moving -Olocal-temps to -O4 until the issues are solved
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012, 2013
3  *     Wolfgang Bumiller
4  *     Dale Weiler 
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy of
7  * this software and associated documentation files (the "Software"), to deal in
8  * the Software without restriction, including without limitation the rights to
9  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
10  * of the Software, and to permit persons to whom the Software is furnished to do
11  * so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27
28 #include "gmqcc.h"
29 #include "ast.h"
30
31 #define ast_instantiate(T, ctx, destroyfn)                          \
32     T* self = (T*)mem_a(sizeof(T));                                 \
33     if (!self) {                                                    \
34         return NULL;                                                \
35     }                                                               \
36     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
37     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
38
39
40 /* It must not be possible to get here. */
41 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
42 {
43     (void)self;
44     con_err("ast node missing destroy()\n");
45     abort();
46 }
47
48 /* Initialize main ast node aprts */
49 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
50 {
51     self->node.context = ctx;
52     self->node.destroy = &_ast_node_destroy;
53     self->node.keep    = false;
54     self->node.nodetype = nodetype;
55     self->node.side_effects = false;
56 }
57
58 /* weight and side effects */
59 static void _ast_propagate_effects(ast_node *self, ast_node *other)
60 {
61     if (ast_side_effects(other))
62         ast_side_effects(self) = true;
63 }
64 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
65
66 /* General expression initialization */
67 static void ast_expression_init(ast_expression *self,
68                                 ast_expression_codegen *codegen)
69 {
70     self->expression.codegen  = codegen;
71     self->expression.vtype    = TYPE_VOID;
72     self->expression.next     = NULL;
73     self->expression.outl     = NULL;
74     self->expression.outr     = NULL;
75     self->expression.params   = NULL;
76     self->expression.count    = 0;
77     self->expression.flags    = 0;
78 }
79
80 static void ast_expression_delete(ast_expression *self)
81 {
82     size_t i;
83     if (self->expression.next)
84         ast_delete(self->expression.next);
85     for (i = 0; i < vec_size(self->expression.params); ++i) {
86         ast_delete(self->expression.params[i]);
87     }
88     vec_free(self->expression.params);
89 }
90
91 static void ast_expression_delete_full(ast_expression *self)
92 {
93     ast_expression_delete(self);
94     mem_d(self);
95 }
96
97 ast_value* ast_value_copy(const ast_value *self)
98 {
99     size_t i;
100     const ast_expression_common *fromex;
101     ast_expression_common *selfex;
102     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
103     if (self->expression.next) {
104         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
105         if (!cp->expression.next) {
106             ast_value_delete(cp);
107             return NULL;
108         }
109     }
110     fromex   = &self->expression;
111     selfex = &cp->expression;
112     selfex->count    = fromex->count;
113     selfex->flags    = fromex->flags;
114     for (i = 0; i < vec_size(fromex->params); ++i) {
115         ast_value *v = ast_value_copy(fromex->params[i]);
116         if (!v) {
117             ast_value_delete(cp);
118             return NULL;
119         }
120         vec_push(selfex->params, v);
121     }
122     return cp;
123 }
124
125 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
126 {
127     size_t i;
128     const ast_expression_common *fromex;
129     ast_expression_common *selfex;
130     self->expression.vtype = other->expression.vtype;
131     if (other->expression.next) {
132         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
133         if (!self->expression.next)
134             return false;
135     }
136     fromex   = &other->expression;
137     selfex = &self->expression;
138     selfex->count    = fromex->count;
139     selfex->flags    = fromex->flags;
140     for (i = 0; i < vec_size(fromex->params); ++i) {
141         ast_value *v = ast_value_copy(fromex->params[i]);
142         if (!v)
143             return false;
144         vec_push(selfex->params, v);
145     }
146     return true;
147 }
148
149 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
150 {
151     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
152     ast_expression_init(self, NULL);
153     self->expression.codegen = NULL;
154     self->expression.next    = NULL;
155     self->expression.vtype   = vtype;
156     return self;
157 }
158
159 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
160 {
161     size_t i;
162     const ast_expression_common *fromex;
163     ast_expression_common *selfex;
164
165     if (!ex)
166         return NULL;
167     else
168     {
169         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
170         ast_expression_init(self, NULL);
171
172         fromex   = &ex->expression;
173         selfex = &self->expression;
174
175         /* This may never be codegen()d */
176         selfex->codegen = NULL;
177
178         selfex->vtype = fromex->vtype;
179         if (fromex->next)
180         {
181             selfex->next = ast_type_copy(ctx, fromex->next);
182             if (!selfex->next) {
183                 ast_expression_delete_full(self);
184                 return NULL;
185             }
186         }
187         else
188             selfex->next = NULL;
189
190         selfex->count    = fromex->count;
191         selfex->flags    = fromex->flags;
192         for (i = 0; i < vec_size(fromex->params); ++i) {
193             ast_value *v = ast_value_copy(fromex->params[i]);
194             if (!v) {
195                 ast_expression_delete_full(self);
196                 return NULL;
197             }
198             vec_push(selfex->params, v);
199         }
200
201         return self;
202     }
203 }
204
205 bool ast_compare_type(ast_expression *a, ast_expression *b)
206 {
207     if (a->expression.vtype == TYPE_NIL ||
208         b->expression.vtype == TYPE_NIL)
209         return true;
210     if (a->expression.vtype != b->expression.vtype)
211         return false;
212     if (!a->expression.next != !b->expression.next)
213         return false;
214     if (vec_size(a->expression.params) != vec_size(b->expression.params))
215         return false;
216     if ((a->expression.flags & AST_FLAG_TYPE_MASK) !=
217         (b->expression.flags & AST_FLAG_TYPE_MASK) )
218     {
219         return false;
220     }
221     if (vec_size(a->expression.params)) {
222         size_t i;
223         for (i = 0; i < vec_size(a->expression.params); ++i) {
224             if (!ast_compare_type((ast_expression*)a->expression.params[i],
225                                   (ast_expression*)b->expression.params[i]))
226                 return false;
227         }
228     }
229     if (a->expression.next)
230         return ast_compare_type(a->expression.next, b->expression.next);
231     return true;
232 }
233
234 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
235 {
236     const char *typestr;
237     size_t typelen;
238     size_t i;
239
240     if (!e) {
241         if (pos + 6 >= bufsize)
242             goto full;
243         strcpy(buf + pos, "(null)");
244         return pos + 6;
245     }
246
247     if (pos + 1 >= bufsize)
248         goto full;
249
250     switch (e->expression.vtype) {
251         case TYPE_VARIANT:
252             strcpy(buf + pos, "(variant)");
253             return pos + 9;
254
255         case TYPE_FIELD:
256             buf[pos++] = '.';
257             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258
259         case TYPE_POINTER:
260             if (pos + 3 >= bufsize)
261                 goto full;
262             buf[pos++] = '*';
263             buf[pos++] = '(';
264             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
265             if (pos + 1 >= bufsize)
266                 goto full;
267             buf[pos++] = ')';
268             return pos;
269
270         case TYPE_FUNCTION:
271             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
272             if (pos + 2 >= bufsize)
273                 goto full;
274             if (!vec_size(e->expression.params)) {
275                 buf[pos++] = '(';
276                 buf[pos++] = ')';
277                 return pos;
278             }
279             buf[pos++] = '(';
280             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
281             for (i = 1; i < vec_size(e->expression.params); ++i) {
282                 if (pos + 2 >= bufsize)
283                     goto full;
284                 buf[pos++] = ',';
285                 buf[pos++] = ' ';
286                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
287             }
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = ')';
291             return pos;
292
293         case TYPE_ARRAY:
294             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
295             if (pos + 1 >= bufsize)
296                 goto full;
297             buf[pos++] = '[';
298             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
299             if (pos + 1 >= bufsize)
300                 goto full;
301             buf[pos++] = ']';
302             return pos;
303
304         default:
305             typestr = type_name[e->expression.vtype];
306             typelen = strlen(typestr);
307             if (pos + typelen >= bufsize)
308                 goto full;
309             strcpy(buf + pos, typestr);
310             return pos + typelen;
311     }
312
313 full:
314     buf[bufsize-3] = '.';
315     buf[bufsize-2] = '.';
316     buf[bufsize-1] = '.';
317     return bufsize;
318 }
319
320 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
321 {
322     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
323     buf[pos] = 0;
324 }
325
326 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
327 {
328     ast_instantiate(ast_value, ctx, ast_value_delete);
329     ast_expression_init((ast_expression*)self,
330                         (ast_expression_codegen*)&ast_value_codegen);
331     self->expression.node.keep = true; /* keep */
332
333     self->name = name ? util_strdup(name) : NULL;
334     self->expression.vtype = t;
335     self->expression.next  = NULL;
336     self->isfield  = false;
337     self->cvq      = CV_NONE;
338     self->hasvalue = false;
339     self->uses    = 0;
340     memset(&self->constval, 0, sizeof(self->constval));
341
342     self->ir_v           = NULL;
343     self->ir_values      = NULL;
344     self->ir_value_count = 0;
345
346     self->setter = NULL;
347     self->getter = NULL;
348     self->desc   = NULL;
349
350     return self;
351 }
352
353 void ast_value_delete(ast_value* self)
354 {
355     if (self->name)
356         mem_d((void*)self->name);
357     if (self->hasvalue) {
358         switch (self->expression.vtype)
359         {
360         case TYPE_STRING:
361             mem_d((void*)self->constval.vstring);
362             break;
363         case TYPE_FUNCTION:
364             /* unlink us from the function node */
365             self->constval.vfunc->vtype = NULL;
366             break;
367         /* NOTE: delete function? currently collected in
368          * the parser structure
369          */
370         default:
371             break;
372         }
373     }
374     if (self->ir_values)
375         mem_d(self->ir_values);
376
377     if (self->desc)
378         mem_d(self->desc);
379
380     ast_expression_delete((ast_expression*)self);
381     mem_d(self);
382 }
383
384 void ast_value_params_add(ast_value *self, ast_value *p)
385 {
386     vec_push(self->expression.params, p);
387 }
388
389 bool ast_value_set_name(ast_value *self, const char *name)
390 {
391     if (self->name)
392         mem_d((void*)self->name);
393     self->name = util_strdup(name);
394     return !!self->name;
395 }
396
397 ast_binary* ast_binary_new(lex_ctx ctx, int op,
398                            ast_expression* left, ast_expression* right)
399 {
400     ast_instantiate(ast_binary, ctx, ast_binary_delete);
401     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
402
403     self->op = op;
404     self->left = left;
405     self->right = right;
406
407     ast_propagate_effects(self, left);
408     ast_propagate_effects(self, right);
409
410     if (op >= INSTR_EQ_F && op <= INSTR_GT)
411         self->expression.vtype = TYPE_FLOAT;
412     else if (op == INSTR_AND || op == INSTR_OR) {
413         if (OPTS_FLAG(PERL_LOGIC))
414             ast_type_adopt(self, right);
415         else
416             self->expression.vtype = TYPE_FLOAT;
417     }
418     else if (op == INSTR_BITAND || op == INSTR_BITOR)
419         self->expression.vtype = TYPE_FLOAT;
420     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
421         self->expression.vtype = TYPE_VECTOR;
422     else if (op == INSTR_MUL_V)
423         self->expression.vtype = TYPE_FLOAT;
424     else
425         self->expression.vtype = left->expression.vtype;
426
427     return self;
428 }
429
430 void ast_binary_delete(ast_binary *self)
431 {
432     ast_unref(self->left);
433     ast_unref(self->right);
434     ast_expression_delete((ast_expression*)self);
435     mem_d(self);
436 }
437
438 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
439                                ast_expression* left, ast_expression* right)
440 {
441     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
442     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
443
444     ast_side_effects(self) = true;
445
446     self->opstore = storop;
447     self->opbin   = op;
448     self->dest    = left;
449     self->source  = right;
450
451     self->keep_dest = false;
452
453     if (!ast_type_adopt(self, left)) {
454         ast_delete(self);
455         return NULL;
456     }
457
458     return self;
459 }
460
461 void ast_binstore_delete(ast_binstore *self)
462 {
463     if (!self->keep_dest)
464         ast_unref(self->dest);
465     ast_unref(self->source);
466     ast_expression_delete((ast_expression*)self);
467     mem_d(self);
468 }
469
470 ast_unary* ast_unary_new(lex_ctx ctx, int op,
471                          ast_expression *expr)
472 {
473     ast_instantiate(ast_unary, ctx, ast_unary_delete);
474     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
475
476     self->op = op;
477     self->operand = expr;
478
479     ast_propagate_effects(self, expr);
480
481     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
482         self->expression.vtype = TYPE_FLOAT;
483     } else
484         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
485
486     return self;
487 }
488
489 void ast_unary_delete(ast_unary *self)
490 {
491     if (self->operand) ast_unref(self->operand);
492     ast_expression_delete((ast_expression*)self);
493     mem_d(self);
494 }
495
496 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
497 {
498     ast_instantiate(ast_return, ctx, ast_return_delete);
499     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
500
501     self->operand = expr;
502
503     if (expr)
504         ast_propagate_effects(self, expr);
505
506     return self;
507 }
508
509 void ast_return_delete(ast_return *self)
510 {
511     if (self->operand)
512         ast_unref(self->operand);
513     ast_expression_delete((ast_expression*)self);
514     mem_d(self);
515 }
516
517 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
518 {
519     if (field->expression.vtype != TYPE_FIELD) {
520         compile_error(ctx, "ast_entfield_new with expression not of type field");
521         return NULL;
522     }
523     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
524 }
525
526 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
527 {
528     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
529
530     if (!outtype) {
531         mem_d(self);
532         /* Error: field has no type... */
533         return NULL;
534     }
535
536     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
537
538     self->entity = entity;
539     self->field  = field;
540     ast_propagate_effects(self, entity);
541     ast_propagate_effects(self, field);
542
543     if (!ast_type_adopt(self, outtype)) {
544         ast_entfield_delete(self);
545         return NULL;
546     }
547
548     return self;
549 }
550
551 void ast_entfield_delete(ast_entfield *self)
552 {
553     ast_unref(self->entity);
554     ast_unref(self->field);
555     ast_expression_delete((ast_expression*)self);
556     mem_d(self);
557 }
558
559 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
560 {
561     ast_instantiate(ast_member, ctx, ast_member_delete);
562     if (field >= 3) {
563         mem_d(self);
564         return NULL;
565     }
566
567     if (owner->expression.vtype != TYPE_VECTOR &&
568         owner->expression.vtype != TYPE_FIELD) {
569         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
570         mem_d(self);
571         return NULL;
572     }
573
574     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
575     self->expression.node.keep = true; /* keep */
576
577     if (owner->expression.vtype == TYPE_VECTOR) {
578         self->expression.vtype = TYPE_FLOAT;
579         self->expression.next  = NULL;
580     } else {
581         self->expression.vtype = TYPE_FIELD;
582         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
583     }
584
585     self->rvalue = false;
586     self->owner  = owner;
587     ast_propagate_effects(self, owner);
588
589     self->field = field;
590     if (name)
591         self->name = util_strdup(name);
592     else
593         self->name = NULL;
594
595     return self;
596 }
597
598 void ast_member_delete(ast_member *self)
599 {
600     /* The owner is always an ast_value, which has .keep=true,
601      * also: ast_members are usually deleted after the owner, thus
602      * this will cause invalid access
603     ast_unref(self->owner);
604      * once we allow (expression).x to access a vector-member, we need
605      * to change this: preferably by creating an alternate ast node for this
606      * purpose that is not garbage-collected.
607     */
608     ast_expression_delete((ast_expression*)self);
609     mem_d(self);
610 }
611
612 bool ast_member_set_name(ast_member *self, const char *name)
613 {
614     if (self->name)
615         mem_d((void*)self->name);
616     self->name = util_strdup(name);
617     return !!self->name;
618 }
619
620 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
621 {
622     ast_expression *outtype;
623     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
624
625     outtype = array->expression.next;
626     if (!outtype) {
627         mem_d(self);
628         /* Error: field has no type... */
629         return NULL;
630     }
631
632     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
633
634     self->array = array;
635     self->index = index;
636     ast_propagate_effects(self, array);
637     ast_propagate_effects(self, index);
638
639     if (!ast_type_adopt(self, outtype)) {
640         ast_array_index_delete(self);
641         return NULL;
642     }
643     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
644         if (self->expression.vtype != TYPE_ARRAY) {
645             compile_error(ast_ctx(self), "array_index node on type");
646             ast_array_index_delete(self);
647             return NULL;
648         }
649         self->array = outtype;
650         self->expression.vtype = TYPE_FIELD;
651     }
652
653     return self;
654 }
655
656 void ast_array_index_delete(ast_array_index *self)
657 {
658     ast_unref(self->array);
659     ast_unref(self->index);
660     ast_expression_delete((ast_expression*)self);
661     mem_d(self);
662 }
663
664 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
665 {
666     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
667     if (!ontrue && !onfalse) {
668         /* because it is invalid */
669         mem_d(self);
670         return NULL;
671     }
672     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
673
674     self->cond     = cond;
675     self->on_true  = ontrue;
676     self->on_false = onfalse;
677     ast_propagate_effects(self, cond);
678     if (ontrue)
679         ast_propagate_effects(self, ontrue);
680     if (onfalse)
681         ast_propagate_effects(self, onfalse);
682
683     return self;
684 }
685
686 void ast_ifthen_delete(ast_ifthen *self)
687 {
688     ast_unref(self->cond);
689     if (self->on_true)
690         ast_unref(self->on_true);
691     if (self->on_false)
692         ast_unref(self->on_false);
693     ast_expression_delete((ast_expression*)self);
694     mem_d(self);
695 }
696
697 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
698 {
699     ast_expression *exprtype = ontrue;
700     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
701     /* This time NEITHER must be NULL */
702     if (!ontrue || !onfalse) {
703         mem_d(self);
704         return NULL;
705     }
706     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
707
708     self->cond     = cond;
709     self->on_true  = ontrue;
710     self->on_false = onfalse;
711     ast_propagate_effects(self, cond);
712     ast_propagate_effects(self, ontrue);
713     ast_propagate_effects(self, onfalse);
714
715     if (ontrue->expression.vtype == TYPE_NIL)
716         exprtype = onfalse;
717     if (!ast_type_adopt(self, exprtype)) {
718         ast_ternary_delete(self);
719         return NULL;
720     }
721
722     return self;
723 }
724
725 void ast_ternary_delete(ast_ternary *self)
726 {
727     /* the if()s are only there because computed-gotos can set them
728      * to NULL
729      */
730     if (self->cond)     ast_unref(self->cond);
731     if (self->on_true)  ast_unref(self->on_true);
732     if (self->on_false) ast_unref(self->on_false);
733     ast_expression_delete((ast_expression*)self);
734     mem_d(self);
735 }
736
737 ast_loop* ast_loop_new(lex_ctx ctx,
738                        ast_expression *initexpr,
739                        ast_expression *precond, bool pre_not,
740                        ast_expression *postcond, bool post_not,
741                        ast_expression *increment,
742                        ast_expression *body)
743 {
744     ast_instantiate(ast_loop, ctx, ast_loop_delete);
745     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
746
747     self->initexpr  = initexpr;
748     self->precond   = precond;
749     self->postcond  = postcond;
750     self->increment = increment;
751     self->body      = body;
752
753     self->pre_not   = pre_not;
754     self->post_not  = post_not;
755
756     if (initexpr)
757         ast_propagate_effects(self, initexpr);
758     if (precond)
759         ast_propagate_effects(self, precond);
760     if (postcond)
761         ast_propagate_effects(self, postcond);
762     if (increment)
763         ast_propagate_effects(self, increment);
764     if (body)
765         ast_propagate_effects(self, body);
766
767     return self;
768 }
769
770 void ast_loop_delete(ast_loop *self)
771 {
772     if (self->initexpr)
773         ast_unref(self->initexpr);
774     if (self->precond)
775         ast_unref(self->precond);
776     if (self->postcond)
777         ast_unref(self->postcond);
778     if (self->increment)
779         ast_unref(self->increment);
780     if (self->body)
781         ast_unref(self->body);
782     ast_expression_delete((ast_expression*)self);
783     mem_d(self);
784 }
785
786 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont, unsigned int levels)
787 {
788     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
789     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
790
791     self->is_continue = iscont;
792     self->levels      = levels;
793
794     return self;
795 }
796
797 void ast_breakcont_delete(ast_breakcont *self)
798 {
799     ast_expression_delete((ast_expression*)self);
800     mem_d(self);
801 }
802
803 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
804 {
805     ast_instantiate(ast_switch, ctx, ast_switch_delete);
806     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
807
808     self->operand = op;
809     self->cases   = NULL;
810
811     ast_propagate_effects(self, op);
812
813     return self;
814 }
815
816 void ast_switch_delete(ast_switch *self)
817 {
818     size_t i;
819     ast_unref(self->operand);
820
821     for (i = 0; i < vec_size(self->cases); ++i) {
822         if (self->cases[i].value)
823             ast_unref(self->cases[i].value);
824         ast_unref(self->cases[i].code);
825     }
826     vec_free(self->cases);
827
828     ast_expression_delete((ast_expression*)self);
829     mem_d(self);
830 }
831
832 ast_label* ast_label_new(lex_ctx ctx, const char *name, bool undefined)
833 {
834     ast_instantiate(ast_label, ctx, ast_label_delete);
835     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
836
837     self->expression.vtype = TYPE_NOEXPR;
838
839     self->name      = util_strdup(name);
840     self->irblock   = NULL;
841     self->gotos     = NULL;
842     self->undefined = undefined;
843
844     return self;
845 }
846
847 void ast_label_delete(ast_label *self)
848 {
849     mem_d((void*)self->name);
850     vec_free(self->gotos);
851     ast_expression_delete((ast_expression*)self);
852     mem_d(self);
853 }
854
855 void ast_label_register_goto(ast_label *self, ast_goto *g)
856 {
857     vec_push(self->gotos, g);
858 }
859
860 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
861 {
862     ast_instantiate(ast_goto, ctx, ast_goto_delete);
863     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
864
865     self->name    = util_strdup(name);
866     self->target  = NULL;
867     self->irblock_from = NULL;
868
869     return self;
870 }
871
872 void ast_goto_delete(ast_goto *self)
873 {
874     mem_d((void*)self->name);
875     ast_expression_delete((ast_expression*)self);
876     mem_d(self);
877 }
878
879 void ast_goto_set_label(ast_goto *self, ast_label *label)
880 {
881     self->target = label;
882 }
883
884 ast_call* ast_call_new(lex_ctx ctx,
885                        ast_expression *funcexpr)
886 {
887     ast_instantiate(ast_call, ctx, ast_call_delete);
888     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
889
890     ast_side_effects(self) = true;
891
892     self->params = NULL;
893     self->func   = funcexpr;
894
895     ast_type_adopt(self, funcexpr->expression.next);
896
897     return self;
898 }
899
900 void ast_call_delete(ast_call *self)
901 {
902     size_t i;
903     for (i = 0; i < vec_size(self->params); ++i)
904         ast_unref(self->params[i]);
905     vec_free(self->params);
906
907     if (self->func)
908         ast_unref(self->func);
909
910     ast_expression_delete((ast_expression*)self);
911     mem_d(self);
912 }
913
914 bool ast_call_check_types(ast_call *self)
915 {
916     size_t i;
917     bool   retval = true;
918     const  ast_expression *func = self->func;
919     size_t count = vec_size(self->params);
920     if (count > vec_size(func->expression.params))
921         count = vec_size(func->expression.params);
922
923     for (i = 0; i < count; ++i) {
924         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i])))
925         {
926             char texp[1024];
927             char tgot[1024];
928             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
929             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
930             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
931                      (unsigned int)(i+1), texp, tgot);
932             /* we don't immediately return */
933             retval = false;
934         }
935     }
936     return retval;
937 }
938
939 ast_store* ast_store_new(lex_ctx ctx, int op,
940                          ast_expression *dest, ast_expression *source)
941 {
942     ast_instantiate(ast_store, ctx, ast_store_delete);
943     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
944
945     ast_side_effects(self) = true;
946
947     self->op = op;
948     self->dest = dest;
949     self->source = source;
950
951     if (!ast_type_adopt(self, dest)) {
952         ast_delete(self);
953         return NULL;
954     }
955
956     return self;
957 }
958
959 void ast_store_delete(ast_store *self)
960 {
961     ast_unref(self->dest);
962     ast_unref(self->source);
963     ast_expression_delete((ast_expression*)self);
964     mem_d(self);
965 }
966
967 ast_block* ast_block_new(lex_ctx ctx)
968 {
969     ast_instantiate(ast_block, ctx, ast_block_delete);
970     ast_expression_init((ast_expression*)self,
971                         (ast_expression_codegen*)&ast_block_codegen);
972
973     self->locals  = NULL;
974     self->exprs   = NULL;
975     self->collect = NULL;
976
977     return self;
978 }
979
980 bool ast_block_add_expr(ast_block *self, ast_expression *e)
981 {
982     ast_propagate_effects(self, e);
983     vec_push(self->exprs, e);
984     if (self->expression.next) {
985         ast_delete(self->expression.next);
986         self->expression.next = NULL;
987     }
988     if (!ast_type_adopt(self, e)) {
989         compile_error(ast_ctx(self), "internal error: failed to adopt type");
990         return false;
991     }
992     return true;
993 }
994
995 void ast_block_collect(ast_block *self, ast_expression *expr)
996 {
997     vec_push(self->collect, expr);
998     expr->expression.node.keep = true;
999 }
1000
1001 void ast_block_delete(ast_block *self)
1002 {
1003     size_t i;
1004     for (i = 0; i < vec_size(self->exprs); ++i)
1005         ast_unref(self->exprs[i]);
1006     vec_free(self->exprs);
1007     for (i = 0; i < vec_size(self->locals); ++i)
1008         ast_delete(self->locals[i]);
1009     vec_free(self->locals);
1010     for (i = 0; i < vec_size(self->collect); ++i)
1011         ast_delete(self->collect[i]);
1012     vec_free(self->collect);
1013     ast_expression_delete((ast_expression*)self);
1014     mem_d(self);
1015 }
1016
1017 bool ast_block_set_type(ast_block *self, ast_expression *from)
1018 {
1019     if (self->expression.next)
1020         ast_delete(self->expression.next);
1021     if (!ast_type_adopt(self, from))
1022         return false;
1023     return true;
1024 }
1025
1026 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
1027 {
1028     ast_instantiate(ast_function, ctx, ast_function_delete);
1029
1030     if (!vtype ||
1031         vtype->hasvalue ||
1032         vtype->expression.vtype != TYPE_FUNCTION)
1033     {
1034         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1035                  (int)!vtype,
1036                  (int)vtype->hasvalue,
1037                  vtype->expression.vtype);
1038         mem_d(self);
1039         return NULL;
1040     }
1041
1042     self->vtype  = vtype;
1043     self->name   = name ? util_strdup(name) : NULL;
1044     self->blocks = NULL;
1045
1046     self->labelcount = 0;
1047     self->builtin = 0;
1048
1049     self->ir_func = NULL;
1050     self->curblock = NULL;
1051
1052     self->breakblocks    = NULL;
1053     self->continueblocks = NULL;
1054
1055     vtype->hasvalue = true;
1056     vtype->constval.vfunc = self;
1057
1058     return self;
1059 }
1060
1061 void ast_function_delete(ast_function *self)
1062 {
1063     size_t i;
1064     if (self->name)
1065         mem_d((void*)self->name);
1066     if (self->vtype) {
1067         /* ast_value_delete(self->vtype); */
1068         self->vtype->hasvalue = false;
1069         self->vtype->constval.vfunc = NULL;
1070         /* We use unref - if it was stored in a global table it is supposed
1071          * to be deleted from *there*
1072          */
1073         ast_unref(self->vtype);
1074     }
1075     for (i = 0; i < vec_size(self->blocks); ++i)
1076         ast_delete(self->blocks[i]);
1077     vec_free(self->blocks);
1078     vec_free(self->breakblocks);
1079     vec_free(self->continueblocks);
1080     mem_d(self);
1081 }
1082
1083 const char* ast_function_label(ast_function *self, const char *prefix)
1084 {
1085     size_t id;
1086     size_t len;
1087     char  *from;
1088
1089     if (!opts.dump && !opts.dumpfin && !opts.debug)
1090         return NULL;
1091
1092     id  = (self->labelcount++);
1093     len = strlen(prefix);
1094
1095     from = self->labelbuf + sizeof(self->labelbuf)-1;
1096     *from-- = 0;
1097     do {
1098         *from-- = (id%10) + '0';
1099         id /= 10;
1100     } while (id);
1101     ++from;
1102     memcpy(from - len, prefix, len);
1103     return from - len;
1104 }
1105
1106 /*********************************************************************/
1107 /* AST codegen part
1108  * by convention you must never pass NULL to the 'ir_value **out'
1109  * parameter. If you really don't care about the output, pass a dummy.
1110  * But I can't imagine a pituation where the output is truly unnecessary.
1111  */
1112
1113 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1114 {
1115     if (out->vtype == TYPE_FIELD)
1116         out->fieldtype = self->next->expression.vtype;
1117     if (out->vtype == TYPE_FUNCTION)
1118         out->outtype = self->next->expression.vtype;
1119 }
1120
1121 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1122
1123 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1124 {
1125     (void)func;
1126     (void)lvalue;
1127     if (self->expression.vtype == TYPE_NIL) {
1128         *out = func->ir_func->owner->nil;
1129         return true;
1130     }
1131     /* NOTE: This is the codegen for a variable used in an expression.
1132      * It is not the codegen to generate the value. For this purpose,
1133      * ast_local_codegen and ast_global_codegen are to be used before this
1134      * is executed. ast_function_codegen should take care of its locals,
1135      * and the ast-user should take care of ast_global_codegen to be used
1136      * on all the globals.
1137      */
1138     if (!self->ir_v) {
1139         char tname[1024]; /* typename is reserved in C++ */
1140         ast_type_to_string((ast_expression*)self, tname, sizeof(tname));
1141         compile_error(ast_ctx(self), "ast_value used before generated %s %s", tname, self->name);
1142         return false;
1143     }
1144     *out = self->ir_v;
1145     return true;
1146 }
1147
1148 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1149 {
1150     ir_value *v = NULL;
1151
1152     if (self->expression.vtype == TYPE_NIL) {
1153         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1154         return false;
1155     }
1156
1157     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1158     {
1159         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1160         if (!func)
1161             return false;
1162         func->context = ast_ctx(self);
1163         func->value->context = ast_ctx(self);
1164
1165         self->constval.vfunc->ir_func = func;
1166         self->ir_v = func->value;
1167         /* The function is filled later on ast_function_codegen... */
1168         return true;
1169     }
1170
1171     if (isfield && self->expression.vtype == TYPE_FIELD) {
1172         ast_expression *fieldtype = self->expression.next;
1173
1174         if (self->hasvalue) {
1175             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1176             goto error;
1177         }
1178
1179         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1180             size_t ai;
1181             char   *name;
1182             size_t  namelen;
1183
1184             ast_expression_common *elemtype;
1185             int                    vtype;
1186             ast_value             *array = (ast_value*)fieldtype;
1187
1188             if (!ast_istype(fieldtype, ast_value)) {
1189                 compile_error(ast_ctx(self), "internal error: ast_value required");
1190                 return false;
1191             }
1192
1193             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1194             if (!array->expression.count || array->expression.count > opts.max_array_size)
1195                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1196
1197             elemtype = &array->expression.next->expression;
1198             vtype = elemtype->vtype;
1199
1200             v = ir_builder_create_field(ir, self->name, vtype);
1201             if (!v) {
1202                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1203                 return false;
1204             }
1205             v->context = ast_ctx(self);
1206             v->unique_life = true;
1207             v->locked      = true;
1208             array->ir_v = self->ir_v = v;
1209
1210             namelen = strlen(self->name);
1211             name    = (char*)mem_a(namelen + 16);
1212             strcpy(name, self->name);
1213
1214             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1215             array->ir_values[0] = v;
1216             for (ai = 1; ai < array->expression.count; ++ai) {
1217                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1218                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1219                 if (!array->ir_values[ai]) {
1220                     mem_d(name);
1221                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1222                     return false;
1223                 }
1224                 array->ir_values[ai]->context = ast_ctx(self);
1225                 array->ir_values[ai]->unique_life = true;
1226                 array->ir_values[ai]->locked      = true;
1227             }
1228             mem_d(name);
1229         }
1230         else
1231         {
1232             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1233             if (!v)
1234                 return false;
1235             v->context = ast_ctx(self);
1236             self->ir_v = v;
1237         }
1238         return true;
1239     }
1240
1241     if (self->expression.vtype == TYPE_ARRAY) {
1242         size_t ai;
1243         char   *name;
1244         size_t  namelen;
1245
1246         ast_expression_common *elemtype = &self->expression.next->expression;
1247         int vtype = elemtype->vtype;
1248
1249         /* same as with field arrays */
1250         if (!self->expression.count || self->expression.count > opts.max_array_size)
1251             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1252
1253         v = ir_builder_create_global(ir, self->name, vtype);
1254         if (!v) {
1255             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1256             return false;
1257         }
1258         v->context = ast_ctx(self);
1259         v->unique_life = true;
1260         v->locked      = true;
1261
1262         namelen = strlen(self->name);
1263         name    = (char*)mem_a(namelen + 16);
1264         strcpy(name, self->name);
1265
1266         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1267         self->ir_values[0] = v;
1268         for (ai = 1; ai < self->expression.count; ++ai) {
1269             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1270             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1271             if (!self->ir_values[ai]) {
1272                 mem_d(name);
1273                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1274                 return false;
1275             }
1276             self->ir_values[ai]->context = ast_ctx(self);
1277             self->ir_values[ai]->unique_life = true;
1278             self->ir_values[ai]->locked      = true;
1279         }
1280         mem_d(name);
1281     }
1282     else
1283     {
1284         /* Arrays don't do this since there's no "array" value which spans across the
1285          * whole thing.
1286          */
1287         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1288         if (!v) {
1289             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1290             return false;
1291         }
1292         codegen_output_type(self, v);
1293         v->context = ast_ctx(self);
1294     }
1295
1296     if (self->hasvalue) {
1297         switch (self->expression.vtype)
1298         {
1299             case TYPE_FLOAT:
1300                 if (!ir_value_set_float(v, self->constval.vfloat))
1301                     goto error;
1302                 break;
1303             case TYPE_VECTOR:
1304                 if (!ir_value_set_vector(v, self->constval.vvec))
1305                     goto error;
1306                 break;
1307             case TYPE_STRING:
1308                 if (!ir_value_set_string(v, self->constval.vstring))
1309                     goto error;
1310                 break;
1311             case TYPE_ARRAY:
1312                 compile_error(ast_ctx(self), "TODO: global constant array");
1313                 break;
1314             case TYPE_FUNCTION:
1315                 compile_error(ast_ctx(self), "global of type function not properly generated");
1316                 goto error;
1317                 /* Cannot generate an IR value for a function,
1318                  * need a pointer pointing to a function rather.
1319                  */
1320             case TYPE_FIELD:
1321                 if (!self->constval.vfield) {
1322                     compile_error(ast_ctx(self), "field constant without vfield set");
1323                     goto error;
1324                 }
1325                 if (!self->constval.vfield->ir_v) {
1326                     compile_error(ast_ctx(self), "field constant generated before its field");
1327                     goto error;
1328                 }
1329                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1330                     goto error;
1331                 break;
1332             default:
1333                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1334                 break;
1335         }
1336     }
1337
1338     /* link us to the ir_value */
1339     v->cvq = self->cvq;
1340     self->ir_v = v;
1341     return true;
1342
1343 error: /* clean up */
1344     ir_value_delete(v);
1345     return false;
1346 }
1347
1348 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1349 {
1350     ir_value *v = NULL;
1351
1352     if (self->expression.vtype == TYPE_NIL) {
1353         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1354         return false;
1355     }
1356
1357     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1358     {
1359         /* Do we allow local functions? I think not...
1360          * this is NOT a function pointer atm.
1361          */
1362         return false;
1363     }
1364
1365     if (self->expression.vtype == TYPE_ARRAY) {
1366         size_t ai;
1367         char   *name;
1368         size_t  namelen;
1369
1370         ast_expression_common *elemtype = &self->expression.next->expression;
1371         int vtype = elemtype->vtype;
1372
1373         func->flags |= IR_FLAG_HAS_ARRAYS;
1374
1375         if (param) {
1376             compile_error(ast_ctx(self), "array-parameters are not supported");
1377             return false;
1378         }
1379
1380         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1381         if (!self->expression.count || self->expression.count > opts.max_array_size) {
1382             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1383         }
1384
1385         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1386         if (!self->ir_values) {
1387             compile_error(ast_ctx(self), "failed to allocate array values");
1388             return false;
1389         }
1390
1391         v = ir_function_create_local(func, self->name, vtype, param);
1392         if (!v) {
1393             compile_error(ast_ctx(self), "ir_function_create_local failed");
1394             return false;
1395         }
1396         v->context = ast_ctx(self);
1397         v->unique_life = true;
1398         v->locked      = true;
1399
1400         namelen = strlen(self->name);
1401         name    = (char*)mem_a(namelen + 16);
1402         strcpy(name, self->name);
1403
1404         self->ir_values[0] = v;
1405         for (ai = 1; ai < self->expression.count; ++ai) {
1406             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1407             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1408             if (!self->ir_values[ai]) {
1409                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1410                 return false;
1411             }
1412             self->ir_values[ai]->context = ast_ctx(self);
1413             self->ir_values[ai]->unique_life = true;
1414             self->ir_values[ai]->locked      = true;
1415         }
1416     }
1417     else
1418     {
1419         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1420         if (!v)
1421             return false;
1422         codegen_output_type(self, v);
1423         v->context = ast_ctx(self);
1424     }
1425
1426     /* A constant local... hmmm...
1427      * I suppose the IR will have to deal with this
1428      */
1429     if (self->hasvalue) {
1430         switch (self->expression.vtype)
1431         {
1432             case TYPE_FLOAT:
1433                 if (!ir_value_set_float(v, self->constval.vfloat))
1434                     goto error;
1435                 break;
1436             case TYPE_VECTOR:
1437                 if (!ir_value_set_vector(v, self->constval.vvec))
1438                     goto error;
1439                 break;
1440             case TYPE_STRING:
1441                 if (!ir_value_set_string(v, self->constval.vstring))
1442                     goto error;
1443                 break;
1444             default:
1445                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1446                 break;
1447         }
1448     }
1449
1450     /* link us to the ir_value */
1451     v->cvq = self->cvq;
1452     self->ir_v = v;
1453
1454     if (!ast_generate_accessors(self, func->owner))
1455         return false;
1456     return true;
1457
1458 error: /* clean up */
1459     ir_value_delete(v);
1460     return false;
1461 }
1462
1463 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1464 {
1465     size_t i;
1466     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1467     if (!self->setter || !self->getter)
1468         return true;
1469     for (i = 0; i < self->expression.count; ++i) {
1470         if (!self->ir_values) {
1471             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1472             return false;
1473         }
1474         if (!self->ir_values[i]) {
1475             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1476             return false;
1477         }
1478         if (self->ir_values[i]->life) {
1479             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1480             return false;
1481         }
1482     }
1483
1484     opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
1485     if (self->setter) {
1486         if (!ast_global_codegen  (self->setter, ir, false) ||
1487             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1488             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1489         {
1490             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1491             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1492             return false;
1493         }
1494     }
1495     if (self->getter) {
1496         if (!ast_global_codegen  (self->getter, ir, false) ||
1497             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1498             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1499         {
1500             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1501             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1502             return false;
1503         }
1504     }
1505     for (i = 0; i < self->expression.count; ++i) {
1506         vec_free(self->ir_values[i]->life);
1507     }
1508     opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1509     return true;
1510 }
1511
1512 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1513 {
1514     ir_function *irf;
1515     ir_value    *dummy;
1516     ast_expression_common *ec;
1517     size_t    i;
1518
1519     (void)ir;
1520
1521     irf = self->ir_func;
1522     if (!irf) {
1523         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1524         return false;
1525     }
1526
1527     /* fill the parameter list */
1528     ec = &self->vtype->expression;
1529     for (i = 0; i < vec_size(ec->params); ++i)
1530     {
1531         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1532             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1533         else
1534             vec_push(irf->params, ec->params[i]->expression.vtype);
1535         if (!self->builtin) {
1536             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1537                 return false;
1538         }
1539     }
1540
1541     if (self->builtin) {
1542         irf->builtin = self->builtin;
1543         return true;
1544     }
1545
1546     if (!vec_size(self->blocks)) {
1547         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1548         return false;
1549     }
1550
1551     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1552     if (!self->curblock) {
1553         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1554         return false;
1555     }
1556
1557     for (i = 0; i < vec_size(self->blocks); ++i) {
1558         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1559         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1560             return false;
1561     }
1562
1563     /* TODO: check return types */
1564     if (!self->curblock->final)
1565     {
1566         if (!self->vtype->expression.next ||
1567             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1568         {
1569             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1570         }
1571         else if (vec_size(self->curblock->entries))
1572         {
1573             /* error("missing return"); */
1574             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1575                                 "control reaches end of non-void function (`%s`) via %s",
1576                                 self->name, self->curblock->label))
1577             {
1578                 return false;
1579             }
1580             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1581         }
1582     }
1583     return true;
1584 }
1585
1586 /* Note, you will not see ast_block_codegen generate ir_blocks.
1587  * To the AST and the IR, blocks are 2 different things.
1588  * In the AST it represents a block of code, usually enclosed in
1589  * curly braces {...}.
1590  * While in the IR it represents a block in terms of control-flow.
1591  */
1592 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1593 {
1594     size_t i;
1595
1596     /* We don't use this
1597      * Note: an ast-representation using the comma-operator
1598      * of the form: (a, b, c) = x should not assign to c...
1599      */
1600     if (lvalue) {
1601         compile_error(ast_ctx(self), "not an l-value (code-block)");
1602         return false;
1603     }
1604
1605     if (self->expression.outr) {
1606         *out = self->expression.outr;
1607         return true;
1608     }
1609
1610     /* output is NULL at first, we'll have each expression
1611      * assign to out output, thus, a comma-operator represention
1612      * using an ast_block will return the last generated value,
1613      * so: (b, c) + a  executed both b and c, and returns c,
1614      * which is then added to a.
1615      */
1616     *out = NULL;
1617
1618     /* generate locals */
1619     for (i = 0; i < vec_size(self->locals); ++i)
1620     {
1621         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1622             if (opts.debug)
1623                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1624             return false;
1625         }
1626     }
1627
1628     for (i = 0; i < vec_size(self->exprs); ++i)
1629     {
1630         ast_expression_codegen *gen;
1631         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1632             if (compile_warning(ast_ctx(self->exprs[i]), WARN_UNREACHABLE_CODE, "unreachable statement"))
1633                 return false;
1634             continue;
1635         }
1636         gen = self->exprs[i]->expression.codegen;
1637         if (!(*gen)(self->exprs[i], func, false, out))
1638             return false;
1639     }
1640
1641     self->expression.outr = *out;
1642
1643     return true;
1644 }
1645
1646 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1647 {
1648     ast_expression_codegen *cgen;
1649     ir_value *left  = NULL;
1650     ir_value *right = NULL;
1651
1652     ast_value       *arr;
1653     ast_value       *idx = 0;
1654     ast_array_index *ai = NULL;
1655
1656     if (lvalue && self->expression.outl) {
1657         *out = self->expression.outl;
1658         return true;
1659     }
1660
1661     if (!lvalue && self->expression.outr) {
1662         *out = self->expression.outr;
1663         return true;
1664     }
1665
1666     if (ast_istype(self->dest, ast_array_index))
1667     {
1668
1669         ai = (ast_array_index*)self->dest;
1670         idx = (ast_value*)ai->index;
1671
1672         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1673             ai = NULL;
1674     }
1675
1676     if (ai) {
1677         /* we need to call the setter */
1678         ir_value  *iridx, *funval;
1679         ir_instr  *call;
1680
1681         if (lvalue) {
1682             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1683             return false;
1684         }
1685
1686         arr = (ast_value*)ai->array;
1687         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1688             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1689             return false;
1690         }
1691
1692         cgen = idx->expression.codegen;
1693         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1694             return false;
1695
1696         cgen = arr->setter->expression.codegen;
1697         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1698             return false;
1699
1700         cgen = self->source->expression.codegen;
1701         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1702             return false;
1703
1704         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1705         if (!call)
1706             return false;
1707         ir_call_param(call, iridx);
1708         ir_call_param(call, right);
1709         self->expression.outr = right;
1710     }
1711     else
1712     {
1713         /* regular code */
1714
1715         cgen = self->dest->expression.codegen;
1716         /* lvalue! */
1717         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1718             return false;
1719         self->expression.outl = left;
1720
1721         cgen = self->source->expression.codegen;
1722         /* rvalue! */
1723         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1724             return false;
1725
1726         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1727             return false;
1728         self->expression.outr = right;
1729     }
1730
1731     /* Theoretically, an assinment returns its left side as an
1732      * lvalue, if we don't need an lvalue though, we return
1733      * the right side as an rvalue, otherwise we have to
1734      * somehow know whether or not we need to dereference the pointer
1735      * on the left side - that is: OP_LOAD if it was an address.
1736      * Also: in original QC we cannot OP_LOADP *anyway*.
1737      */
1738     *out = (lvalue ? left : right);
1739
1740     return true;
1741 }
1742
1743 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1744 {
1745     ast_expression_codegen *cgen;
1746     ir_value *left, *right;
1747
1748     /* A binary operation cannot yield an l-value */
1749     if (lvalue) {
1750         compile_error(ast_ctx(self), "not an l-value (binop)");
1751         return false;
1752     }
1753
1754     if (self->expression.outr) {
1755         *out = self->expression.outr;
1756         return true;
1757     }
1758
1759     if ((OPTS_FLAG(SHORT_LOGIC) || OPTS_FLAG(PERL_LOGIC)) &&
1760         (self->op == INSTR_AND || self->op == INSTR_OR))
1761     {
1762         /* short circuit evaluation */
1763         ir_block *other, *merge;
1764         ir_block *from_left, *from_right;
1765         ir_instr *phi;
1766         size_t    merge_id;
1767
1768         /* prepare end-block */
1769         merge_id = vec_size(func->ir_func->blocks);
1770         merge    = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1771
1772         /* generate the left expression */
1773         cgen = self->left->expression.codegen;
1774         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1775             return false;
1776         /* remember the block */
1777         from_left = func->curblock;
1778
1779         /* create a new block for the right expression */
1780         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1781         if (self->op == INSTR_AND) {
1782             /* on AND: left==true -> other */
1783             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1784                 return false;
1785         } else {
1786             /* on OR: left==false -> other */
1787             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1788                 return false;
1789         }
1790         /* use the likely flag */
1791         vec_last(func->curblock->instr)->likely = true;
1792
1793         /* enter the right-expression's block */
1794         func->curblock = other;
1795         /* generate */
1796         cgen = self->right->expression.codegen;
1797         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1798             return false;
1799         /* remember block */
1800         from_right = func->curblock;
1801
1802         /* jump to the merge block */
1803         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1804             return false;
1805
1806         vec_remove(func->ir_func->blocks, merge_id, 1);
1807         vec_push(func->ir_func->blocks, merge);
1808
1809         func->curblock = merge;
1810         phi = ir_block_create_phi(func->curblock, ast_ctx(self),
1811                                   ast_function_label(func, "sce_value"),
1812                                   self->expression.vtype);
1813         ir_phi_add(phi, from_left, left);
1814         ir_phi_add(phi, from_right, right);
1815         *out = ir_phi_value(phi);
1816         if (!*out)
1817             return false;
1818
1819         if (!OPTS_FLAG(PERL_LOGIC)) {
1820             /* cast-to-bool */
1821             if (OPTS_FLAG(CORRECT_LOGIC) && (*out)->vtype == TYPE_VECTOR) {
1822                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1823                                              ast_function_label(func, "sce_bool_v"),
1824                                              INSTR_NOT_V, *out);
1825                 if (!*out)
1826                     return false;
1827                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1828                                              ast_function_label(func, "sce_bool"),
1829                                              INSTR_NOT_F, *out);
1830                 if (!*out)
1831                     return false;
1832             }
1833             else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && (*out)->vtype == TYPE_STRING) {
1834                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1835                                              ast_function_label(func, "sce_bool_s"),
1836                                              INSTR_NOT_S, *out);
1837                 if (!*out)
1838                     return false;
1839                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1840                                              ast_function_label(func, "sce_bool"),
1841                                              INSTR_NOT_F, *out);
1842                 if (!*out)
1843                     return false;
1844             }
1845             else {
1846                 *out = ir_block_create_binop(func->curblock, ast_ctx(self),
1847                                              ast_function_label(func, "sce_bool"),
1848                                              INSTR_AND, *out, *out);
1849                 if (!*out)
1850                     return false;
1851             }
1852         }
1853
1854         self->expression.outr = *out;
1855         codegen_output_type(self, *out);
1856         return true;
1857     }
1858
1859     cgen = self->left->expression.codegen;
1860     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1861         return false;
1862
1863     cgen = self->right->expression.codegen;
1864     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1865         return false;
1866
1867     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1868                                  self->op, left, right);
1869     if (!*out)
1870         return false;
1871     self->expression.outr = *out;
1872     codegen_output_type(self, *out);
1873
1874     return true;
1875 }
1876
1877 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1878 {
1879     ast_expression_codegen *cgen;
1880     ir_value *leftl = NULL, *leftr, *right, *bin;
1881
1882     ast_value       *arr;
1883     ast_value       *idx = 0;
1884     ast_array_index *ai = NULL;
1885     ir_value        *iridx = NULL;
1886
1887     if (lvalue && self->expression.outl) {
1888         *out = self->expression.outl;
1889         return true;
1890     }
1891
1892     if (!lvalue && self->expression.outr) {
1893         *out = self->expression.outr;
1894         return true;
1895     }
1896
1897     if (ast_istype(self->dest, ast_array_index))
1898     {
1899
1900         ai = (ast_array_index*)self->dest;
1901         idx = (ast_value*)ai->index;
1902
1903         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1904             ai = NULL;
1905     }
1906
1907     /* for a binstore we need both an lvalue and an rvalue for the left side */
1908     /* rvalue of destination! */
1909     if (ai) {
1910         cgen = idx->expression.codegen;
1911         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1912             return false;
1913     }
1914     cgen = self->dest->expression.codegen;
1915     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1916         return false;
1917
1918     /* source as rvalue only */
1919     cgen = self->source->expression.codegen;
1920     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1921         return false;
1922
1923     /* now the binary */
1924     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1925                                 self->opbin, leftr, right);
1926     self->expression.outr = bin;
1927
1928
1929     if (ai) {
1930         /* we need to call the setter */
1931         ir_value  *funval;
1932         ir_instr  *call;
1933
1934         if (lvalue) {
1935             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1936             return false;
1937         }
1938
1939         arr = (ast_value*)ai->array;
1940         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1941             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1942             return false;
1943         }
1944
1945         cgen = arr->setter->expression.codegen;
1946         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1947             return false;
1948
1949         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1950         if (!call)
1951             return false;
1952         ir_call_param(call, iridx);
1953         ir_call_param(call, bin);
1954         self->expression.outr = bin;
1955     } else {
1956         /* now store them */
1957         cgen = self->dest->expression.codegen;
1958         /* lvalue of destination */
1959         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1960             return false;
1961         self->expression.outl = leftl;
1962
1963         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1964             return false;
1965         self->expression.outr = bin;
1966     }
1967
1968     /* Theoretically, an assinment returns its left side as an
1969      * lvalue, if we don't need an lvalue though, we return
1970      * the right side as an rvalue, otherwise we have to
1971      * somehow know whether or not we need to dereference the pointer
1972      * on the left side - that is: OP_LOAD if it was an address.
1973      * Also: in original QC we cannot OP_LOADP *anyway*.
1974      */
1975     *out = (lvalue ? leftl : bin);
1976
1977     return true;
1978 }
1979
1980 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1981 {
1982     ast_expression_codegen *cgen;
1983     ir_value *operand;
1984
1985     /* An unary operation cannot yield an l-value */
1986     if (lvalue) {
1987         compile_error(ast_ctx(self), "not an l-value (binop)");
1988         return false;
1989     }
1990
1991     if (self->expression.outr) {
1992         *out = self->expression.outr;
1993         return true;
1994     }
1995
1996     cgen = self->operand->expression.codegen;
1997     /* lvalue! */
1998     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1999         return false;
2000
2001     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
2002                                  self->op, operand);
2003     if (!*out)
2004         return false;
2005     self->expression.outr = *out;
2006
2007     return true;
2008 }
2009
2010 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
2011 {
2012     ast_expression_codegen *cgen;
2013     ir_value *operand;
2014
2015     *out = NULL;
2016
2017     /* In the context of a return operation, we don't actually return
2018      * anything...
2019      */
2020     if (lvalue) {
2021         compile_error(ast_ctx(self), "return-expression is not an l-value");
2022         return false;
2023     }
2024
2025     if (self->expression.outr) {
2026         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
2027         return false;
2028     }
2029     self->expression.outr = (ir_value*)1;
2030
2031     if (self->operand) {
2032         cgen = self->operand->expression.codegen;
2033         /* lvalue! */
2034         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2035             return false;
2036
2037         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
2038             return false;
2039     } else {
2040         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
2041             return false;
2042     }
2043
2044     return true;
2045 }
2046
2047 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
2048 {
2049     ast_expression_codegen *cgen;
2050     ir_value *ent, *field;
2051
2052     /* This function needs to take the 'lvalue' flag into account!
2053      * As lvalue we provide a field-pointer, as rvalue we provide the
2054      * value in a temp.
2055      */
2056
2057     if (lvalue && self->expression.outl) {
2058         *out = self->expression.outl;
2059         return true;
2060     }
2061
2062     if (!lvalue && self->expression.outr) {
2063         *out = self->expression.outr;
2064         return true;
2065     }
2066
2067     cgen = self->entity->expression.codegen;
2068     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
2069         return false;
2070
2071     cgen = self->field->expression.codegen;
2072     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
2073         return false;
2074
2075     if (lvalue) {
2076         /* address! */
2077         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
2078                                             ent, field);
2079     } else {
2080         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
2081                                              ent, field, self->expression.vtype);
2082         /* Done AFTER error checking: 
2083         codegen_output_type(self, *out);
2084         */
2085     }
2086     if (!*out) {
2087         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2088                  (lvalue ? "ADDRESS" : "FIELD"),
2089                  type_name[self->expression.vtype]);
2090         return false;
2091     }
2092     if (!lvalue)
2093         codegen_output_type(self, *out);
2094
2095     if (lvalue)
2096         self->expression.outl = *out;
2097     else
2098         self->expression.outr = *out;
2099
2100     /* Hm that should be it... */
2101     return true;
2102 }
2103
2104 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2105 {
2106     ast_expression_codegen *cgen;
2107     ir_value *vec;
2108
2109     /* in QC this is always an lvalue */
2110     if (lvalue && self->rvalue) {
2111         compile_error(ast_ctx(self), "not an l-value (member access)");
2112         return false;
2113     }
2114     if (self->expression.outl) {
2115         *out = self->expression.outl;
2116         return true;
2117     }
2118
2119     cgen = self->owner->expression.codegen;
2120     if (!(*cgen)((ast_expression*)(self->owner), func, false, &vec))
2121         return false;
2122
2123     if (vec->vtype != TYPE_VECTOR &&
2124         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2125     {
2126         return false;
2127     }
2128
2129     *out = ir_value_vector_member(vec, self->field);
2130     self->expression.outl = *out;
2131
2132     return (*out != NULL);
2133 }
2134
2135 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2136 {
2137     ast_value *arr;
2138     ast_value *idx;
2139
2140     if (!lvalue && self->expression.outr) {
2141         *out = self->expression.outr;
2142     }
2143     if (lvalue && self->expression.outl) {
2144         *out = self->expression.outl;
2145     }
2146
2147     if (!ast_istype(self->array, ast_value)) {
2148         compile_error(ast_ctx(self), "array indexing this way is not supported");
2149         /* note this would actually be pointer indexing because the left side is
2150          * not an actual array but (hopefully) an indexable expression.
2151          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2152          * support this path will be filled.
2153          */
2154         return false;
2155     }
2156
2157     arr = (ast_value*)self->array;
2158     idx = (ast_value*)self->index;
2159
2160     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2161         /* Time to use accessor functions */
2162         ast_expression_codegen *cgen;
2163         ir_value               *iridx, *funval;
2164         ir_instr               *call;
2165
2166         if (lvalue) {
2167             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2168             return false;
2169         }
2170
2171         if (!arr->getter) {
2172             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2173             return false;
2174         }
2175
2176         cgen = self->index->expression.codegen;
2177         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2178             return false;
2179
2180         cgen = arr->getter->expression.codegen;
2181         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2182             return false;
2183
2184         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
2185         if (!call)
2186             return false;
2187         ir_call_param(call, iridx);
2188
2189         *out = ir_call_value(call);
2190         self->expression.outr = *out;
2191         return true;
2192     }
2193
2194     if (idx->expression.vtype == TYPE_FLOAT) {
2195         unsigned int arridx = idx->constval.vfloat;
2196         if (arridx >= self->array->expression.count)
2197         {
2198             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2199             return false;
2200         }
2201         *out = arr->ir_values[arridx];
2202     }
2203     else if (idx->expression.vtype == TYPE_INTEGER) {
2204         unsigned int arridx = idx->constval.vint;
2205         if (arridx >= self->array->expression.count)
2206         {
2207             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2208             return false;
2209         }
2210         *out = arr->ir_values[arridx];
2211     }
2212     else {
2213         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2214         return false;
2215     }
2216     return true;
2217 }
2218
2219 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2220 {
2221     ast_expression_codegen *cgen;
2222
2223     ir_value *condval;
2224     ir_value *dummy;
2225
2226     ir_block *cond;
2227     ir_block *ontrue;
2228     ir_block *onfalse;
2229     ir_block *ontrue_endblock = NULL;
2230     ir_block *onfalse_endblock = NULL;
2231     ir_block *merge = NULL;
2232
2233     /* We don't output any value, thus also don't care about r/lvalue */
2234     (void)out;
2235     (void)lvalue;
2236
2237     if (self->expression.outr) {
2238         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2239         return false;
2240     }
2241     self->expression.outr = (ir_value*)1;
2242
2243     /* generate the condition */
2244     cgen = self->cond->expression.codegen;
2245     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2246         return false;
2247     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2248     cond = func->curblock;
2249
2250     /* on-true path */
2251
2252     if (self->on_true) {
2253         /* create on-true block */
2254         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2255         if (!ontrue)
2256             return false;
2257
2258         /* enter the block */
2259         func->curblock = ontrue;
2260
2261         /* generate */
2262         cgen = self->on_true->expression.codegen;
2263         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2264             return false;
2265
2266         /* we now need to work from the current endpoint */
2267         ontrue_endblock = func->curblock;
2268     } else
2269         ontrue = NULL;
2270
2271     /* on-false path */
2272     if (self->on_false) {
2273         /* create on-false block */
2274         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2275         if (!onfalse)
2276             return false;
2277
2278         /* enter the block */
2279         func->curblock = onfalse;
2280
2281         /* generate */
2282         cgen = self->on_false->expression.codegen;
2283         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2284             return false;
2285
2286         /* we now need to work from the current endpoint */
2287         onfalse_endblock = func->curblock;
2288     } else
2289         onfalse = NULL;
2290
2291     /* Merge block were they all merge in to */
2292     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2293     {
2294         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2295         if (!merge)
2296             return false;
2297         /* add jumps ot the merge block */
2298         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2299             return false;
2300         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2301             return false;
2302
2303         /* Now enter the merge block */
2304         func->curblock = merge;
2305     }
2306
2307     /* we create the if here, that way all blocks are ordered :)
2308      */
2309     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2310                             (ontrue  ? ontrue  : merge),
2311                             (onfalse ? onfalse : merge)))
2312     {
2313         return false;
2314     }
2315
2316     return true;
2317 }
2318
2319 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2320 {
2321     ast_expression_codegen *cgen;
2322
2323     ir_value *condval;
2324     ir_value *trueval, *falseval;
2325     ir_instr *phi;
2326
2327     ir_block *cond = func->curblock;
2328     ir_block *cond_out = NULL;
2329     ir_block *ontrue, *ontrue_out = NULL;
2330     ir_block *onfalse, *onfalse_out = NULL;
2331     ir_block *merge;
2332
2333     /* Ternary can never create an lvalue... */
2334     if (lvalue)
2335         return false;
2336
2337     /* In theory it shouldn't be possible to pass through a node twice, but
2338      * in case we add any kind of optimization pass for the AST itself, it
2339      * may still happen, thus we remember a created ir_value and simply return one
2340      * if it already exists.
2341      */
2342     if (self->expression.outr) {
2343         *out = self->expression.outr;
2344         return true;
2345     }
2346
2347     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2348
2349     /* generate the condition */
2350     func->curblock = cond;
2351     cgen = self->cond->expression.codegen;
2352     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2353         return false;
2354     cond_out = func->curblock;
2355
2356     /* create on-true block */
2357     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2358     if (!ontrue)
2359         return false;
2360     else
2361     {
2362         /* enter the block */
2363         func->curblock = ontrue;
2364
2365         /* generate */
2366         cgen = self->on_true->expression.codegen;
2367         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2368             return false;
2369
2370         ontrue_out = func->curblock;
2371     }
2372
2373     /* create on-false block */
2374     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2375     if (!onfalse)
2376         return false;
2377     else
2378     {
2379         /* enter the block */
2380         func->curblock = onfalse;
2381
2382         /* generate */
2383         cgen = self->on_false->expression.codegen;
2384         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2385             return false;
2386
2387         onfalse_out = func->curblock;
2388     }
2389
2390     /* create merge block */
2391     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2392     if (!merge)
2393         return false;
2394     /* jump to merge block */
2395     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2396         return false;
2397     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2398         return false;
2399
2400     /* create if instruction */
2401     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2402         return false;
2403
2404     /* Now enter the merge block */
2405     func->curblock = merge;
2406
2407     /* Here, now, we need a PHI node
2408      * but first some sanity checking...
2409      */
2410     if (trueval->vtype != falseval->vtype && trueval->vtype != TYPE_NIL && falseval->vtype != TYPE_NIL) {
2411         /* error("ternary with different types on the two sides"); */
2412         compile_error(ast_ctx(self), "internal error: ternary operand types invalid");
2413         return false;
2414     }
2415
2416     /* create PHI */
2417     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), self->expression.vtype);
2418     if (!phi) {
2419         compile_error(ast_ctx(self), "internal error: failed to generate phi node");
2420         return false;
2421     }
2422     ir_phi_add(phi, ontrue_out,  trueval);
2423     ir_phi_add(phi, onfalse_out, falseval);
2424
2425     self->expression.outr = ir_phi_value(phi);
2426     *out = self->expression.outr;
2427
2428     codegen_output_type(self, *out);
2429
2430     return true;
2431 }
2432
2433 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2434 {
2435     ast_expression_codegen *cgen;
2436
2437     ir_value *dummy      = NULL;
2438     ir_value *precond    = NULL;
2439     ir_value *postcond   = NULL;
2440
2441     /* Since we insert some jumps "late" so we have blocks
2442      * ordered "nicely", we need to keep track of the actual end-blocks
2443      * of expressions to add the jumps to.
2444      */
2445     ir_block *bbody      = NULL, *end_bbody      = NULL;
2446     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2447     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2448     ir_block *bincrement = NULL, *end_bincrement = NULL;
2449     ir_block *bout       = NULL, *bin            = NULL;
2450
2451     /* let's at least move the outgoing block to the end */
2452     size_t    bout_id;
2453
2454     /* 'break' and 'continue' need to be able to find the right blocks */
2455     ir_block *bcontinue     = NULL;
2456     ir_block *bbreak        = NULL;
2457
2458     ir_block *tmpblock      = NULL;
2459
2460     (void)lvalue;
2461     (void)out;
2462
2463     if (self->expression.outr) {
2464         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2465         return false;
2466     }
2467     self->expression.outr = (ir_value*)1;
2468
2469     /* NOTE:
2470      * Should we ever need some kind of block ordering, better make this function
2471      * move blocks around than write a block ordering algorithm later... after all
2472      * the ast and ir should work together, not against each other.
2473      */
2474
2475     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2476      * anyway if for example it contains a ternary.
2477      */
2478     if (self->initexpr)
2479     {
2480         cgen = self->initexpr->expression.codegen;
2481         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2482             return false;
2483     }
2484
2485     /* Store the block from which we enter this chaos */
2486     bin = func->curblock;
2487
2488     /* The pre-loop condition needs its own block since we
2489      * need to be able to jump to the start of that expression.
2490      */
2491     if (self->precond)
2492     {
2493         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2494         if (!bprecond)
2495             return false;
2496
2497         /* the pre-loop-condition the least important place to 'continue' at */
2498         bcontinue = bprecond;
2499
2500         /* enter */
2501         func->curblock = bprecond;
2502
2503         /* generate */
2504         cgen = self->precond->expression.codegen;
2505         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2506             return false;
2507
2508         end_bprecond = func->curblock;
2509     } else {
2510         bprecond = end_bprecond = NULL;
2511     }
2512
2513     /* Now the next blocks won't be ordered nicely, but we need to
2514      * generate them this early for 'break' and 'continue'.
2515      */
2516     if (self->increment) {
2517         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2518         if (!bincrement)
2519             return false;
2520         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2521     } else {
2522         bincrement = end_bincrement = NULL;
2523     }
2524
2525     if (self->postcond) {
2526         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2527         if (!bpostcond)
2528             return false;
2529         bcontinue = bpostcond; /* postcond comes before the increment */
2530     } else {
2531         bpostcond = end_bpostcond = NULL;
2532     }
2533
2534     bout_id = vec_size(func->ir_func->blocks);
2535     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2536     if (!bout)
2537         return false;
2538     bbreak = bout;
2539
2540     /* The loop body... */
2541     /* if (self->body) */
2542     {
2543         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2544         if (!bbody)
2545             return false;
2546
2547         /* enter */
2548         func->curblock = bbody;
2549
2550         vec_push(func->breakblocks,    bbreak);
2551         if (bcontinue)
2552             vec_push(func->continueblocks, bcontinue);
2553         else
2554             vec_push(func->continueblocks, bbody);
2555
2556         /* generate */
2557         if (self->body) {
2558             cgen = self->body->expression.codegen;
2559             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2560                 return false;
2561         }
2562
2563         end_bbody = func->curblock;
2564         vec_pop(func->breakblocks);
2565         vec_pop(func->continueblocks);
2566     }
2567
2568     /* post-loop-condition */
2569     if (self->postcond)
2570     {
2571         /* enter */
2572         func->curblock = bpostcond;
2573
2574         /* generate */
2575         cgen = self->postcond->expression.codegen;
2576         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2577             return false;
2578
2579         end_bpostcond = func->curblock;
2580     }
2581
2582     /* The incrementor */
2583     if (self->increment)
2584     {
2585         /* enter */
2586         func->curblock = bincrement;
2587
2588         /* generate */
2589         cgen = self->increment->expression.codegen;
2590         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2591             return false;
2592
2593         end_bincrement = func->curblock;
2594     }
2595
2596     /* In any case now, we continue from the outgoing block */
2597     func->curblock = bout;
2598
2599     /* Now all blocks are in place */
2600     /* From 'bin' we jump to whatever comes first */
2601     if      (bprecond)   tmpblock = bprecond;
2602     else if (bbody)      tmpblock = bbody;
2603     else if (bpostcond)  tmpblock = bpostcond;
2604     else                 tmpblock = bout;
2605     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2606         return false;
2607
2608     /* From precond */
2609     if (bprecond)
2610     {
2611         ir_block *ontrue, *onfalse;
2612         if      (bbody)      ontrue = bbody;
2613         else if (bincrement) ontrue = bincrement;
2614         else if (bpostcond)  ontrue = bpostcond;
2615         else                 ontrue = bprecond;
2616         onfalse = bout;
2617         if (self->pre_not) {
2618             tmpblock = ontrue;
2619             ontrue   = onfalse;
2620             onfalse  = tmpblock;
2621         }
2622         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2623             return false;
2624     }
2625
2626     /* from body */
2627     if (bbody)
2628     {
2629         if      (bincrement) tmpblock = bincrement;
2630         else if (bpostcond)  tmpblock = bpostcond;
2631         else if (bprecond)   tmpblock = bprecond;
2632         else                 tmpblock = bbody;
2633         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2634             return false;
2635     }
2636
2637     /* from increment */
2638     if (bincrement)
2639     {
2640         if      (bpostcond)  tmpblock = bpostcond;
2641         else if (bprecond)   tmpblock = bprecond;
2642         else if (bbody)      tmpblock = bbody;
2643         else                 tmpblock = bout;
2644         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2645             return false;
2646     }
2647
2648     /* from postcond */
2649     if (bpostcond)
2650     {
2651         ir_block *ontrue, *onfalse;
2652         if      (bprecond)   ontrue = bprecond;
2653         else if (bbody)      ontrue = bbody;
2654         else if (bincrement) ontrue = bincrement;
2655         else                 ontrue = bpostcond;
2656         onfalse = bout;
2657         if (self->post_not) {
2658             tmpblock = ontrue;
2659             ontrue   = onfalse;
2660             onfalse  = tmpblock;
2661         }
2662         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2663             return false;
2664     }
2665
2666     /* Move 'bout' to the end */
2667     vec_remove(func->ir_func->blocks, bout_id, 1);
2668     vec_push(func->ir_func->blocks, bout);
2669
2670     return true;
2671 }
2672
2673 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2674 {
2675     ir_block *target;
2676
2677     *out = NULL;
2678
2679     if (lvalue) {
2680         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2681         return false;
2682     }
2683
2684     if (self->expression.outr) {
2685         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2686         return false;
2687     }
2688     self->expression.outr = (ir_value*)1;
2689
2690     if (self->is_continue)
2691         target = func->continueblocks[vec_size(func->continueblocks)-1-self->levels];
2692     else
2693         target = func->breakblocks[vec_size(func->breakblocks)-1-self->levels];
2694
2695     if (!target) {
2696         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2697         return false;
2698     }
2699
2700     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2701         return false;
2702     return true;
2703 }
2704
2705 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2706 {
2707     ast_expression_codegen *cgen;
2708
2709     ast_switch_case *def_case     = NULL;
2710     ir_block        *def_bfall    = NULL;
2711     ir_block        *def_bfall_to = NULL;
2712     bool set_def_bfall_to = false;
2713
2714     ir_value *dummy     = NULL;
2715     ir_value *irop      = NULL;
2716     ir_block *bout      = NULL;
2717     ir_block *bfall     = NULL;
2718     size_t    bout_id;
2719     size_t    c;
2720
2721     char      typestr[1024];
2722     uint16_t  cmpinstr;
2723
2724     if (lvalue) {
2725         compile_error(ast_ctx(self), "switch expression is not an l-value");
2726         return false;
2727     }
2728
2729     if (self->expression.outr) {
2730         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2731         return false;
2732     }
2733     self->expression.outr = (ir_value*)1;
2734
2735     (void)lvalue;
2736     (void)out;
2737
2738     cgen = self->operand->expression.codegen;
2739     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2740         return false;
2741
2742     if (!vec_size(self->cases))
2743         return true;
2744
2745     cmpinstr = type_eq_instr[irop->vtype];
2746     if (cmpinstr >= AINSTR_END) {
2747         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2748         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2749         return false;
2750     }
2751
2752     bout_id = vec_size(func->ir_func->blocks);
2753     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2754     if (!bout)
2755         return false;
2756
2757     /* setup the break block */
2758     vec_push(func->breakblocks, bout);
2759
2760     /* Now create all cases */
2761     for (c = 0; c < vec_size(self->cases); ++c) {
2762         ir_value *cond, *val;
2763         ir_block *bcase, *bnot;
2764         size_t bnot_id;
2765
2766         ast_switch_case *swcase = &self->cases[c];
2767
2768         if (swcase->value) {
2769             /* A regular case */
2770             /* generate the condition operand */
2771             cgen = swcase->value->expression.codegen;
2772             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2773                 return false;
2774             /* generate the condition */
2775             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2776             if (!cond)
2777                 return false;
2778
2779             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2780             bnot_id = vec_size(func->ir_func->blocks);
2781             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2782             if (!bcase || !bnot)
2783                 return false;
2784             if (set_def_bfall_to) {
2785                 set_def_bfall_to = false;
2786                 def_bfall_to = bcase;
2787             }
2788             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2789                 return false;
2790
2791             /* Make the previous case-end fall through */
2792             if (bfall && !bfall->final) {
2793                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2794                     return false;
2795             }
2796
2797             /* enter the case */
2798             func->curblock = bcase;
2799             cgen = swcase->code->expression.codegen;
2800             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2801                 return false;
2802
2803             /* remember this block to fall through from */
2804             bfall = func->curblock;
2805
2806             /* enter the else and move it down */
2807             func->curblock = bnot;
2808             vec_remove(func->ir_func->blocks, bnot_id, 1);
2809             vec_push(func->ir_func->blocks, bnot);
2810         } else {
2811             /* The default case */
2812             /* Remember where to fall through from: */
2813             def_bfall = bfall;
2814             bfall     = NULL;
2815             /* remember which case it was */
2816             def_case  = swcase;
2817             /* And the next case will be remembered */
2818             set_def_bfall_to = true;
2819         }
2820     }
2821
2822     /* Jump from the last bnot to bout */
2823     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2824         /*
2825         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2826         */
2827         return false;
2828     }
2829
2830     /* If there was a default case, put it down here */
2831     if (def_case) {
2832         ir_block *bcase;
2833
2834         /* No need to create an extra block */
2835         bcase = func->curblock;
2836
2837         /* Insert the fallthrough jump */
2838         if (def_bfall && !def_bfall->final) {
2839             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2840                 return false;
2841         }
2842
2843         /* Now generate the default code */
2844         cgen = def_case->code->expression.codegen;
2845         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2846             return false;
2847
2848         /* see if we need to fall through */
2849         if (def_bfall_to && !func->curblock->final)
2850         {
2851             if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
2852                 return false;
2853         }
2854     }
2855
2856     /* Jump from the last bnot to bout */
2857     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2858         return false;
2859     /* enter the outgoing block */
2860     func->curblock = bout;
2861
2862     /* restore the break block */
2863     vec_pop(func->breakblocks);
2864
2865     /* Move 'bout' to the end, it's nicer */
2866     vec_remove(func->ir_func->blocks, bout_id, 1);
2867     vec_push(func->ir_func->blocks, bout);
2868
2869     return true;
2870 }
2871
2872 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2873 {
2874     size_t i;
2875     ir_value *dummy;
2876
2877     if (self->undefined) {
2878         compile_error(ast_ctx(self), "internal error: ast_label never defined");
2879         return false;
2880     }
2881
2882     *out = NULL;
2883     if (lvalue) {
2884         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2885         return false;
2886     }
2887
2888     /* simply create a new block and jump to it */
2889     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2890     if (!self->irblock) {
2891         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2892         return false;
2893     }
2894     if (!func->curblock->final) {
2895         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2896             return false;
2897     }
2898
2899     /* enter the new block */
2900     func->curblock = self->irblock;
2901
2902     /* Generate all the leftover gotos */
2903     for (i = 0; i < vec_size(self->gotos); ++i) {
2904         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2905             return false;
2906     }
2907
2908     return true;
2909 }
2910
2911 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2912 {
2913     *out = NULL;
2914     if (lvalue) {
2915         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2916         return false;
2917     }
2918
2919     if (self->target->irblock) {
2920         if (self->irblock_from) {
2921             /* we already tried once, this is the callback */
2922             self->irblock_from->final = false;
2923             if (!ir_block_create_goto(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2924                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2925                 return false;
2926             }
2927         }
2928         else
2929         {
2930             if (!ir_block_create_goto(func->curblock, ast_ctx(self), self->target->irblock)) {
2931                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2932                 return false;
2933             }
2934         }
2935     }
2936     else
2937     {
2938         /* the target has not yet been created...
2939          * close this block in a sneaky way:
2940          */
2941         func->curblock->final = true;
2942         self->irblock_from = func->curblock;
2943         ast_label_register_goto(self->target, self);
2944     }
2945
2946     return true;
2947 }
2948
2949 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2950 {
2951     ast_expression_codegen *cgen;
2952     ir_value              **params;
2953     ir_instr               *callinstr;
2954     size_t i;
2955
2956     ir_value *funval = NULL;
2957
2958     /* return values are never lvalues */
2959     if (lvalue) {
2960         compile_error(ast_ctx(self), "not an l-value (function call)");
2961         return false;
2962     }
2963
2964     if (self->expression.outr) {
2965         *out = self->expression.outr;
2966         return true;
2967     }
2968
2969     cgen = self->func->expression.codegen;
2970     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2971         return false;
2972     if (!funval)
2973         return false;
2974
2975     params = NULL;
2976
2977     /* parameters */
2978     for (i = 0; i < vec_size(self->params); ++i)
2979     {
2980         ir_value *param;
2981         ast_expression *expr = self->params[i];
2982
2983         cgen = expr->expression.codegen;
2984         if (!(*cgen)(expr, func, false, &param))
2985             goto error;
2986         if (!param)
2987             goto error;
2988         vec_push(params, param);
2989     }
2990
2991     callinstr = ir_block_create_call(func->curblock, ast_ctx(self),
2992                                      ast_function_label(func, "call"),
2993                                      funval, !!(self->func->expression.flags & AST_FLAG_NORETURN));
2994     if (!callinstr)
2995         goto error;
2996
2997     for (i = 0; i < vec_size(params); ++i) {
2998         ir_call_param(callinstr, params[i]);
2999     }
3000
3001     *out = ir_call_value(callinstr);
3002     self->expression.outr = *out;
3003
3004     codegen_output_type(self, *out);
3005
3006     vec_free(params);
3007     return true;
3008 error:
3009     vec_free(params);
3010     return false;
3011 }