x00FF00, 0x00FF00, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1] - 4096, org[2], 0, 0, 0, 0, org[0], org[1] + 4096, org[2], 0, 0);
591         particle(pt_static, PARTICLE_BEAM, 0x0000FF, 0x0000FF, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1], org[2] - 4096, 0, 0, 0, 0, org[0], org[1], org[2] + 4096, 0, 0);
592 }
593
594 /*
595 ===============
596 CL_ParseParticleEffect
597
598 Parse an effect out of the server message
599 ===============
600 */
601 void CL_ParseParticleEffect (void)
602 {
603         vec3_t org, dir;
604         int i, count, msgcount, color;
605
606         for (i=0 ; i<3 ; i++)
607                 org[i] = MSG_ReadCoord ();
608         for (i=0 ; i<3 ; i++)
609                 dir[i] = MSG_ReadChar () * (1.0/16);
610         msgcount = MSG_ReadByte ();
611         color = MSG_ReadByte ();
612
613         if (msgcount == 255)
614                 count = 1024;
615         else
616                 count = msgcount;
617
618         if (cl_particles_blood_bloodhack.integer)
619         {
620                 if (color == 73)
621                 {
622                         // regular blood
623                         CL_BloodPuff(org, dir, count / 2);
624                         return;
625                 }
626                 if (color == 225)
627                 {
628                         // lightning blood
629                         CL_BloodPuff(org, dir, count / 2);
630                         return;
631                 }
632         }
633         CL_RunParticleEffect (org, dir, color, count);
634 }
635
636 /*
637 ===============
638 CL_ParticleExplosion
639
640 ===============
641 */
642 void CL_ParticleExplosion (vec3_t org)
643 {
644         int i, k;
645         //vec3_t v;
646         //vec3_t v2;
647         if (cl_stainmaps.integer)
648                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
649         CL_SpawnDecalParticleForPoint(org, 40, 48, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
650
651         i = CL_PointQ1Contents(org);
652         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
653         {
654                 for (i = 0;i < 128 * cl_particles_quality.value;i++)
655                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, (1.0f / cl_particles_quality.value) * lhrandom(128, 255), (1.0f / cl_particles_quality.value) * 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
656         }
657         else
658         {
659                 /*
660                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
661                 // smoke puff
662                 if (cl_particles.integer && cl_particles_smoke.integer)
663                 {
664                         for (i = 0;i < 64;i++)
665                         {
666 #ifdef WORKINGLQUAKE
667                                 v2[0] = lhrandom(-64, 64);
668                                 v2[1] = lhrandom(-64, 64);
669                                 v2[2] = lhrandom(-8, 24);
670 #else
671                                 for (k = 0;k < 16;k++)
672                                 {
673                                         v[0] = org[0] + lhrandom(-64, 64);
674                                         v[1] = org[1] + lhrandom(-64, 64);
675                                         v[2] = org[2] + lhrandom(-8, 24);
676                                         if (CL_TraceLine(org, v, v2, NULL, true, NULL, SUPERCONTENTS_SOLID) >= 0.1)
677                                                 break;
678                                 }
679                                 VectorSubtract(v2, org, v2);
680 #endif
681                                 VectorScale(v2, 2.0f, v2);
682                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
683                         }
684                 }
685                 */
686
687                 if (cl_particles.integer && cl_particles_sparks.integer)
688                 {
689                         // sparks
690                         for (i = 0;i < 256 * cl_particles_quality.value;i++)
691                         {
692                                 k = particlepalette[0x68 + (rand() & 7)];
693                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, (1.0f / cl_particles_quality.value) * lhrandom(0, 255), (1.0f / cl_particles_quality.value) * 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
694                         }
695                 }
696         }
697
698         if (cl_explosions.integer)
699                 R_NewExplosion(org);
700 }
701
702 /*
703 ===============
704 CL_ParticleExplosion2
705
706 ===============
707 */
708 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
709 {
710         int i, k;
711         if (!cl_particles.integer) return;
712
713         for (i = 0;i < 512 * cl_particles_quality.value;i++)
714         {
715                 k = particlepalette[colorStart + (i % colorLength)];
716                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1.5, 1.5, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
717         }
718 }
719
720 /*
721 ===============
722 CL_BlobExplosion
723
724 ===============
725 */
726 void CL_BlobExplosion (vec3_t org)
727 {
728         if (cl_stainmaps.integer)
729                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
730         CL_SpawnDecalParticleForPoint(org, 40, 48, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
731
732         if (cl_explosions.integer)
733                 R_NewExplosion(org);
734 }
735
736 /*
737 ===============
738 CL_RunParticleEffect
739
740 ===============
741 */
742 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
743 {
744         int k;
745
746         if (count == 1024)
747         {
748                 CL_ParticleExplosion(org);
749                 return;
750         }
751         if (!cl_particles.integer) return;
752         count *= cl_particles_quality.value;
753         while (count--)
754         {
755                 k = particlepalette[color + (rand()&7)];
756                 if (gamemode == GAME_GOODVSBAD2)
757                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 5, 5, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 300, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-10, 10), lhrandom(-10, 10), lhrandom(-10, 10), 0, 0, 0, 0, 0, 0);
758                 else
759                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), dir[0] + lhrandom(-15, 15), dir[1] + lhrandom(-15, 15), dir[2] + lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
760         }
761 }
762
763 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
764 /*
765 ===============
766 CL_SparkShower
767 ===============
768 */
769 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
770 {
771         vec3_t org2, org3;
772         int k;
773
774         if (cl_stainmaps.integer)
775                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
776         CL_SpawnDecalParticleForPoint(org, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
777
778         if (!cl_particles.integer) return;
779
780         if (cl_particles_bulletimpacts.integer)
781         {
782                 // smoke puff
783                 if (cl_particles_smoke.integer)
784                 {
785                         k = count * 0.25 * cl_particles_quality.value;
786                         while(k--)
787                         {
788                                 org2[0] = org[0] + 0.125f * lhrandom(-count, count);
789                                 org2[1] = org[1] + 0.125f * lhrandom(-count, count);
790                                 org2[2] = org[2] + 0.125f * lhrandom(-count, count);
791                                 CL_TraceLine(org, org2, org3, NULL, true, NULL, SUPERCONTENTS_SOLID);
792                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 1024, 9999, -0.2, 0, org3[0], org3[1], org3[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0, 0);
793                         }
794                 }
795
796                 if (cl_particles_sparks.integer)
797                 {
798                         // sparks
799                         count *= cl_particles_quality.value;
800                         while(count--)
801                         {
802                                 k = particlepalette[0x68 + (rand() & 7)];
803                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, (1.0f / cl_particles_quality.value) * lhrandom(64, 255), (1.0f / cl_particles_quality.value) * 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
804                         }
805                 }
806         }
807 }
808
809 void CL_PlasmaBurn (vec3_t org)
810 {
811         if (cl_stainmaps.integer)
812                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
813         CL_SpawnDecalParticleForPoint(org, 6, 6, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
814 }
815
816 static float bloodcount = 0;
817 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
818 {
819         float s;
820         vec3_t org2, org3;
821         // bloodcount is used to accumulate counts too small to cause a blood particle
822         if (!cl_particles.integer) return;
823         if (!cl_particles_blood.integer) return;
824
825         s = count + 64.0f;
826         count *= 5.0f;
827         if (count > 1000)
828                 count = 1000;
829         bloodcount += count;
830         while(bloodcount > 0)
831         {
832                 org2[0] = org[0] + 0.125f * lhrandom(-bloodcount, bloodcount);
833                 org2[1] = org[1] + 0.125f * lhrandom(-bloodcount, bloodcount);
834                 org2[2] = org[2] + 0.125f * lhrandom(-bloodcount, bloodcount);
835                 CL_TraceLine(org, org2, org3, NULL, true, NULL, SUPERCONTENTS_SOLID);
836                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], true, PBLEND_MOD, 8, 8, cl_particles_blood_alpha.value * 768 / cl_particles_quality.value, cl_particles_blood_alpha.value * 384 / cl_particles_quality.value, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
837                 bloodcount -= 16 / cl_particles_quality.value;
838         }
839 }
840
841 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
842 {
843         vec3_t org, vel, diff, center, velscale;
844         if (!cl_particles.integer) return;
845         if (!cl_particles_bloodshowers.integer) return;
846         if (!cl_particles_blood.integer) return;
847
848         VectorSubtract(maxs, mins, diff);
849         center[0] = (mins[0] + maxs[0]) * 0.5;
850         center[1] = (mins[1] + maxs[1]) * 0.5;
851         center[2] = (mins[2] + maxs[2]) * 0.5;
852         velscale[0] = velspeed * 2.0 / diff[0];
853         velscale[1] = velspeed * 2.0 / diff[1];
854         velscale[2] = velspeed * 2.0 / diff[2];
855
856         bloodcount += count * 5.0f;
857         while (bloodcount > 0)
858         {
859                 org[0] = lhrandom(mins[0], maxs[0]);
860                 org[1] = lhrandom(mins[1], maxs[1]);
861                 org[2] = lhrandom(mins[2], maxs[2]);
862                 vel[0] = (org[0] - center[0]) * velscale[0];
863                 vel[1] = (org[1] - center[1]) * velscale[1];
864                 vel[2] = (org[2] - center[2]) * velscale[2];
865                 bloodcount -= 16 / cl_particles_quality.value;
866                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], true, PBLEND_MOD, 8, 8, cl_particles_blood_alpha.value * 768 / cl_particles_quality.value, cl_particles_blood_alpha.value * 384 / cl_particles_quality.value, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
867         }
868 }
869
870 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
871 {
872         int k;
873         float t;
874         if (!cl_particles.integer) return;
875         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
876         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
877         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
878
879         count *= cl_particles_quality.value;
880         while (count--)
881         {
882                 k = particlepalette[colorbase + (rand()&3)];
883                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255 / cl_particles_quality.value, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
884         }
885 }
886
887 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
888 {
889         int k;
890         float t, z, minz, maxz;
891         if (!cl_particles.integer) return;
892         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
893         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
894         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
895         if (dir[2] < 0) // falling
896         {
897                 t = (maxs[2] - mins[2]) / -dir[2];
898                 z = maxs[2];
899         }
900         else // rising??
901         {
902                 t = (maxs[2] - mins[2]) / dir[2];
903                 z = mins[2];
904         }
905         if (t < 0 || t > 2) // sanity check
906                 t = 2;
907
908         minz = z - fabs(dir[2]) * 0.1;
909         maxz = z + fabs(dir[2]) * 0.1;
910         minz = bound(mins[2], minz, maxs[2]);
911         maxz = bound(mins[2], maxz, maxs[2]);
912
913         count *= cl_particles_quality.value;
914
915         switch(type)
916         {
917         case 0:
918                 count *= 4; // ick, this should be in the mod or maps?
919
920                 while(count--)
921                 {
922                         k = particlepalette[colorbase + (rand()&3)];
923                         if (gamemode == GAME_GOODVSBAD2)
924                         {
925                                 particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 20, 20, lhrandom(8, 16) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
926                         }
927                         else
928                         {
929                                 particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
930                         }
931                 }
932                 break;
933         case 1:
934                 while(count--)
935                 {
936                         k = particlepalette[colorbase + (rand()&3)];
937                         if (gamemode == GAME_GOODVSBAD2)
938                         {
939                                 particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 20, 20, lhrandom(64, 128) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
940                         }
941                         else
942                         {
943                                 particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
944                         }
945                 }
946                 break;
947         default:
948                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
949         }
950 }
951
952 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
953 {
954         int k;
955         float t;
956         vec3_t o, v, center;
957         if (!cl_particles.integer) return;
958
959         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
960         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
961         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
962
963         center[0] = (mins[0] + maxs[0]) * 0.5f;
964         center[1] = (mins[1] + maxs[1]) * 0.5f;
965         center[2] = (mins[2] + maxs[2]) * 0.5f;
966
967         count *= cl_particles_quality.value;
968         while (count--)
969         {
970                 k = particlepalette[224 + (rand()&15)];
971                 o[0] = lhrandom(mins[0], maxs[0]);
972                 o[1] = lhrandom(mins[1], maxs[1]);
973                 o[2] = lhrandom(mins[2], maxs[2]);
974                 VectorSubtract(o, center, v);
975                 VectorNormalizeFast(v);
976                 VectorScale(v, 100, v);
977                 v[2] += sv_gravity.value * 0.15f;
978                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128) / cl_particles_quality.value, 128 / cl_particles_quality.value, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
979         }
980 }
981
982 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
983 {
984         int k;
985         float t;
986         if (!cl_particles.integer) return;
987         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
988         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
989         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
990
991         count *= cl_particles_quality.value;
992         while (count--)
993         {
994                 k = particlepalette[224 + (rand()&15)];
995                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128) / cl_particles_quality.value, 384 / cl_particles_quality.value, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
996                 if (count & 1)
997                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96) / cl_particles_quality.value, 64 / cl_particles_quality.value, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
998         }
999 }
1000
1001 void CL_Flames (vec3_t org, vec3_t vel, int count)
1002 {
1003         int k;
1004         if (!cl_particles.integer) return;
1005
1006         count *= cl_particles_quality.value;
1007         while (count--)
1008         {
1009                 k = particlepalette[224 + (rand()&15)];
1010                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128) / cl_particles_quality.value, 384 / cl_particles_quality.value, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
1011         }
1012 }
1013
1014
1015
1016 /*
1017 ===============
1018 CL_LavaSplash
1019
1020 ===============
1021 */
1022 void CL_LavaSplash (vec3_t origin)
1023 {
1024         float i, j, inc, vel;
1025         int k, l;
1026         vec3_t          dir, org;
1027         if (!cl_particles.integer) return;
1028
1029         inc = 32 / cl_particles_quality.value;
1030         for (i = -128;i < 128;i += inc)
1031         {
1032                 for (j = -128;j < 128;j += inc)
1033                 {
1034                         dir[0] = j + lhrandom(0, 8);
1035                         dir[1] = i + lhrandom(0, 8);
1036                         dir[2] = 256;
1037                         org[0] = origin[0] + dir[0];
1038                         org[1] = origin[1] + dir[1];
1039                         org[2] = origin[2] + lhrandom(0, 64);
1040                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
1041                         if (gamemode == GAME_GOODVSBAD2)
1042                         {
1043                                 k = particlepalette[0 + (rand()&255)];
1044                                 l = particlepalette[0 + (rand()&255)];
1045                                 particle(pt_static, PARTICLE_BILLBOARD, k, l, tex_particle, false, PBLEND_ADD, 12, 12, inc * 8, inc * 8, 9999, 0.05, 1, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
1046                         }
1047                         else
1048                         {
1049                                 k = l = particlepalette[224 + (rand()&7)];
1050                                 particle(pt_static, PARTICLE_BILLBOARD, k, l, tex_particle, false, PBLEND_ADD, 12, 12, inc * 8, inc * 8, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
1051                         }
1052                 }
1053         }
1054 }
1055
1056 /*
1057 ===============
1058 CL_TeleportSplash
1059
1060 ===============
1061 */
1062 #if WORKINGLQUAKE
1063 void R_TeleportSplash (vec3_t org)
1064 {
1065         float i, j, k, inc;
1066         if (!cl_particles.integer) return;
1067
1068         inc = 8 / cl_particles_quality.value;
1069         for (i = -16;i < 16;i += inc)
1070                 for (j = -16;j < 16;j += inc)
1071                         for (k = -24;k < 32;k += inc)
1072                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, inc * 32, inc * lhrandom(8, 16), inc * 32, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
1073 }
1074 #endif
1075
1076 #ifdef WORKINGLQUAKE
1077 void R_RocketTrail (vec3_t start, vec3_t end, int type)
1078 #else
1079 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
1080 #endif
1081 {
1082         vec3_t vec, dir, vel, pos;
1083         float len, dec, speed, qd;
1084         int contents, smoke, blood, bubbles;
1085
1086         if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2])
1087                 return;
1088
1089         VectorSubtract(end, start, dir);
1090         VectorNormalize(dir);
1091
1092         VectorSubtract (end, start, vec);
1093 #ifdef WORKINGLQUAKE
1094         len = VectorNormalize (vec);
1095         dec = 0;
1096         speed = 1.0f / cl.frametime;
1097         VectorSubtract(end, start, vel);
1098 #else
1099         len = VectorNormalizeLength (vec);
1100         dec = -ent->persistent.trail_time;
1101         ent->persistent.trail_time += len;
1102         if (ent->persistent.trail_time < 0.01f)
1103                 return;
1104
1105         // if we skip out, leave it reset
1106         ent->persistent.trail_time = 0.0f;
1107
1108         speed = ent->state_current.time - ent->state_previous.time;
1109         if (speed)
1110                 speed = 1.0f / speed;
1111         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
1112 #endif
1113         VectorScale(vel, speed, vel);
1114
1115         // advance into this frame to reach the first puff location
1116         VectorMA(start, dec, vec, pos);
1117         len -= dec;
1118
1119         contents = CL_PointQ1Contents(pos);
1120         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
1121                 return;
1122
1123         smoke = cl_particles.integer && cl_particles_smoke.integer;
1124         blood = cl_particles.integer && cl_particles_blood.integer;
1125         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
1126         qd = 1.0f / cl_particles_quality.value;
1127
1128         while (len >= 0)
1129         {
1130                 switch (type)
1131                 {
1132                         case 0: // rocket trail
1133                                 dec = qd*3;
1134                                 if (smoke)
1135                                 {
1136                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 3, 3, qd*cl_particles_smoke_alpha.value*125, qd*cl_particles_smoke_alphafade.value*125, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 7, 0, 0, 0, 0, 0);
1137                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, 3, 3, qd*cl_particles_smoke_alpha.value*288, qd*cl_particles_smoke_alphafade.value*1400, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
1138                                 }
1139                                 if (bubbles)
1140                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, qd*lhrandom(64, 255), qd*256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
1141                                 break;
1142
1143                         case 1: // grenade trail
1144                                 // FIXME: make it gradually stop smoking
1145                                 dec = qd*3;
1146                                 if (smoke)
1147                                         particle(pt_grow, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 3, 3, qd*cl_particles_smoke_alpha.value*100, qd*cl_particles_smoke_alphafade.value*100, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 7, 0, 0, 0, 0, 0);
1148                                 break;
1149
1150
1151                         case 2: // blood
1152                         case 4: // slight blood
1153                                 dec = qd*16;
1154                                 if (blood)
1155                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], true, PBLEND_MOD, 8, 8, qd * cl_particles_blood_alpha.value * 768.0f, qd * cl_particles_blood_alpha.value * 384.0f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1156                                 break;
1157
1158                         case 3: // green tracer
1159                                 dec = qd*6;
1160                                 if (smoke)
1161                                 {
1162                                         if (gamemode == GAME_GOODVSBAD2)
1163                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x00002E, 0x000030, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1164                                         else
1165                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1166                                 }
1167                                 break;
1168
1169                         case 5: // flame tracer
1170                                 dec = qd*6;
1171                                 if (smoke)
1172                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1173                                 break;
1174
1175                         case 6: // voor trail
1176                                 dec = qd*6;
1177                                 if (smoke)
1178                                 {
1179                                         if (gamemode == GAME_GOODVSBAD2)
1180                                                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0 + (rand()&255)], particlepalette[0 + (rand()&255)], tex_particle, false, PBLEND_ALPHA, 6, 6, qd*255, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1181                                         else
1182                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1183                                 }
1184                                 break;
1185
1186                         case 7: // Nehahra smoke tracer
1187                                 dec = qd*7;
1188                                 if (smoke)
1189                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, 7, 7, qd*64, qd*320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1190                                 break;
1191                         case 8: // Nexuiz plasma trail
1192                                 dec = qd*4;
1193                                 if (smoke)
1194                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, 4, 4, qd*255, qd*1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1195                                 break;
1196                 }
1197
1198                 // advance to next time and position
1199                 len -= dec;
1200                 VectorMA (pos, dec, vec, pos);
1201         }
1202 #ifndef WORKINGLQUAKE
1203         ent->persistent.trail_time = len;
1204 #endif
1205 }
1206
1207 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1208 {
1209         float dec, len;
1210         vec3_t vec, pos;
1211         if (!cl_particles.integer) return;
1212         if (!cl_particles_smoke.integer) return;
1213
1214         VectorCopy(start, pos);
1215         VectorSubtract(end, start, vec);
1216 #ifdef WORKINGLQUAKE
1217         len = VectorNormalize(vec);
1218 #else
1219         len = VectorNormalizeLength(vec);
1220 #endif
1221         color = particlepalette[color];
1222         dec = 3.0f / cl_particles_quality.value;
1223         while (len > 0)
1224         {
1225                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128 / cl_particles_quality.value, 320 / cl_particles_quality.value, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1226                 len -= dec;
1227                 VectorMA(pos, dec, vec, pos);
1228         }
1229 }
1230
1231 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1232 {
1233         int tempcolor2, cr, cg, cb;
1234         cr = red * 255;
1235         cg = green * 255;
1236         cb = blue * 255;
1237         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1238         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1239 }
1240
1241 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1242 {
1243         float f;
1244         if (!cl_particles.integer) return;
1245
1246         // smoke puff
1247         if (cl_particles_smoke.integer)
1248                 for (f = 0;f < count;f += 4.0f / cl_particles_quality.value)
1249                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255 / cl_particles_quality.value, 512 / cl_particles_quality.value, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1250 }
1251
1252 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1253 {
1254         float f;
1255         if (!cl_particles.integer) return;
1256
1257         if (cl_stainmaps.integer)
1258                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1259         CL_SpawnDecalParticleForPoint(org, 6, 8, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
1260
1261         // smoke puff
1262         if (cl_particles_smoke.integer)
1263                 for (f = 0;f < count;f += 4.0f / cl_particles_quality.value)
1264                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255 / cl_particles_quality.value, 512 / cl_particles_quality.value, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1265
1266         // sparks
1267         if (cl_particles_sparks.integer)
1268                 for (f = 0;f < count;f += 1.0f / cl_particles_quality.value)
1269                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255) / cl_particles_quality.value, 512 / cl_particles_quality.value, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1270 }
1271
1272 /*
1273 ===============
1274 CL_MoveParticles
1275 ===============
1276 */
1277 void CL_MoveParticles (void)
1278 {
1279         particle_t *p;
1280         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1281         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1282 #ifdef WORKINGLQUAKE
1283         void *hitent;
1284 #else
1285         entity_render_t *hitent;
1286 #endif
1287
1288         // LordHavoc: early out condition
1289         if (!cl_numparticles)
1290                 return;
1291
1292 #ifdef WORKINGLQUAKE
1293         frametime = cl.frametime;
1294 #else
1295         frametime = cl.time - cl.oldtime;
1296 #endif
1297         gravity = frametime * sv_gravity.value;
1298         dvel = 1+4*frametime;
1299         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1300
1301         activeparticles = 0;
1302         maxparticle = -1;
1303         j = 0;
1304         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1305         {
1306                 content = 0;
1307                 VectorCopy(p->org, p->oldorg);
1308                 VectorMA(p->org, frametime, p->vel, p->org);
1309                 VectorCopy(p->org, org);
1310                 if (p->bounce)
1311                 {
1312                         if (CL_TraceLine(p->oldorg, p->org, v, normal, true, &hitent, SUPERCONTENTS_SOLID) < 1)
1313                         {
1314                                 VectorCopy(v, p->org);
1315                                 if (p->bounce < 0)
1316                                 {
1317                                         // assume it's blood (lame, but...)
1318 #ifndef WORKINGLQUAKE
1319                                         if (cl_stainmaps.integer)
1320                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1321 #endif
1322                                         if (cl_decals.integer)
1323                                         {
1324                                                 p->type = pt_decal;
1325                                                 p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1326                                                 // convert from a blood particle to a blood decal
1327                                                 p->texnum = tex_blooddecal[rand()&7];
1328 #ifndef WORKINGLQUAKE
1329                                                 p->owner = hitent;
1330                                                 p->ownermodel = hitent->model;
1331                                                 Matrix4x4_Transform(&hitent->inversematrix, v, p->relativeorigin);
1332                                                 Matrix4x4_Transform3x3(&hitent->inversematrix, normal, p->relativedirection);
1333                                                 VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
1334 #endif
1335                                                 p->time2 = cl.time + cl_decals_time.value;
1336                                                 p->die = p->time2 + cl_decals_fadetime.value;
1337                                                 p->alphafade = 0;
1338                                                 VectorCopy(normal, p->vel2);
1339                                                 VectorClear(p->vel);
1340                                                 VectorAdd(p->org, normal, p->org);
1341                                                 p->bounce = 0;
1342                                                 p->friction = 0;
1343                                                 p->gravity = 0;
1344                                                 p->scalex *= 1.25f;
1345                                                 p->scaley *= 1.25f;
1346                                         }
1347                                         else
1348                                         {
1349                                                 p->die = -1;
1350                                                 freeparticles[j++] = p;
1351                                                 continue;
1352                                         }
1353                                 }
1354                                 else
1355                                 {
1356                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1357                                         VectorMA(p->vel, dist, normal, p->vel);
1358                                         if (DotProduct(p->vel, p->vel) < 0.03)
1359                                                 VectorClear(p->vel);
1360                                 }
1361                         }
1362                 }
1363                 p->vel[2] -= p->gravity * gravity;
1364                 p->alpha -= p->alphafade * frametime;
1365                 if (p->friction)
1366                 {
1367                         f = p->friction * frametime;
1368                         if (!content)
1369                                 content = CL_PointQ1Contents(p->org);
1370                         if (content != CONTENTS_EMPTY)
1371                                 f *= 4;
1372                         f = 1.0f - f;
1373                         VectorScale(p->vel, f, p->vel);
1374                 }
1375
1376                 if (p->type != pt_static)
1377                 {
1378                         switch (p->type)
1379                         {
1380                         case pt_blood:
1381                                 if (!content)
1382                                         content = CL_PointQ1Contents(p->org);
1383                                 a = content;
1384                                 if (a != CONTENTS_EMPTY)
1385                                 {
1386                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1387                                         {
1388                                                 p->scalex += frametime * 8;
1389                                                 p->scaley += frametime * 8;
1390                                                 //p->alpha -= bloodwaterfade;
1391                                         }
1392                                         else
1393                                                 p->die = -1;
1394                                 }
1395                                 else
1396                                         p->vel[2] -= gravity;
1397                                 break;
1398                         case pt_bubble:
1399                                 if (!content)
1400                                         content = CL_PointQ1Contents(p->org);
1401                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1402                                 {
1403                                         p->die = -1;
1404                                         break;
1405                                 }
1406                                 break;
1407                         case pt_rain:
1408                                 if (cl.time > p->time2)
1409                                 {
1410                                         // snow flutter
1411                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1412                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1413                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1414                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1415                                 }
1416                                 if (!content)
1417                                         content = CL_PointQ1Contents(p->org);
1418                                 a = content;
1419                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1420                                         p->die = -1;
1421                                 break;
1422                         case pt_grow:
1423                                 p->scalex += frametime * p->time2;
1424                                 p->scaley += frametime * p->time2;
1425                                 break;
1426                         case pt_decal:
1427 #ifndef WORKINGLQUAKE
1428                                 if (p->owner->model == p->ownermodel)
1429                                 {
1430                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1431                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1432                                 }
1433                                 else
1434                                         p->die = -1;
1435 #endif
1436                                 if (cl.time > p->time2)
1437                                 {
1438                                         p->alphafade = p->alpha / (p->die - cl.time);
1439                                         p->type = pt_decalfade;
1440                                 }
1441                                 break;
1442                         case pt_decalfade:
1443 #ifndef WORKINGLQUAKE
1444                                 if (p->owner->model == p->ownermodel)
1445                                 {
1446                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1447                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1448                                 }
1449                                 else
1450                                         p->die = -1;
1451 #endif
1452                                 break;
1453                         default:
1454                                 Con_Printf("unknown particle type %i\n", p->type);
1455                                 p->die = -1;
1456                                 break;
1457                         }
1458                 }
1459
1460                 // remove dead particles
1461                 if (p->alpha < 1 || p->die < cl.time)
1462                         freeparticles[j++] = p;
1463                 else
1464                 {
1465                         maxparticle = i;
1466                         activeparticles++;
1467                         if (p->pressure)
1468                                 pressureused = true;
1469                 }
1470         }
1471         // fill in gaps to compact the array
1472         i = 0;
1473         while (maxparticle >= activeparticles)
1474         {
1475                 *freeparticles[i++] = particles[maxparticle--];
1476                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1477                         maxparticle--;
1478         }
1479         cl_numparticles = activeparticles;
1480
1481         if (pressureused)
1482         {
1483                 activeparticles = 0;
1484                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1485                         if (p->pressure)
1486                                 freeparticles[activeparticles++] = p;
1487
1488                 if (activeparticles)
1489                 {
1490                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1491                         {
1492                                 for (j = 0;j < activeparticles;j++)
1493                                 {
1494                                         if (freeparticles[j] != p)
1495                                         {
1496                                                 float dist, diff[3];
1497                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1498                                                 dist = DotProduct(diff, diff);
1499                                                 if (dist < 4096 && dist >= 1)
1500                                                 {
1501                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1502                                                         VectorMA(p->vel, dist, diff, p->vel);
1503                                                 }
1504                                         }
1505                                 }
1506                         }
1507                 }
1508         }
1509 }
1510
1511 #define MAX_PARTICLETEXTURES 64
1512 // particletexture_t is a rectangle in the particlefonttexture
1513 typedef struct
1514 {
1515         rtexture_t *texture;
1516         float s1, t1, s2, t2;
1517 }
1518 particletexture_t;
1519
1520 #if WORKINGLQUAKE
1521 static int particlefonttexture;
1522 #else
1523 static rtexturepool_t *particletexturepool;
1524 static rtexture_t *particlefonttexture;
1525 #endif
1526 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1527
1528 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1529
1530 static qbyte shadebubble(float dx, float dy, vec3_t light)
1531 {
1532         float dz, f, dot;
1533         vec3_t normal;
1534         dz = 1 - (dx*dx+dy*dy);
1535         if (dz > 0) // it does hit the sphere
1536         {
1537                 f = 0;
1538                 // back side
1539                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1540                 VectorNormalize(normal);
1541                 dot = DotProduct(normal, light);
1542                 if (dot > 0.5) // interior reflection
1543                         f += ((dot *  2) - 1);
1544                 else if (dot < -0.5) // exterior reflection
1545                         f += ((dot * -2) - 1);
1546                 // front side
1547                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1548                 VectorNormalize(normal);
1549                 dot = DotProduct(normal, light);
1550                 if (dot > 0.5) // interior reflection
1551                         f += ((dot *  2) - 1);
1552                 else if (dot < -0.5) // exterior reflection
1553                         f += ((dot * -2) - 1);
1554                 f *= 128;
1555                 f += 16; // just to give it a haze so you can see the outline
1556                 f = bound(0, f, 255);
1557                 return (qbyte) f;
1558         }
1559         else
1560                 return 0;
1561 }
1562
1563 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1564 {
1565         int basex, basey, y;
1566         basex = ((texnum >> 0) & 7) * 32;
1567         basey = ((texnum >> 3) & 7) * 32;
1568         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1569         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1570         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1571         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1572         for (y = 0;y < 32;y++)
1573                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1574 }
1575
1576 void particletextureblotch(qbyte *data, float radius, float red, float green, float blue, float alpha)
1577 {
1578         int x, y;
1579         float cx, cy, dx, dy, f, iradius;
1580         qbyte *d;
1581         cx = lhrandom(radius + 1, 30 - radius);
1582         cy = lhrandom(radius + 1, 30 - radius);
1583         iradius = 1.0f / radius;
1584         alpha *= (1.0f / 255.0f);
1585         for (y = 0;y < 32;y++)
1586         {
1587                 for (x = 0;x < 32;x++)
1588                 {
1589                         dx = (x - cx);
1590                         dy = (y - cy);
1591                         f = (1.0f - sqrt(dx * dx + dy * dy) * iradius) * alpha;
1592                         if (f > 0)
1593                         {
1594                                 d = data + (y * 32 + x) * 4;
1595                                 d[0] += f * (red   - d[0]);
1596                                 d[1] += f * (green - d[1]);
1597                                 d[2] += f * (blue  - d[2]);
1598                         }
1599                 }
1600         }
1601 }
1602
1603 void particletextureclamp(qbyte *data, int minr, int ming, int minb, int maxr, int maxg, int maxb)
1604 {
1605         int i;
1606         for (i = 0;i < 32*32;i++, data += 4)
1607         {
1608                 data[0] = bound(minr, data[0], maxr);
1609                 data[1] = bound(ming, data[1], maxg);
1610                 data[2] = bound(minb, data[2], maxb);
1611         }
1612 }
1613
1614 void particletextureinvert(qbyte *data)
1615 {
1616         int i;
1617         for (i = 0;i < 32*32;i++, data += 4)
1618         {
1619                 data[0] = 255 - data[0];
1620                 data[1] = 255 - data[1];
1621                 data[2] = 255 - data[2];
1622         }
1623 }
1624
1625 static void R_InitParticleTexture (void)
1626 {
1627         int x, y, d, i, j, k, m;
1628         float dx, dy, radius, f, f2;
1629         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1630         vec3_t light;
1631         qbyte particletexturedata[256*256*4];
1632
1633         // a note: decals need to modulate (multiply) the background color to
1634         // properly darken it (stain), and they need to be able to alpha fade,
1635         // this is a very difficult challenge because it means fading to white
1636         // (no change to background) rather than black (darkening everything
1637         // behind the whole decal polygon), and to accomplish this the texture is
1638         // inverted (dark red blood on white background becomes brilliant cyan
1639         // and white on black background) so we can alpha fade it to black, then
1640         // we invert it again during the blendfunc to make it work...
1641
1642         memset(particletexturedata, 255, sizeof(particletexturedata));
1643
1644         // smoke
1645         for (i = 0;i < 8;i++)
1646         {
1647                 memset(&data[0][0][0], 255, sizeof(data));
1648                 do
1649                 {
1650                         fractalnoise(&noise1[0][0], 64, 4);
1651                         fractalnoise(&noise2[0][0], 64, 8);
1652                         m = 0;
1653                         for (y = 0;y < 32;y++)
1654                         {
1655                                 dy = y - 16;
1656                                 for (x = 0;x < 32;x++)
1657                                 {
1658                                         dx = x - 16;
1659                                         d = (noise2[y][x] - 128) * 3 + 192;
1660                                         if (d > 0)
1661                                                 d = d * (256 - (int) (dx*dx+dy*dy)) / 256;
1662                                         d = (d * noise1[y][x]) >> 7;
1663                                         d = bound(0, d, 255);
1664                                         data[y][x][3] = (qbyte) d;
1665                                         if (m < d)
1666                                                 m = d;
1667                                 }
1668                         }
1669                 }
1670                 while (m < 224);
1671                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1672         }
1673
1674         // rain splash
1675         for (i = 0;i < 16;i++)
1676         {
1677                 memset(&data[0][0][0], 255, sizeof(data));
1678                 radius = i * 3.0f / 16.0f;
1679                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1680                 for (y = 0;y < 32;y++)
1681                 {
1682                         dy = (y - 16) * 0.25f;
1683                         for (x = 0;x < 32;x++)
1684                         {
1685                                 dx = (x - 16) * 0.25f;
1686                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1687                                 data[y][x][3] = (int) (bound(0.0f, f, 255.0f));
1688                         }
1689                 }
1690                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1691         }
1692
1693         // normal particle
1694         memset(&data[0][0][0], 255, sizeof(data));
1695         for (y = 0;y < 32;y++)
1696         {
1697                 dy = y - 16;
1698                 for (x = 0;x < 32;x++)
1699                 {
1700                         dx = x - 16;
1701                         d = (256 - (dx*dx+dy*dy));
1702                         d = bound(0, d, 255);
1703                         data[y][x][3] = (qbyte) d;
1704                 }
1705         }
1706         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1707
1708         // rain
1709         memset(&data[0][0][0], 255, sizeof(data));
1710         light[0] = 1;light[1] = 1;light[2] = 1;
1711         VectorNormalize(light);
1712         for (y = 0;y < 32;y++)
1713                 for (x = 0;x < 32;x++)
1714                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1715         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1716
1717         // bubble
1718         memset(&data[0][0][0], 255, sizeof(data));
1719         light[0] = 1;light[1] = 1;light[2] = 1;
1720         VectorNormalize(light);
1721         for (y = 0;y < 32;y++)
1722                 for (x = 0;x < 32;x++)
1723                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1724         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1725
1726         // blood particles
1727         for (i = 0;i < 8;i++)
1728         {
1729                 memset(&data[0][0][0], 255, sizeof(data));
1730                 for (k = 0;k < 24;k++)
1731                         particletextureblotch(&data[0][0][0], 2, 96, 0, 0, 160);
1732                 //particletextureclamp(&data[0][0][0], 32, 32, 32, 255, 255, 255);
1733                 particletextureinvert(&data[0][0][0]);
1734                 setuptex(tex_bloodparticle[i], &data[0][0][0], particletexturedata);
1735         }
1736
1737         // blood decals
1738         for (i = 0;i < 8;i++)
1739         {
1740                 memset(&data[0][0][0], 255, sizeof(data));
1741                 for (k = 0;k < 24;k++)
1742                         particletextureblotch(&data[0][0][0], 2, 96, 0, 0, 96);
1743                 for (j = 3;j < 7;j++)
1744                         for (k = 0, m = rand() % 12;k < m;k++)
1745                                 particletextureblotch(&data[0][0][0], j, 96, 0, 0, 192);
1746                 //particletextureclamp(&data[0][0][0], 32, 32, 32, 255, 255, 255);
1747                 particletextureinvert(&data[0][0][0]);
1748                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1749         }
1750
1751         // bullet decals
1752         for (i = 0;i < 8;i++)
1753         {
1754                 memset(&data[0][0][0], 255, sizeof(data));
1755                 for (k = 0;k < 12;k++)
1756                         particletextureblotch(&data[0][0][0], 2, 0, 0, 0, 128);
1757                 for (k = 0;k < 3;k++)
1758                         particletextureblotch(&data[0][0][0], 14, 0, 0, 0, 160);
1759                 //particletextureclamp(&data[0][0][0], 64, 64, 64, 255, 255, 255);
1760                 particletextureinvert(&data[0][0][0]);
1761                 setuptex(tex_bulletdecal[i], &data[0][0][0], particletexturedata);
1762         }
1763
1764 #if WORKINGLQUAKE
1765         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1766         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1767         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1768 #else
1769         particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1770         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1771                 particletexture[i].texture = particlefonttexture;
1772
1773         // beam
1774         fractalnoise(&noise1[0][0], 64, 4);
1775         m = 0;
1776         for (y = 0;y < 64;y++)
1777         {
1778                 for (x = 0;x < 16;x++)
1779                 {
1780                         if (x < 8)
1781                                 d = x;
1782                         else
1783                                 d = (15 - x);
1784                         d = d * d * noise1[y][x] / (7 * 7);
1785                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1786                         data2[y][x][3] = 255;
1787                 }
1788         }
1789
1790         particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "beam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1791         particletexture[tex_beam].s1 = 0;
1792         particletexture[tex_beam].t1 = 0;
1793         particletexture[tex_beam].s2 = 1;
1794         particletexture[tex_beam].t2 = 1;
1795 #endif
1796 }
1797
1798 static void r_part_start(void)
1799 {
1800         particletexturepool = R_AllocTexturePool();
1801         R_InitParticleTexture ();
1802 }
1803
1804 static void r_part_shutdown(void)
1805 {
1806         R_FreeTexturePool(&particletexturepool);
1807 }
1808
1809 static void r_part_newmap(void)
1810 {
1811         cl_numparticles = 0;
1812 }
1813
1814 void R_Particles_Init (void)
1815 {
1816         Cvar_RegisterVariable(&r_drawparticles);
1817 #ifdef WORKINGLQUAKE
1818         r_part_start();
1819 #else
1820         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1821 #endif
1822 }
1823
1824 #ifdef WORKINGLQUAKE
1825 void R_InitParticles(void)
1826 {
1827         CL_Particles_Init();
1828         R_Particles_Init();
1829 }
1830 #endif
1831
1832 float particle_vertex3f[12], particle_texcoord2f[8];
1833
1834 #ifdef WORKINGLQUAKE
1835 void R_DrawParticle(particle_t *p)
1836 {
1837 #else
1838 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1839 {
1840         const particle_t *p = calldata1;
1841         rmeshstate_t m;
1842 #endif
1843         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1844         particletexture_t *tex;
1845
1846         VectorCopy(p->org, org);
1847
1848         tex = &particletexture[p->texnum];
1849         cr = p->color[0] * (1.0f / 255.0f);
1850         cg = p->color[1] * (1.0f / 255.0f);
1851         cb = p->color[2] * (1.0f / 255.0f);
1852         ca = p->alpha * (1.0f / 255.0f);
1853         if (p->blendmode == PBLEND_MOD)
1854         {
1855                 cr *= ca;
1856                 cg *= ca;
1857                 cb *= ca;
1858                 cr = min(cr, 1);
1859                 cg = min(cg, 1);
1860                 cb = min(cb, 1);
1861                 ca = 1;
1862         }
1863
1864 #ifndef WORKINGLQUAKE
1865         if (fogenabled && p->blendmode != PBLEND_MOD)
1866         {
1867                 VectorSubtract(org, r_vieworigin, fogvec);
1868                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1869                 ifog = 1 - fog;
1870                 cr = cr * ifog;
1871                 cg = cg * ifog;
1872                 cb = cb * ifog;
1873                 if (p->blendmode == 0)
1874                 {
1875                         cr += fogcolor[0] * fog;
1876                         cg += fogcolor[1] * fog;
1877                         cb += fogcolor[2] * fog;
1878                 }
1879         }
1880
1881         GL_Color(cr, cg, cb, ca);
1882
1883         R_Mesh_Matrix(&r_identitymatrix);
1884
1885         memset(&m, 0, sizeof(m));
1886         m.tex[0] = R_GetTexture(tex->texture);
1887         m.pointer_texcoord[0] = particle_texcoord2f;
1888         R_Mesh_State_Texture(&m);
1889
1890         if (p->blendmode == 0)
1891                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1892         else if (p->blendmode == 1)
1893                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1894         else
1895                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1896         GL_DepthMask(false);
1897         GL_DepthTest(true);
1898         GL_VertexPointer(particle_vertex3f);
1899 #endif
1900         if (p->orientation == PARTICLE_BILLBOARD || p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1901         {
1902                 if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1903                 {
1904                         // double-sided
1905                         if (DotProduct(p->vel2, r_vieworigin) > DotProduct(p->vel2, org))
1906                         {
1907                                 VectorNegate(p->vel2, v);
1908                                 VectorVectors(v, right, up);
1909                         }
1910                         else
1911                                 VectorVectors(p->vel2, right, up);
1912                         VectorScale(right, p->scalex, right);
1913                         VectorScale(up, p->scaley, up);
1914                 }
1915                 else
1916                 {
1917                         VectorScale(r_viewleft, -p->scalex, right);
1918                         VectorScale(r_viewup, p->scaley, up);
1919                 }
1920                 particle_vertex3f[ 0] = org[0] - right[0] - up[0];
1921                 particle_vertex3f[ 1] = org[1] - right[1] - up[1];
1922                 particle_vertex3f[ 2] = org[2] - right[2] - up[2];
1923                 particle_vertex3f[ 3] = org[0] - right[0] + up[0];
1924                 particle_vertex3f[ 4] = org[1] - right[1] + up[1];
1925                 particle_vertex3f[ 5] = org[2] - right[2] + up[2];
1926                 particle_vertex3f[ 6] = org[0] + right[0] + up[0];
1927                 particle_vertex3f[ 7] = org[1] + right[1] + up[1];
1928                 particle_vertex3f[ 8] = org[2] + right[2] + up[2];
1929                 particle_vertex3f[ 9] = org[0] + right[0] - up[0];
1930                 particle_vertex3f[10] = org[1] + right[1] - up[1];
1931                 particle_vertex3f[11] = org[2] + right[2] - up[2];
1932                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1933                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1934                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1935                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1936         }
1937         else if (p->orientation == PARTICLE_SPARK)
1938         {
1939                 VectorMA(p->org, -p->scaley, p->vel, v);
1940                 VectorMA(p->org, p->scaley, p->vel, up2);
1941                 R_CalcBeam_Vertex3f(particle_vertex3f, v, up2, p->scalex);
1942                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1943                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1944                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1945                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1946         }
1947         else if (p->orientation == PARTICLE_BEAM)
1948         {
1949                 R_CalcBeam_Vertex3f(particle_vertex3f, p->org, p->vel2, p->scalex);
1950                 VectorSubtract(p->vel2, p->org, up);
1951                 VectorNormalizeFast(up);
1952                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1953                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1954                 particle_texcoord2f[0] = 1;particle_texcoord2f[1] = v[0];
1955                 particle_texcoord2f[2] = 0;particle_texcoord2f[3] = v[0];
1956                 particle_texcoord2f[4] = 0;particle_texcoord2f[5] = v[1];
1957                 particle_texcoord2f[6] = 1;particle_texcoord2f[7] = v[1];
1958         }
1959         else
1960                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1961
1962 #if WORKINGLQUAKE
1963         if (p->blendmode == 0)
1964                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1965         else if (p->blendmode == 1)
1966                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1967         else
1968                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1969         glColor4f(cr, cg, cb, ca);
1970         glBegin(GL_QUADS);
1971         glTexCoord2f(particle_texcoord2f[0], particle_texcoord2f[1]);glVertex3f(particle_vertex3f[ 0], particle_vertex3f[ 1], particle_vertex3f[ 2]);
1972         glTexCoord2f(particle_texcoord2f[2], particle_texcoord2f[3]);glVertex3f(particle_vertex3f[ 3], particle_vertex3f[ 4], particle_vertex3f[ 5]);
1973         glTexCoord2f(particle_texcoord2f[4], particle_texcoord2f[5]);glVertex3f(particle_vertex3f[ 6], particle_vertex3f[ 7], particle_vertex3f[ 8]);
1974         glTexCoord2f(particle_texcoord2f[6], particle_texcoord2f[7]);glVertex3f(particle_vertex3f[ 9], particle_vertex3f[10], particle_vertex3f[11]);
1975         glEnd();
1976 #else
1977         R_Mesh_Draw(4, 2, polygonelements);
1978 #endif
1979 }
1980
1981 void R_DrawParticles (void)
1982 {
1983         int i;
1984         float minparticledist;
1985         particle_t *p;
1986
1987 #ifdef WORKINGLQUAKE
1988         CL_MoveParticles();
1989 #endif
1990
1991         // LordHavoc: early out conditions
1992         if ((!cl_numparticles) || (!r_drawparticles.integer))
1993                 return;
1994
1995         minparticledist = DotProduct(r_vieworigin, r_viewforward) + 4.0f;
1996
1997 #ifdef WORKINGLQUAKE
1998         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1999         glEnable(GL_BLEND);
2000         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2001         glDepthMask(0);
2002         // LordHavoc: only render if not too close
2003         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
2004                 if (DotProduct(p->org, r_viewforward) >= minparticledist)
2005                         R_DrawParticle(p);
2006         glDepthMask(1);
2007         glDisable(GL_BLEND);
2008         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
2009 #else
2010         // LordHavoc: only render if not too close
2011         c_particles += cl_numparticles;
2012         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
2013                 if (DotProduct(p->org, r_viewforward) >= minparticledist || p->orientation == PARTICLE_BEAM)
2014                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
2015 #endif
2016 }
2017