]> de.git.xonotic.org Git - xonotic/gmqcc.git/blob - ir.c
Now this should deal with vector life ranges more correctly.
[xonotic/gmqcc.git] / ir.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdlib.h>
24 #include <string.h>
25 #include "gmqcc.h"
26 #include "ir.h"
27
28 /***********************************************************************
29  * Type sizes used at multiple points in the IR codegen
30  */
31
32 const char *type_name[TYPE_COUNT] = {
33     "void",
34     "string",
35     "float",
36     "vector",
37     "entity",
38     "field",
39     "function",
40     "pointer",
41     "integer",
42     "variant",
43     "struct",
44     "union",
45     "array"
46 };
47
48 size_t type_sizeof_[TYPE_COUNT] = {
49     1, /* TYPE_VOID     */
50     1, /* TYPE_STRING   */
51     1, /* TYPE_FLOAT    */
52     3, /* TYPE_VECTOR   */
53     1, /* TYPE_ENTITY   */
54     1, /* TYPE_FIELD    */
55     1, /* TYPE_FUNCTION */
56     1, /* TYPE_POINTER  */
57     1, /* TYPE_INTEGER  */
58     3, /* TYPE_VARIANT  */
59     0, /* TYPE_STRUCT   */
60     0, /* TYPE_UNION    */
61     0, /* TYPE_ARRAY    */
62 };
63
64 uint16_t type_store_instr[TYPE_COUNT] = {
65     INSTR_STORE_F, /* should use I when having integer support */
66     INSTR_STORE_S,
67     INSTR_STORE_F,
68     INSTR_STORE_V,
69     INSTR_STORE_ENT,
70     INSTR_STORE_FLD,
71     INSTR_STORE_FNC,
72     INSTR_STORE_ENT, /* should use I */
73 #if 0
74     INSTR_STORE_I, /* integer type */
75 #else
76     INSTR_STORE_F,
77 #endif
78
79     INSTR_STORE_V, /* variant, should never be accessed */
80
81     AINSTR_END, /* struct */
82     AINSTR_END, /* union  */
83     AINSTR_END, /* array  */
84 };
85
86 uint16_t field_store_instr[TYPE_COUNT] = {
87     INSTR_STORE_FLD,
88     INSTR_STORE_FLD,
89     INSTR_STORE_FLD,
90     INSTR_STORE_V,
91     INSTR_STORE_FLD,
92     INSTR_STORE_FLD,
93     INSTR_STORE_FLD,
94     INSTR_STORE_FLD,
95 #if 0
96     INSTR_STORE_FLD, /* integer type */
97 #else
98     INSTR_STORE_FLD,
99 #endif
100
101     INSTR_STORE_V, /* variant, should never be accessed */
102
103     AINSTR_END, /* struct */
104     AINSTR_END, /* union  */
105     AINSTR_END, /* array  */
106 };
107
108 uint16_t type_storep_instr[TYPE_COUNT] = {
109     INSTR_STOREP_F, /* should use I when having integer support */
110     INSTR_STOREP_S,
111     INSTR_STOREP_F,
112     INSTR_STOREP_V,
113     INSTR_STOREP_ENT,
114     INSTR_STOREP_FLD,
115     INSTR_STOREP_FNC,
116     INSTR_STOREP_ENT, /* should use I */
117 #if 0
118     INSTR_STOREP_ENT, /* integer type */
119 #else
120     INSTR_STOREP_F,
121 #endif
122
123     INSTR_STOREP_V, /* variant, should never be accessed */
124
125     AINSTR_END, /* struct */
126     AINSTR_END, /* union  */
127     AINSTR_END, /* array  */
128 };
129
130 uint16_t type_eq_instr[TYPE_COUNT] = {
131     INSTR_EQ_F, /* should use I when having integer support */
132     INSTR_EQ_S,
133     INSTR_EQ_F,
134     INSTR_EQ_V,
135     INSTR_EQ_E,
136     INSTR_EQ_E, /* FLD has no comparison */
137     INSTR_EQ_FNC,
138     INSTR_EQ_E, /* should use I */
139 #if 0
140     INSTR_EQ_I,
141 #else
142     INSTR_EQ_F,
143 #endif
144
145     INSTR_EQ_V, /* variant, should never be accessed */
146
147     AINSTR_END, /* struct */
148     AINSTR_END, /* union  */
149     AINSTR_END, /* array  */
150 };
151
152 uint16_t type_ne_instr[TYPE_COUNT] = {
153     INSTR_NE_F, /* should use I when having integer support */
154     INSTR_NE_S,
155     INSTR_NE_F,
156     INSTR_NE_V,
157     INSTR_NE_E,
158     INSTR_NE_E, /* FLD has no comparison */
159     INSTR_NE_FNC,
160     INSTR_NE_E, /* should use I */
161 #if 0
162     INSTR_NE_I,
163 #else
164     INSTR_NE_F,
165 #endif
166
167     INSTR_NE_V, /* variant, should never be accessed */
168
169     AINSTR_END, /* struct */
170     AINSTR_END, /* union  */
171     AINSTR_END, /* array  */
172 };
173
174 uint16_t type_not_instr[TYPE_COUNT] = {
175     INSTR_NOT_F, /* should use I when having integer support */
176     INSTR_NOT_S,
177     INSTR_NOT_F,
178     INSTR_NOT_V,
179     INSTR_NOT_ENT,
180     INSTR_NOT_ENT,
181     INSTR_NOT_FNC,
182     INSTR_NOT_ENT, /* should use I */
183 #if 0
184     INSTR_NOT_I, /* integer type */
185 #else
186     INSTR_NOT_F,
187 #endif
188
189     INSTR_NOT_V, /* variant, should never be accessed */
190
191     AINSTR_END, /* struct */
192     AINSTR_END, /* union  */
193     AINSTR_END, /* array  */
194 };
195
196 /* protos */
197 static void ir_gen_extparam(ir_builder *ir);
198
199 /* error functions */
200
201 static void irerror(lex_ctx ctx, const char *msg, ...)
202 {
203     va_list ap;
204     va_start(ap, msg);
205     con_cvprintmsg((void*)&ctx, LVL_ERROR, "internal error", msg, ap);
206     va_end(ap);
207 }
208
209 static bool irwarning(lex_ctx ctx, int warntype, const char *fmt, ...)
210 {
211     bool    r;
212     va_list ap;
213     va_start(ap, fmt);
214     r = vcompile_warning(ctx, warntype, fmt, ap);
215     va_end(ap);
216     return r;
217 }
218
219 /***********************************************************************
220  * Vector utility functions
221  */
222
223 bool GMQCC_WARN vec_ir_value_find(ir_value **vec, ir_value *what, size_t *idx)
224 {
225     size_t i;
226     size_t len = vec_size(vec);
227     for (i = 0; i < len; ++i) {
228         if (vec[i] == what) {
229             if (idx) *idx = i;
230             return true;
231         }
232     }
233     return false;
234 }
235
236 bool GMQCC_WARN vec_ir_block_find(ir_block **vec, ir_block *what, size_t *idx)
237 {
238     size_t i;
239     size_t len = vec_size(vec);
240     for (i = 0; i < len; ++i) {
241         if (vec[i] == what) {
242             if (idx) *idx = i;
243             return true;
244         }
245     }
246     return false;
247 }
248
249 bool GMQCC_WARN vec_ir_instr_find(ir_instr **vec, ir_instr *what, size_t *idx)
250 {
251     size_t i;
252     size_t len = vec_size(vec);
253     for (i = 0; i < len; ++i) {
254         if (vec[i] == what) {
255             if (idx) *idx = i;
256             return true;
257         }
258     }
259     return false;
260 }
261
262 /***********************************************************************
263  * IR Builder
264  */
265
266 static void ir_block_delete_quick(ir_block* self);
267 static void ir_instr_delete_quick(ir_instr *self);
268 static void ir_function_delete_quick(ir_function *self);
269
270 ir_builder* ir_builder_new(const char *modulename)
271 {
272     ir_builder* self;
273
274     self = (ir_builder*)mem_a(sizeof(*self));
275     if (!self)
276         return NULL;
277
278     self->functions   = NULL;
279     self->globals     = NULL;
280     self->fields      = NULL;
281     self->extparams   = NULL;
282     self->filenames   = NULL;
283     self->filestrings = NULL;
284     self->htglobals   = util_htnew(IR_HT_SIZE);
285     self->htfields    = util_htnew(IR_HT_SIZE);
286     self->htfunctions = util_htnew(IR_HT_SIZE);
287
288     self->max_locals  = 0;
289
290     self->str_immediate = 0;
291     self->name = NULL;
292     if (!ir_builder_set_name(self, modulename)) {
293         mem_d(self);
294         return NULL;
295     }
296
297     return self;
298 }
299
300 void ir_builder_delete(ir_builder* self)
301 {
302     size_t i;
303     util_htdel(self->htglobals);
304     util_htdel(self->htfields);
305     util_htdel(self->htfunctions);
306     mem_d((void*)self->name);
307     for (i = 0; i != vec_size(self->functions); ++i) {
308         ir_function_delete_quick(self->functions[i]);
309     }
310     vec_free(self->functions);
311     for (i = 0; i != vec_size(self->extparams); ++i) {
312         ir_value_delete(self->extparams[i]);
313     }
314     vec_free(self->extparams);
315     for (i = 0; i != vec_size(self->globals); ++i) {
316         ir_value_delete(self->globals[i]);
317     }
318     vec_free(self->globals);
319     for (i = 0; i != vec_size(self->fields); ++i) {
320         ir_value_delete(self->fields[i]);
321     }
322     vec_free(self->fields);
323     vec_free(self->filenames);
324     vec_free(self->filestrings);
325     mem_d(self);
326 }
327
328 bool ir_builder_set_name(ir_builder *self, const char *name)
329 {
330     if (self->name)
331         mem_d((void*)self->name);
332     self->name = util_strdup(name);
333     return !!self->name;
334 }
335
336 ir_function* ir_builder_get_function(ir_builder *self, const char *name)
337 {
338     return (ir_function*)util_htget(self->htfunctions, name);
339 }
340
341 ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype)
342 {
343     ir_function *fn = ir_builder_get_function(self, name);
344     if (fn) {
345         return NULL;
346     }
347
348     fn = ir_function_new(self, outtype);
349     if (!ir_function_set_name(fn, name))
350     {
351         ir_function_delete(fn);
352         return NULL;
353     }
354     vec_push(self->functions, fn);
355     util_htset(self->htfunctions, name, fn);
356
357     fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION);
358     if (!fn->value) {
359         ir_function_delete(fn);
360         return NULL;
361     }
362
363     fn->value->hasvalue = true;
364     fn->value->outtype = outtype;
365     fn->value->constval.vfunc = fn;
366     fn->value->context = fn->context;
367
368     return fn;
369 }
370
371 ir_value* ir_builder_get_global(ir_builder *self, const char *name)
372 {
373     return (ir_value*)util_htget(self->htglobals, name);
374 }
375
376 ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype)
377 {
378     ir_value *ve;
379
380     if (name && name[0] != '#')
381     {
382         ve = ir_builder_get_global(self, name);
383         if (ve) {
384             return NULL;
385         }
386     }
387
388     ve = ir_value_var(name, store_global, vtype);
389     vec_push(self->globals, ve);
390     util_htset(self->htglobals, name, ve);
391     return ve;
392 }
393
394 ir_value* ir_builder_get_field(ir_builder *self, const char *name)
395 {
396     return (ir_value*)util_htget(self->htfields, name);
397 }
398
399
400 ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype)
401 {
402     ir_value *ve = ir_builder_get_field(self, name);
403     if (ve) {
404         return NULL;
405     }
406
407     ve = ir_value_var(name, store_global, TYPE_FIELD);
408     ve->fieldtype = vtype;
409     vec_push(self->fields, ve);
410     util_htset(self->htfields, name, ve);
411     return ve;
412 }
413
414 /***********************************************************************
415  *IR Function
416  */
417
418 bool ir_function_naive_phi(ir_function*);
419 void ir_function_enumerate(ir_function*);
420 bool ir_function_calculate_liferanges(ir_function*);
421 bool ir_function_allocate_locals(ir_function*);
422
423 ir_function* ir_function_new(ir_builder* owner, int outtype)
424 {
425     ir_function *self;
426     self = (ir_function*)mem_a(sizeof(*self));
427
428     if (!self)
429         return NULL;
430
431     memset(self, 0, sizeof(*self));
432
433     self->name = NULL;
434     if (!ir_function_set_name(self, "<@unnamed>")) {
435         mem_d(self);
436         return NULL;
437     }
438     self->flags = 0;
439
440     self->owner = owner;
441     self->context.file = "<@no context>";
442     self->context.line = 0;
443     self->outtype = outtype;
444     self->value = NULL;
445     self->builtin = 0;
446
447     self->params = NULL;
448     self->blocks = NULL;
449     self->values = NULL;
450     self->locals = NULL;
451
452     self->code_function_def = -1;
453     self->allocated_locals = 0;
454
455     self->run_id = 0;
456     return self;
457 }
458
459 bool ir_function_set_name(ir_function *self, const char *name)
460 {
461     if (self->name)
462         mem_d((void*)self->name);
463     self->name = util_strdup(name);
464     return !!self->name;
465 }
466
467 static void ir_function_delete_quick(ir_function *self)
468 {
469     size_t i;
470     mem_d((void*)self->name);
471
472     for (i = 0; i != vec_size(self->blocks); ++i)
473         ir_block_delete_quick(self->blocks[i]);
474     vec_free(self->blocks);
475
476     vec_free(self->params);
477
478     for (i = 0; i != vec_size(self->values); ++i)
479         ir_value_delete(self->values[i]);
480     vec_free(self->values);
481
482     for (i = 0; i != vec_size(self->locals); ++i)
483         ir_value_delete(self->locals[i]);
484     vec_free(self->locals);
485
486     /* self->value is deleted by the builder */
487
488     mem_d(self);
489 }
490
491 void ir_function_delete(ir_function *self)
492 {
493     size_t i;
494     mem_d((void*)self->name);
495
496     for (i = 0; i != vec_size(self->blocks); ++i)
497         ir_block_delete(self->blocks[i]);
498     vec_free(self->blocks);
499
500     vec_free(self->params);
501
502     for (i = 0; i != vec_size(self->values); ++i)
503         ir_value_delete(self->values[i]);
504     vec_free(self->values);
505
506     for (i = 0; i != vec_size(self->locals); ++i)
507         ir_value_delete(self->locals[i]);
508     vec_free(self->locals);
509
510     /* self->value is deleted by the builder */
511
512     mem_d(self);
513 }
514
515 void ir_function_collect_value(ir_function *self, ir_value *v)
516 {
517     vec_push(self->values, v);
518 }
519
520 ir_block* ir_function_create_block(lex_ctx ctx, ir_function *self, const char *label)
521 {
522     ir_block* bn = ir_block_new(self, label);
523     bn->context = ctx;
524     vec_push(self->blocks, bn);
525     return bn;
526 }
527
528 static bool instr_is_operation(uint16_t op)
529 {
530     return ( (op >= INSTR_MUL_F  && op <= INSTR_GT) ||
531              (op >= INSTR_LOAD_F && op <= INSTR_LOAD_FNC) ||
532              (op == INSTR_ADDRESS) ||
533              (op >= INSTR_NOT_F  && op <= INSTR_NOT_FNC) ||
534              (op >= INSTR_AND    && op <= INSTR_BITOR) ||
535              (op >= INSTR_CALL0  && op <= INSTR_CALL8) );
536 }
537
538 bool ir_function_pass_peephole(ir_function *self)
539 {
540     size_t b;
541
542     for (b = 0; b < vec_size(self->blocks); ++b) {
543         size_t    i;
544         ir_block *block = self->blocks[b];
545
546         for (i = 0; i < vec_size(block->instr); ++i) {
547             ir_instr *inst;
548             inst = block->instr[i];
549
550             if (i >= 1 &&
551                 (inst->opcode >= INSTR_STORE_F &&
552                  inst->opcode <= INSTR_STORE_FNC))
553             {
554                 ir_instr *store;
555                 ir_instr *oper;
556                 ir_value *value;
557
558                 store = inst;
559
560                 oper  = block->instr[i-1];
561                 if (!instr_is_operation(oper->opcode))
562                     continue;
563
564                 value = oper->_ops[0];
565
566                 /* only do it for SSA values */
567                 if (value->store != store_value)
568                     continue;
569
570                 /* don't optimize out the temp if it's used later again */
571                 if (vec_size(value->reads) != 1)
572                     continue;
573
574                 /* The very next store must use this value */
575                 if (value->reads[0] != store)
576                     continue;
577
578                 /* And of course the store must _read_ from it, so it's in
579                  * OP 1 */
580                 if (store->_ops[1] != value)
581                     continue;
582
583                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
584                 (void)!ir_instr_op(oper, 0, store->_ops[0], true);
585
586                 vec_remove(block->instr, i, 1);
587                 ir_instr_delete(store);
588             }
589             else if (inst->opcode == VINSTR_COND)
590             {
591                 /* COND on a value resulting from a NOT could
592                  * remove the NOT and swap its operands
593                  */
594                 while (true) {
595                     ir_block *tmp;
596                     size_t    inotid;
597                     ir_instr *inot;
598                     ir_value *value;
599                     value = inst->_ops[0];
600
601                     if (value->store != store_value ||
602                         vec_size(value->reads) != 1 ||
603                         value->reads[0] != inst)
604                     {
605                         break;
606                     }
607
608                     inot = value->writes[0];
609                     if (inot->_ops[0] != value ||
610                         inot->opcode < INSTR_NOT_F ||
611                         inot->opcode > INSTR_NOT_FNC ||
612                         inot->opcode == INSTR_NOT_V || /* can't do these */
613                         inot->opcode == INSTR_NOT_S)
614                     {
615                         break;
616                     }
617
618                     /* count */
619                     ++opts_optimizationcount[OPTIM_PEEPHOLE];
620                     /* change operand */
621                     (void)!ir_instr_op(inst, 0, inot->_ops[1], false);
622                     /* remove NOT */
623                     tmp = inot->owner;
624                     for (inotid = 0; inotid < vec_size(tmp->instr); ++inotid) {
625                         if (tmp->instr[inotid] == inot)
626                             break;
627                     }
628                     if (inotid >= vec_size(tmp->instr)) {
629                         compile_error(inst->context, "sanity-check failed: failed to find instruction to optimize out");
630                         return false;
631                     }
632                     vec_remove(tmp->instr, inotid, 1);
633                     ir_instr_delete(inot);
634                     /* swap ontrue/onfalse */
635                     tmp = inst->bops[0];
636                     inst->bops[0] = inst->bops[1];
637                     inst->bops[1] = tmp;
638                 }
639                 continue;
640             }
641         }
642     }
643
644     return true;
645 }
646
647 bool ir_function_pass_tailrecursion(ir_function *self)
648 {
649     size_t b, p;
650
651     for (b = 0; b < vec_size(self->blocks); ++b) {
652         ir_value *funcval;
653         ir_instr *ret, *call, *store = NULL;
654         ir_block *block = self->blocks[b];
655
656         if (!block->final || vec_size(block->instr) < 2)
657             continue;
658
659         ret = block->instr[vec_size(block->instr)-1];
660         if (ret->opcode != INSTR_DONE && ret->opcode != INSTR_RETURN)
661             continue;
662
663         call = block->instr[vec_size(block->instr)-2];
664         if (call->opcode >= INSTR_STORE_F && call->opcode <= INSTR_STORE_FNC) {
665             /* account for the unoptimized
666              * CALL
667              * STORE %return, %tmp
668              * RETURN %tmp
669              * version
670              */
671             if (vec_size(block->instr) < 3)
672                 continue;
673
674             store = call;
675             call = block->instr[vec_size(block->instr)-3];
676         }
677
678         if (call->opcode < INSTR_CALL0 || call->opcode > INSTR_CALL8)
679             continue;
680
681         if (store) {
682             /* optimize out the STORE */
683             if (ret->_ops[0]   &&
684                 ret->_ops[0]   == store->_ops[0] &&
685                 store->_ops[1] == call->_ops[0])
686             {
687                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
688                 call->_ops[0] = store->_ops[0];
689                 vec_remove(block->instr, vec_size(block->instr) - 2, 1);
690                 ir_instr_delete(store);
691             }
692             else
693                 continue;
694         }
695
696         if (!call->_ops[0])
697             continue;
698
699         funcval = call->_ops[1];
700         if (!funcval)
701             continue;
702         if (funcval->vtype != TYPE_FUNCTION || funcval->constval.vfunc != self)
703             continue;
704
705         /* now we have a CALL and a RET, check if it's a tailcall */
706         if (ret->_ops[0] && call->_ops[0] != ret->_ops[0])
707             continue;
708
709         ++opts_optimizationcount[OPTIM_TAIL_RECURSION];
710         vec_shrinkby(block->instr, 2);
711
712         block->final = false; /* open it back up */
713
714         /* emite parameter-stores */
715         for (p = 0; p < vec_size(call->params); ++p) {
716             /* assert(call->params_count <= self->locals_count); */
717             if (!ir_block_create_store(block, call->context, self->locals[p], call->params[p])) {
718                 irerror(call->context, "failed to create tailcall store instruction for parameter %i", (int)p);
719                 return false;
720             }
721         }
722         if (!ir_block_create_jump(block, call->context, self->blocks[0])) {
723             irerror(call->context, "failed to create tailcall jump");
724             return false;
725         }
726
727         ir_instr_delete(call);
728         ir_instr_delete(ret);
729     }
730
731     return true;
732 }
733
734 bool ir_function_finalize(ir_function *self)
735 {
736     if (self->builtin)
737         return true;
738
739     if (OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
740         if (!ir_function_pass_peephole(self)) {
741             irerror(self->context, "generic optimization pass broke something in `%s`", self->name);
742             return false;
743         }
744     }
745
746     if (OPTS_OPTIMIZATION(OPTIM_TAIL_RECURSION)) {
747         if (!ir_function_pass_tailrecursion(self)) {
748             irerror(self->context, "tail-recursion optimization pass broke something in `%s`", self->name);
749             return false;
750         }
751     }
752
753     if (!ir_function_naive_phi(self))
754         return false;
755
756     ir_function_enumerate(self);
757
758     if (!ir_function_calculate_liferanges(self))
759         return false;
760     if (!ir_function_allocate_locals(self))
761         return false;
762     return true;
763 }
764
765 ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param)
766 {
767     ir_value *ve;
768
769     if (param &&
770         vec_size(self->locals) &&
771         self->locals[vec_size(self->locals)-1]->store != store_param) {
772         irerror(self->context, "cannot add parameters after adding locals");
773         return NULL;
774     }
775
776     ve = ir_value_var(name, (param ? store_param : store_local), vtype);
777     vec_push(self->locals, ve);
778     return ve;
779 }
780
781 /***********************************************************************
782  *IR Block
783  */
784
785 ir_block* ir_block_new(ir_function* owner, const char *name)
786 {
787     ir_block *self;
788     self = (ir_block*)mem_a(sizeof(*self));
789     if (!self)
790         return NULL;
791
792     memset(self, 0, sizeof(*self));
793
794     self->label = NULL;
795     if (name && !ir_block_set_label(self, name)) {
796         mem_d(self);
797         return NULL;
798     }
799     self->owner = owner;
800     self->context.file = "<@no context>";
801     self->context.line = 0;
802     self->final = false;
803
804     self->instr   = NULL;
805     self->entries = NULL;
806     self->exits   = NULL;
807
808     self->eid = 0;
809     self->is_return = false;
810     self->run_id = 0;
811
812     self->living = NULL;
813
814     self->generated = false;
815
816     return self;
817 }
818
819 static void ir_block_delete_quick(ir_block* self)
820 {
821     size_t i;
822     if (self->label) mem_d(self->label);
823     for (i = 0; i != vec_size(self->instr); ++i)
824         ir_instr_delete_quick(self->instr[i]);
825     vec_free(self->instr);
826     vec_free(self->entries);
827     vec_free(self->exits);
828     vec_free(self->living);
829     mem_d(self);
830 }
831
832 void ir_block_delete(ir_block* self)
833 {
834     size_t i;
835     if (self->label) mem_d(self->label);
836     for (i = 0; i != vec_size(self->instr); ++i)
837         ir_instr_delete(self->instr[i]);
838     vec_free(self->instr);
839     vec_free(self->entries);
840     vec_free(self->exits);
841     vec_free(self->living);
842     mem_d(self);
843 }
844
845 bool ir_block_set_label(ir_block *self, const char *name)
846 {
847     if (self->label)
848         mem_d((void*)self->label);
849     self->label = util_strdup(name);
850     return !!self->label;
851 }
852
853 /***********************************************************************
854  *IR Instructions
855  */
856
857 ir_instr* ir_instr_new(lex_ctx ctx, ir_block* owner, int op)
858 {
859     ir_instr *self;
860     self = (ir_instr*)mem_a(sizeof(*self));
861     if (!self)
862         return NULL;
863
864     self->owner = owner;
865     self->context = ctx;
866     self->opcode = op;
867     self->_ops[0] = NULL;
868     self->_ops[1] = NULL;
869     self->_ops[2] = NULL;
870     self->bops[0] = NULL;
871     self->bops[1] = NULL;
872
873     self->phi    = NULL;
874     self->params = NULL;
875
876     self->eid = 0;
877
878     self->likely = true;
879     return self;
880 }
881
882 static void ir_instr_delete_quick(ir_instr *self)
883 {
884     vec_free(self->phi);
885     vec_free(self->params);
886     mem_d(self);
887 }
888
889 void ir_instr_delete(ir_instr *self)
890 {
891     size_t i;
892     /* The following calls can only delete from
893      * vectors, we still want to delete this instruction
894      * so ignore the return value. Since with the warn_unused_result attribute
895      * gcc doesn't care about an explicit: (void)foo(); to ignore the result,
896      * I have to improvise here and use if(foo());
897      */
898     for (i = 0; i < vec_size(self->phi); ++i) {
899         size_t idx;
900         if (vec_ir_instr_find(self->phi[i].value->writes, self, &idx))
901             vec_remove(self->phi[i].value->writes, idx, 1);
902         if (vec_ir_instr_find(self->phi[i].value->reads, self, &idx))
903             vec_remove(self->phi[i].value->reads, idx, 1);
904     }
905     vec_free(self->phi);
906     for (i = 0; i < vec_size(self->params); ++i) {
907         size_t idx;
908         if (vec_ir_instr_find(self->params[i]->writes, self, &idx))
909             vec_remove(self->params[i]->writes, idx, 1);
910         if (vec_ir_instr_find(self->params[i]->reads, self, &idx))
911             vec_remove(self->params[i]->reads, idx, 1);
912     }
913     vec_free(self->params);
914     (void)!ir_instr_op(self, 0, NULL, false);
915     (void)!ir_instr_op(self, 1, NULL, false);
916     (void)!ir_instr_op(self, 2, NULL, false);
917     mem_d(self);
918 }
919
920 bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
921 {
922     if (self->_ops[op]) {
923         size_t idx;
924         if (writing && vec_ir_instr_find(self->_ops[op]->writes, self, &idx))
925             vec_remove(self->_ops[op]->writes, idx, 1);
926         else if (vec_ir_instr_find(self->_ops[op]->reads, self, &idx))
927             vec_remove(self->_ops[op]->reads, idx, 1);
928     }
929     if (v) {
930         if (writing)
931             vec_push(v->writes, self);
932         else
933             vec_push(v->reads, self);
934     }
935     self->_ops[op] = v;
936     return true;
937 }
938
939 /***********************************************************************
940  *IR Value
941  */
942
943 void ir_value_code_setaddr(ir_value *self, int32_t gaddr)
944 {
945     self->code.globaladdr = gaddr;
946     if (self->members[0]) self->members[0]->code.globaladdr = gaddr;
947     if (self->members[1]) self->members[1]->code.globaladdr = gaddr;
948     if (self->members[2]) self->members[2]->code.globaladdr = gaddr;
949 }
950
951 int32_t ir_value_code_addr(const ir_value *self)
952 {
953     if (self->store == store_return)
954         return OFS_RETURN + self->code.addroffset;
955     return self->code.globaladdr + self->code.addroffset;
956 }
957
958 ir_value* ir_value_var(const char *name, int storetype, int vtype)
959 {
960     ir_value *self;
961     self = (ir_value*)mem_a(sizeof(*self));
962     self->vtype = vtype;
963     self->fieldtype = TYPE_VOID;
964     self->outtype = TYPE_VOID;
965     self->store = storetype;
966
967     self->reads  = NULL;
968     self->writes = NULL;
969
970     self->cvq          = CV_NONE;
971     self->hasvalue     = false;
972     self->context.file = "<@no context>";
973     self->context.line = 0;
974     self->name = NULL;
975     if (name && !ir_value_set_name(self, name)) {
976         irerror(self->context, "out of memory");
977         mem_d(self);
978         return NULL;
979     }
980
981     memset(&self->constval, 0, sizeof(self->constval));
982     memset(&self->code,     0, sizeof(self->code));
983
984     self->members[0] = NULL;
985     self->members[1] = NULL;
986     self->members[2] = NULL;
987     self->memberof = NULL;
988
989     self->unique_life = false;
990
991     self->life = NULL;
992     return self;
993 }
994
995 ir_value* ir_value_vector_member(ir_value *self, unsigned int member)
996 {
997     char     *name;
998     size_t    len;
999     ir_value *m;
1000     if (member >= 3)
1001         return NULL;
1002
1003     if (self->members[member])
1004         return self->members[member];
1005
1006     if (self->name) {
1007         len = strlen(self->name);
1008         name = (char*)mem_a(len + 3);
1009         memcpy(name, self->name, len);
1010         name[len+0] = '_';
1011         name[len+1] = 'x' + member;
1012         name[len+2] = '\0';
1013     }
1014     else
1015         name = NULL;
1016
1017     if (self->vtype == TYPE_VECTOR)
1018     {
1019         m = ir_value_var(name, self->store, TYPE_FLOAT);
1020         if (name)
1021             mem_d(name);
1022         if (!m)
1023             return NULL;
1024         m->context = self->context;
1025
1026         self->members[member] = m;
1027         m->code.addroffset = member;
1028     }
1029     else if (self->vtype == TYPE_FIELD)
1030     {
1031         if (self->fieldtype != TYPE_VECTOR)
1032             return NULL;
1033         m = ir_value_var(name, self->store, TYPE_FIELD);
1034         if (name)
1035             mem_d(name);
1036         if (!m)
1037             return NULL;
1038         m->fieldtype = TYPE_FLOAT;
1039         m->context = self->context;
1040
1041         self->members[member] = m;
1042         m->code.addroffset = member;
1043     }
1044     else
1045     {
1046         irerror(self->context, "invalid member access on %s", self->name);
1047         return NULL;
1048     }
1049
1050     m->memberof = self;
1051     return m;
1052 }
1053
1054 static GMQCC_INLINE size_t ir_value_sizeof(const ir_value *self)
1055 {
1056     if (self->vtype == TYPE_FIELD && self->fieldtype == TYPE_VECTOR)
1057         return type_sizeof_[TYPE_VECTOR];
1058     return type_sizeof_[self->vtype];
1059 }
1060
1061 ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype)
1062 {
1063     ir_value *v = ir_value_var(name, storetype, vtype);
1064     if (!v)
1065         return NULL;
1066     ir_function_collect_value(owner, v);
1067     return v;
1068 }
1069
1070 void ir_value_delete(ir_value* self)
1071 {
1072     size_t i;
1073     if (self->name)
1074         mem_d((void*)self->name);
1075     if (self->hasvalue)
1076     {
1077         if (self->vtype == TYPE_STRING)
1078             mem_d((void*)self->constval.vstring);
1079     }
1080     for (i = 0; i < 3; ++i) {
1081         if (self->members[i])
1082             ir_value_delete(self->members[i]);
1083     }
1084     vec_free(self->reads);
1085     vec_free(self->writes);
1086     vec_free(self->life);
1087     mem_d(self);
1088 }
1089
1090 bool ir_value_set_name(ir_value *self, const char *name)
1091 {
1092     if (self->name)
1093         mem_d((void*)self->name);
1094     self->name = util_strdup(name);
1095     return !!self->name;
1096 }
1097
1098 bool ir_value_set_float(ir_value *self, float f)
1099 {
1100     if (self->vtype != TYPE_FLOAT)
1101         return false;
1102     self->constval.vfloat = f;
1103     self->hasvalue = true;
1104     return true;
1105 }
1106
1107 bool ir_value_set_func(ir_value *self, int f)
1108 {
1109     if (self->vtype != TYPE_FUNCTION)
1110         return false;
1111     self->constval.vint = f;
1112     self->hasvalue = true;
1113     return true;
1114 }
1115
1116 bool ir_value_set_vector(ir_value *self, vector v)
1117 {
1118     if (self->vtype != TYPE_VECTOR)
1119         return false;
1120     self->constval.vvec = v;
1121     self->hasvalue = true;
1122     return true;
1123 }
1124
1125 bool ir_value_set_field(ir_value *self, ir_value *fld)
1126 {
1127     if (self->vtype != TYPE_FIELD)
1128         return false;
1129     self->constval.vpointer = fld;
1130     self->hasvalue = true;
1131     return true;
1132 }
1133
1134 static char *ir_strdup(const char *str)
1135 {
1136     if (str && !*str) {
1137         /* actually dup empty strings */
1138         char *out = (char*)mem_a(1);
1139         *out = 0;
1140         return out;
1141     }
1142     return util_strdup(str);
1143 }
1144
1145 bool ir_value_set_string(ir_value *self, const char *str)
1146 {
1147     if (self->vtype != TYPE_STRING)
1148         return false;
1149     self->constval.vstring = ir_strdup(str);
1150     self->hasvalue = true;
1151     return true;
1152 }
1153
1154 #if 0
1155 bool ir_value_set_int(ir_value *self, int i)
1156 {
1157     if (self->vtype != TYPE_INTEGER)
1158         return false;
1159     self->constval.vint = i;
1160     self->hasvalue = true;
1161     return true;
1162 }
1163 #endif
1164
1165 bool ir_value_lives(ir_value *self, size_t at)
1166 {
1167     size_t i;
1168     for (i = 0; i < vec_size(self->life); ++i)
1169     {
1170         ir_life_entry_t *life = &self->life[i];
1171         if (life->start <= at && at <= life->end)
1172             return true;
1173         if (life->start > at) /* since it's ordered */
1174             return false;
1175     }
1176     return false;
1177 }
1178
1179 bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e)
1180 {
1181     size_t k;
1182     vec_push(self->life, e);
1183     for (k = vec_size(self->life)-1; k > idx; --k)
1184         self->life[k] = self->life[k-1];
1185     self->life[idx] = e;
1186     return true;
1187 }
1188
1189 bool ir_value_life_merge(ir_value *self, size_t s)
1190 {
1191     size_t i;
1192     ir_life_entry_t *life = NULL;
1193     ir_life_entry_t *before = NULL;
1194     ir_life_entry_t new_entry;
1195
1196     /* Find the first range >= s */
1197     for (i = 0; i < vec_size(self->life); ++i)
1198     {
1199         before = life;
1200         life = &self->life[i];
1201         if (life->start > s)
1202             break;
1203     }
1204     /* nothing found? append */
1205     if (i == vec_size(self->life)) {
1206         ir_life_entry_t e;
1207         if (life && life->end+1 == s)
1208         {
1209             /* previous life range can be merged in */
1210             life->end++;
1211             return true;
1212         }
1213         if (life && life->end >= s)
1214             return false;
1215         e.start = e.end = s;
1216         vec_push(self->life, e);
1217         return true;
1218     }
1219     /* found */
1220     if (before)
1221     {
1222         if (before->end + 1 == s &&
1223             life->start - 1 == s)
1224         {
1225             /* merge */
1226             before->end = life->end;
1227             vec_remove(self->life, i, 1);
1228             return true;
1229         }
1230         if (before->end + 1 == s)
1231         {
1232             /* extend before */
1233             before->end++;
1234             return true;
1235         }
1236         /* already contained */
1237         if (before->end >= s)
1238             return false;
1239     }
1240     /* extend */
1241     if (life->start - 1 == s)
1242     {
1243         life->start--;
1244         return true;
1245     }
1246     /* insert a new entry */
1247     new_entry.start = new_entry.end = s;
1248     return ir_value_life_insert(self, i, new_entry);
1249 }
1250
1251 bool ir_value_life_merge_into(ir_value *self, const ir_value *other)
1252 {
1253     size_t i, myi;
1254
1255     if (!vec_size(other->life))
1256         return true;
1257
1258     if (!vec_size(self->life)) {
1259         size_t count = vec_size(other->life);
1260         ir_life_entry_t *life = vec_add(self->life, count);
1261         memcpy(life, other->life, count * sizeof(*life));
1262         return true;
1263     }
1264
1265     myi = 0;
1266     for (i = 0; i < vec_size(other->life); ++i)
1267     {
1268         const ir_life_entry_t *life = &other->life[i];
1269         while (true)
1270         {
1271             ir_life_entry_t *entry = &self->life[myi];
1272
1273             if (life->end+1 < entry->start)
1274             {
1275                 /* adding an interval before entry */
1276                 if (!ir_value_life_insert(self, myi, *life))
1277                     return false;
1278                 ++myi;
1279                 break;
1280             }
1281
1282             if (life->start <  entry->start &&
1283                 life->end+1 >= entry->start)
1284             {
1285                 /* starts earlier and overlaps */
1286                 entry->start = life->start;
1287             }
1288
1289             if (life->end   >  entry->end &&
1290                 life->start <= entry->end+1)
1291             {
1292                 /* ends later and overlaps */
1293                 entry->end = life->end;
1294             }
1295
1296             /* see if our change combines it with the next ranges */
1297             while (myi+1 < vec_size(self->life) &&
1298                    entry->end+1 >= self->life[1+myi].start)
1299             {
1300                 /* overlaps with (myi+1) */
1301                 if (entry->end < self->life[1+myi].end)
1302                     entry->end = self->life[1+myi].end;
1303                 vec_remove(self->life, myi+1, 1);
1304                 entry = &self->life[myi];
1305             }
1306
1307             /* see if we're after the entry */
1308             if (life->start > entry->end)
1309             {
1310                 ++myi;
1311                 /* append if we're at the end */
1312                 if (myi >= vec_size(self->life)) {
1313                     vec_push(self->life, *life);
1314                     break;
1315                 }
1316                 /* otherweise check the next range */
1317                 continue;
1318             }
1319             break;
1320         }
1321     }
1322     return true;
1323 }
1324
1325 bool ir_values_overlap(const ir_value *a, const ir_value *b)
1326 {
1327     /* For any life entry in A see if it overlaps with
1328      * any life entry in B.
1329      * Note that the life entries are orderes, so we can make a
1330      * more efficient algorithm there than naively translating the
1331      * statement above.
1332      */
1333
1334     ir_life_entry_t *la, *lb, *enda, *endb;
1335
1336     /* first of all, if either has no life range, they cannot clash */
1337     if (!vec_size(a->life) || !vec_size(b->life))
1338         return false;
1339
1340     la = a->life;
1341     lb = b->life;
1342     enda = la + vec_size(a->life);
1343     endb = lb + vec_size(b->life);
1344     while (true)
1345     {
1346         /* check if the entries overlap, for that,
1347          * both must start before the other one ends.
1348          */
1349         if (la->start < lb->end &&
1350             lb->start < la->end)
1351         {
1352             return true;
1353         }
1354
1355         /* entries are ordered
1356          * one entry is earlier than the other
1357          * that earlier entry will be moved forward
1358          */
1359         if (la->start < lb->start)
1360         {
1361             /* order: A B, move A forward
1362              * check if we hit the end with A
1363              */
1364             if (++la == enda)
1365                 break;
1366         }
1367         else /* if (lb->start < la->start)  actually <= */
1368         {
1369             /* order: B A, move B forward
1370              * check if we hit the end with B
1371              */
1372             if (++lb == endb)
1373                 break;
1374         }
1375     }
1376     return false;
1377 }
1378
1379 /***********************************************************************
1380  *IR main operations
1381  */
1382
1383 static bool ir_check_unreachable(ir_block *self)
1384 {
1385     /* The IR should never have to deal with unreachable code */
1386     if (!self->final/* || OPTS_FLAG(ALLOW_UNREACHABLE_CODE)*/)
1387         return true;
1388     irerror(self->context, "unreachable statement (%s)", self->label);
1389     return false;
1390 }
1391
1392 bool ir_block_create_store_op(ir_block *self, lex_ctx ctx, int op, ir_value *target, ir_value *what)
1393 {
1394     ir_instr *in;
1395     if (!ir_check_unreachable(self))
1396         return false;
1397
1398     if (target->store == store_value &&
1399         (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC))
1400     {
1401         irerror(self->context, "cannot store to an SSA value");
1402         irerror(self->context, "trying to store: %s <- %s", target->name, what->name);
1403         irerror(self->context, "instruction: %s", asm_instr[op].m);
1404         return false;
1405     }
1406
1407     in = ir_instr_new(ctx, self, op);
1408     if (!in)
1409         return false;
1410
1411     if (!ir_instr_op(in, 0, target, (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) ||
1412         !ir_instr_op(in, 1, what, false))
1413     {
1414         ir_instr_delete(in);
1415         return false;
1416     }
1417     vec_push(self->instr, in);
1418     return true;
1419 }
1420
1421 bool ir_block_create_store(ir_block *self, lex_ctx ctx, ir_value *target, ir_value *what)
1422 {
1423     int op = 0;
1424     int vtype;
1425     if (target->vtype == TYPE_VARIANT)
1426         vtype = what->vtype;
1427     else
1428         vtype = target->vtype;
1429
1430 #if 0
1431     if      (vtype == TYPE_FLOAT   && what->vtype == TYPE_INTEGER)
1432         op = INSTR_CONV_ITOF;
1433     else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT)
1434         op = INSTR_CONV_FTOI;
1435 #endif
1436         op = type_store_instr[vtype];
1437
1438     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1439         if (op == INSTR_STORE_FLD && what->fieldtype == TYPE_VECTOR)
1440             op = INSTR_STORE_V;
1441     }
1442
1443     return ir_block_create_store_op(self, ctx, op, target, what);
1444 }
1445
1446 bool ir_block_create_storep(ir_block *self, lex_ctx ctx, ir_value *target, ir_value *what)
1447 {
1448     int op = 0;
1449     int vtype;
1450
1451     if (target->vtype != TYPE_POINTER)
1452         return false;
1453
1454     /* storing using pointer - target is a pointer, type must be
1455      * inferred from source
1456      */
1457     vtype = what->vtype;
1458
1459     op = type_storep_instr[vtype];
1460     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1461         if (op == INSTR_STOREP_FLD && what->fieldtype == TYPE_VECTOR)
1462             op = INSTR_STOREP_V;
1463     }
1464
1465     return ir_block_create_store_op(self, ctx, op, target, what);
1466 }
1467
1468 bool ir_block_create_return(ir_block *self, lex_ctx ctx, ir_value *v)
1469 {
1470     ir_instr *in;
1471     if (!ir_check_unreachable(self))
1472         return false;
1473     self->final = true;
1474     self->is_return = true;
1475     in = ir_instr_new(ctx, self, INSTR_RETURN);
1476     if (!in)
1477         return false;
1478
1479     if (v && !ir_instr_op(in, 0, v, false)) {
1480         ir_instr_delete(in);
1481         return false;
1482     }
1483
1484     vec_push(self->instr, in);
1485     return true;
1486 }
1487
1488 bool ir_block_create_if(ir_block *self, lex_ctx ctx, ir_value *v,
1489                         ir_block *ontrue, ir_block *onfalse)
1490 {
1491     ir_instr *in;
1492     if (!ir_check_unreachable(self))
1493         return false;
1494     self->final = true;
1495     /*in = ir_instr_new(ctx, self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
1496     in = ir_instr_new(ctx, self, VINSTR_COND);
1497     if (!in)
1498         return false;
1499
1500     if (!ir_instr_op(in, 0, v, false)) {
1501         ir_instr_delete(in);
1502         return false;
1503     }
1504
1505     in->bops[0] = ontrue;
1506     in->bops[1] = onfalse;
1507
1508     vec_push(self->instr, in);
1509
1510     vec_push(self->exits, ontrue);
1511     vec_push(self->exits, onfalse);
1512     vec_push(ontrue->entries,  self);
1513     vec_push(onfalse->entries, self);
1514     return true;
1515 }
1516
1517 bool ir_block_create_jump(ir_block *self, lex_ctx ctx, ir_block *to)
1518 {
1519     ir_instr *in;
1520     if (!ir_check_unreachable(self))
1521         return false;
1522     self->final = true;
1523     in = ir_instr_new(ctx, self, VINSTR_JUMP);
1524     if (!in)
1525         return false;
1526
1527     in->bops[0] = to;
1528     vec_push(self->instr, in);
1529
1530     vec_push(self->exits, to);
1531     vec_push(to->entries, self);
1532     return true;
1533 }
1534
1535 bool ir_block_create_goto(ir_block *self, lex_ctx ctx, ir_block *to)
1536 {
1537     self->owner->flags |= IR_FLAG_HAS_GOTO;
1538     return ir_block_create_jump(self, ctx, to);
1539 }
1540
1541 ir_instr* ir_block_create_phi(ir_block *self, lex_ctx ctx, const char *label, int ot)
1542 {
1543     ir_value *out;
1544     ir_instr *in;
1545     if (!ir_check_unreachable(self))
1546         return NULL;
1547     in = ir_instr_new(ctx, self, VINSTR_PHI);
1548     if (!in)
1549         return NULL;
1550     out = ir_value_out(self->owner, label, store_value, ot);
1551     if (!out) {
1552         ir_instr_delete(in);
1553         return NULL;
1554     }
1555     if (!ir_instr_op(in, 0, out, true)) {
1556         ir_instr_delete(in);
1557         ir_value_delete(out);
1558         return NULL;
1559     }
1560     vec_push(self->instr, in);
1561     return in;
1562 }
1563
1564 ir_value* ir_phi_value(ir_instr *self)
1565 {
1566     return self->_ops[0];
1567 }
1568
1569 void ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
1570 {
1571     ir_phi_entry_t pe;
1572
1573     if (!vec_ir_block_find(self->owner->entries, b, NULL)) {
1574         /* Must not be possible to cause this, otherwise the AST
1575          * is doing something wrong.
1576          */
1577         irerror(self->context, "Invalid entry block for PHI");
1578         abort();
1579     }
1580
1581     pe.value = v;
1582     pe.from = b;
1583     vec_push(v->reads, self);
1584     vec_push(self->phi, pe);
1585 }
1586
1587 /* call related code */
1588 ir_instr* ir_block_create_call(ir_block *self, lex_ctx ctx, const char *label, ir_value *func, bool noreturn)
1589 {
1590     ir_value *out;
1591     ir_instr *in;
1592     if (!ir_check_unreachable(self))
1593         return NULL;
1594     in = ir_instr_new(ctx, self, (noreturn ? VINSTR_NRCALL : INSTR_CALL0));
1595     if (!in)
1596         return NULL;
1597     if (noreturn) {
1598         self->final = true;
1599         self->is_return = true;
1600     }
1601     out = ir_value_out(self->owner, label, (func->outtype == TYPE_VOID) ? store_return : store_value, func->outtype);
1602     if (!out) {
1603         ir_instr_delete(in);
1604         return NULL;
1605     }
1606     if (!ir_instr_op(in, 0, out, true) ||
1607         !ir_instr_op(in, 1, func, false))
1608     {
1609         ir_instr_delete(in);
1610         ir_value_delete(out);
1611         return NULL;
1612     }
1613     vec_push(self->instr, in);
1614     /*
1615     if (noreturn) {
1616         if (!ir_block_create_return(self, ctx, NULL)) {
1617             compile_error(ctx, "internal error: failed to generate dummy-return instruction");
1618             ir_instr_delete(in);
1619             return NULL;
1620         }
1621     }
1622     */
1623     return in;
1624 }
1625
1626 ir_value* ir_call_value(ir_instr *self)
1627 {
1628     return self->_ops[0];
1629 }
1630
1631 void ir_call_param(ir_instr* self, ir_value *v)
1632 {
1633     vec_push(self->params, v);
1634     vec_push(v->reads, self);
1635 }
1636
1637 /* binary op related code */
1638
1639 ir_value* ir_block_create_binop(ir_block *self, lex_ctx ctx,
1640                                 const char *label, int opcode,
1641                                 ir_value *left, ir_value *right)
1642 {
1643     int ot = TYPE_VOID;
1644     switch (opcode) {
1645         case INSTR_ADD_F:
1646         case INSTR_SUB_F:
1647         case INSTR_DIV_F:
1648         case INSTR_MUL_F:
1649         case INSTR_MUL_V:
1650         case INSTR_AND:
1651         case INSTR_OR:
1652 #if 0
1653         case INSTR_AND_I:
1654         case INSTR_AND_IF:
1655         case INSTR_AND_FI:
1656         case INSTR_OR_I:
1657         case INSTR_OR_IF:
1658         case INSTR_OR_FI:
1659 #endif
1660         case INSTR_BITAND:
1661         case INSTR_BITOR:
1662 #if 0
1663         case INSTR_SUB_S: /* -- offset of string as float */
1664         case INSTR_MUL_IF:
1665         case INSTR_MUL_FI:
1666         case INSTR_DIV_IF:
1667         case INSTR_DIV_FI:
1668         case INSTR_BITOR_IF:
1669         case INSTR_BITOR_FI:
1670         case INSTR_BITAND_FI:
1671         case INSTR_BITAND_IF:
1672         case INSTR_EQ_I:
1673         case INSTR_NE_I:
1674 #endif
1675             ot = TYPE_FLOAT;
1676             break;
1677 #if 0
1678         case INSTR_ADD_I:
1679         case INSTR_ADD_IF:
1680         case INSTR_ADD_FI:
1681         case INSTR_SUB_I:
1682         case INSTR_SUB_FI:
1683         case INSTR_SUB_IF:
1684         case INSTR_MUL_I:
1685         case INSTR_DIV_I:
1686         case INSTR_BITAND_I:
1687         case INSTR_BITOR_I:
1688         case INSTR_XOR_I:
1689         case INSTR_RSHIFT_I:
1690         case INSTR_LSHIFT_I:
1691             ot = TYPE_INTEGER;
1692             break;
1693 #endif
1694         case INSTR_ADD_V:
1695         case INSTR_SUB_V:
1696         case INSTR_MUL_VF:
1697         case INSTR_MUL_FV:
1698 #if 0
1699         case INSTR_DIV_VF:
1700         case INSTR_MUL_IV:
1701         case INSTR_MUL_VI:
1702 #endif
1703             ot = TYPE_VECTOR;
1704             break;
1705 #if 0
1706         case INSTR_ADD_SF:
1707             ot = TYPE_POINTER;
1708             break;
1709 #endif
1710         default:
1711             /* ranges: */
1712             /* boolean operations result in floats */
1713             if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
1714                 ot = TYPE_FLOAT;
1715             else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
1716                 ot = TYPE_FLOAT;
1717 #if 0
1718             else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
1719                 ot = TYPE_FLOAT;
1720 #endif
1721             break;
1722     };
1723     if (ot == TYPE_VOID) {
1724         /* The AST or parser were supposed to check this! */
1725         return NULL;
1726     }
1727
1728     return ir_block_create_general_instr(self, ctx, label, opcode, left, right, ot);
1729 }
1730
1731 ir_value* ir_block_create_unary(ir_block *self, lex_ctx ctx,
1732                                 const char *label, int opcode,
1733                                 ir_value *operand)
1734 {
1735     int ot = TYPE_FLOAT;
1736     switch (opcode) {
1737         case INSTR_NOT_F:
1738         case INSTR_NOT_V:
1739         case INSTR_NOT_S:
1740         case INSTR_NOT_ENT:
1741         case INSTR_NOT_FNC:
1742 #if 0
1743         case INSTR_NOT_I:
1744 #endif
1745             ot = TYPE_FLOAT;
1746             break;
1747         /* QC doesn't have other unary operations. We expect extensions to fill
1748          * the above list, otherwise we assume out-type = in-type, eg for an
1749          * unary minus
1750          */
1751         default:
1752             ot = operand->vtype;
1753             break;
1754     };
1755     if (ot == TYPE_VOID) {
1756         /* The AST or parser were supposed to check this! */
1757         return NULL;
1758     }
1759
1760     /* let's use the general instruction creator and pass NULL for OPB */
1761     return ir_block_create_general_instr(self, ctx, label, opcode, operand, NULL, ot);
1762 }
1763
1764 ir_value* ir_block_create_general_instr(ir_block *self, lex_ctx ctx, const char *label,
1765                                         int op, ir_value *a, ir_value *b, int outype)
1766 {
1767     ir_instr *instr;
1768     ir_value *out;
1769
1770     out = ir_value_out(self->owner, label, store_value, outype);
1771     if (!out)
1772         return NULL;
1773
1774     instr = ir_instr_new(ctx, self, op);
1775     if (!instr) {
1776         ir_value_delete(out);
1777         return NULL;
1778     }
1779
1780     if (!ir_instr_op(instr, 0, out, true) ||
1781         !ir_instr_op(instr, 1, a, false) ||
1782         !ir_instr_op(instr, 2, b, false) )
1783     {
1784         goto on_error;
1785     }
1786
1787     vec_push(self->instr, instr);
1788
1789     return out;
1790 on_error:
1791     ir_instr_delete(instr);
1792     ir_value_delete(out);
1793     return NULL;
1794 }
1795
1796 ir_value* ir_block_create_fieldaddress(ir_block *self, lex_ctx ctx, const char *label, ir_value *ent, ir_value *field)
1797 {
1798     ir_value *v;
1799
1800     /* Support for various pointer types todo if so desired */
1801     if (ent->vtype != TYPE_ENTITY)
1802         return NULL;
1803
1804     if (field->vtype != TYPE_FIELD)
1805         return NULL;
1806
1807     v = ir_block_create_general_instr(self, ctx, label, INSTR_ADDRESS, ent, field, TYPE_POINTER);
1808     v->fieldtype = field->fieldtype;
1809     return v;
1810 }
1811
1812 ir_value* ir_block_create_load_from_ent(ir_block *self, lex_ctx ctx, const char *label, ir_value *ent, ir_value *field, int outype)
1813 {
1814     int op;
1815     if (ent->vtype != TYPE_ENTITY)
1816         return NULL;
1817
1818     /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */
1819     if (field->vtype != TYPE_FIELD)
1820         return NULL;
1821
1822     switch (outype)
1823     {
1824         case TYPE_FLOAT:    op = INSTR_LOAD_F;   break;
1825         case TYPE_VECTOR:   op = INSTR_LOAD_V;   break;
1826         case TYPE_STRING:   op = INSTR_LOAD_S;   break;
1827         case TYPE_FIELD:    op = INSTR_LOAD_FLD; break;
1828         case TYPE_ENTITY:   op = INSTR_LOAD_ENT; break;
1829         case TYPE_FUNCTION: op = INSTR_LOAD_FNC; break;
1830 #if 0
1831         case TYPE_POINTER: op = INSTR_LOAD_I;   break;
1832         case TYPE_INTEGER: op = INSTR_LOAD_I;   break;
1833 #endif
1834         default:
1835             irerror(self->context, "invalid type for ir_block_create_load_from_ent: %s", type_name[outype]);
1836             return NULL;
1837     }
1838
1839     return ir_block_create_general_instr(self, ctx, label, op, ent, field, outype);
1840 }
1841
1842 /* PHI resolving breaks the SSA, and must thus be the last
1843  * step before life-range calculation.
1844  */
1845
1846 static bool ir_block_naive_phi(ir_block *self);
1847 bool ir_function_naive_phi(ir_function *self)
1848 {
1849     size_t i;
1850
1851     for (i = 0; i < vec_size(self->blocks); ++i)
1852     {
1853         if (!ir_block_naive_phi(self->blocks[i]))
1854             return false;
1855     }
1856     return true;
1857 }
1858
1859 #if 0
1860 static bool ir_naive_phi_emit_store(ir_block *block, size_t iid, ir_value *old, ir_value *what)
1861 {
1862     ir_instr *instr;
1863     size_t i;
1864
1865     /* create a store */
1866     if (!ir_block_create_store(block, old, what))
1867         return false;
1868
1869     /* we now move it up */
1870     instr = vec_last(block->instr);
1871     for (i = vec_size(block->instr)-1; i > iid; --i)
1872         block->instr[i] = block->instr[i-1];
1873     block->instr[i] = instr;
1874
1875     return true;
1876 }
1877 #endif
1878
1879 static bool ir_block_naive_phi(ir_block *self)
1880 {
1881     size_t i, p; /*, w;*/
1882     /* FIXME: optionally, create_phi can add the phis
1883      * to a list so we don't need to loop through blocks
1884      * - anyway: "don't optimize YET"
1885      */
1886     for (i = 0; i < vec_size(self->instr); ++i)
1887     {
1888         ir_instr *instr = self->instr[i];
1889         if (instr->opcode != VINSTR_PHI)
1890             continue;
1891
1892         vec_remove(self->instr, i, 1);
1893         --i; /* NOTE: i+1 below */
1894
1895         for (p = 0; p < vec_size(instr->phi); ++p)
1896         {
1897             ir_value *v = instr->phi[p].value;
1898             ir_block *b = instr->phi[p].from;
1899
1900             if (v->store == store_value &&
1901                 vec_size(v->reads) == 1 &&
1902                 vec_size(v->writes) == 1)
1903             {
1904                 /* replace the value */
1905                 if (!ir_instr_op(v->writes[0], 0, instr->_ops[0], true))
1906                     return false;
1907             }
1908             else
1909             {
1910                 /* force a move instruction */
1911                 ir_instr *prevjump = vec_last(b->instr);
1912                 vec_pop(b->instr);
1913                 b->final = false;
1914                 instr->_ops[0]->store = store_global;
1915                 if (!ir_block_create_store(b, instr->context, instr->_ops[0], v))
1916                     return false;
1917                 instr->_ops[0]->store = store_value;
1918                 vec_push(b->instr, prevjump);
1919                 b->final = true;
1920             }
1921
1922 #if 0
1923             ir_value *v = instr->phi[p].value;
1924             for (w = 0; w < vec_size(v->writes); ++w) {
1925                 ir_value *old;
1926
1927                 if (!v->writes[w]->_ops[0])
1928                     continue;
1929
1930                 /* When the write was to a global, we have to emit a mov */
1931                 old = v->writes[w]->_ops[0];
1932
1933                 /* The original instruction now writes to the PHI target local */
1934                 if (v->writes[w]->_ops[0] == v)
1935                     v->writes[w]->_ops[0] = instr->_ops[0];
1936
1937                 if (old->store != store_value && old->store != store_local && old->store != store_param)
1938                 {
1939                     /* If it originally wrote to a global we need to store the value
1940                      * there as welli
1941                      */
1942                     if (!ir_naive_phi_emit_store(self, i+1, old, v))
1943                         return false;
1944                     if (i+1 < vec_size(self->instr))
1945                         instr = self->instr[i+1];
1946                     else
1947                         instr = NULL;
1948                     /* In case I forget and access instr later, it'll be NULL
1949                      * when it's a problem, to make sure we crash, rather than accessing
1950                      * invalid data.
1951                      */
1952                 }
1953                 else
1954                 {
1955                     /* If it didn't, we can replace all reads by the phi target now. */
1956                     size_t r;
1957                     for (r = 0; r < vec_size(old->reads); ++r)
1958                     {
1959                         size_t op;
1960                         ir_instr *ri = old->reads[r];
1961                         for (op = 0; op < vec_size(ri->phi); ++op) {
1962                             if (ri->phi[op].value == old)
1963                                 ri->phi[op].value = v;
1964                         }
1965                         for (op = 0; op < 3; ++op) {
1966                             if (ri->_ops[op] == old)
1967                                 ri->_ops[op] = v;
1968                         }
1969                     }
1970                 }
1971             }
1972 #endif
1973         }
1974         ir_instr_delete(instr);
1975     }
1976     return true;
1977 }
1978
1979 /***********************************************************************
1980  *IR Temp allocation code
1981  * Propagating value life ranges by walking through the function backwards
1982  * until no more changes are made.
1983  * In theory this should happen once more than once for every nested loop
1984  * level.
1985  * Though this implementation might run an additional time for if nests.
1986  */
1987
1988 /* Enumerate instructions used by value's life-ranges
1989  */
1990 static void ir_block_enumerate(ir_block *self, size_t *_eid)
1991 {
1992     size_t i;
1993     size_t eid = *_eid;
1994     for (i = 0; i < vec_size(self->instr); ++i)
1995     {
1996         self->instr[i]->eid = eid++;
1997     }
1998     *_eid = eid;
1999 }
2000
2001 /* Enumerate blocks and instructions.
2002  * The block-enumeration is unordered!
2003  * We do not really use the block enumreation, however
2004  * the instruction enumeration is important for life-ranges.
2005  */
2006 void ir_function_enumerate(ir_function *self)
2007 {
2008     size_t i;
2009     size_t instruction_id = 1;
2010     for (i = 0; i < vec_size(self->blocks); ++i)
2011     {
2012         self->blocks[i]->eid = i;
2013         self->blocks[i]->run_id = 0;
2014         ir_block_enumerate(self->blocks[i], &instruction_id);
2015     }
2016 }
2017
2018 static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed);
2019 bool ir_function_calculate_liferanges(ir_function *self)
2020 {
2021     size_t i, s;
2022     bool changed;
2023
2024     /* parameters live at 0 */
2025     for (i = 0; i < vec_size(self->params); ++i)
2026         ir_value_life_merge(self->locals[i], 0);
2027
2028     do {
2029         self->run_id++;
2030         changed = false;
2031         for (i = 0; i != vec_size(self->blocks); ++i)
2032         {
2033             if (self->blocks[i]->is_return)
2034             {
2035                 vec_free(self->blocks[i]->living);
2036                 if (!ir_block_life_propagate(self->blocks[i], NULL, &changed))
2037                     return false;
2038             }
2039         }
2040     } while (changed);
2041     if (vec_size(self->blocks)) {
2042         ir_block *block = self->blocks[0];
2043         for (i = 0; i < vec_size(block->living); ++i) {
2044             ir_value *v = block->living[i];
2045             if (v->store != store_local)
2046                 continue;
2047             if (v->vtype == TYPE_VECTOR)
2048                 continue;
2049             self->flags |= IR_FLAG_HAS_UNINITIALIZED;
2050             /* find the instruction reading from it */
2051             for (s = 0; s < vec_size(v->reads); ++s) {
2052                 if (v->reads[s]->eid == v->life[0].end)
2053                     break;
2054             }
2055             if (s < vec_size(v->reads)) {
2056                 if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2057                               "variable `%s` may be used uninitialized in this function\n"
2058                               " -> %s:%i",
2059                               v->name,
2060                               v->reads[s]->context.file, v->reads[s]->context.line)
2061                    )
2062                 {
2063                     return false;
2064                 }
2065                 continue;
2066             }
2067             if (v->memberof) {
2068                 ir_value *vec = v->memberof;
2069                 for (s = 0; s < vec_size(vec->reads); ++s) {
2070                     if (vec->reads[s]->eid == v->life[0].end)
2071                         break;
2072                 }
2073                 if (s < vec_size(vec->reads)) {
2074                     if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2075                                   "variable `%s` may be used uninitialized in this function\n"
2076                                   " -> %s:%i",
2077                                   v->name,
2078                                   vec->reads[s]->context.file, vec->reads[s]->context.line)
2079                        )
2080                     {
2081                         return false;
2082                     }
2083                     continue;
2084                 }
2085             }
2086             if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2087                           "variable `%s` may be used uninitialized in this function", v->name))
2088             {
2089                 return false;
2090             }
2091         }
2092     }
2093     return true;
2094 }
2095
2096 /* Local-value allocator
2097  * After finishing creating the liferange of all values used in a function
2098  * we can allocate their global-positions.
2099  * This is the counterpart to register-allocation in register machines.
2100  */
2101 typedef struct {
2102     ir_value **locals;
2103     size_t    *sizes;
2104     size_t    *positions;
2105     bool      *unique;
2106 } function_allocator;
2107
2108 static bool function_allocator_alloc(function_allocator *alloc, const ir_value *var)
2109 {
2110     ir_value *slot;
2111     size_t vsize = ir_value_sizeof(var);
2112
2113     slot = ir_value_var("reg", store_global, var->vtype);
2114     if (!slot)
2115         return false;
2116
2117     if (!ir_value_life_merge_into(slot, var))
2118         goto localerror;
2119
2120     vec_push(alloc->locals, slot);
2121     vec_push(alloc->sizes, vsize);
2122     vec_push(alloc->unique, var->unique_life);
2123
2124     return true;
2125
2126 localerror:
2127     ir_value_delete(slot);
2128     return false;
2129 }
2130
2131 bool ir_function_allocate_locals(ir_function *self)
2132 {
2133     size_t i, a;
2134     bool   retval = true;
2135     size_t pos;
2136
2137     ir_value *slot;
2138     const ir_value *v;
2139
2140     function_allocator alloc;
2141
2142     if (!vec_size(self->locals) && !vec_size(self->values))
2143         return true;
2144
2145     alloc.locals    = NULL;
2146     alloc.sizes     = NULL;
2147     alloc.positions = NULL;
2148     alloc.unique    = NULL;
2149
2150     for (i = 0; i < vec_size(self->locals); ++i)
2151     {
2152         if (!OPTS_OPTIMIZATION(OPTIM_LOCAL_TEMPS))
2153             self->locals[i]->unique_life = true;
2154         if (!function_allocator_alloc(&alloc, self->locals[i]))
2155             goto error;
2156     }
2157
2158     /* Allocate a slot for any value that still exists */
2159     for (i = 0; i < vec_size(self->values); ++i)
2160     {
2161         v = self->values[i];
2162
2163         if (!vec_size(v->life))
2164             continue;
2165
2166         for (a = 0; a < vec_size(alloc.locals); ++a)
2167         {
2168             /* if it's reserved for a unique liferange: skip */
2169             if (alloc.unique[a])
2170                 continue;
2171
2172             slot = alloc.locals[a];
2173
2174             /* never resize parameters
2175              * will be required later when overlapping temps + locals
2176              */
2177             if (a < vec_size(self->params) &&
2178                 alloc.sizes[a] < ir_value_sizeof(v))
2179             {
2180                 continue;
2181             }
2182
2183             if (ir_values_overlap(v, slot))
2184                 continue;
2185
2186             if (!ir_value_life_merge_into(slot, v))
2187                 goto error;
2188
2189             /* adjust size for this slot */
2190             if (alloc.sizes[a] < ir_value_sizeof(v))
2191                 alloc.sizes[a] = ir_value_sizeof(v);
2192
2193             self->values[i]->code.local = a;
2194             break;
2195         }
2196         if (a >= vec_size(alloc.locals)) {
2197             self->values[i]->code.local = vec_size(alloc.locals);
2198             if (!function_allocator_alloc(&alloc, v))
2199                 goto error;
2200         }
2201     }
2202
2203     if (!alloc.sizes) {
2204         goto cleanup;
2205     }
2206
2207     /* Adjust slot positions based on sizes */
2208     vec_push(alloc.positions, 0);
2209
2210     if (vec_size(alloc.sizes))
2211         pos = alloc.positions[0] + alloc.sizes[0];
2212     else
2213         pos = 0;
2214     for (i = 1; i < vec_size(alloc.sizes); ++i)
2215     {
2216         pos = alloc.positions[i-1] + alloc.sizes[i-1];
2217         vec_push(alloc.positions, pos);
2218     }
2219
2220     self->allocated_locals = pos + vec_last(alloc.sizes);
2221
2222     /* Locals need to know their new position */
2223     for (i = 0; i < vec_size(self->locals); ++i) {
2224         self->locals[i]->code.local = alloc.positions[i];
2225     }
2226     /* Take over the actual slot positions on values */
2227     for (i = 0; i < vec_size(self->values); ++i) {
2228         self->values[i]->code.local = alloc.positions[self->values[i]->code.local];
2229     }
2230
2231     goto cleanup;
2232
2233 error:
2234     retval = false;
2235 cleanup:
2236     for (i = 0; i < vec_size(alloc.locals); ++i)
2237         ir_value_delete(alloc.locals[i]);
2238     vec_free(alloc.unique);
2239     vec_free(alloc.locals);
2240     vec_free(alloc.sizes);
2241     vec_free(alloc.positions);
2242     return retval;
2243 }
2244
2245 /* Get information about which operand
2246  * is read from, or written to.
2247  */
2248 static void ir_op_read_write(int op, size_t *read, size_t *write)
2249 {
2250     switch (op)
2251     {
2252     case VINSTR_JUMP:
2253     case INSTR_GOTO:
2254         *write = 0;
2255         *read = 0;
2256         break;
2257     case INSTR_IF:
2258     case INSTR_IFNOT:
2259 #if 0
2260     case INSTR_IF_S:
2261     case INSTR_IFNOT_S:
2262 #endif
2263     case INSTR_RETURN:
2264     case VINSTR_COND:
2265         *write = 0;
2266         *read = 1;
2267         break;
2268     case INSTR_STOREP_F:
2269     case INSTR_STOREP_V:
2270     case INSTR_STOREP_S:
2271     case INSTR_STOREP_ENT:
2272     case INSTR_STOREP_FLD:
2273     case INSTR_STOREP_FNC:
2274         *write = 0;
2275         *read  = 7;
2276         break;
2277     default:
2278         *write = 1;
2279         *read = 6;
2280         break;
2281     };
2282 }
2283
2284 static bool ir_block_living_add_instr(ir_block *self, size_t eid)
2285 {
2286     size_t i;
2287     bool changed = false;
2288     bool tempbool;
2289     for (i = 0; i != vec_size(self->living); ++i)
2290     {
2291         tempbool = ir_value_life_merge(self->living[i], eid);
2292         /* debug
2293         if (tempbool)
2294             irerror(self->context, "block_living_add_instr() value instruction added %s: %i", self->living[i]->_name, (int)eid);
2295         */
2296         changed = changed || tempbool;
2297     }
2298     return changed;
2299 }
2300
2301 static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed)
2302 {
2303     size_t i;
2304
2305     (void)changed;
2306
2307     /* values which have been read in a previous iteration are now
2308      * in the "living" array even if the previous block doesn't use them.
2309      * So we have to remove whatever does not exist in the previous block.
2310      * They will be re-added on-read, but the liferange merge won't cause
2311      * a change.
2312     for (i = 0; i < vec_size(self->living); ++i)
2313     {
2314         if (!vec_ir_value_find(prev->living, self->living[i], NULL)) {
2315             vec_remove(self->living, i, 1);
2316             --i;
2317         }
2318     }
2319      */
2320
2321     /* Whatever the previous block still has in its living set
2322      * must now be added to ours as well.
2323      */
2324     for (i = 0; i < vec_size(prev->living); ++i)
2325     {
2326         if (vec_ir_value_find(self->living, prev->living[i], NULL))
2327             continue;
2328         vec_push(self->living, prev->living[i]);
2329         /*
2330         irerror(self->contextt from prev: %s", self->label, prev->living[i]->_name);
2331         */
2332     }
2333     return true;
2334 }
2335
2336 static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed)
2337 {
2338     ir_instr *instr;
2339     ir_value *value;
2340     bool  tempbool;
2341     size_t i, o, p, mem;
2342     /* bitmasks which operands are read from or written to */
2343     size_t read, write;
2344     char dbg_ind[16] = { '#', '0' };
2345     (void)dbg_ind;
2346
2347     if (prev)
2348     {
2349         if (!ir_block_life_prop_previous(self, prev, changed))
2350             return false;
2351     }
2352
2353     i = vec_size(self->instr);
2354     while (i)
2355     { --i;
2356         instr = self->instr[i];
2357
2358         /* See which operands are read and write operands */
2359         ir_op_read_write(instr->opcode, &read, &write);
2360
2361         if (instr->opcode == INSTR_MUL_VF)
2362         {
2363             /* the float source will get an additional lifetime */
2364             tempbool = ir_value_life_merge(instr->_ops[2], instr->eid+1);
2365             *changed = *changed || tempbool;
2366         }
2367         else if (instr->opcode == INSTR_MUL_FV)
2368         {
2369             /* the float source will get an additional lifetime */
2370             tempbool = ir_value_life_merge(instr->_ops[1], instr->eid+1);
2371             *changed = *changed || tempbool;
2372         }
2373
2374         /* Go through the 3 main operands
2375          * writes first, then reads
2376          */
2377         for (o = 0; o < 3; ++o)
2378         {
2379             if (!instr->_ops[o]) /* no such operand */
2380                 continue;
2381
2382             value = instr->_ops[o];
2383
2384             /* We only care about locals */
2385             /* we also calculate parameter liferanges so that locals
2386              * can take up parameter slots */
2387             if (value->store != store_value &&
2388                 value->store != store_local &&
2389                 value->store != store_param)
2390                 continue;
2391
2392             /* write operands */
2393             /* When we write to a local, we consider it "dead" for the
2394              * remaining upper part of the function, since in SSA a value
2395              * can only be written once (== created)
2396              */
2397             if (write & (1<<o))
2398             {
2399                 size_t idx;
2400                 bool in_living = vec_ir_value_find(self->living, value, &idx);
2401                 if (!in_living)
2402                 {
2403                     /* If the value isn't alive it hasn't been read before... */
2404                     /* TODO: See if the warning can be emitted during parsing or AST processing
2405                      * otherwise have warning printed here.
2406                      * IF printing a warning here: include filecontext_t,
2407                      * and make sure it's only printed once
2408                      * since this function is run multiple times.
2409                      */
2410                     /* con_err( "Value only written %s\n", value->name); */
2411                     tempbool = ir_value_life_merge(value, instr->eid);
2412                     *changed = *changed || tempbool;
2413                 } else {
2414                     /* since 'living' won't contain it
2415                      * anymore, merge the value, since
2416                      * (A) doesn't.
2417                      */
2418                     tempbool = ir_value_life_merge(value, instr->eid);
2419                     *changed = *changed || tempbool;
2420                     /* Then remove */
2421                     vec_remove(self->living, idx, 1);
2422                 }
2423                 /* Removing a vector removes all members */
2424                 for (mem = 0; mem < 3; ++mem) {
2425                     if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], &idx)) {
2426                         tempbool = ir_value_life_merge(value->members[mem], instr->eid);
2427                         *changed = *changed || tempbool;
2428                         vec_remove(self->living, idx, 1);
2429                     }
2430                 }
2431                 /* Removing the last member removes the vector */
2432                 if (value->memberof) {
2433                     value = value->memberof;
2434                     for (mem = 0; mem < 3; ++mem) {
2435                         if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], NULL))
2436                             break;
2437                     }
2438                     if (mem == 3 && vec_ir_value_find(self->living, value, &idx)) {
2439                         tempbool = ir_value_life_merge(value, instr->eid);
2440                         *changed = *changed || tempbool;
2441                         vec_remove(self->living, idx, 1);
2442                     }
2443                 }
2444             }
2445         }
2446
2447         for (o = 0; o < 3; ++o)
2448         {
2449             if (!instr->_ops[o]) /* no such operand */
2450                 continue;
2451
2452             value = instr->_ops[o];
2453
2454             /* We only care about locals */
2455             /* we also calculate parameter liferanges so that locals
2456              * can take up parameter slots */
2457             if (value->store != store_value &&
2458                 value->store != store_local &&
2459                 value->store != store_param)
2460                 continue;
2461
2462             /* read operands */
2463             if (read & (1<<o))
2464             {
2465                 if (!vec_ir_value_find(self->living, value, NULL))
2466                     vec_push(self->living, value);
2467                 /* reading adds the full vector */
2468                 if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2469                     vec_push(self->living, value->memberof);
2470                 for (mem = 0; mem < 3; ++mem) {
2471                     if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2472                         vec_push(self->living, value->members[mem]);
2473                 }
2474             }
2475         }
2476         /* PHI operands are always read operands */
2477         for (p = 0; p < vec_size(instr->phi); ++p)
2478         {
2479             value = instr->phi[p].value;
2480             if (!vec_ir_value_find(self->living, value, NULL))
2481                 vec_push(self->living, value);
2482             /* reading adds the full vector */
2483             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2484                 vec_push(self->living, value->memberof);
2485             for (mem = 0; mem < 3; ++mem) {
2486                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2487                     vec_push(self->living, value->members[mem]);
2488             }
2489         }
2490
2491         /* call params are read operands too */
2492         for (p = 0; p < vec_size(instr->params); ++p)
2493         {
2494             value = instr->params[p];
2495             if (!vec_ir_value_find(self->living, value, NULL))
2496                 vec_push(self->living, value);
2497             /* reading adds the full vector */
2498             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2499                 vec_push(self->living, value->memberof);
2500             for (mem = 0; mem < 3; ++mem) {
2501                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2502                     vec_push(self->living, value->members[mem]);
2503             }
2504         }
2505
2506         /* (A) */
2507         tempbool = ir_block_living_add_instr(self, instr->eid);
2508         /*con_err( "living added values\n");*/
2509         *changed = *changed || tempbool;
2510
2511     }
2512
2513     if (self->run_id == self->owner->run_id)
2514         return true;
2515
2516     self->run_id = self->owner->run_id;
2517
2518     for (i = 0; i < vec_size(self->entries); ++i)
2519     {
2520         ir_block *entry = self->entries[i];
2521         ir_block_life_propagate(entry, self, changed);
2522     }
2523
2524     return true;
2525 }
2526
2527 /***********************************************************************
2528  *IR Code-Generation
2529  *
2530  * Since the IR has the convention of putting 'write' operands
2531  * at the beginning, we have to rotate the operands of instructions
2532  * properly in order to generate valid QCVM code.
2533  *
2534  * Having destinations at a fixed position is more convenient. In QC
2535  * this is *mostly* OPC,  but FTE adds at least 2 instructions which
2536  * read from from OPA,  and store to OPB rather than OPC.   Which is
2537  * partially the reason why the implementation of these instructions
2538  * in darkplaces has been delayed for so long.
2539  *
2540  * Breaking conventions is annoying...
2541  */
2542 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal, bool defs_only);
2543
2544 static bool gen_global_field(ir_value *global)
2545 {
2546     if (global->hasvalue)
2547     {
2548         ir_value *fld = global->constval.vpointer;
2549         if (!fld) {
2550             irerror(global->context, "Invalid field constant with no field: %s", global->name);
2551             return false;
2552         }
2553
2554         /* copy the field's value */
2555         ir_value_code_setaddr(global, vec_size(code_globals));
2556         vec_push(code_globals, fld->code.fieldaddr);
2557         if (global->fieldtype == TYPE_VECTOR) {
2558             vec_push(code_globals, fld->code.fieldaddr+1);
2559             vec_push(code_globals, fld->code.fieldaddr+2);
2560         }
2561     }
2562     else
2563     {
2564         ir_value_code_setaddr(global, vec_size(code_globals));
2565         vec_push(code_globals, 0);
2566         if (global->fieldtype == TYPE_VECTOR) {
2567             vec_push(code_globals, 0);
2568             vec_push(code_globals, 0);
2569         }
2570     }
2571     if (global->code.globaladdr < 0)
2572         return false;
2573     return true;
2574 }
2575
2576 static bool gen_global_pointer(ir_value *global)
2577 {
2578     if (global->hasvalue)
2579     {
2580         ir_value *target = global->constval.vpointer;
2581         if (!target) {
2582             irerror(global->context, "Invalid pointer constant: %s", global->name);
2583             /* NULL pointers are pointing to the NULL constant, which also
2584              * sits at address 0, but still has an ir_value for itself.
2585              */
2586             return false;
2587         }
2588
2589         /* Here, relocations ARE possible - in fteqcc-enhanced-qc:
2590          * void() foo; <- proto
2591          * void() *fooptr = &foo;
2592          * void() foo = { code }
2593          */
2594         if (!target->code.globaladdr) {
2595             /* FIXME: Check for the constant nullptr ir_value!
2596              * because then code.globaladdr being 0 is valid.
2597              */
2598             irerror(global->context, "FIXME: Relocation support");
2599             return false;
2600         }
2601
2602         ir_value_code_setaddr(global, vec_size(code_globals));
2603         vec_push(code_globals, target->code.globaladdr);
2604     }
2605     else
2606     {
2607         ir_value_code_setaddr(global, vec_size(code_globals));
2608         vec_push(code_globals, 0);
2609     }
2610     if (global->code.globaladdr < 0)
2611         return false;
2612     return true;
2613 }
2614
2615 static bool gen_blocks_recursive(ir_function *func, ir_block *block)
2616 {
2617     prog_section_statement stmt;
2618     ir_instr *instr;
2619     ir_block *target;
2620     ir_block *ontrue;
2621     ir_block *onfalse;
2622     size_t    stidx;
2623     size_t    i;
2624
2625 tailcall:
2626     block->generated = true;
2627     block->code_start = vec_size(code_statements);
2628     for (i = 0; i < vec_size(block->instr); ++i)
2629     {
2630         instr = block->instr[i];
2631
2632         if (instr->opcode == VINSTR_PHI) {
2633             irerror(block->context, "cannot generate virtual instruction (phi)");
2634             return false;
2635         }
2636
2637         if (instr->opcode == VINSTR_JUMP) {
2638             target = instr->bops[0];
2639             /* for uncoditional jumps, if the target hasn't been generated
2640              * yet, we generate them right here.
2641              */
2642             if (!target->generated) {
2643                 block = target;
2644                 goto tailcall;
2645             }
2646
2647             /* otherwise we generate a jump instruction */
2648             stmt.opcode = INSTR_GOTO;
2649             stmt.o1.s1 = (target->code_start) - vec_size(code_statements);
2650             stmt.o2.s1 = 0;
2651             stmt.o3.s1 = 0;
2652             if (stmt.o1.s1 != 1)
2653                 code_push_statement(&stmt, instr->context.line);
2654
2655             /* no further instructions can be in this block */
2656             return true;
2657         }
2658
2659         if (instr->opcode == VINSTR_COND) {
2660             ontrue  = instr->bops[0];
2661             onfalse = instr->bops[1];
2662             /* TODO: have the AST signal which block should
2663              * come first: eg. optimize IFs without ELSE...
2664              */
2665
2666             stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]);
2667             stmt.o2.u1 = 0;
2668             stmt.o3.s1 = 0;
2669
2670             if (ontrue->generated) {
2671                 stmt.opcode = INSTR_IF;
2672                 stmt.o2.s1 = (ontrue->code_start) - vec_size(code_statements);
2673                 if (stmt.o2.s1 != 1)
2674                     code_push_statement(&stmt, instr->context.line);
2675             }
2676             if (onfalse->generated) {
2677                 stmt.opcode = INSTR_IFNOT;
2678                 stmt.o2.s1 = (onfalse->code_start) - vec_size(code_statements);
2679                 if (stmt.o2.s1 != 1)
2680                     code_push_statement(&stmt, instr->context.line);
2681             }
2682             if (!ontrue->generated) {
2683                 if (onfalse->generated) {
2684                     block = ontrue;
2685                     goto tailcall;
2686                 }
2687             }
2688             if (!onfalse->generated) {
2689                 if (ontrue->generated) {
2690                     block = onfalse;
2691                     goto tailcall;
2692                 }
2693             }
2694             /* neither ontrue nor onfalse exist */
2695             stmt.opcode = INSTR_IFNOT;
2696             if (!instr->likely) {
2697                 /* Honor the likelyhood hint */
2698                 ir_block *tmp = onfalse;
2699                 stmt.opcode = INSTR_IF;
2700                 onfalse = ontrue;
2701                 ontrue = tmp;
2702             }
2703             stidx = vec_size(code_statements);
2704             code_push_statement(&stmt, instr->context.line);
2705             /* on false we jump, so add ontrue-path */
2706             if (!gen_blocks_recursive(func, ontrue))
2707                 return false;
2708             /* fixup the jump address */
2709             code_statements[stidx].o2.s1 = vec_size(code_statements) - stidx;
2710             /* generate onfalse path */
2711             if (onfalse->generated) {
2712                 /* fixup the jump address */
2713                 code_statements[stidx].o2.s1 = (onfalse->code_start) - (stidx);
2714                 if (code_statements[stidx].o2.s1 == 1) {
2715                     code_statements[stidx] = code_statements[stidx+1];
2716                     if (code_statements[stidx].o1.s1 < 0)
2717                         code_statements[stidx].o1.s1++;
2718                     code_pop_statement();
2719                 }
2720                 stmt.opcode = vec_last(code_statements).opcode;
2721                 if (stmt.opcode == INSTR_GOTO ||
2722                     stmt.opcode == INSTR_IF ||
2723                     stmt.opcode == INSTR_IFNOT ||
2724                     stmt.opcode == INSTR_RETURN ||
2725                     stmt.opcode == INSTR_DONE)
2726                 {
2727                     /* no use jumping from here */
2728                     return true;
2729                 }
2730                 /* may have been generated in the previous recursive call */
2731                 stmt.opcode = INSTR_GOTO;
2732                 stmt.o1.s1 = (onfalse->code_start) - vec_size(code_statements);
2733                 stmt.o2.s1 = 0;
2734                 stmt.o3.s1 = 0;
2735                 if (stmt.o1.s1 != 1)
2736                     code_push_statement(&stmt, instr->context.line);
2737                 return true;
2738             }
2739             else if (code_statements[stidx].o2.s1 == 1) {
2740                 code_statements[stidx] = code_statements[stidx+1];
2741                 if (code_statements[stidx].o1.s1 < 0)
2742                     code_statements[stidx].o1.s1++;
2743                 code_pop_statement();
2744             }
2745             /* if not, generate now */
2746             block = onfalse;
2747             goto tailcall;
2748         }
2749
2750         if ( (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8)
2751            || instr->opcode == VINSTR_NRCALL)
2752         {
2753             /* Trivial call translation:
2754              * copy all params to OFS_PARM*
2755              * if the output's storetype is not store_return,
2756              * add append a STORE instruction!
2757              *
2758              * NOTES on how to do it better without much trouble:
2759              * -) The liferanges!
2760              *      Simply check the liferange of all parameters for
2761              *      other CALLs. For each param with no CALL in its
2762              *      liferange, we can store it in an OFS_PARM at
2763              *      generation already. This would even include later
2764              *      reuse.... probably... :)
2765              */
2766             size_t p, first;
2767             ir_value *retvalue;
2768
2769             first = vec_size(instr->params);
2770             if (first > 8)
2771                 first = 8;
2772             for (p = 0; p < first; ++p)
2773             {
2774                 ir_value *param = instr->params[p];
2775
2776                 stmt.opcode = INSTR_STORE_F;
2777                 stmt.o3.u1 = 0;
2778
2779                 if (param->vtype == TYPE_FIELD)
2780                     stmt.opcode = field_store_instr[param->fieldtype];
2781                 else
2782                     stmt.opcode = type_store_instr[param->vtype];
2783                 stmt.o1.u1 = ir_value_code_addr(param);
2784                 stmt.o2.u1 = OFS_PARM0 + 3 * p;
2785                 code_push_statement(&stmt, instr->context.line);
2786             }
2787             /* Now handle extparams */
2788             first = vec_size(instr->params);
2789             for (; p < first; ++p)
2790             {
2791                 ir_builder *ir = func->owner;
2792                 ir_value *param = instr->params[p];
2793                 ir_value *targetparam;
2794
2795                 if (p-8 >= vec_size(ir->extparams))
2796                     ir_gen_extparam(ir);
2797
2798                 targetparam = ir->extparams[p-8];
2799
2800                 stmt.opcode = INSTR_STORE_F;
2801                 stmt.o3.u1 = 0;
2802
2803                 if (param->vtype == TYPE_FIELD)
2804                     stmt.opcode = field_store_instr[param->fieldtype];
2805                 else
2806                     stmt.opcode = type_store_instr[param->vtype];
2807                 stmt.o1.u1 = ir_value_code_addr(param);
2808                 stmt.o2.u1 = ir_value_code_addr(targetparam);
2809                 code_push_statement(&stmt, instr->context.line);
2810             }
2811
2812             stmt.opcode = INSTR_CALL0 + vec_size(instr->params);
2813             if (stmt.opcode > INSTR_CALL8)
2814                 stmt.opcode = INSTR_CALL8;
2815             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
2816             stmt.o2.u1 = 0;
2817             stmt.o3.u1 = 0;
2818             code_push_statement(&stmt, instr->context.line);
2819
2820             retvalue = instr->_ops[0];
2821             if (retvalue && retvalue->store != store_return &&
2822                 (retvalue->store == store_global || vec_size(retvalue->life)))
2823             {
2824                 /* not to be kept in OFS_RETURN */
2825                 if (retvalue->vtype == TYPE_FIELD && OPTS_FLAG(ADJUST_VECTOR_FIELDS))
2826                     stmt.opcode = field_store_instr[retvalue->fieldtype];
2827                 else
2828                     stmt.opcode = type_store_instr[retvalue->vtype];
2829                 stmt.o1.u1 = OFS_RETURN;
2830                 stmt.o2.u1 = ir_value_code_addr(retvalue);
2831                 stmt.o3.u1 = 0;
2832                 code_push_statement(&stmt, instr->context.line);
2833             }
2834             continue;
2835         }
2836
2837         if (instr->opcode == INSTR_STATE) {
2838             irerror(block->context, "TODO: state instruction");
2839             return false;
2840         }
2841
2842         stmt.opcode = instr->opcode;
2843         stmt.o1.u1 = 0;
2844         stmt.o2.u1 = 0;
2845         stmt.o3.u1 = 0;
2846
2847         /* This is the general order of operands */
2848         if (instr->_ops[0])
2849             stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]);
2850
2851         if (instr->_ops[1])
2852             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
2853
2854         if (instr->_ops[2])
2855             stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]);
2856
2857         if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE)
2858         {
2859             stmt.o1.u1 = stmt.o3.u1;
2860             stmt.o3.u1 = 0;
2861         }
2862         else if ((stmt.opcode >= INSTR_STORE_F &&
2863                   stmt.opcode <= INSTR_STORE_FNC) ||
2864                  (stmt.opcode >= INSTR_STOREP_F &&
2865                   stmt.opcode <= INSTR_STOREP_FNC))
2866         {
2867             /* 2-operand instructions with A -> B */
2868             stmt.o2.u1 = stmt.o3.u1;
2869             stmt.o3.u1 = 0;
2870
2871             /* tiny optimization, don't output
2872              * STORE a, a
2873              */
2874             if (stmt.o2.u1 == stmt.o1.u1 &&
2875                 OPTS_OPTIMIZATION(OPTIM_PEEPHOLE))
2876             {
2877                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
2878                 continue;
2879             }
2880         }
2881
2882         code_push_statement(&stmt, instr->context.line);
2883     }
2884     return true;
2885 }
2886
2887 static bool gen_function_code(ir_function *self)
2888 {
2889     ir_block *block;
2890     prog_section_statement stmt;
2891
2892     /* Starting from entry point, we generate blocks "as they come"
2893      * for now. Dead blocks will not be translated obviously.
2894      */
2895     if (!vec_size(self->blocks)) {
2896         irerror(self->context, "Function '%s' declared without body.", self->name);
2897         return false;
2898     }
2899
2900     block = self->blocks[0];
2901     if (block->generated)
2902         return true;
2903
2904     if (!gen_blocks_recursive(self, block)) {
2905         irerror(self->context, "failed to generate blocks for '%s'", self->name);
2906         return false;
2907     }
2908
2909     /* code_write and qcvm -disasm need to know that the function ends here */
2910     stmt.opcode = INSTR_DONE;
2911     stmt.o1.u1 = 0;
2912     stmt.o2.u1 = 0;
2913     stmt.o3.u1 = 0;
2914     code_push_statement(&stmt, vec_last(code_linenums));
2915     return true;
2916 }
2917
2918 static qcint ir_builder_filestring(ir_builder *ir, const char *filename)
2919 {
2920     /* NOTE: filename pointers are copied, we never strdup them,
2921      * thus we can use pointer-comparison to find the string.
2922      */
2923     size_t i;
2924     qcint  str;
2925
2926     for (i = 0; i < vec_size(ir->filenames); ++i) {
2927         if (ir->filenames[i] == filename)
2928             return ir->filestrings[i];
2929     }
2930
2931     str = code_genstring(filename);
2932     vec_push(ir->filenames, filename);
2933     vec_push(ir->filestrings, str);
2934     return str;
2935 }
2936
2937 static bool gen_global_function(ir_builder *ir, ir_value *global)
2938 {
2939     prog_section_function fun;
2940     ir_function          *irfun;
2941
2942     size_t i;
2943
2944     if (!global->hasvalue || (!global->constval.vfunc))
2945     {
2946         irerror(global->context, "Invalid state of function-global: not constant: %s", global->name);
2947         return false;
2948     }
2949
2950     irfun = global->constval.vfunc;
2951
2952     fun.name    = global->code.name;
2953     fun.file    = ir_builder_filestring(ir, global->context.file);
2954     fun.profile = 0; /* always 0 */
2955     fun.nargs   = vec_size(irfun->params);
2956     if (fun.nargs > 8)
2957         fun.nargs = 8;
2958
2959     for (i = 0;i < 8; ++i) {
2960         if ((int32_t)i >= fun.nargs)
2961             fun.argsize[i] = 0;
2962         else
2963             fun.argsize[i] = type_sizeof_[irfun->params[i]];
2964     }
2965
2966     fun.firstlocal = 0;
2967     fun.locals     = irfun->allocated_locals;
2968
2969     if (irfun->builtin)
2970         fun.entry = irfun->builtin+1;
2971     else {
2972         irfun->code_function_def = vec_size(code_functions);
2973         fun.entry = vec_size(code_statements);
2974     }
2975
2976     vec_push(code_functions, fun);
2977     return true;
2978 }
2979
2980 static void ir_gen_extparam(ir_builder *ir)
2981 {
2982     prog_section_def def;
2983     ir_value        *global;
2984     char             name[128];
2985
2986     snprintf(name, sizeof(name), "EXTPARM#%i", (int)(vec_size(ir->extparams)+8));
2987     global = ir_value_var(name, store_global, TYPE_VECTOR);
2988
2989     def.name = code_genstring(name);
2990     def.type = TYPE_VECTOR;
2991     def.offset = vec_size(code_globals);
2992
2993     vec_push(code_defs, def);
2994     ir_value_code_setaddr(global, def.offset);
2995     vec_push(code_globals, 0);
2996     vec_push(code_globals, 0);
2997     vec_push(code_globals, 0);
2998
2999     vec_push(ir->extparams, global);
3000 }
3001
3002 static bool gen_function_extparam_copy(ir_function *self)
3003 {
3004     size_t i, ext, numparams;
3005
3006     ir_builder *ir = self->owner;
3007     ir_value   *ep;
3008     prog_section_statement stmt;
3009
3010     numparams = vec_size(self->params);
3011     if (!numparams)
3012         return true;
3013
3014     stmt.opcode = INSTR_STORE_F;
3015     stmt.o3.s1 = 0;
3016     for (i = 8; i < numparams; ++i) {
3017         ext = i - 8;
3018         if (ext >= vec_size(ir->extparams))
3019             ir_gen_extparam(ir);
3020
3021         ep = ir->extparams[ext];
3022
3023         stmt.opcode = type_store_instr[self->locals[i]->vtype];
3024         if (self->locals[i]->vtype == TYPE_FIELD &&
3025             self->locals[i]->fieldtype == TYPE_VECTOR)
3026         {
3027             stmt.opcode = INSTR_STORE_V;
3028         }
3029         stmt.o1.u1 = ir_value_code_addr(ep);
3030         stmt.o2.u1 = ir_value_code_addr(self->locals[i]);
3031         code_push_statement(&stmt, self->context.line);
3032     }
3033
3034     return true;
3035 }
3036
3037 static bool gen_function_locals(ir_builder *ir, ir_value *global)
3038 {
3039     prog_section_function *def;
3040     ir_function           *irfun;
3041     size_t                 i;
3042     uint32_t               firstlocal;
3043
3044     irfun = global->constval.vfunc;
3045     def   = code_functions + irfun->code_function_def;
3046
3047     if (opts.g || !OPTS_OPTIMIZATION(OPTIM_OVERLAP_LOCALS) || (irfun->flags & IR_FLAG_MASK_NO_OVERLAP))
3048         firstlocal = def->firstlocal = vec_size(code_globals);
3049     else {
3050         firstlocal = def->firstlocal = ir->first_common_local;
3051         ++opts_optimizationcount[OPTIM_OVERLAP_LOCALS];
3052     }
3053
3054     for (i = vec_size(code_globals); i < firstlocal + irfun->allocated_locals; ++i)
3055         vec_push(code_globals, 0);
3056     for (i = 0; i < vec_size(irfun->locals); ++i) {
3057         ir_value_code_setaddr(irfun->locals[i], firstlocal + irfun->locals[i]->code.local);
3058         if (!ir_builder_gen_global(ir, irfun->locals[i], true, true)) {
3059             irerror(irfun->locals[i]->context, "failed to generate local %s", irfun->locals[i]->name);
3060             return false;
3061         }
3062     }
3063     for (i = 0; i < vec_size(irfun->values); ++i)
3064     {
3065         ir_value *v = irfun->values[i];
3066         ir_value_code_setaddr(v, firstlocal + v->code.local);
3067     }
3068     return true;
3069 }
3070
3071 static bool gen_global_function_code(ir_builder *ir, ir_value *global)
3072 {
3073     prog_section_function *fundef;
3074     ir_function           *irfun;
3075
3076     (void)ir;
3077
3078     irfun = global->constval.vfunc;
3079     if (!irfun) {
3080         if (global->cvq == CV_NONE) {
3081             irwarning(global->context, WARN_IMPLICIT_FUNCTION_POINTER,
3082                       "function `%s` has no body and in QC implicitly becomes a function-pointer", global->name);
3083         }
3084         /* this was a function pointer, don't generate code for those */
3085         return true;
3086     }
3087
3088     if (irfun->builtin)
3089         return true;
3090
3091     if (irfun->code_function_def < 0) {
3092         irerror(irfun->context, "`%s`: IR global wasn't generated, failed to access function-def", irfun->name);
3093         return false;
3094     }
3095     fundef = &code_functions[irfun->code_function_def];
3096
3097     fundef->entry = vec_size(code_statements);
3098     if (!gen_function_locals(ir, global)) {
3099         irerror(irfun->context, "Failed to generate locals for function %s", irfun->name);
3100         return false;
3101     }
3102     if (!gen_function_extparam_copy(irfun)) {
3103         irerror(irfun->context, "Failed to generate extparam-copy code for function %s", irfun->name);
3104         return false;
3105     }
3106     if (!gen_function_code(irfun)) {
3107         irerror(irfun->context, "Failed to generate code for function %s", irfun->name);
3108         return false;
3109     }
3110     return true;
3111 }
3112
3113 static void gen_vector_defs(prog_section_def def, const char *name)
3114 {
3115     char  *component;
3116     size_t len, i;
3117
3118     if (!name || name[0] == '#' || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3119         return;
3120
3121     def.type = TYPE_FLOAT;
3122
3123     len = strlen(name);
3124
3125     component = (char*)mem_a(len+3);
3126     memcpy(component, name, len);
3127     len += 2;
3128     component[len-0] = 0;
3129     component[len-2] = '_';
3130
3131     component[len-1] = 'x';
3132
3133     for (i = 0; i < 3; ++i) {
3134         def.name = code_genstring(component);
3135         vec_push(code_defs, def);
3136         def.offset++;
3137         component[len-1]++;
3138     }
3139 }
3140
3141 static void gen_vector_fields(prog_section_field fld, const char *name)
3142 {
3143     char  *component;
3144     size_t len, i;
3145
3146     if (!name || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3147         return;
3148
3149     fld.type = TYPE_FLOAT;
3150
3151     len = strlen(name);
3152
3153     component = (char*)mem_a(len+3);
3154     memcpy(component, name, len);
3155     len += 2;
3156     component[len-0] = 0;
3157     component[len-2] = '_';
3158
3159     component[len-1] = 'x';
3160
3161     for (i = 0; i < 3; ++i) {
3162         fld.name = code_genstring(component);
3163         vec_push(code_fields, fld);
3164         fld.offset++;
3165         component[len-1]++;
3166     }
3167 }
3168
3169 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal, bool defs_only)
3170 {
3171     size_t           i;
3172     int32_t         *iptr;
3173     prog_section_def def;
3174     bool             pushdef = false;
3175
3176     if (opts.g || !islocal)
3177     {
3178         pushdef = true;
3179         def.type   = global->vtype;
3180         def.offset = vec_size(code_globals);
3181
3182         if (OPTS_OPTIMIZATION(OPTIM_STRIP_CONSTANT_NAMES) &&
3183             (global->name[0] == '#' || global->cvq == CV_CONST))
3184         {
3185             pushdef = false;
3186         }
3187
3188         if (pushdef && global->name) {
3189             if (global->name[0] == '#') {
3190                 if (!self->str_immediate)
3191                     self->str_immediate = code_genstring("IMMEDIATE");
3192                 def.name = global->code.name = self->str_immediate;
3193             }
3194             else
3195                 def.name = global->code.name = code_genstring(global->name);
3196         }
3197         else
3198             def.name   = 0;
3199         if (defs_only) {
3200             def.offset = ir_value_code_addr(global);
3201             vec_push(code_defs, def);
3202             if (global->vtype == TYPE_VECTOR)
3203                 gen_vector_defs(def, global->name);
3204             else if (global->vtype == TYPE_FIELD && global->fieldtype == TYPE_VECTOR)
3205                 gen_vector_defs(def, global->name);
3206             return true;
3207         }
3208     }
3209     if (defs_only)
3210         return true;
3211
3212     switch (global->vtype)
3213     {
3214     case TYPE_VOID:
3215         if (!strcmp(global->name, "end_sys_globals")) {
3216             /* TODO: remember this point... all the defs before this one
3217              * should be checksummed and added to progdefs.h when we generate it.
3218              */
3219         }
3220         else if (!strcmp(global->name, "end_sys_fields")) {
3221             /* TODO: same as above but for entity-fields rather than globsl
3222              */
3223         }
3224         else
3225             irwarning(global->context, WARN_VOID_VARIABLES, "unrecognized variable of type void `%s`",
3226                       global->name);
3227         /* I'd argue setting it to 0 is sufficient, but maybe some depend on knowing how far
3228          * the system fields actually go? Though the engine knows this anyway...
3229          * Maybe this could be an -foption
3230          * fteqcc creates data for end_sys_* - of size 1, so let's do the same
3231          */
3232         ir_value_code_setaddr(global, vec_size(code_globals));
3233         vec_push(code_globals, 0);
3234         /* Add the def */
3235         if (pushdef) vec_push(code_defs, def);
3236         return true;
3237     case TYPE_POINTER:
3238         if (pushdef) vec_push(code_defs, def);
3239         return gen_global_pointer(global);
3240     case TYPE_FIELD:
3241         if (pushdef) {
3242             vec_push(code_defs, def);
3243             if (global->fieldtype == TYPE_VECTOR)
3244                 gen_vector_defs(def, global->name);
3245         }
3246         return gen_global_field(global);
3247     case TYPE_ENTITY:
3248         /* fall through */
3249     case TYPE_FLOAT:
3250     {
3251         ir_value_code_setaddr(global, vec_size(code_globals));
3252         if (global->hasvalue) {
3253             iptr = (int32_t*)&global->constval.ivec[0];
3254             vec_push(code_globals, *iptr);
3255         } else {
3256             vec_push(code_globals, 0);
3257         }
3258         if (!islocal && global->cvq != CV_CONST)
3259             def.type |= DEF_SAVEGLOBAL;
3260         if (pushdef) vec_push(code_defs, def);
3261
3262         return global->code.globaladdr >= 0;
3263     }
3264     case TYPE_STRING:
3265     {
3266         ir_value_code_setaddr(global, vec_size(code_globals));
3267         if (global->hasvalue) {
3268             vec_push(code_globals, code_genstring(global->constval.vstring));
3269         } else {
3270             vec_push(code_globals, 0);
3271         }
3272         if (!islocal && global->cvq != CV_CONST)
3273             def.type |= DEF_SAVEGLOBAL;
3274         if (pushdef) vec_push(code_defs, def);
3275         return global->code.globaladdr >= 0;
3276     }
3277     case TYPE_VECTOR:
3278     {
3279         size_t d;
3280         ir_value_code_setaddr(global, vec_size(code_globals));
3281         if (global->hasvalue) {
3282             iptr = (int32_t*)&global->constval.ivec[0];
3283             vec_push(code_globals, iptr[0]);
3284             if (global->code.globaladdr < 0)
3285                 return false;
3286             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3287                 vec_push(code_globals, iptr[d]);
3288             }
3289         } else {
3290             vec_push(code_globals, 0);
3291             if (global->code.globaladdr < 0)
3292                 return false;
3293             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3294                 vec_push(code_globals, 0);
3295             }
3296         }
3297         if (!islocal && global->cvq != CV_CONST)
3298             def.type |= DEF_SAVEGLOBAL;
3299
3300         if (pushdef) {
3301             vec_push(code_defs, def);
3302             def.type &= ~DEF_SAVEGLOBAL;
3303             gen_vector_defs(def, global->name);
3304         }
3305         return global->code.globaladdr >= 0;
3306     }
3307     case TYPE_FUNCTION:
3308         ir_value_code_setaddr(global, vec_size(code_globals));
3309         if (!global->hasvalue) {
3310             vec_push(code_globals, 0);
3311             if (global->code.globaladdr < 0)
3312                 return false;
3313         } else {
3314             vec_push(code_globals, vec_size(code_functions));
3315             if (!gen_global_function(self, global))
3316                 return false;
3317         }
3318         if (!islocal && global->cvq != CV_CONST)
3319             def.type |= DEF_SAVEGLOBAL;
3320         if (pushdef) vec_push(code_defs, def);
3321         return true;
3322     case TYPE_VARIANT:
3323         /* assume biggest type */
3324             ir_value_code_setaddr(global, vec_size(code_globals));
3325             vec_push(code_globals, 0);
3326             for (i = 1; i < type_sizeof_[TYPE_VARIANT]; ++i)
3327                 vec_push(code_globals, 0);
3328             return true;
3329     default:
3330         /* refuse to create 'void' type or any other fancy business. */
3331         irerror(global->context, "Invalid type for global variable `%s`: %s",
3332                 global->name, type_name[global->vtype]);
3333         return false;
3334     }
3335 }
3336
3337 static void ir_builder_prepare_field(ir_value *field)
3338 {
3339     field->code.fieldaddr = code_alloc_field(type_sizeof_[field->fieldtype]);
3340 }
3341
3342 static bool ir_builder_gen_field(ir_builder *self, ir_value *field)
3343 {
3344     prog_section_def def;
3345     prog_section_field fld;
3346
3347     (void)self;
3348
3349     def.type   = (uint16_t)field->vtype;
3350     def.offset = (uint16_t)vec_size(code_globals);
3351
3352     /* create a global named the same as the field */
3353     if (opts.standard == COMPILER_GMQCC) {
3354         /* in our standard, the global gets a dot prefix */
3355         size_t len = strlen(field->name);
3356         char name[1024];
3357
3358         /* we really don't want to have to allocate this, and 1024
3359          * bytes is more than enough for a variable/field name
3360          */
3361         if (len+2 >= sizeof(name)) {
3362             irerror(field->context, "invalid field name size: %u", (unsigned int)len);
3363             return false;
3364         }
3365
3366         name[0] = '.';
3367         memcpy(name+1, field->name, len); /* no strncpy - we used strlen above */
3368         name[len+1] = 0;
3369
3370         def.name = code_genstring(name);
3371         fld.name = def.name + 1; /* we reuse that string table entry */
3372     } else {
3373         /* in plain QC, there cannot be a global with the same name,
3374          * and so we also name the global the same.
3375          * FIXME: fteqcc should create a global as well
3376          * check if it actually uses the same name. Probably does
3377          */
3378         def.name = code_genstring(field->name);
3379         fld.name = def.name;
3380     }
3381
3382     field->code.name = def.name;
3383
3384     vec_push(code_defs, def);
3385
3386     fld.type = field->fieldtype;
3387
3388     if (fld.type == TYPE_VOID) {
3389         irerror(field->context, "field is missing a type: %s - don't know its size", field->name);
3390         return false;
3391     }
3392
3393     fld.offset = field->code.fieldaddr;
3394
3395     vec_push(code_fields, fld);
3396
3397     ir_value_code_setaddr(field, vec_size(code_globals));
3398     vec_push(code_globals, fld.offset);
3399     if (fld.type == TYPE_VECTOR) {
3400         vec_push(code_globals, fld.offset+1);
3401         vec_push(code_globals, fld.offset+2);
3402     }
3403
3404     if (field->fieldtype == TYPE_VECTOR) {
3405         gen_vector_defs(def, field->name);
3406         gen_vector_fields(fld, field->name);
3407     }
3408
3409     return field->code.globaladdr >= 0;
3410 }
3411
3412 bool ir_builder_generate(ir_builder *self, const char *filename)
3413 {
3414     prog_section_statement stmt;
3415     size_t i;
3416     char  *lnofile = NULL;
3417
3418     code_init();
3419
3420     for (i = 0; i < vec_size(self->fields); ++i)
3421     {
3422         ir_builder_prepare_field(self->fields[i]);
3423     }
3424
3425     for (i = 0; i < vec_size(self->globals); ++i)
3426     {
3427         if (!ir_builder_gen_global(self, self->globals[i], false, false)) {
3428             return false;
3429         }
3430         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3431             ir_function *func = self->globals[i]->constval.vfunc;
3432             if (func && self->max_locals < func->allocated_locals &&
3433                 !(func->flags & IR_FLAG_MASK_NO_OVERLAP))
3434             {
3435                 self->max_locals = func->allocated_locals;
3436             }
3437         }
3438     }
3439
3440     for (i = 0; i < vec_size(self->fields); ++i)
3441     {
3442         if (!ir_builder_gen_field(self, self->fields[i])) {
3443             return false;
3444         }
3445     }
3446
3447     /* generate common locals */
3448     self->first_common_local = vec_size(code_globals);
3449     for (i = 0; i < self->max_locals; ++i) {
3450         vec_push(code_globals, 0);
3451     }
3452
3453     /* generate function code */
3454     for (i = 0; i < vec_size(self->globals); ++i)
3455     {
3456         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3457             if (!gen_global_function_code(self, self->globals[i])) {
3458                 return false;
3459             }
3460         }
3461     }
3462
3463     if (vec_size(code_globals) >= 65536) {
3464         irerror(vec_last(self->globals)->context, "This progs file would require more globals than the metadata can handle. Bailing out.");
3465         return false;
3466     }
3467
3468     /* DP errors if the last instruction is not an INSTR_DONE. */
3469     if (vec_last(code_statements).opcode != INSTR_DONE)
3470     {
3471         stmt.opcode = INSTR_DONE;
3472         stmt.o1.u1 = 0;
3473         stmt.o2.u1 = 0;
3474         stmt.o3.u1 = 0;
3475         code_push_statement(&stmt, vec_last(code_linenums));
3476     }
3477
3478     if (opts.pp_only)
3479         return true;
3480
3481     if (vec_size(code_statements) != vec_size(code_linenums)) {
3482         con_err("Linecounter wrong: %lu != %lu\n",
3483                 (unsigned long)vec_size(code_statements),
3484                 (unsigned long)vec_size(code_linenums));
3485     } else if (OPTS_FLAG(LNO)) {
3486         char *dot;
3487         size_t filelen = strlen(filename);
3488
3489         memcpy(vec_add(lnofile, filelen+1), filename, filelen+1);
3490         dot = strrchr(lnofile, '.');
3491         if (!dot) {
3492             vec_pop(lnofile);
3493         } else {
3494             vec_shrinkto(lnofile, dot - lnofile);
3495         }
3496         memcpy(vec_add(lnofile, 5), ".lno", 5);
3497     }
3498
3499     if (!opts.quiet) {
3500         if (lnofile)
3501             con_out("writing '%s' and '%s'...\n", filename, lnofile);
3502         else
3503             con_out("writing '%s'\n", filename);
3504     }
3505     if (!code_write(filename, lnofile)) {
3506         vec_free(lnofile);
3507         return false;
3508     }
3509     vec_free(lnofile);
3510     return true;
3511 }
3512
3513 /***********************************************************************
3514  *IR DEBUG Dump functions...
3515  */
3516
3517 #define IND_BUFSZ 1024
3518
3519 #ifdef _MSC_VER
3520 #   define strncat(dst, src, sz) strncat_s(dst, sz, src, _TRUNCATE)
3521 #endif
3522
3523 const char *qc_opname(int op)
3524 {
3525     if (op < 0) return "<INVALID>";
3526     if (op < (int)( sizeof(asm_instr) / sizeof(asm_instr[0]) ))
3527         return asm_instr[op].m;
3528     switch (op) {
3529         case VINSTR_PHI:  return "PHI";
3530         case VINSTR_JUMP: return "JUMP";
3531         case VINSTR_COND: return "COND";
3532         default:          return "<UNK>";
3533     }
3534 }
3535
3536 void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...))
3537 {
3538     size_t i;
3539     char indent[IND_BUFSZ];
3540     indent[0] = '\t';
3541     indent[1] = 0;
3542
3543     oprintf("module %s\n", b->name);
3544     for (i = 0; i < vec_size(b->globals); ++i)
3545     {
3546         oprintf("global ");
3547         if (b->globals[i]->hasvalue)
3548             oprintf("%s = ", b->globals[i]->name);
3549         ir_value_dump(b->globals[i], oprintf);
3550         oprintf("\n");
3551     }
3552     for (i = 0; i < vec_size(b->functions); ++i)
3553         ir_function_dump(b->functions[i], indent, oprintf);
3554     oprintf("endmodule %s\n", b->name);
3555 }
3556
3557 void ir_function_dump(ir_function *f, char *ind,
3558                       int (*oprintf)(const char*, ...))
3559 {
3560     size_t i;
3561     if (f->builtin != 0) {
3562         oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin);
3563         return;
3564     }
3565     oprintf("%sfunction %s\n", ind, f->name);
3566     strncat(ind, "\t", IND_BUFSZ);
3567     if (vec_size(f->locals))
3568     {
3569         oprintf("%s%i locals:\n", ind, (int)vec_size(f->locals));
3570         for (i = 0; i < vec_size(f->locals); ++i) {
3571             oprintf("%s\t", ind);
3572             ir_value_dump(f->locals[i], oprintf);
3573             oprintf("\n");
3574         }
3575     }
3576     oprintf("%sliferanges:\n", ind);
3577     for (i = 0; i < vec_size(f->locals); ++i) {
3578         size_t l, m;
3579         ir_value *v = f->locals[i];
3580         oprintf("%s\t%s: %s@%i ", ind, v->name, (v->unique_life ? "unique " : ""), (int)v->code.local);
3581         for (l = 0; l < vec_size(v->life); ++l) {
3582             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
3583         }
3584         oprintf("\n");
3585         for (m = 0; m < 3; ++m) {
3586             ir_value *vm = v->members[m];
3587             if (!vm)
3588                 continue;
3589             oprintf("%s\t%s: %s@%i ", ind, vm->name, (vm->unique_life ? "unique " : ""), (int)vm->code.local);
3590             for (l = 0; l < vec_size(vm->life); ++l) {
3591                 oprintf("[%i,%i] ", vm->life[l].start, vm->life[l].end);
3592             }
3593             oprintf("\n");
3594         }
3595     }
3596     for (i = 0; i < vec_size(f->values); ++i) {
3597         size_t l;
3598         ir_value *v = f->values[i];
3599         oprintf("%s\t%s: @%i ", ind, v->name, (int)v->code.local);
3600         for (l = 0; l < vec_size(v->life); ++l) {
3601             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
3602         }
3603         oprintf("\n");
3604     }
3605     if (vec_size(f->blocks))
3606     {
3607         oprintf("%slife passes (check): %i\n", ind, (int)f->run_id);
3608         for (i = 0; i < vec_size(f->blocks); ++i) {
3609             if (f->blocks[i]->run_id != f->run_id) {
3610                 oprintf("%slife pass check fail! %i != %i\n", ind, (int)f->blocks[i]->run_id, (int)f->run_id);
3611             }
3612             ir_block_dump(f->blocks[i], ind, oprintf);
3613         }
3614
3615     }
3616     ind[strlen(ind)-1] = 0;
3617     oprintf("%sendfunction %s\n", ind, f->name);
3618 }
3619
3620 void ir_block_dump(ir_block* b, char *ind,
3621                    int (*oprintf)(const char*, ...))
3622 {
3623     size_t i;
3624     oprintf("%s:%s\n", ind, b->label);
3625     strncat(ind, "\t", IND_BUFSZ);
3626
3627     for (i = 0; i < vec_size(b->instr); ++i)
3628         ir_instr_dump(b->instr[i], ind, oprintf);
3629     ind[strlen(ind)-1] = 0;
3630 }
3631
3632 void dump_phi(ir_instr *in, int (*oprintf)(const char*, ...))
3633 {
3634     size_t i;
3635     oprintf("%s <- phi ", in->_ops[0]->name);
3636     for (i = 0; i < vec_size(in->phi); ++i)
3637     {
3638         oprintf("([%s] : %s) ", in->phi[i].from->label,
3639                                 in->phi[i].value->name);
3640     }
3641     oprintf("\n");
3642 }
3643
3644 void ir_instr_dump(ir_instr *in, char *ind,
3645                        int (*oprintf)(const char*, ...))
3646 {
3647     size_t i;
3648     const char *comma = NULL;
3649
3650     oprintf("%s (%i) ", ind, (int)in->eid);
3651
3652     if (in->opcode == VINSTR_PHI) {
3653         dump_phi(in, oprintf);
3654         return;
3655     }
3656
3657     strncat(ind, "\t", IND_BUFSZ);
3658
3659     if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) {
3660         ir_value_dump(in->_ops[0], oprintf);
3661         if (in->_ops[1] || in->_ops[2])
3662             oprintf(" <- ");
3663     }
3664     if (in->opcode == INSTR_CALL0 || in->opcode == VINSTR_NRCALL) {
3665         oprintf("CALL%i\t", vec_size(in->params));
3666     } else
3667         oprintf("%s\t", qc_opname(in->opcode));
3668
3669     if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) {
3670         ir_value_dump(in->_ops[0], oprintf);
3671         comma = ",\t";
3672     }
3673     else
3674     {
3675         for (i = 1; i != 3; ++i) {
3676             if (in->_ops[i]) {
3677                 if (comma)
3678                     oprintf(comma);
3679                 ir_value_dump(in->_ops[i], oprintf);
3680                 comma = ",\t";
3681             }
3682         }
3683     }
3684     if (in->bops[0]) {
3685         if (comma)
3686             oprintf(comma);
3687         oprintf("[%s]", in->bops[0]->label);
3688         comma = ",\t";
3689     }
3690     if (in->bops[1])
3691         oprintf("%s[%s]", comma, in->bops[1]->label);
3692     if (vec_size(in->params)) {
3693         oprintf("\tparams: ");
3694         for (i = 0; i != vec_size(in->params); ++i) {
3695             oprintf("%s, ", in->params[i]->name);
3696         }
3697     }
3698     oprintf("\n");
3699     ind[strlen(ind)-1] = 0;
3700 }
3701
3702 void ir_value_dump_string(const char *str, int (*oprintf)(const char*, ...))
3703 {
3704     oprintf("\"");
3705     for (; *str; ++str) {
3706         switch (*str) {
3707             case '\n': oprintf("\\n"); break;
3708             case '\r': oprintf("\\r"); break;
3709             case '\t': oprintf("\\t"); break;
3710             case '\v': oprintf("\\v"); break;
3711             case '\f': oprintf("\\f"); break;
3712             case '\b': oprintf("\\b"); break;
3713             case '\a': oprintf("\\a"); break;
3714             case '\\': oprintf("\\\\"); break;
3715             case '"': oprintf("\\\""); break;
3716             default: oprintf("%c", *str); break;
3717         }
3718     }
3719     oprintf("\"");
3720 }
3721
3722 void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...))
3723 {
3724     if (v->hasvalue) {
3725         switch (v->vtype) {
3726             default:
3727             case TYPE_VOID:
3728                 oprintf("(void)");
3729                 break;
3730             case TYPE_FUNCTION:
3731                 oprintf("fn:%s", v->name);
3732                 break;
3733             case TYPE_FLOAT:
3734                 oprintf("%g", v->constval.vfloat);
3735                 break;
3736             case TYPE_VECTOR:
3737                 oprintf("'%g %g %g'",
3738                         v->constval.vvec.x,
3739                         v->constval.vvec.y,
3740                         v->constval.vvec.z);
3741                 break;
3742             case TYPE_ENTITY:
3743                 oprintf("(entity)");
3744                 break;
3745             case TYPE_STRING:
3746                 ir_value_dump_string(v->constval.vstring, oprintf);
3747                 break;
3748 #if 0
3749             case TYPE_INTEGER:
3750                 oprintf("%i", v->constval.vint);
3751                 break;
3752 #endif
3753             case TYPE_POINTER:
3754                 oprintf("&%s",
3755                     v->constval.vpointer->name);
3756                 break;
3757         }
3758     } else {
3759         oprintf("%s", v->name);
3760     }
3761 }
3762
3763 void ir_value_dump_life(const ir_value *self, int (*oprintf)(const char*,...))
3764 {
3765     size_t i;
3766     oprintf("Life of %12s:", self->name);
3767     for (i = 0; i < vec_size(self->life); ++i)
3768     {
3769         oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end);
3770     }
3771 }