]> de.git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Some of the output types were superfluous; others are now put into a function to...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38
39 /* It must not be possible to get here. */
40 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 {
42     (void)self;
43     con_err("ast node missing destroy()\n");
44     abort();
45 }
46
47 /* Initialize main ast node aprts */
48 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
49 {
50     self->node.context = ctx;
51     self->node.destroy = &_ast_node_destroy;
52     self->node.keep    = false;
53     self->node.nodetype = nodetype;
54     self->node.side_effects = false;
55 }
56
57 /* weight and side effects */
58 static void _ast_propagate_effects(ast_node *self, ast_node *other)
59 {
60     if (ast_side_effects(other))
61         ast_side_effects(self) = true;
62 }
63 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
64
65 /* General expression initialization */
66 static void ast_expression_init(ast_expression *self,
67                                 ast_expression_codegen *codegen)
68 {
69     self->expression.codegen  = codegen;
70     self->expression.vtype    = TYPE_VOID;
71     self->expression.next     = NULL;
72     self->expression.outl     = NULL;
73     self->expression.outr     = NULL;
74     self->expression.variadic = false;
75     self->expression.params   = NULL;
76 }
77
78 static void ast_expression_delete(ast_expression *self)
79 {
80     size_t i;
81     if (self->expression.next)
82         ast_delete(self->expression.next);
83     for (i = 0; i < vec_size(self->expression.params); ++i) {
84         ast_delete(self->expression.params[i]);
85     }
86     vec_free(self->expression.params);
87 }
88
89 static void ast_expression_delete_full(ast_expression *self)
90 {
91     ast_expression_delete(self);
92     mem_d(self);
93 }
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < vec_size(fromex->params); ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117         vec_push(selfex->params, v);
118     }
119     return cp;
120 }
121
122 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
123 {
124     size_t i;
125     const ast_expression_common *fromex;
126     ast_expression_common *selfex;
127     self->expression.vtype = other->expression.vtype;
128     if (other->expression.next) {
129         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
130         if (!self->expression.next)
131             return false;
132     }
133     fromex   = &other->expression;
134     selfex = &self->expression;
135     selfex->variadic = fromex->variadic;
136     for (i = 0; i < vec_size(fromex->params); ++i) {
137         ast_value *v = ast_value_copy(fromex->params[i]);
138         if (!v)
139             return false;
140         vec_push(selfex->params, v);
141     }
142     return true;
143 }
144
145 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
146 {
147     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
148     ast_expression_init(self, NULL);
149     self->expression.codegen = NULL;
150     self->expression.next    = NULL;
151     self->expression.vtype   = vtype;
152     return self;
153 }
154
155 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
156 {
157     size_t i;
158     const ast_expression_common *fromex;
159     ast_expression_common *selfex;
160
161     if (!ex)
162         return NULL;
163     else
164     {
165         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
166         ast_expression_init(self, NULL);
167
168         fromex   = &ex->expression;
169         selfex = &self->expression;
170
171         /* This may never be codegen()d */
172         selfex->codegen = NULL;
173
174         selfex->vtype = fromex->vtype;
175         if (fromex->next)
176         {
177             selfex->next = ast_type_copy(ctx, fromex->next);
178             if (!selfex->next) {
179                 ast_expression_delete_full(self);
180                 return NULL;
181             }
182         }
183         else
184             selfex->next = NULL;
185
186         selfex->variadic = fromex->variadic;
187         for (i = 0; i < vec_size(fromex->params); ++i) {
188             ast_value *v = ast_value_copy(fromex->params[i]);
189             if (!v) {
190                 ast_expression_delete_full(self);
191                 return NULL;
192             }
193             vec_push(selfex->params, v);
194         }
195
196         return self;
197     }
198 }
199
200 bool ast_compare_type(ast_expression *a, ast_expression *b)
201 {
202     if (a->expression.vtype != b->expression.vtype)
203         return false;
204     if (!a->expression.next != !b->expression.next)
205         return false;
206     if (vec_size(a->expression.params) != vec_size(b->expression.params))
207         return false;
208     if (a->expression.variadic != b->expression.variadic)
209         return false;
210     if (vec_size(a->expression.params)) {
211         size_t i;
212         for (i = 0; i < vec_size(a->expression.params); ++i) {
213             if (!ast_compare_type((ast_expression*)a->expression.params[i],
214                                   (ast_expression*)b->expression.params[i]))
215                 return false;
216         }
217     }
218     if (a->expression.next)
219         return ast_compare_type(a->expression.next, b->expression.next);
220     return true;
221 }
222
223 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
224 {
225     const char *typestr;
226     size_t typelen;
227     size_t i;
228
229     if (!e) {
230         if (pos + 6 >= bufsize)
231             goto full;
232         strcpy(buf + pos, "(null)");
233         return pos + 6;
234     }
235
236     if (pos + 1 >= bufsize)
237         goto full;
238
239     switch (e->expression.vtype) {
240         case TYPE_VARIANT:
241             strcpy(buf + pos, "(variant)");
242             return pos + 9;
243
244         case TYPE_FIELD:
245             buf[pos++] = '.';
246             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
247
248         case TYPE_POINTER:
249             if (pos + 3 >= bufsize)
250                 goto full;
251             buf[pos++] = '*';
252             buf[pos++] = '(';
253             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
254             if (pos + 1 >= bufsize)
255                 goto full;
256             buf[pos++] = ')';
257             return pos;
258
259         case TYPE_FUNCTION:
260             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
261             if (pos + 2 >= bufsize)
262                 goto full;
263             if (!vec_size(e->expression.params)) {
264                 buf[pos++] = '(';
265                 buf[pos++] = ')';
266                 return pos;
267             }
268             buf[pos++] = '(';
269             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
270             for (i = 1; i < vec_size(e->expression.params); ++i) {
271                 if (pos + 2 >= bufsize)
272                     goto full;
273                 buf[pos++] = ',';
274                 buf[pos++] = ' ';
275                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
276             }
277             if (pos + 1 >= bufsize)
278                 goto full;
279             buf[pos++] = ')';
280             return pos;
281
282         case TYPE_ARRAY:
283             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
284             if (pos + 1 >= bufsize)
285                 goto full;
286             buf[pos++] = '[';
287             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = ']';
291             return pos;
292
293         default:
294             typestr = type_name[e->expression.vtype];
295             typelen = strlen(typestr);
296             if (pos + typelen >= bufsize)
297                 goto full;
298             strcpy(buf + pos, typestr);
299             return pos + typelen;
300     }
301
302 full:
303     buf[bufsize-3] = '.';
304     buf[bufsize-2] = '.';
305     buf[bufsize-1] = '.';
306     return bufsize;
307 }
308
309 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
310 {
311     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
312     buf[pos] = 0;
313 }
314
315 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
316 {
317     ast_instantiate(ast_value, ctx, ast_value_delete);
318     ast_expression_init((ast_expression*)self,
319                         (ast_expression_codegen*)&ast_value_codegen);
320     self->expression.node.keep = true; /* keep */
321
322     self->name = name ? util_strdup(name) : NULL;
323     self->expression.vtype = t;
324     self->expression.next  = NULL;
325     self->isfield  = false;
326     self->cvq      = CV_NONE;
327     self->hasvalue = false;
328     self->uses    = 0;
329     memset(&self->constval, 0, sizeof(self->constval));
330
331     self->ir_v           = NULL;
332     self->ir_values      = NULL;
333     self->ir_value_count = 0;
334
335     self->setter = NULL;
336     self->getter = NULL;
337
338     return self;
339 }
340
341 void ast_value_delete(ast_value* self)
342 {
343     if (self->name)
344         mem_d((void*)self->name);
345     if (self->hasvalue) {
346         switch (self->expression.vtype)
347         {
348         case TYPE_STRING:
349             mem_d((void*)self->constval.vstring);
350             break;
351         case TYPE_FUNCTION:
352             /* unlink us from the function node */
353             self->constval.vfunc->vtype = NULL;
354             break;
355         /* NOTE: delete function? currently collected in
356          * the parser structure
357          */
358         default:
359             break;
360         }
361     }
362     if (self->ir_values)
363         mem_d(self->ir_values);
364     ast_expression_delete((ast_expression*)self);
365     mem_d(self);
366 }
367
368 void ast_value_params_add(ast_value *self, ast_value *p)
369 {
370     vec_push(self->expression.params, p);
371 }
372
373 bool ast_value_set_name(ast_value *self, const char *name)
374 {
375     if (self->name)
376         mem_d((void*)self->name);
377     self->name = util_strdup(name);
378     return !!self->name;
379 }
380
381 ast_binary* ast_binary_new(lex_ctx ctx, int op,
382                            ast_expression* left, ast_expression* right)
383 {
384     ast_instantiate(ast_binary, ctx, ast_binary_delete);
385     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
386
387     self->op = op;
388     self->left = left;
389     self->right = right;
390
391     ast_propagate_effects(self, left);
392     ast_propagate_effects(self, right);
393
394     if (op >= INSTR_EQ_F && op <= INSTR_GT)
395         self->expression.vtype = TYPE_FLOAT;
396     else if (op == INSTR_AND || op == INSTR_OR ||
397              op == INSTR_BITAND || op == INSTR_BITOR)
398         self->expression.vtype = TYPE_FLOAT;
399     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
400         self->expression.vtype = TYPE_VECTOR;
401     else if (op == INSTR_MUL_V)
402         self->expression.vtype = TYPE_FLOAT;
403     else
404         self->expression.vtype = left->expression.vtype;
405
406     return self;
407 }
408
409 void ast_binary_delete(ast_binary *self)
410 {
411     ast_unref(self->left);
412     ast_unref(self->right);
413     ast_expression_delete((ast_expression*)self);
414     mem_d(self);
415 }
416
417 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
418                                ast_expression* left, ast_expression* right)
419 {
420     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
421     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
422
423     ast_side_effects(self) = true;
424
425     self->opstore = storop;
426     self->opbin   = op;
427     self->dest    = left;
428     self->source  = right;
429
430     self->keep_dest = false;
431
432     self->expression.vtype = left->expression.vtype;
433     if (left->expression.next) {
434         self->expression.next = ast_type_copy(ctx, left);
435         if (!self->expression.next) {
436             ast_delete(self);
437             return NULL;
438         }
439     }
440     else
441         self->expression.next = NULL;
442
443     return self;
444 }
445
446 void ast_binstore_delete(ast_binstore *self)
447 {
448     if (!self->keep_dest)
449         ast_unref(self->dest);
450     ast_unref(self->source);
451     ast_expression_delete((ast_expression*)self);
452     mem_d(self);
453 }
454
455 ast_unary* ast_unary_new(lex_ctx ctx, int op,
456                          ast_expression *expr)
457 {
458     ast_instantiate(ast_unary, ctx, ast_unary_delete);
459     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
460
461     self->op = op;
462     self->operand = expr;
463
464     ast_propagate_effects(self, expr);
465
466     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
467         self->expression.vtype = TYPE_FLOAT;
468     } else
469         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
470
471     return self;
472 }
473
474 void ast_unary_delete(ast_unary *self)
475 {
476     ast_unref(self->operand);
477     ast_expression_delete((ast_expression*)self);
478     mem_d(self);
479 }
480
481 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
482 {
483     ast_instantiate(ast_return, ctx, ast_return_delete);
484     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
485
486     self->operand = expr;
487
488     if (expr)
489         ast_propagate_effects(self, expr);
490
491     return self;
492 }
493
494 void ast_return_delete(ast_return *self)
495 {
496     if (self->operand)
497         ast_unref(self->operand);
498     ast_expression_delete((ast_expression*)self);
499     mem_d(self);
500 }
501
502 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
503 {
504     if (field->expression.vtype != TYPE_FIELD) {
505         compile_error(ctx, "ast_entfield_new with expression not of type field");
506         return NULL;
507     }
508     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
509 }
510
511 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
512 {
513     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
514
515     if (!outtype) {
516         mem_d(self);
517         /* Error: field has no type... */
518         return NULL;
519     }
520
521     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
522
523     self->entity = entity;
524     self->field  = field;
525     ast_propagate_effects(self, entity);
526     ast_propagate_effects(self, field);
527
528     if (!ast_type_adopt(self, outtype)) {
529         ast_entfield_delete(self);
530         return NULL;
531     }
532
533     return self;
534 }
535
536 void ast_entfield_delete(ast_entfield *self)
537 {
538     ast_unref(self->entity);
539     ast_unref(self->field);
540     ast_expression_delete((ast_expression*)self);
541     mem_d(self);
542 }
543
544 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
545 {
546     ast_instantiate(ast_member, ctx, ast_member_delete);
547     if (field >= 3) {
548         mem_d(self);
549         return NULL;
550     }
551
552     if (owner->expression.vtype != TYPE_VECTOR &&
553         owner->expression.vtype != TYPE_FIELD) {
554         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
555         mem_d(self);
556         return NULL;
557     }
558
559     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
560     self->expression.node.keep = true; /* keep */
561
562     if (owner->expression.vtype == TYPE_VECTOR) {
563         self->expression.vtype = TYPE_FLOAT;
564         self->expression.next  = NULL;
565     } else {
566         self->expression.vtype = TYPE_FIELD;
567         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
568     }
569
570     self->owner = owner;
571     ast_propagate_effects(self, owner);
572
573     self->field = field;
574     if (name)
575         self->name = util_strdup(name);
576     else
577         self->name = NULL;
578
579     return self;
580 }
581
582 void ast_member_delete(ast_member *self)
583 {
584     /* The owner is always an ast_value, which has .keep=true,
585      * also: ast_members are usually deleted after the owner, thus
586      * this will cause invalid access
587     ast_unref(self->owner);
588      * once we allow (expression).x to access a vector-member, we need
589      * to change this: preferably by creating an alternate ast node for this
590      * purpose that is not garbage-collected.
591     */
592     ast_expression_delete((ast_expression*)self);
593     mem_d(self);
594 }
595
596 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
597 {
598     ast_expression *outtype;
599     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
600
601     outtype = array->expression.next;
602     if (!outtype) {
603         mem_d(self);
604         /* Error: field has no type... */
605         return NULL;
606     }
607
608     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
609
610     self->array = array;
611     self->index = index;
612     ast_propagate_effects(self, array);
613     ast_propagate_effects(self, index);
614
615     if (!ast_type_adopt(self, outtype)) {
616         ast_array_index_delete(self);
617         return NULL;
618     }
619     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
620         if (self->expression.vtype != TYPE_ARRAY) {
621             compile_error(ast_ctx(self), "array_index node on type");
622             ast_array_index_delete(self);
623             return NULL;
624         }
625         self->array = outtype;
626         self->expression.vtype = TYPE_FIELD;
627     }
628
629     return self;
630 }
631
632 void ast_array_index_delete(ast_array_index *self)
633 {
634     ast_unref(self->array);
635     ast_unref(self->index);
636     ast_expression_delete((ast_expression*)self);
637     mem_d(self);
638 }
639
640 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
641 {
642     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
643     if (!ontrue && !onfalse) {
644         /* because it is invalid */
645         mem_d(self);
646         return NULL;
647     }
648     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
649
650     self->cond     = cond;
651     self->on_true  = ontrue;
652     self->on_false = onfalse;
653     ast_propagate_effects(self, cond);
654     if (ontrue)
655         ast_propagate_effects(self, ontrue);
656     if (onfalse)
657         ast_propagate_effects(self, onfalse);
658
659     return self;
660 }
661
662 void ast_ifthen_delete(ast_ifthen *self)
663 {
664     ast_unref(self->cond);
665     if (self->on_true)
666         ast_unref(self->on_true);
667     if (self->on_false)
668         ast_unref(self->on_false);
669     ast_expression_delete((ast_expression*)self);
670     mem_d(self);
671 }
672
673 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
674 {
675     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
676     /* This time NEITHER must be NULL */
677     if (!ontrue || !onfalse) {
678         mem_d(self);
679         return NULL;
680     }
681     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
682
683     self->cond     = cond;
684     self->on_true  = ontrue;
685     self->on_false = onfalse;
686     ast_propagate_effects(self, cond);
687     ast_propagate_effects(self, ontrue);
688     ast_propagate_effects(self, onfalse);
689
690     if (!ast_type_adopt(self, ontrue)) {
691         ast_ternary_delete(self);
692         return NULL;
693     }
694
695     return self;
696 }
697
698 void ast_ternary_delete(ast_ternary *self)
699 {
700     ast_unref(self->cond);
701     ast_unref(self->on_true);
702     ast_unref(self->on_false);
703     ast_expression_delete((ast_expression*)self);
704     mem_d(self);
705 }
706
707 ast_loop* ast_loop_new(lex_ctx ctx,
708                        ast_expression *initexpr,
709                        ast_expression *precond,
710                        ast_expression *postcond,
711                        ast_expression *increment,
712                        ast_expression *body)
713 {
714     ast_instantiate(ast_loop, ctx, ast_loop_delete);
715     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
716
717     self->initexpr  = initexpr;
718     self->precond   = precond;
719     self->postcond  = postcond;
720     self->increment = increment;
721     self->body      = body;
722
723     if (initexpr)
724         ast_propagate_effects(self, initexpr);
725     if (precond)
726         ast_propagate_effects(self, precond);
727     if (postcond)
728         ast_propagate_effects(self, postcond);
729     if (increment)
730         ast_propagate_effects(self, increment);
731     if (body)
732         ast_propagate_effects(self, body);
733
734     return self;
735 }
736
737 void ast_loop_delete(ast_loop *self)
738 {
739     if (self->initexpr)
740         ast_unref(self->initexpr);
741     if (self->precond)
742         ast_unref(self->precond);
743     if (self->postcond)
744         ast_unref(self->postcond);
745     if (self->increment)
746         ast_unref(self->increment);
747     if (self->body)
748         ast_unref(self->body);
749     ast_expression_delete((ast_expression*)self);
750     mem_d(self);
751 }
752
753 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
754 {
755     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
756     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
757
758     self->is_continue = iscont;
759
760     return self;
761 }
762
763 void ast_breakcont_delete(ast_breakcont *self)
764 {
765     ast_expression_delete((ast_expression*)self);
766     mem_d(self);
767 }
768
769 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
770 {
771     ast_instantiate(ast_switch, ctx, ast_switch_delete);
772     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
773
774     self->operand = op;
775     self->cases   = NULL;
776
777     ast_propagate_effects(self, op);
778
779     return self;
780 }
781
782 void ast_switch_delete(ast_switch *self)
783 {
784     size_t i;
785     ast_unref(self->operand);
786
787     for (i = 0; i < vec_size(self->cases); ++i) {
788         if (self->cases[i].value)
789             ast_unref(self->cases[i].value);
790         ast_unref(self->cases[i].code);
791     }
792     vec_free(self->cases);
793
794     ast_expression_delete((ast_expression*)self);
795     mem_d(self);
796 }
797
798 ast_label* ast_label_new(lex_ctx ctx, const char *name)
799 {
800     ast_instantiate(ast_label, ctx, ast_label_delete);
801     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
802
803     self->name    = util_strdup(name);
804     self->irblock = NULL;
805     self->gotos   = NULL;
806
807     return self;
808 }
809
810 void ast_label_delete(ast_label *self)
811 {
812     mem_d((void*)self->name);
813     vec_free(self->gotos);
814     ast_expression_delete((ast_expression*)self);
815     mem_d(self);
816 }
817
818 void ast_label_register_goto(ast_label *self, ast_goto *g)
819 {
820     vec_push(self->gotos, g);
821 }
822
823 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
824 {
825     ast_instantiate(ast_goto, ctx, ast_goto_delete);
826     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
827
828     self->name    = util_strdup(name);
829     self->target  = NULL;
830     self->irblock_from = NULL;
831
832     return self;
833 }
834
835 void ast_goto_delete(ast_goto *self)
836 {
837     mem_d((void*)self->name);
838     ast_expression_delete((ast_expression*)self);
839     mem_d(self);
840 }
841
842 void ast_goto_set_label(ast_goto *self, ast_label *label)
843 {
844     self->target = label;
845 }
846
847 ast_call* ast_call_new(lex_ctx ctx,
848                        ast_expression *funcexpr)
849 {
850     ast_instantiate(ast_call, ctx, ast_call_delete);
851     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
852
853     ast_side_effects(self) = true;
854
855     self->params = NULL;
856     self->func   = funcexpr;
857
858 /*
859     self->expression.vtype = funcexpr->expression.next->expression.vtype;
860     if (funcexpr->expression.next->expression.next)
861         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
862 */
863     ast_type_adopt(self, funcexpr->expression.next);
864
865     return self;
866 }
867
868 void ast_call_delete(ast_call *self)
869 {
870     size_t i;
871     for (i = 0; i < vec_size(self->params); ++i)
872         ast_unref(self->params[i]);
873     vec_free(self->params);
874
875     if (self->func)
876         ast_unref(self->func);
877
878     ast_expression_delete((ast_expression*)self);
879     mem_d(self);
880 }
881
882 bool ast_call_check_types(ast_call *self)
883 {
884     size_t i;
885     bool   retval = true;
886     const  ast_expression *func = self->func;
887     size_t count = vec_size(self->params);
888     if (count > vec_size(func->expression.params))
889         count = vec_size(func->expression.params);
890
891     for (i = 0; i < count; ++i) {
892         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
893             char texp[1024];
894             char tgot[1024];
895             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
896             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
897             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
898                      (unsigned int)(i+1), texp, tgot);
899             /* we don't immediately return */
900             retval = false;
901         }
902     }
903     return retval;
904 }
905
906 ast_store* ast_store_new(lex_ctx ctx, int op,
907                          ast_expression *dest, ast_expression *source)
908 {
909     ast_instantiate(ast_store, ctx, ast_store_delete);
910     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
911
912     ast_side_effects(self) = true;
913
914     self->op = op;
915     self->dest = dest;
916     self->source = source;
917
918     self->expression.vtype = dest->expression.vtype;
919     if (dest->expression.next) {
920         self->expression.next = ast_type_copy(ctx, dest);
921         if (!self->expression.next) {
922             ast_delete(self);
923             return NULL;
924         }
925     }
926     else
927         self->expression.next = NULL;
928
929     return self;
930 }
931
932 void ast_store_delete(ast_store *self)
933 {
934     ast_unref(self->dest);
935     ast_unref(self->source);
936     ast_expression_delete((ast_expression*)self);
937     mem_d(self);
938 }
939
940 ast_block* ast_block_new(lex_ctx ctx)
941 {
942     ast_instantiate(ast_block, ctx, ast_block_delete);
943     ast_expression_init((ast_expression*)self,
944                         (ast_expression_codegen*)&ast_block_codegen);
945
946     self->locals  = NULL;
947     self->exprs   = NULL;
948     self->collect = NULL;
949
950     return self;
951 }
952
953 void ast_block_add_expr(ast_block *self, ast_expression *e)
954 {
955     ast_propagate_effects(self, e);
956     vec_push(self->exprs, e);
957 }
958
959 void ast_block_collect(ast_block *self, ast_expression *expr)
960 {
961     vec_push(self->collect, expr);
962     expr->expression.node.keep = true;
963 }
964
965 void ast_block_delete(ast_block *self)
966 {
967     size_t i;
968     for (i = 0; i < vec_size(self->exprs); ++i)
969         ast_unref(self->exprs[i]);
970     vec_free(self->exprs);
971     for (i = 0; i < vec_size(self->locals); ++i)
972         ast_delete(self->locals[i]);
973     vec_free(self->locals);
974     for (i = 0; i < vec_size(self->collect); ++i)
975         ast_delete(self->collect[i]);
976     vec_free(self->collect);
977     ast_expression_delete((ast_expression*)self);
978     mem_d(self);
979 }
980
981 bool ast_block_set_type(ast_block *self, ast_expression *from)
982 {
983     if (self->expression.next)
984         ast_delete(self->expression.next);
985     self->expression.vtype = from->expression.vtype;
986     if (from->expression.next) {
987         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
988         if (!self->expression.next)
989             return false;
990     }
991     else
992         self->expression.next = NULL;
993     return true;
994 }
995
996 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
997 {
998     ast_instantiate(ast_function, ctx, ast_function_delete);
999
1000     if (!vtype ||
1001         vtype->hasvalue ||
1002         vtype->expression.vtype != TYPE_FUNCTION)
1003     {
1004         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1005                  (int)!vtype,
1006                  (int)vtype->hasvalue,
1007                  vtype->expression.vtype);
1008         mem_d(self);
1009         return NULL;
1010     }
1011
1012     self->vtype  = vtype;
1013     self->name   = name ? util_strdup(name) : NULL;
1014     self->blocks = NULL;
1015
1016     self->labelcount = 0;
1017     self->builtin = 0;
1018
1019     self->ir_func = NULL;
1020     self->curblock = NULL;
1021
1022     self->breakblock    = NULL;
1023     self->continueblock = NULL;
1024
1025     vtype->hasvalue = true;
1026     vtype->constval.vfunc = self;
1027
1028     return self;
1029 }
1030
1031 void ast_function_delete(ast_function *self)
1032 {
1033     size_t i;
1034     if (self->name)
1035         mem_d((void*)self->name);
1036     if (self->vtype) {
1037         /* ast_value_delete(self->vtype); */
1038         self->vtype->hasvalue = false;
1039         self->vtype->constval.vfunc = NULL;
1040         /* We use unref - if it was stored in a global table it is supposed
1041          * to be deleted from *there*
1042          */
1043         ast_unref(self->vtype);
1044     }
1045     for (i = 0; i < vec_size(self->blocks); ++i)
1046         ast_delete(self->blocks[i]);
1047     vec_free(self->blocks);
1048     mem_d(self);
1049 }
1050
1051 const char* ast_function_label(ast_function *self, const char *prefix)
1052 {
1053     size_t id;
1054     size_t len;
1055     char  *from;
1056
1057     if (!opts_dump && !opts_dumpfin)
1058         return NULL;
1059
1060     id  = (self->labelcount++);
1061     len = strlen(prefix);
1062
1063     from = self->labelbuf + sizeof(self->labelbuf)-1;
1064     *from-- = 0;
1065     do {
1066         unsigned int digit = id % 10;
1067         *from = digit + '0';
1068         id /= 10;
1069     } while (id);
1070     memcpy(from - len, prefix, len);
1071     return from - len;
1072 }
1073
1074 /*********************************************************************/
1075 /* AST codegen part
1076  * by convention you must never pass NULL to the 'ir_value **out'
1077  * parameter. If you really don't care about the output, pass a dummy.
1078  * But I can't imagine a pituation where the output is truly unnecessary.
1079  */
1080
1081 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1082 {
1083     if (out->vtype == TYPE_FIELD)
1084         out->fieldtype = self->next->expression.vtype;
1085     if (out->vtype == TYPE_FUNCTION)
1086         out->outtype = self->next->expression.vtype;
1087 }
1088
1089 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1090 #define codegen_output_type_expr(a,o) (_ast_codegen_output_type(a,(o)))
1091
1092 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1093 {
1094     (void)func;
1095     (void)lvalue;
1096     /* NOTE: This is the codegen for a variable used in an expression.
1097      * It is not the codegen to generate the value. For this purpose,
1098      * ast_local_codegen and ast_global_codegen are to be used before this
1099      * is executed. ast_function_codegen should take care of its locals,
1100      * and the ast-user should take care of ast_global_codegen to be used
1101      * on all the globals.
1102      */
1103     if (!self->ir_v) {
1104         char typename[1024];
1105         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
1106         compile_error(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
1107         return false;
1108     }
1109     *out = self->ir_v;
1110     return true;
1111 }
1112
1113 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1114 {
1115     ir_value *v = NULL;
1116
1117     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1118     {
1119         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1120         if (!func)
1121             return false;
1122         func->context = ast_ctx(self);
1123         func->value->context = ast_ctx(self);
1124
1125         self->constval.vfunc->ir_func = func;
1126         self->ir_v = func->value;
1127         /* The function is filled later on ast_function_codegen... */
1128         return true;
1129     }
1130
1131     if (isfield && self->expression.vtype == TYPE_FIELD) {
1132         ast_expression *fieldtype = self->expression.next;
1133
1134         if (self->hasvalue) {
1135             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1136             goto error;
1137         }
1138
1139         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1140             size_t ai;
1141             char   *name;
1142             size_t  namelen;
1143
1144             ast_expression_common *elemtype;
1145             int                    vtype;
1146             ast_value             *array = (ast_value*)fieldtype;
1147
1148             if (!ast_istype(fieldtype, ast_value)) {
1149                 compile_error(ast_ctx(self), "internal error: ast_value required");
1150                 return false;
1151             }
1152
1153             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1154             if (!array->expression.count || array->expression.count > opts_max_array_size)
1155                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1156
1157             elemtype = &array->expression.next->expression;
1158             vtype = elemtype->vtype;
1159
1160             v = ir_builder_create_field(ir, self->name, vtype);
1161             if (!v) {
1162                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1163                 return false;
1164             }
1165             v->context = ast_ctx(self);
1166             array->ir_v = self->ir_v = v;
1167
1168             namelen = strlen(self->name);
1169             name    = (char*)mem_a(namelen + 16);
1170             strcpy(name, self->name);
1171
1172             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1173             array->ir_values[0] = v;
1174             for (ai = 1; ai < array->expression.count; ++ai) {
1175                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1176                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1177                 if (!array->ir_values[ai]) {
1178                     mem_d(name);
1179                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1180                     return false;
1181                 }
1182                 array->ir_values[ai]->context = ast_ctx(self);
1183             }
1184             mem_d(name);
1185         }
1186         else
1187         {
1188             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1189             if (!v)
1190                 return false;
1191             v->context = ast_ctx(self);
1192             self->ir_v = v;
1193         }
1194         return true;
1195     }
1196
1197     if (self->expression.vtype == TYPE_ARRAY) {
1198         size_t ai;
1199         char   *name;
1200         size_t  namelen;
1201
1202         ast_expression_common *elemtype = &self->expression.next->expression;
1203         int vtype = elemtype->vtype;
1204
1205         /* same as with field arrays */
1206         if (!self->expression.count || self->expression.count > opts_max_array_size)
1207             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1208
1209         v = ir_builder_create_global(ir, self->name, vtype);
1210         if (!v) {
1211             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1212             return false;
1213         }
1214         v->context = ast_ctx(self);
1215
1216         namelen = strlen(self->name);
1217         name    = (char*)mem_a(namelen + 16);
1218         strcpy(name, self->name);
1219
1220         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1221         self->ir_values[0] = v;
1222         for (ai = 1; ai < self->expression.count; ++ai) {
1223             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1224             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1225             if (!self->ir_values[ai]) {
1226                 mem_d(name);
1227                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1228                 return false;
1229             }
1230             self->ir_values[ai]->context = ast_ctx(self);
1231         }
1232         mem_d(name);
1233     }
1234     else
1235     {
1236         /* Arrays don't do this since there's no "array" value which spans across the
1237          * whole thing.
1238          */
1239         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1240         if (!v) {
1241             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1242             return false;
1243         }
1244         codegen_output_type(self, v);
1245         v->context = ast_ctx(self);
1246     }
1247
1248     if (self->hasvalue) {
1249         switch (self->expression.vtype)
1250         {
1251             case TYPE_FLOAT:
1252                 if (!ir_value_set_float(v, self->constval.vfloat))
1253                     goto error;
1254                 break;
1255             case TYPE_VECTOR:
1256                 if (!ir_value_set_vector(v, self->constval.vvec))
1257                     goto error;
1258                 break;
1259             case TYPE_STRING:
1260                 if (!ir_value_set_string(v, self->constval.vstring))
1261                     goto error;
1262                 break;
1263             case TYPE_ARRAY:
1264                 compile_error(ast_ctx(self), "TODO: global constant array");
1265                 break;
1266             case TYPE_FUNCTION:
1267                 compile_error(ast_ctx(self), "global of type function not properly generated");
1268                 goto error;
1269                 /* Cannot generate an IR value for a function,
1270                  * need a pointer pointing to a function rather.
1271                  */
1272             case TYPE_FIELD:
1273                 if (!self->constval.vfield) {
1274                     compile_error(ast_ctx(self), "field constant without vfield set");
1275                     goto error;
1276                 }
1277                 if (!self->constval.vfield->ir_v) {
1278                     compile_error(ast_ctx(self), "field constant generated before its field");
1279                     goto error;
1280                 }
1281                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1282                     goto error;
1283                 break;
1284             default:
1285                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1286                 break;
1287         }
1288     }
1289
1290     /* link us to the ir_value */
1291     v->cvq = self->cvq;
1292     self->ir_v = v;
1293     return true;
1294
1295 error: /* clean up */
1296     ir_value_delete(v);
1297     return false;
1298 }
1299
1300 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1301 {
1302     ir_value *v = NULL;
1303     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1304     {
1305         /* Do we allow local functions? I think not...
1306          * this is NOT a function pointer atm.
1307          */
1308         return false;
1309     }
1310
1311     if (self->expression.vtype == TYPE_ARRAY) {
1312         size_t ai;
1313         char   *name;
1314         size_t  namelen;
1315
1316         ast_expression_common *elemtype = &self->expression.next->expression;
1317         int vtype = elemtype->vtype;
1318
1319         if (param) {
1320             compile_error(ast_ctx(self), "array-parameters are not supported");
1321             return false;
1322         }
1323
1324         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1325         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1326             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1327         }
1328
1329         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1330         if (!self->ir_values) {
1331             compile_error(ast_ctx(self), "failed to allocate array values");
1332             return false;
1333         }
1334
1335         v = ir_function_create_local(func, self->name, vtype, param);
1336         if (!v) {
1337             compile_error(ast_ctx(self), "ir_function_create_local failed");
1338             return false;
1339         }
1340         v->context = ast_ctx(self);
1341
1342         namelen = strlen(self->name);
1343         name    = (char*)mem_a(namelen + 16);
1344         strcpy(name, self->name);
1345
1346         self->ir_values[0] = v;
1347         for (ai = 1; ai < self->expression.count; ++ai) {
1348             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1349             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1350             if (!self->ir_values[ai]) {
1351                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1352                 return false;
1353             }
1354             self->ir_values[ai]->context = ast_ctx(self);
1355         }
1356     }
1357     else
1358     {
1359         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1360         if (!v)
1361             return false;
1362         codegen_output_type(self, v);
1363         v->context = ast_ctx(self);
1364     }
1365
1366     /* A constant local... hmmm...
1367      * I suppose the IR will have to deal with this
1368      */
1369     if (self->hasvalue) {
1370         switch (self->expression.vtype)
1371         {
1372             case TYPE_FLOAT:
1373                 if (!ir_value_set_float(v, self->constval.vfloat))
1374                     goto error;
1375                 break;
1376             case TYPE_VECTOR:
1377                 if (!ir_value_set_vector(v, self->constval.vvec))
1378                     goto error;
1379                 break;
1380             case TYPE_STRING:
1381                 if (!ir_value_set_string(v, self->constval.vstring))
1382                     goto error;
1383                 break;
1384             default:
1385                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1386                 break;
1387         }
1388     }
1389
1390     /* link us to the ir_value */
1391     v->cvq = self->cvq;
1392     self->ir_v = v;
1393
1394     if (self->setter) {
1395         if (!ast_global_codegen(self->setter, func->owner, false) ||
1396             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1397             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1398             return false;
1399     }
1400     if (self->getter) {
1401         if (!ast_global_codegen(self->getter, func->owner, false) ||
1402             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1403             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1404             return false;
1405     }
1406     return true;
1407
1408 error: /* clean up */
1409     ir_value_delete(v);
1410     return false;
1411 }
1412
1413 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1414 {
1415     ir_function *irf;
1416     ir_value    *dummy;
1417     ast_expression_common *ec;
1418     size_t    i;
1419
1420     (void)ir;
1421
1422     irf = self->ir_func;
1423     if (!irf) {
1424         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1425         return false;
1426     }
1427
1428     /* fill the parameter list */
1429     ec = &self->vtype->expression;
1430     for (i = 0; i < vec_size(ec->params); ++i)
1431     {
1432         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1433             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1434         else
1435             vec_push(irf->params, ec->params[i]->expression.vtype);
1436         if (!self->builtin) {
1437             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1438                 return false;
1439         }
1440     }
1441
1442     if (self->builtin) {
1443         irf->builtin = self->builtin;
1444         return true;
1445     }
1446
1447     if (!vec_size(self->blocks)) {
1448         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1449         return false;
1450     }
1451
1452     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1453     if (!self->curblock) {
1454         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1455         return false;
1456     }
1457
1458     for (i = 0; i < vec_size(self->blocks); ++i) {
1459         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1460         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1461             return false;
1462     }
1463
1464     /* TODO: check return types */
1465     if (!self->curblock->is_return)
1466     {
1467         if (!self->vtype->expression.next ||
1468             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1469         {
1470             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1471         }
1472         else if (vec_size(self->curblock->entries))
1473         {
1474             /* error("missing return"); */
1475             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1476                                 "control reaches end of non-void function (`%s`) via %s",
1477                                 self->name, self->curblock->label))
1478             {
1479                 return false;
1480             }
1481             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1482         }
1483     }
1484     return true;
1485 }
1486
1487 /* Note, you will not see ast_block_codegen generate ir_blocks.
1488  * To the AST and the IR, blocks are 2 different things.
1489  * In the AST it represents a block of code, usually enclosed in
1490  * curly braces {...}.
1491  * While in the IR it represents a block in terms of control-flow.
1492  */
1493 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1494 {
1495     size_t i;
1496
1497     /* We don't use this
1498      * Note: an ast-representation using the comma-operator
1499      * of the form: (a, b, c) = x should not assign to c...
1500      */
1501     if (lvalue) {
1502         compile_error(ast_ctx(self), "not an l-value (code-block)");
1503         return false;
1504     }
1505
1506     if (self->expression.outr) {
1507         *out = self->expression.outr;
1508         return true;
1509     }
1510
1511     /* output is NULL at first, we'll have each expression
1512      * assign to out output, thus, a comma-operator represention
1513      * using an ast_block will return the last generated value,
1514      * so: (b, c) + a  executed both b and c, and returns c,
1515      * which is then added to a.
1516      */
1517     *out = NULL;
1518
1519     /* generate locals */
1520     for (i = 0; i < vec_size(self->locals); ++i)
1521     {
1522         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1523             if (opts_debug)
1524                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1525             return false;
1526         }
1527     }
1528
1529     for (i = 0; i < vec_size(self->exprs); ++i)
1530     {
1531         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1532         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1533             compile_error(ast_ctx(self->exprs[i]), "unreachable statement");
1534             return false;
1535         }
1536         if (!(*gen)(self->exprs[i], func, false, out))
1537             return false;
1538     }
1539
1540     self->expression.outr = *out;
1541
1542     return true;
1543 }
1544
1545 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1546 {
1547     ast_expression_codegen *cgen;
1548     ir_value *left  = NULL;
1549     ir_value *right = NULL;
1550
1551     ast_value       *arr;
1552     ast_value       *idx = 0;
1553     ast_array_index *ai = NULL;
1554
1555     if (lvalue && self->expression.outl) {
1556         *out = self->expression.outl;
1557         return true;
1558     }
1559
1560     if (!lvalue && self->expression.outr) {
1561         *out = self->expression.outr;
1562         return true;
1563     }
1564
1565     if (ast_istype(self->dest, ast_array_index))
1566     {
1567
1568         ai = (ast_array_index*)self->dest;
1569         idx = (ast_value*)ai->index;
1570
1571         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1572             ai = NULL;
1573     }
1574
1575     if (ai) {
1576         /* we need to call the setter */
1577         ir_value  *iridx, *funval;
1578         ir_instr  *call;
1579
1580         if (lvalue) {
1581             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1582             return false;
1583         }
1584
1585         arr = (ast_value*)ai->array;
1586         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1587             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1588             return false;
1589         }
1590
1591         cgen = idx->expression.codegen;
1592         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1593             return false;
1594
1595         cgen = arr->setter->expression.codegen;
1596         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1597             return false;
1598
1599         cgen = self->source->expression.codegen;
1600         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1601             return false;
1602
1603         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval);
1604         if (!call)
1605             return false;
1606         ir_call_param(call, iridx);
1607         ir_call_param(call, right);
1608         self->expression.outr = right;
1609     }
1610     else
1611     {
1612         /* regular code */
1613
1614         cgen = self->dest->expression.codegen;
1615         /* lvalue! */
1616         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1617             return false;
1618         self->expression.outl = left;
1619
1620         cgen = self->source->expression.codegen;
1621         /* rvalue! */
1622         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1623             return false;
1624
1625         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1626             return false;
1627         self->expression.outr = right;
1628     }
1629
1630     /* Theoretically, an assinment returns its left side as an
1631      * lvalue, if we don't need an lvalue though, we return
1632      * the right side as an rvalue, otherwise we have to
1633      * somehow know whether or not we need to dereference the pointer
1634      * on the left side - that is: OP_LOAD if it was an address.
1635      * Also: in original QC we cannot OP_LOADP *anyway*.
1636      */
1637     *out = (lvalue ? left : right);
1638
1639     return true;
1640 }
1641
1642 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1643 {
1644     ast_expression_codegen *cgen;
1645     ir_value *left, *right;
1646
1647     /* A binary operation cannot yield an l-value */
1648     if (lvalue) {
1649         compile_error(ast_ctx(self), "not an l-value (binop)");
1650         return false;
1651     }
1652
1653     if (self->expression.outr) {
1654         *out = self->expression.outr;
1655         return true;
1656     }
1657
1658     if (OPTS_FLAG(SHORT_LOGIC) &&
1659         (self->op == INSTR_AND || self->op == INSTR_OR))
1660     {
1661         /* short circuit evaluation */
1662         ir_block *other, *merge;
1663         ir_block *from_left, *from_right;
1664         ir_instr *phi;
1665         size_t    merge_id;
1666         uint16_t  notop;
1667
1668         /* Note about casting to true boolean values:
1669          * We use a single NOT for sub expressions, and an
1670          * overall NOT at the end, and for that purpose swap
1671          * all the jump conditions in order for the NOT to get
1672          * doubled.
1673          * ie: (a && b) usually becomes (!!a ? !!b : !!a)
1674          * but we translate this to (!(!a ? !a : !b))
1675          */
1676
1677         merge_id = vec_size(func->ir_func->blocks);
1678         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1679
1680         cgen = self->left->expression.codegen;
1681         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1682             return false;
1683         if (!OPTS_FLAG(PERL_LOGIC)) {
1684             notop = type_not_instr[left->vtype];
1685             if (notop == AINSTR_END) {
1686                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1687                 return false;
1688             }
1689             left = ir_block_create_unary(func->curblock, ast_ctx(self),
1690                                          ast_function_label(func, "sce_not"),
1691                                          notop,
1692                                          left);
1693         }
1694         from_left = func->curblock;
1695
1696         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1697         if ( !(self->op == INSTR_OR) != !OPTS_FLAG(PERL_LOGIC) ) {
1698             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1699                 return false;
1700         } else {
1701             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1702                 return false;
1703         }
1704         /* use the likely flag */
1705         vec_last(func->curblock->instr)->likely = true;
1706
1707         func->curblock = other;
1708         cgen = self->right->expression.codegen;
1709         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1710             return false;
1711         if (!OPTS_FLAG(PERL_LOGIC)) {
1712             notop = type_not_instr[right->vtype];
1713             if (notop == AINSTR_END) {
1714                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1715                 return false;
1716             }
1717             right = ir_block_create_unary(func->curblock, ast_ctx(self),
1718                                           ast_function_label(func, "sce_not"),
1719                                           notop,
1720                                           right);
1721         }
1722         from_right = func->curblock;
1723
1724         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1725             return false;
1726
1727         vec_remove(func->ir_func->blocks, merge_id, 1);
1728         vec_push(func->ir_func->blocks, merge);
1729
1730         func->curblock = merge;
1731         phi = ir_block_create_phi(func->curblock, ast_ctx(self), ast_function_label(func, "sce_value"), TYPE_FLOAT);
1732         ir_phi_add(phi, from_left, left);
1733         ir_phi_add(phi, from_right, right);
1734         *out = ir_phi_value(phi);
1735         if (!OPTS_FLAG(PERL_LOGIC)) {
1736             notop = type_not_instr[(*out)->vtype];
1737             if (notop == AINSTR_END) {
1738                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1739                 return false;
1740             }
1741             *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1742                                          ast_function_label(func, "sce_final_not"),
1743                                          notop,
1744                                          *out);
1745         }
1746         if (!*out)
1747             return false;
1748         self->expression.outr = *out;
1749         return true;
1750     }
1751
1752     cgen = self->left->expression.codegen;
1753     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1754         return false;
1755
1756     cgen = self->right->expression.codegen;
1757     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1758         return false;
1759
1760     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1761                                  self->op, left, right);
1762     if (!*out)
1763         return false;
1764     self->expression.outr = *out;
1765
1766     return true;
1767 }
1768
1769 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1770 {
1771     ast_expression_codegen *cgen;
1772     ir_value *leftl = NULL, *leftr, *right, *bin;
1773
1774     ast_value       *arr;
1775     ast_value       *idx = 0;
1776     ast_array_index *ai = NULL;
1777     ir_value        *iridx = NULL;
1778
1779     if (lvalue && self->expression.outl) {
1780         *out = self->expression.outl;
1781         return true;
1782     }
1783
1784     if (!lvalue && self->expression.outr) {
1785         *out = self->expression.outr;
1786         return true;
1787     }
1788
1789     if (ast_istype(self->dest, ast_array_index))
1790     {
1791
1792         ai = (ast_array_index*)self->dest;
1793         idx = (ast_value*)ai->index;
1794
1795         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1796             ai = NULL;
1797     }
1798
1799     /* for a binstore we need both an lvalue and an rvalue for the left side */
1800     /* rvalue of destination! */
1801     if (ai) {
1802         cgen = idx->expression.codegen;
1803         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1804             return false;
1805     }
1806     cgen = self->dest->expression.codegen;
1807     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1808         return false;
1809
1810     /* source as rvalue only */
1811     cgen = self->source->expression.codegen;
1812     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1813         return false;
1814
1815     /* now the binary */
1816     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1817                                 self->opbin, leftr, right);
1818     self->expression.outr = bin;
1819
1820
1821     if (ai) {
1822         /* we need to call the setter */
1823         ir_value  *funval;
1824         ir_instr  *call;
1825
1826         if (lvalue) {
1827             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1828             return false;
1829         }
1830
1831         arr = (ast_value*)ai->array;
1832         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1833             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1834             return false;
1835         }
1836
1837         cgen = arr->setter->expression.codegen;
1838         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1839             return false;
1840
1841         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval);
1842         if (!call)
1843             return false;
1844         ir_call_param(call, iridx);
1845         ir_call_param(call, bin);
1846         self->expression.outr = bin;
1847     } else {
1848         /* now store them */
1849         cgen = self->dest->expression.codegen;
1850         /* lvalue of destination */
1851         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1852             return false;
1853         self->expression.outl = leftl;
1854
1855         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1856             return false;
1857         self->expression.outr = bin;
1858     }
1859
1860     /* Theoretically, an assinment returns its left side as an
1861      * lvalue, if we don't need an lvalue though, we return
1862      * the right side as an rvalue, otherwise we have to
1863      * somehow know whether or not we need to dereference the pointer
1864      * on the left side - that is: OP_LOAD if it was an address.
1865      * Also: in original QC we cannot OP_LOADP *anyway*.
1866      */
1867     *out = (lvalue ? leftl : bin);
1868
1869     return true;
1870 }
1871
1872 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1873 {
1874     ast_expression_codegen *cgen;
1875     ir_value *operand;
1876
1877     /* An unary operation cannot yield an l-value */
1878     if (lvalue) {
1879         compile_error(ast_ctx(self), "not an l-value (binop)");
1880         return false;
1881     }
1882
1883     if (self->expression.outr) {
1884         *out = self->expression.outr;
1885         return true;
1886     }
1887
1888     cgen = self->operand->expression.codegen;
1889     /* lvalue! */
1890     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1891         return false;
1892
1893     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
1894                                  self->op, operand);
1895     if (!*out)
1896         return false;
1897     self->expression.outr = *out;
1898
1899     return true;
1900 }
1901
1902 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1903 {
1904     ast_expression_codegen *cgen;
1905     ir_value *operand;
1906
1907     *out = NULL;
1908
1909     /* In the context of a return operation, we don't actually return
1910      * anything...
1911      */
1912     if (lvalue) {
1913         compile_error(ast_ctx(self), "return-expression is not an l-value");
1914         return false;
1915     }
1916
1917     if (self->expression.outr) {
1918         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1919         return false;
1920     }
1921     self->expression.outr = (ir_value*)1;
1922
1923     if (self->operand) {
1924         cgen = self->operand->expression.codegen;
1925         /* lvalue! */
1926         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1927             return false;
1928
1929         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
1930             return false;
1931     } else {
1932         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
1933             return false;
1934     }
1935
1936     return true;
1937 }
1938
1939 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1940 {
1941     ast_expression_codegen *cgen;
1942     ir_value *ent, *field;
1943
1944     /* This function needs to take the 'lvalue' flag into account!
1945      * As lvalue we provide a field-pointer, as rvalue we provide the
1946      * value in a temp.
1947      */
1948
1949     if (lvalue && self->expression.outl) {
1950         *out = self->expression.outl;
1951         return true;
1952     }
1953
1954     if (!lvalue && self->expression.outr) {
1955         *out = self->expression.outr;
1956         return true;
1957     }
1958
1959     cgen = self->entity->expression.codegen;
1960     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1961         return false;
1962
1963     cgen = self->field->expression.codegen;
1964     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1965         return false;
1966
1967     if (lvalue) {
1968         /* address! */
1969         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
1970                                             ent, field);
1971     } else {
1972         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
1973                                              ent, field, self->expression.vtype);
1974         codegen_output_type(self, *out);
1975     }
1976     if (!*out) {
1977         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
1978                  (lvalue ? "ADDRESS" : "FIELD"),
1979                  type_name[self->expression.vtype]);
1980         return false;
1981     }
1982
1983     if (lvalue)
1984         self->expression.outl = *out;
1985     else
1986         self->expression.outr = *out;
1987
1988     /* Hm that should be it... */
1989     return true;
1990 }
1991
1992 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1993 {
1994     ast_expression_codegen *cgen;
1995     ir_value *vec;
1996
1997     /* in QC this is always an lvalue */
1998     (void)lvalue;
1999     if (self->expression.outl) {
2000         *out = self->expression.outl;
2001         return true;
2002     }
2003
2004     cgen = self->owner->expression.codegen;
2005     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
2006         return false;
2007
2008     if (vec->vtype != TYPE_VECTOR &&
2009         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2010     {
2011         return false;
2012     }
2013
2014     *out = ir_value_vector_member(vec, self->field);
2015     self->expression.outl = *out;
2016
2017     return (*out != NULL);
2018 }
2019
2020 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2021 {
2022     ast_value *arr;
2023     ast_value *idx;
2024
2025     if (!lvalue && self->expression.outr) {
2026         *out = self->expression.outr;
2027     }
2028     if (lvalue && self->expression.outl) {
2029         *out = self->expression.outl;
2030     }
2031
2032     if (!ast_istype(self->array, ast_value)) {
2033         compile_error(ast_ctx(self), "array indexing this way is not supported");
2034         /* note this would actually be pointer indexing because the left side is
2035          * not an actual array but (hopefully) an indexable expression.
2036          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2037          * support this path will be filled.
2038          */
2039         return false;
2040     }
2041
2042     arr = (ast_value*)self->array;
2043     idx = (ast_value*)self->index;
2044
2045     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2046         /* Time to use accessor functions */
2047         ast_expression_codegen *cgen;
2048         ir_value               *iridx, *funval;
2049         ir_instr               *call;
2050
2051         if (lvalue) {
2052             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2053             return false;
2054         }
2055
2056         if (!arr->getter) {
2057             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2058             return false;
2059         }
2060
2061         cgen = self->index->expression.codegen;
2062         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2063             return false;
2064
2065         cgen = arr->getter->expression.codegen;
2066         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2067             return false;
2068
2069         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval);
2070         if (!call)
2071             return false;
2072         ir_call_param(call, iridx);
2073
2074         *out = ir_call_value(call);
2075         self->expression.outr = *out;
2076         return true;
2077     }
2078
2079     if (idx->expression.vtype == TYPE_FLOAT) {
2080         unsigned int arridx = idx->constval.vfloat;
2081         if (arridx >= self->array->expression.count)
2082         {
2083             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2084             return false;
2085         }
2086         *out = arr->ir_values[arridx];
2087     }
2088     else if (idx->expression.vtype == TYPE_INTEGER) {
2089         unsigned int arridx = idx->constval.vint;
2090         if (arridx >= self->array->expression.count)
2091         {
2092             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2093             return false;
2094         }
2095         *out = arr->ir_values[arridx];
2096     }
2097     else {
2098         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2099         return false;
2100     }
2101     return true;
2102 }
2103
2104 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2105 {
2106     ast_expression_codegen *cgen;
2107
2108     ir_value *condval;
2109     ir_value *dummy;
2110
2111     ir_block *cond = func->curblock;
2112     ir_block *ontrue;
2113     ir_block *onfalse;
2114     ir_block *ontrue_endblock = NULL;
2115     ir_block *onfalse_endblock = NULL;
2116     ir_block *merge = NULL;
2117
2118     /* We don't output any value, thus also don't care about r/lvalue */
2119     (void)out;
2120     (void)lvalue;
2121
2122     if (self->expression.outr) {
2123         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2124         return false;
2125     }
2126     self->expression.outr = (ir_value*)1;
2127
2128     /* generate the condition */
2129     cgen = self->cond->expression.codegen;
2130     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2131         return false;
2132     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2133     cond = func->curblock;
2134
2135     /* on-true path */
2136
2137     if (self->on_true) {
2138         /* create on-true block */
2139         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2140         if (!ontrue)
2141             return false;
2142
2143         /* enter the block */
2144         func->curblock = ontrue;
2145
2146         /* generate */
2147         cgen = self->on_true->expression.codegen;
2148         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2149             return false;
2150
2151         /* we now need to work from the current endpoint */
2152         ontrue_endblock = func->curblock;
2153     } else
2154         ontrue = NULL;
2155
2156     /* on-false path */
2157     if (self->on_false) {
2158         /* create on-false block */
2159         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2160         if (!onfalse)
2161             return false;
2162
2163         /* enter the block */
2164         func->curblock = onfalse;
2165
2166         /* generate */
2167         cgen = self->on_false->expression.codegen;
2168         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2169             return false;
2170
2171         /* we now need to work from the current endpoint */
2172         onfalse_endblock = func->curblock;
2173     } else
2174         onfalse = NULL;
2175
2176     /* Merge block were they all merge in to */
2177     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2178     {
2179         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2180         if (!merge)
2181             return false;
2182         /* add jumps ot the merge block */
2183         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2184             return false;
2185         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2186             return false;
2187
2188         /* Now enter the merge block */
2189         func->curblock = merge;
2190     }
2191
2192     /* we create the if here, that way all blocks are ordered :)
2193      */
2194     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2195                             (ontrue  ? ontrue  : merge),
2196                             (onfalse ? onfalse : merge)))
2197     {
2198         return false;
2199     }
2200
2201     return true;
2202 }
2203
2204 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2205 {
2206     ast_expression_codegen *cgen;
2207
2208     ir_value *condval;
2209     ir_value *trueval, *falseval;
2210     ir_instr *phi;
2211
2212     ir_block *cond = func->curblock;
2213     ir_block *cond_out = NULL;
2214     ir_block *ontrue, *ontrue_out = NULL;
2215     ir_block *onfalse, *onfalse_out = NULL;
2216     ir_block *merge;
2217
2218     /* Ternary can never create an lvalue... */
2219     if (lvalue)
2220         return false;
2221
2222     /* In theory it shouldn't be possible to pass through a node twice, but
2223      * in case we add any kind of optimization pass for the AST itself, it
2224      * may still happen, thus we remember a created ir_value and simply return one
2225      * if it already exists.
2226      */
2227     if (self->expression.outr) {
2228         *out = self->expression.outr;
2229         return true;
2230     }
2231
2232     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2233
2234     /* generate the condition */
2235     func->curblock = cond;
2236     cgen = self->cond->expression.codegen;
2237     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2238         return false;
2239     cond_out = func->curblock;
2240
2241     /* create on-true block */
2242     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2243     if (!ontrue)
2244         return false;
2245     else
2246     {
2247         /* enter the block */
2248         func->curblock = ontrue;
2249
2250         /* generate */
2251         cgen = self->on_true->expression.codegen;
2252         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2253             return false;
2254
2255         ontrue_out = func->curblock;
2256     }
2257
2258     /* create on-false block */
2259     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2260     if (!onfalse)
2261         return false;
2262     else
2263     {
2264         /* enter the block */
2265         func->curblock = onfalse;
2266
2267         /* generate */
2268         cgen = self->on_false->expression.codegen;
2269         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2270             return false;
2271
2272         onfalse_out = func->curblock;
2273     }
2274
2275     /* create merge block */
2276     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2277     if (!merge)
2278         return false;
2279     /* jump to merge block */
2280     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2281         return false;
2282     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2283         return false;
2284
2285     /* create if instruction */
2286     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2287         return false;
2288
2289     /* Now enter the merge block */
2290     func->curblock = merge;
2291
2292     /* Here, now, we need a PHI node
2293      * but first some sanity checking...
2294      */
2295     if (trueval->vtype != falseval->vtype) {
2296         /* error("ternary with different types on the two sides"); */
2297         return false;
2298     }
2299
2300     /* create PHI */
2301     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), trueval->vtype);
2302     if (!phi)
2303         return false;
2304     ir_phi_add(phi, ontrue_out,  trueval);
2305     ir_phi_add(phi, onfalse_out, falseval);
2306
2307     self->expression.outr = ir_phi_value(phi);
2308     *out = self->expression.outr;
2309
2310     return true;
2311 }
2312
2313 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2314 {
2315     ast_expression_codegen *cgen;
2316
2317     ir_value *dummy      = NULL;
2318     ir_value *precond    = NULL;
2319     ir_value *postcond   = NULL;
2320
2321     /* Since we insert some jumps "late" so we have blocks
2322      * ordered "nicely", we need to keep track of the actual end-blocks
2323      * of expressions to add the jumps to.
2324      */
2325     ir_block *bbody      = NULL, *end_bbody      = NULL;
2326     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2327     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2328     ir_block *bincrement = NULL, *end_bincrement = NULL;
2329     ir_block *bout       = NULL, *bin            = NULL;
2330
2331     /* let's at least move the outgoing block to the end */
2332     size_t    bout_id;
2333
2334     /* 'break' and 'continue' need to be able to find the right blocks */
2335     ir_block *bcontinue     = NULL;
2336     ir_block *bbreak        = NULL;
2337
2338     ir_block *old_bcontinue = NULL;
2339     ir_block *old_bbreak    = NULL;
2340
2341     ir_block *tmpblock      = NULL;
2342
2343     (void)lvalue;
2344     (void)out;
2345
2346     if (self->expression.outr) {
2347         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2348         return false;
2349     }
2350     self->expression.outr = (ir_value*)1;
2351
2352     /* NOTE:
2353      * Should we ever need some kind of block ordering, better make this function
2354      * move blocks around than write a block ordering algorithm later... after all
2355      * the ast and ir should work together, not against each other.
2356      */
2357
2358     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2359      * anyway if for example it contains a ternary.
2360      */
2361     if (self->initexpr)
2362     {
2363         cgen = self->initexpr->expression.codegen;
2364         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2365             return false;
2366     }
2367
2368     /* Store the block from which we enter this chaos */
2369     bin = func->curblock;
2370
2371     /* The pre-loop condition needs its own block since we
2372      * need to be able to jump to the start of that expression.
2373      */
2374     if (self->precond)
2375     {
2376         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2377         if (!bprecond)
2378             return false;
2379
2380         /* the pre-loop-condition the least important place to 'continue' at */
2381         bcontinue = bprecond;
2382
2383         /* enter */
2384         func->curblock = bprecond;
2385
2386         /* generate */
2387         cgen = self->precond->expression.codegen;
2388         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2389             return false;
2390
2391         end_bprecond = func->curblock;
2392     } else {
2393         bprecond = end_bprecond = NULL;
2394     }
2395
2396     /* Now the next blocks won't be ordered nicely, but we need to
2397      * generate them this early for 'break' and 'continue'.
2398      */
2399     if (self->increment) {
2400         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2401         if (!bincrement)
2402             return false;
2403         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2404     } else {
2405         bincrement = end_bincrement = NULL;
2406     }
2407
2408     if (self->postcond) {
2409         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2410         if (!bpostcond)
2411             return false;
2412         bcontinue = bpostcond; /* postcond comes before the increment */
2413     } else {
2414         bpostcond = end_bpostcond = NULL;
2415     }
2416
2417     bout_id = vec_size(func->ir_func->blocks);
2418     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2419     if (!bout)
2420         return false;
2421     bbreak = bout;
2422
2423     /* The loop body... */
2424     /* if (self->body) */
2425     {
2426         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2427         if (!bbody)
2428             return false;
2429
2430         /* enter */
2431         func->curblock = bbody;
2432
2433         old_bbreak          = func->breakblock;
2434         old_bcontinue       = func->continueblock;
2435         func->breakblock    = bbreak;
2436         func->continueblock = bcontinue;
2437         if (!func->continueblock)
2438             func->continueblock = bbody;
2439
2440         /* generate */
2441         if (self->body) {
2442             cgen = self->body->expression.codegen;
2443             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2444                 return false;
2445         }
2446
2447         end_bbody = func->curblock;
2448         func->breakblock    = old_bbreak;
2449         func->continueblock = old_bcontinue;
2450     }
2451
2452     /* post-loop-condition */
2453     if (self->postcond)
2454     {
2455         /* enter */
2456         func->curblock = bpostcond;
2457
2458         /* generate */
2459         cgen = self->postcond->expression.codegen;
2460         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2461             return false;
2462
2463         end_bpostcond = func->curblock;
2464     }
2465
2466     /* The incrementor */
2467     if (self->increment)
2468     {
2469         /* enter */
2470         func->curblock = bincrement;
2471
2472         /* generate */
2473         cgen = self->increment->expression.codegen;
2474         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2475             return false;
2476
2477         end_bincrement = func->curblock;
2478     }
2479
2480     /* In any case now, we continue from the outgoing block */
2481     func->curblock = bout;
2482
2483     /* Now all blocks are in place */
2484     /* From 'bin' we jump to whatever comes first */
2485     if      (bprecond)   tmpblock = bprecond;
2486     else if (bbody)      tmpblock = bbody;
2487     else if (bpostcond)  tmpblock = bpostcond;
2488     else                 tmpblock = bout;
2489     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2490         return false;
2491
2492     /* From precond */
2493     if (bprecond)
2494     {
2495         ir_block *ontrue, *onfalse;
2496         if      (bbody)      ontrue = bbody;
2497         else if (bincrement) ontrue = bincrement;
2498         else if (bpostcond)  ontrue = bpostcond;
2499         else                 ontrue = bprecond;
2500         onfalse = bout;
2501         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2502             return false;
2503     }
2504
2505     /* from body */
2506     if (bbody)
2507     {
2508         if      (bincrement) tmpblock = bincrement;
2509         else if (bpostcond)  tmpblock = bpostcond;
2510         else if (bprecond)   tmpblock = bprecond;
2511         else                 tmpblock = bbody;
2512         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2513             return false;
2514     }
2515
2516     /* from increment */
2517     if (bincrement)
2518     {
2519         if      (bpostcond)  tmpblock = bpostcond;
2520         else if (bprecond)   tmpblock = bprecond;
2521         else if (bbody)      tmpblock = bbody;
2522         else                 tmpblock = bout;
2523         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2524             return false;
2525     }
2526
2527     /* from postcond */
2528     if (bpostcond)
2529     {
2530         ir_block *ontrue, *onfalse;
2531         if      (bprecond)   ontrue = bprecond;
2532         else if (bbody)      ontrue = bbody;
2533         else if (bincrement) ontrue = bincrement;
2534         else                 ontrue = bpostcond;
2535         onfalse = bout;
2536         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2537             return false;
2538     }
2539
2540     /* Move 'bout' to the end */
2541     vec_remove(func->ir_func->blocks, bout_id, 1);
2542     vec_push(func->ir_func->blocks, bout);
2543
2544     return true;
2545 }
2546
2547 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2548 {
2549     ir_block *target;
2550
2551     *out = NULL;
2552
2553     if (lvalue) {
2554         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2555         return false;
2556     }
2557
2558     if (self->expression.outr) {
2559         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2560         return false;
2561     }
2562     self->expression.outr = (ir_value*)1;
2563
2564     if (self->is_continue)
2565         target = func->continueblock;
2566     else
2567         target = func->breakblock;
2568
2569     if (!target) {
2570         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2571         return false;
2572     }
2573
2574     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2575         return false;
2576     return true;
2577 }
2578
2579 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2580 {
2581     ast_expression_codegen *cgen;
2582
2583     ast_switch_case *def_case  = NULL;
2584     ir_block        *def_bfall = NULL;
2585
2586     ir_value *dummy     = NULL;
2587     ir_value *irop      = NULL;
2588     ir_block *old_break = NULL;
2589     ir_block *bout      = NULL;
2590     ir_block *bfall     = NULL;
2591     size_t    bout_id;
2592     size_t    c;
2593
2594     char      typestr[1024];
2595     uint16_t  cmpinstr;
2596
2597     if (lvalue) {
2598         compile_error(ast_ctx(self), "switch expression is not an l-value");
2599         return false;
2600     }
2601
2602     if (self->expression.outr) {
2603         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2604         return false;
2605     }
2606     self->expression.outr = (ir_value*)1;
2607
2608     (void)lvalue;
2609     (void)out;
2610
2611     cgen = self->operand->expression.codegen;
2612     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2613         return false;
2614
2615     if (!vec_size(self->cases))
2616         return true;
2617
2618     cmpinstr = type_eq_instr[irop->vtype];
2619     if (cmpinstr >= AINSTR_END) {
2620         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2621         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2622         return false;
2623     }
2624
2625     bout_id = vec_size(func->ir_func->blocks);
2626     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2627     if (!bout)
2628         return false;
2629
2630     /* setup the break block */
2631     old_break        = func->breakblock;
2632     func->breakblock = bout;
2633
2634     /* Now create all cases */
2635     for (c = 0; c < vec_size(self->cases); ++c) {
2636         ir_value *cond, *val;
2637         ir_block *bcase, *bnot;
2638         size_t bnot_id;
2639
2640         ast_switch_case *swcase = &self->cases[c];
2641
2642         if (swcase->value) {
2643             /* A regular case */
2644             /* generate the condition operand */
2645             cgen = swcase->value->expression.codegen;
2646             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2647                 return false;
2648             /* generate the condition */
2649             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2650             if (!cond)
2651                 return false;
2652
2653             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2654             bnot_id = vec_size(func->ir_func->blocks);
2655             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2656             if (!bcase || !bnot)
2657                 return false;
2658             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2659                 return false;
2660
2661             /* Make the previous case-end fall through */
2662             if (bfall && !bfall->final) {
2663                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2664                     return false;
2665             }
2666
2667             /* enter the case */
2668             func->curblock = bcase;
2669             cgen = swcase->code->expression.codegen;
2670             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2671                 return false;
2672
2673             /* remember this block to fall through from */
2674             bfall = func->curblock;
2675
2676             /* enter the else and move it down */
2677             func->curblock = bnot;
2678             vec_remove(func->ir_func->blocks, bnot_id, 1);
2679             vec_push(func->ir_func->blocks, bnot);
2680         } else {
2681             /* The default case */
2682             /* Remember where to fall through from: */
2683             def_bfall = bfall;
2684             bfall     = NULL;
2685             /* remember which case it was */
2686             def_case  = swcase;
2687         }
2688     }
2689
2690     /* Jump from the last bnot to bout */
2691     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2692         /*
2693         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2694         */
2695         return false;
2696     }
2697
2698     /* If there was a default case, put it down here */
2699     if (def_case) {
2700         ir_block *bcase;
2701
2702         /* No need to create an extra block */
2703         bcase = func->curblock;
2704
2705         /* Insert the fallthrough jump */
2706         if (def_bfall && !def_bfall->final) {
2707             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2708                 return false;
2709         }
2710
2711         /* Now generate the default code */
2712         cgen = def_case->code->expression.codegen;
2713         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2714             return false;
2715     }
2716
2717     /* Jump from the last bnot to bout */
2718     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2719         return false;
2720     /* enter the outgoing block */
2721     func->curblock = bout;
2722
2723     /* restore the break block */
2724     func->breakblock = old_break;
2725
2726     /* Move 'bout' to the end, it's nicer */
2727     vec_remove(func->ir_func->blocks, bout_id, 1);
2728     vec_push(func->ir_func->blocks, bout);
2729
2730     return true;
2731 }
2732
2733 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2734 {
2735     size_t i;
2736     ir_value *dummy;
2737
2738     *out = NULL;
2739     if (lvalue) {
2740         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2741         return false;
2742     }
2743
2744     /* simply create a new block and jump to it */
2745     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2746     if (!self->irblock) {
2747         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2748         return false;
2749     }
2750     if (!func->curblock->final) {
2751         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2752             return false;
2753     }
2754
2755     /* enter the new block */
2756     func->curblock = self->irblock;
2757
2758     /* Generate all the leftover gotos */
2759     for (i = 0; i < vec_size(self->gotos); ++i) {
2760         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2761             return false;
2762     }
2763
2764     return true;
2765 }
2766
2767 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2768 {
2769     *out = NULL;
2770     if (lvalue) {
2771         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2772         return false;
2773     }
2774
2775     if (self->target->irblock) {
2776         if (self->irblock_from) {
2777             /* we already tried once, this is the callback */
2778             self->irblock_from->final = false;
2779             if (!ir_block_create_jump(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2780                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2781                 return false;
2782             }
2783         }
2784         else
2785         {
2786             if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->target->irblock)) {
2787                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2788                 return false;
2789             }
2790         }
2791     }
2792     else
2793     {
2794         /* the target has not yet been created...
2795          * close this block in a sneaky way:
2796          */
2797         func->curblock->final = true;
2798         self->irblock_from = func->curblock;
2799         ast_label_register_goto(self->target, self);
2800     }
2801
2802     return true;
2803 }
2804
2805 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2806 {
2807     ast_expression_codegen *cgen;
2808     ir_value              **params;
2809     ir_instr               *callinstr;
2810     size_t i;
2811
2812     ir_value *funval = NULL;
2813
2814     /* return values are never lvalues */
2815     if (lvalue) {
2816         compile_error(ast_ctx(self), "not an l-value (function call)");
2817         return false;
2818     }
2819
2820     if (self->expression.outr) {
2821         *out = self->expression.outr;
2822         return true;
2823     }
2824
2825     cgen = self->func->expression.codegen;
2826     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2827         return false;
2828     if (!funval)
2829         return false;
2830
2831     params = NULL;
2832
2833     /* parameters */
2834     for (i = 0; i < vec_size(self->params); ++i)
2835     {
2836         ir_value *param;
2837         ast_expression *expr = self->params[i];
2838
2839         cgen = expr->expression.codegen;
2840         if (!(*cgen)(expr, func, false, &param))
2841             goto error;
2842         if (!param)
2843             goto error;
2844         vec_push(params, param);
2845     }
2846
2847     callinstr = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "call"), funval);
2848     if (!callinstr)
2849         goto error;
2850
2851     for (i = 0; i < vec_size(params); ++i) {
2852         ir_call_param(callinstr, params[i]);
2853     }
2854
2855     *out = ir_call_value(callinstr);
2856     self->expression.outr = *out;
2857
2858     codegen_output_type(self, *out);
2859
2860     vec_free(params);
2861     return true;
2862 error:
2863     vec_free(params);
2864     return false;
2865 }