/* Copyright (C) 2001-2006, William Joseph. All Rights Reserved. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #if !defined(INCLUDED_MATH_MATRIX_H) #define INCLUDED_MATH_MATRIX_H /// \file /// \brief Matrix data types and related operations. #include "math/vector.h" /// \brief A 4x4 matrix stored in single-precision floating-point. class Matrix4 { float m_elements[16]; public: Matrix4() { } Matrix4(float xx_, float xy_, float xz_, float xw_, float yx_, float yy_, float yz_, float yw_, float zx_, float zy_, float zz_, float zw_, float tx_, float ty_, float tz_, float tw_) { xx() = xx_; xy() = xy_; xz() = xz_; xw() = xw_; yx() = yx_; yy() = yy_; yz() = yz_; yw() = yw_; zx() = zx_; zy() = zy_; zz() = zz_; zw() = zw_; tx() = tx_; ty() = ty_; tz() = tz_; tw() = tw_; } float& xx() { return m_elements[0]; } const float& xx() const { return m_elements[0]; } float& xy() { return m_elements[1]; } const float& xy() const { return m_elements[1]; } float& xz() { return m_elements[2]; } const float& xz() const { return m_elements[2]; } float& xw() { return m_elements[3]; } const float& xw() const { return m_elements[3]; } float& yx() { return m_elements[4]; } const float& yx() const { return m_elements[4]; } float& yy() { return m_elements[5]; } const float& yy() const { return m_elements[5]; } float& yz() { return m_elements[6]; } const float& yz() const { return m_elements[6]; } float& yw() { return m_elements[7]; } const float& yw() const { return m_elements[7]; } float& zx() { return m_elements[8]; } const float& zx() const { return m_elements[8]; } float& zy() { return m_elements[9]; } const float& zy() const { return m_elements[9]; } float& zz() { return m_elements[10]; } const float& zz() const { return m_elements[10]; } float& zw() { return m_elements[11]; } const float& zw() const { return m_elements[11]; } float& tx() { return m_elements[12]; } const float& tx() const { return m_elements[12]; } float& ty() { return m_elements[13]; } const float& ty() const { return m_elements[13]; } float& tz() { return m_elements[14]; } const float& tz() const { return m_elements[14]; } float& tw() { return m_elements[15]; } const float& tw() const { return m_elements[15]; } Vector4& x() { return reinterpret_cast(xx()); } const Vector4& x() const { return reinterpret_cast(xx()); } Vector4& y() { return reinterpret_cast(yx()); } const Vector4& y() const { return reinterpret_cast(yx()); } Vector4& z() { return reinterpret_cast(zx()); } const Vector4& z() const { return reinterpret_cast(zx()); } Vector4& t() { return reinterpret_cast(tx()); } const Vector4& t() const { return reinterpret_cast(tx()); } const float& index(std::size_t i) const { return m_elements[i]; } float& index(std::size_t i) { return m_elements[i]; } const float& operator[](std::size_t i) const { return m_elements[i]; } float& operator[](std::size_t i) { return m_elements[i]; } const float& index(std::size_t r, std::size_t c) const { return m_elements[(r << 2) + c]; } float& index(std::size_t r, std::size_t c) { return m_elements[(r << 2) + c]; } }; /// \brief The 4x4 identity matrix. const Matrix4 g_matrix4_identity( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); /// \brief Returns true if \p self and \p other are exactly element-wise equal. inline bool operator==(const Matrix4& self, const Matrix4& other) { return self.xx() == other.xx() && self.xy() == other.xy() && self.xz() == other.xz() && self.xw() == other.xw() && self.yx() == other.yx() && self.yy() == other.yy() && self.yz() == other.yz() && self.yw() == other.yw() && self.zx() == other.zx() && self.zy() == other.zy() && self.zz() == other.zz() && self.zw() == other.zw() && self.tx() == other.tx() && self.ty() == other.ty() && self.tz() == other.tz() && self.tw() == other.tw(); } /// \brief Returns true if \p self and \p other are exactly element-wise equal. inline bool matrix4_equal(const Matrix4& self, const Matrix4& other) { return self == other; } /// \brief Returns true if \p self and \p other are element-wise equal within \p epsilon. inline bool matrix4_equal_epsilon(const Matrix4& self, const Matrix4& other, float epsilon) { return float_equal_epsilon(self.xx(), other.xx(), epsilon) && float_equal_epsilon(self.xy(), other.xy(), epsilon) && float_equal_epsilon(self.xz(), other.xz(), epsilon) && float_equal_epsilon(self.xw(), other.xw(), epsilon) && float_equal_epsilon(self.yx(), other.yx(), epsilon) && float_equal_epsilon(self.yy(), other.yy(), epsilon) && float_equal_epsilon(self.yz(), other.yz(), epsilon) && float_equal_epsilon(self.yw(), other.yw(), epsilon) && float_equal_epsilon(self.zx(), other.zx(), epsilon) && float_equal_epsilon(self.zy(), other.zy(), epsilon) && float_equal_epsilon(self.zz(), other.zz(), epsilon) && float_equal_epsilon(self.zw(), other.zw(), epsilon) && float_equal_epsilon(self.tx(), other.tx(), epsilon) && float_equal_epsilon(self.ty(), other.ty(), epsilon) && float_equal_epsilon(self.tz(), other.tz(), epsilon) && float_equal_epsilon(self.tw(), other.tw(), epsilon); } /// \brief Returns true if \p self and \p other are exactly element-wise equal. /// \p self and \p other must be affine. inline bool matrix4_affine_equal(const Matrix4& self, const Matrix4& other) { return self[0] == other[0] && self[1] == other[1] && self[2] == other[2] && self[4] == other[4] && self[5] == other[5] && self[6] == other[6] && self[8] == other[8] && self[9] == other[9] && self[10] == other[10] && self[12] == other[12] && self[13] == other[13] && self[14] == other[14]; } enum Matrix4Handedness { MATRIX4_RIGHTHANDED = 0, MATRIX4_LEFTHANDED = 1, }; /// \brief Returns MATRIX4_RIGHTHANDED if \p self is right-handed, else returns MATRIX4_LEFTHANDED. inline Matrix4Handedness matrix4_handedness(const Matrix4& self) { return ( vector3_dot( vector3_cross(vector4_to_vector3(self.x()), vector4_to_vector3(self.y())), vector4_to_vector3(self.z()) ) < 0.0 ) ? MATRIX4_LEFTHANDED : MATRIX4_RIGHTHANDED; } /// \brief Returns \p self post-multiplied by \p other. inline Matrix4 matrix4_multiplied_by_matrix4(const Matrix4& self, const Matrix4& other) { return Matrix4( other[0] * self[0] + other[1] * self[4] + other[2] * self[8] + other[3] * self[12], other[0] * self[1] + other[1] * self[5] + other[2] * self[9] + other[3] * self[13], other[0] * self[2] + other[1] * self[6] + other[2] * self[10]+ other[3] * self[14], other[0] * self[3] + other[1] * self[7] + other[2] * self[11]+ other[3] * self[15], other[4] * self[0] + other[5] * self[4] + other[6] * self[8] + other[7] * self[12], other[4] * self[1] + other[5] * self[5] + other[6] * self[9] + other[7] * self[13], other[4] * self[2] + other[5] * self[6] + other[6] * self[10]+ other[7] * self[14], other[4] * self[3] + other[5] * self[7] + other[6] * self[11]+ other[7] * self[15], other[8] * self[0] + other[9] * self[4] + other[10]* self[8] + other[11]* self[12], other[8] * self[1] + other[9] * self[5] + other[10]* self[9] + other[11]* self[13], other[8] * self[2] + other[9] * self[6] + other[10]* self[10]+ other[11]* self[14], other[8] * self[3] + other[9] * self[7] + other[10]* self[11]+ other[11]* self[15], other[12]* self[0] + other[13]* self[4] + other[14]* self[8] + other[15]* self[12], other[12]* self[1] + other[13]* self[5] + other[14]* self[9] + other[15]* self[13], other[12]* self[2] + other[13]* self[6] + other[14]* self[10]+ other[15]* self[14], other[12]* self[3] + other[13]* self[7] + other[14]* self[11]+ other[15]* self[15] ); } /// \brief Post-multiplies \p self by \p other in-place. inline void matrix4_multiply_by_matrix4(Matrix4& self, const Matrix4& other) { self = matrix4_multiplied_by_matrix4(self, other); } /// \brief Returns \p self pre-multiplied by \p other. inline Matrix4 matrix4_premultiplied_by_matrix4(const Matrix4& self, const Matrix4& other) { #if 1 return matrix4_multiplied_by_matrix4(other, self); #else return Matrix4( self[0] * other[0] + self[1] * other[4] + self[2] * other[8] + self[3] * other[12], self[0] * other[1] + self[1] * other[5] + self[2] * other[9] + self[3] * other[13], self[0] * other[2] + self[1] * other[6] + self[2] * other[10]+ self[3] * other[14], self[0] * other[3] + self[1] * other[7] + self[2] * other[11]+ self[3] * other[15], self[4] * other[0] + self[5] * other[4] + self[6] * other[8] + self[7] * other[12], self[4] * other[1] + self[5] * other[5] + self[6] * other[9] + self[7] * other[13], self[4] * other[2] + self[5] * other[6] + self[6] * other[10]+ self[7] * other[14], self[4] * other[3] + self[5] * other[7] + self[6] * other[11]+ self[7] * other[15], self[8] * other[0] + self[9] * other[4] + self[10]* other[8] + self[11]* other[12], self[8] * other[1] + self[9] * other[5] + self[10]* other[9] + self[11]* other[13], self[8] * other[2] + self[9] * other[6] + self[10]* other[10]+ self[11]* other[14], self[8] * other[3] + self[9] * other[7] + self[10]* other[11]+ self[11]* other[15], self[12]* other[0] + self[13]* other[4] + self[14]* other[8] + self[15]* other[12], self[12]* other[1] + self[13]* other[5] + self[14]* other[9] + self[15]* other[13], self[12]* other[2] + self[13]* other[6] + self[14]* other[10]+ self[15]* other[14], self[12]* other[3] + self[13]* other[7] + self[14]* other[11]+ self[15]* other[15] ); #endif } /// \brief Pre-multiplies \p self by \p other in-place. inline void matrix4_premultiply_by_matrix4(Matrix4& self, const Matrix4& other) { self = matrix4_premultiplied_by_matrix4(self, other); } /// \brief returns true if \p transform is affine. inline bool matrix4_is_affine(const Matrix4& transform) { return transform[3] == 0 && transform[7] == 0 && transform[11] == 0 && transform[15] == 1; } /// \brief Returns \p self post-multiplied by \p other. /// \p self and \p other must be affine. inline Matrix4 matrix4_affine_multiplied_by_matrix4(const Matrix4& self, const Matrix4& other) { return Matrix4( other[0] * self[0] + other[1] * self[4] + other[2] * self[8], other[0] * self[1] + other[1] * self[5] + other[2] * self[9], other[0] * self[2] + other[1] * self[6] + other[2] * self[10], 0, other[4] * self[0] + other[5] * self[4] + other[6] * self[8], other[4] * self[1] + other[5] * self[5] + other[6] * self[9], other[4] * self[2] + other[5] * self[6] + other[6] * self[10], 0, other[8] * self[0] + other[9] * self[4] + other[10]* self[8], other[8] * self[1] + other[9] * self[5] + other[10]* self[9], other[8] * self[2] + other[9] * self[6] + other[10]* self[10], 0, other[12]* self[0] + other[13]* self[4] + other[14]* self[8] + self[12], other[12]* self[1] + other[13]* self[5] + other[14]* self[9] + self[13], other[12]* self[2] + other[13]* self[6] + other[14]* self[10]+ self[14], 1 ); } /// \brief Post-multiplies \p self by \p other in-place. /// \p self and \p other must be affine. inline void matrix4_affine_multiply_by_matrix4(Matrix4& self, const Matrix4& other) { self = matrix4_affine_multiplied_by_matrix4(self, other); } /// \brief Returns \p self pre-multiplied by \p other. /// \p self and \p other must be affine. inline Matrix4 matrix4_affine_premultiplied_by_matrix4(const Matrix4& self, const Matrix4& other) { #if 1 return matrix4_affine_multiplied_by_matrix4(other, self); #else return Matrix4( self[0] * other[0] + self[1] * other[4] + self[2] * other[8], self[0] * other[1] + self[1] * other[5] + self[2] * other[9], self[0] * other[2] + self[1] * other[6] + self[2] * other[10], 0, self[4] * other[0] + self[5] * other[4] + self[6] * other[8], self[4] * other[1] + self[5] * other[5] + self[6] * other[9], self[4] * other[2] + self[5] * other[6] + self[6] * other[10], 0, self[8] * other[0] + self[9] * other[4] + self[10]* other[8], self[8] * other[1] + self[9] * other[5] + self[10]* other[9], self[8] * other[2] + self[9] * other[6] + self[10]* other[10], 0, self[12]* other[0] + self[13]* other[4] + self[14]* other[8] + other[12], self[12]* other[1] + self[13]* other[5] + self[14]* other[9] + other[13], self[12]* other[2] + self[13]* other[6] + self[14]* other[10]+ other[14], 1 ) ); #endif } /// \brief Pre-multiplies \p self by \p other in-place. /// \p self and \p other must be affine. inline void matrix4_affine_premultiply_by_matrix4(Matrix4& self, const Matrix4& other) { self = matrix4_affine_premultiplied_by_matrix4(self, other); } /// \brief Returns \p point transformed by \p self. template inline BasicVector3 matrix4_transformed_point(const Matrix4& self, const BasicVector3& point) { return BasicVector3( static_cast(self[0] * point[0] + self[4] * point[1] + self[8] * point[2] + self[12]), static_cast(self[1] * point[0] + self[5] * point[1] + self[9] * point[2] + self[13]), static_cast(self[2] * point[0] + self[6] * point[1] + self[10] * point[2] + self[14]) ); } /// \brief Transforms \p point by \p self in-place. template inline void matrix4_transform_point(const Matrix4& self, BasicVector3& point) { point = matrix4_transformed_point(self, point); } /// \brief Returns \p vector4 transformed by \p self. template inline BasicVector3 matrix4_transformed_direction(const Matrix4& self, const BasicVector3& direction) { return BasicVector3( static_cast(self[0] * direction[0] + self[4] * direction[1] + self[8] * direction[2]), static_cast(self[1] * direction[0] + self[5] * direction[1] + self[9] * direction[2]), static_cast(self[2] * direction[0] + self[6] * direction[1] + self[10] * direction[2]) ); } /// \brief Transforms \p direction by \p self in-place. template inline void matrix4_transform_direction(const Matrix4& self, BasicVector3& normal) { normal = matrix4_transformed_direction(self, normal); } /// \brief Returns \p vector4 transformed by \p self. inline Vector4 matrix4_transformed_vector4(const Matrix4& self, const Vector4& vector4) { return Vector4( self[0] * vector4[0] + self[4] * vector4[1] + self[8] * vector4[2] + self[12] * vector4[3], self[1] * vector4[0] + self[5] * vector4[1] + self[9] * vector4[2] + self[13] * vector4[3], self[2] * vector4[0] + self[6] * vector4[1] + self[10] * vector4[2] + self[14] * vector4[3], self[3] * vector4[0] + self[7] * vector4[1] + self[11] * vector4[2] + self[15] * vector4[3] ); } /// \brief Transforms \p vector4 by \p self in-place. inline void matrix4_transform_vector4(const Matrix4& self, Vector4& vector4) { vector4 = matrix4_transformed_vector4(self, vector4); } /// \brief Transposes \p self in-place. inline void matrix4_transpose(Matrix4& self) { std::swap(self.xy(), self.yx()); std::swap(self.xz(), self.zx()); std::swap(self.xw(), self.tx()); std::swap(self.yz(), self.zy()); std::swap(self.yw(), self.ty()); std::swap(self.zw(), self.tz()); } /// \brief Returns \p self transposed. inline Matrix4 matrix4_transposed(const Matrix4& self) { return Matrix4( self.xx(), self.yx(), self.zx(), self.tx(), self.xy(), self.yy(), self.zy(), self.ty(), self.xz(), self.yz(), self.zz(), self.tz(), self.xw(), self.yw(), self.zw(), self.tw() ); } /// \brief Inverts an affine transform in-place. /// Adapted from Graphics Gems 2. inline Matrix4 matrix4_affine_inverse(const Matrix4& self) { Matrix4 result; // determinant of rotation submatrix double det = self[0] * ( self[5]*self[10] - self[9]*self[6] ) - self[1] * ( self[4]*self[10] - self[8]*self[6] ) + self[2] * ( self[4]*self[9] - self[8]*self[5] ); // throw exception here if (det*det < 1e-25) // invert rotation submatrix det = 1.0 / det; result[0] = ( (self[5]*self[10]- self[6]*self[9] )*det); result[1] = (- (self[1]*self[10]- self[2]*self[9] )*det); result[2] = ( (self[1]*self[6] - self[2]*self[5] )*det); result[3] = 0; result[4] = (- (self[4]*self[10]- self[6]*self[8] )*det); result[5] = ( (self[0]*self[10]- self[2]*self[8] )*det); result[6] = (- (self[0]*self[6] - self[2]*self[4] )*det); result[7] = 0; result[8] = ( (self[4]*self[9] - self[5]*self[8] )*det); result[9] = (- (self[0]*self[9] - self[1]*self[8] )*det); result[10]= ( (self[0]*self[5] - self[1]*self[4] )*det); result[11] = 0; // multiply translation part by rotation result[12] = - (self[12] * result[0] + self[13] * result[4] + self[14] * result[8]); result[13] = - (self[12] * result[1] + self[13] * result[5] + self[14] * result[9]); result[14] = - (self[12] * result[2] + self[13] * result[6] + self[14] * result[10]); result[15] = 1; return result; } inline void matrix4_affine_invert(Matrix4& self) { self = matrix4_affine_inverse(self); } /// \brief A compile-time-constant integer. template struct IntegralConstant { enum unnamed_{ VALUE = VALUE_ }; }; /// \brief A compile-time-constant row/column index into a 4x4 matrix. template class Matrix4Index { public: typedef IntegralConstant r; typedef IntegralConstant c; typedef IntegralConstant<(r::VALUE * 4) + c::VALUE> i; }; /// \brief A functor which returns the cofactor of a 3x3 submatrix obtained by ignoring a given row and column of a 4x4 matrix. /// \param Row Defines the compile-time-constant integers x, y and z with values corresponding to the indices of the three rows to use. /// \param Col Defines the compile-time-constant integers x, y and z with values corresponding to the indices of the three columns to use. template class Matrix4Cofactor { public: typedef typename Matrix4Index::i xx; typedef typename Matrix4Index::i xy; typedef typename Matrix4Index::i xz; typedef typename Matrix4Index::i yx; typedef typename Matrix4Index::i yy; typedef typename Matrix4Index::i yz; typedef typename Matrix4Index::i zx; typedef typename Matrix4Index::i zy; typedef typename Matrix4Index::i zz; static double apply(const Matrix4& self) { return self[xx::VALUE] * ( self[yy::VALUE]*self[zz::VALUE] - self[zy::VALUE]*self[yz::VALUE] ) - self[xy::VALUE] * ( self[yx::VALUE]*self[zz::VALUE] - self[zx::VALUE]*self[yz::VALUE] ) + self[xz::VALUE] * ( self[yx::VALUE]*self[zy::VALUE] - self[zx::VALUE]*self[yy::VALUE] ); } }; /// \brief The cofactor element indices for a 4x4 matrix row or column. /// \param Element The index of the element to ignore. template class Cofactor4 { public: typedef IntegralConstant<(Element <= 0) ? 1 : 0> x; typedef IntegralConstant<(Element <= 1) ? 2 : 1> y; typedef IntegralConstant<(Element <= 2) ? 3 : 2> z; }; /// \brief Returns the determinant of \p self. inline double matrix4_determinant(const Matrix4& self) { return self.xx() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<0> >::apply(self) - self.xy() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<1> >::apply(self) + self.xz() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<2> >::apply(self) - self.xw() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<3> >::apply(self); } /// \brief Returns the inverse of \p self using the Adjoint method. /// \todo Throw an exception if the determinant is zero. inline Matrix4 matrix4_full_inverse(const Matrix4& self) { double determinant = 1.0 / matrix4_determinant(self); return Matrix4( static_cast( Matrix4Cofactor< Cofactor4<0>, Cofactor4<0> >::apply(self) * determinant), static_cast(-Matrix4Cofactor< Cofactor4<1>, Cofactor4<0> >::apply(self) * determinant), static_cast( Matrix4Cofactor< Cofactor4<2>, Cofactor4<0> >::apply(self) * determinant), static_cast(-Matrix4Cofactor< Cofactor4<3>, Cofactor4<0> >::apply(self) * determinant), static_cast(-Matrix4Cofactor< Cofactor4<0>, Cofactor4<1> >::apply(self) * determinant), static_cast( Matrix4Cofactor< Cofactor4<1>, Cofactor4<1> >::apply(self) * determinant), static_cast(-Matrix4Cofactor< Cofactor4<2>, Cofactor4<1> >::apply(self) * determinant), static_cast( Matrix4Cofactor< Cofactor4<3>, Cofactor4<1> >::apply(self) * determinant), static_cast( Matrix4Cofactor< Cofactor4<0>, Cofactor4<2> >::apply(self) * determinant), static_cast(-Matrix4Cofactor< Cofactor4<1>, Cofactor4<2> >::apply(self) * determinant), static_cast( Matrix4Cofactor< Cofactor4<2>, Cofactor4<2> >::apply(self) * determinant), static_cast(-Matrix4Cofactor< Cofactor4<3>, Cofactor4<2> >::apply(self) * determinant), static_cast(-Matrix4Cofactor< Cofactor4<0>, Cofactor4<3> >::apply(self) * determinant), static_cast( Matrix4Cofactor< Cofactor4<1>, Cofactor4<3> >::apply(self) * determinant), static_cast(-Matrix4Cofactor< Cofactor4<2>, Cofactor4<3> >::apply(self) * determinant), static_cast( Matrix4Cofactor< Cofactor4<3>, Cofactor4<3> >::apply(self) * determinant) ); } /// \brief Inverts \p self in-place using the Adjoint method. inline void matrix4_full_invert(Matrix4& self) { self = matrix4_full_inverse(self); } /// \brief Constructs a pure-translation matrix from \p translation. inline Matrix4 matrix4_translation_for_vec3(const Vector3& translation) { return Matrix4( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, translation[0], translation[1], translation[2], 1 ); } /// \brief Returns the translation part of \p self. inline Vector3 matrix4_get_translation_vec3(const Matrix4& self) { return vector4_to_vector3(self.t()); } /// \brief Concatenates \p self with \p translation. /// The concatenated \p translation occurs before \p self. inline void matrix4_translate_by_vec3(Matrix4& self, const Vector3& translation) { matrix4_multiply_by_matrix4(self, matrix4_translation_for_vec3(translation)); } /// \brief Returns \p self Concatenated with \p translation. /// The concatenated translation occurs before \p self. inline Matrix4 matrix4_translated_by_vec3(const Matrix4& self, const Vector3& translation) { return matrix4_multiplied_by_matrix4(self, matrix4_translation_for_vec3(translation)); } #include "math/pi.h" /// \brief Returns \p angle modulated by the range [0, 360). /// \p angle must be in the range [-360, 360). inline float angle_modulate_degrees_range(float angle) { return static_cast(float_mod_range(angle, 360.0)); } /// \brief Returns \p euler angles converted from radians to degrees. inline Vector3 euler_radians_to_degrees(const Vector3& euler) { return Vector3( static_cast(radians_to_degrees(euler.x())), static_cast(radians_to_degrees(euler.y())), static_cast(radians_to_degrees(euler.z())) ); } /// \brief Returns \p euler angles converted from degrees to radians. inline Vector3 euler_degrees_to_radians(const Vector3& euler) { return Vector3( static_cast(degrees_to_radians(euler.x())), static_cast(degrees_to_radians(euler.y())), static_cast(degrees_to_radians(euler.z())) ); } /// \brief Constructs a pure-rotation matrix about the x axis from sin \p s and cosine \p c of an angle. inline Matrix4 matrix4_rotation_for_sincos_x(float s, float c) { return Matrix4( 1, 0, 0, 0, 0, c, s, 0, 0,-s, c, 0, 0, 0, 0, 1 ); } /// \brief Constructs a pure-rotation matrix about the x axis from an angle in radians. inline Matrix4 matrix4_rotation_for_x(double x) { return matrix4_rotation_for_sincos_x(static_cast(sin(x)), static_cast(cos(x))); } /// \brief Constructs a pure-rotation matrix about the x axis from an angle in degrees. inline Matrix4 matrix4_rotation_for_x_degrees(float x) { return matrix4_rotation_for_x(degrees_to_radians(x)); } /// \brief Constructs a pure-rotation matrix about the y axis from sin \p s and cosine \p c of an angle. inline Matrix4 matrix4_rotation_for_sincos_y(float s, float c) { return Matrix4( c, 0,-s, 0, 0, 1, 0, 0, s, 0, c, 0, 0, 0, 0, 1 ); } /// \brief Constructs a pure-rotation matrix about the y axis from an angle in radians. inline Matrix4 matrix4_rotation_for_y(double y) { return matrix4_rotation_for_sincos_y(static_cast(sin(y)), static_cast(cos(y))); } /// \brief Constructs a pure-rotation matrix about the y axis from an angle in degrees. inline Matrix4 matrix4_rotation_for_y_degrees(float y) { return matrix4_rotation_for_y(degrees_to_radians(y)); } /// \brief Constructs a pure-rotation matrix about the z axis from sin \p s and cosine \p c of an angle. inline Matrix4 matrix4_rotation_for_sincos_z(float s, float c) { return Matrix4( c, s, 0, 0, -s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); } /// \brief Constructs a pure-rotation matrix about the z axis from an angle in radians. inline Matrix4 matrix4_rotation_for_z(double z) { return matrix4_rotation_for_sincos_z(static_cast(sin(z)), static_cast(cos(z))); } /// \brief Constructs a pure-rotation matrix about the z axis from an angle in degrees. inline Matrix4 matrix4_rotation_for_z_degrees(float z) { return matrix4_rotation_for_z(degrees_to_radians(z)); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (x, y, z). /*! \verbatim clockwise rotation around X, Y, Z, facing along axis 1 0 0 cy 0 -sy cz sz 0 0 cx sx 0 1 0 -sz cz 0 0 -sx cx sy 0 cy 0 0 1 rows of Z by cols of Y cy*cz -sy*cz+sz -sy*sz+cz -sz*cy -sz*sy+cz .. or something like that.. final rotation is Z * Y * X cy*cz -sx*-sy*cz+cx*sz cx*-sy*sz+sx*cz -cy*sz sx*sy*sz+cx*cz -cx*-sy*sz+sx*cz sy -sx*cy cx*cy transposed cy.cz + 0.sz + sy.0 cy.-sz + 0 .cz + sy.0 cy.0 + 0 .0 + sy.1 | sx.sy.cz + cx.sz + -sx.cy.0 sx.sy.-sz + cx.cz + -sx.cy.0 sx.sy.0 + cx.0 + -sx.cy.1 | -cx.sy.cz + sx.sz + cx.cy.0 -cx.sy.-sz + sx.cz + cx.cy.0 -cx.sy.0 + 0 .0 + cx.cy.1 | \endverbatim */ inline Matrix4 matrix4_rotation_for_euler_xyz(const Vector3& euler) { #if 1 double cx = cos(euler[0]); double sx = sin(euler[0]); double cy = cos(euler[1]); double sy = sin(euler[1]); double cz = cos(euler[2]); double sz = sin(euler[2]); return Matrix4( static_cast(cy*cz), static_cast(cy*sz), static_cast(-sy), 0, static_cast(sx*sy*cz + cx*-sz), static_cast(sx*sy*sz + cx*cz), static_cast(sx*cy), 0, static_cast(cx*sy*cz + sx*sz), static_cast(cx*sy*sz + -sx*cz), static_cast(cx*cy), 0, 0, 0, 0, 1 ); #else return matrix4_premultiply_by_matrix4( matrix4_premultiply_by_matrix4( matrix4_rotation_for_x(euler[0]), matrix4_rotation_for_y(euler[1]) ), matrix4_rotation_for_z(euler[2]) ); #endif } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (x, y, z). inline Matrix4 matrix4_rotation_for_euler_xyz_degrees(const Vector3& euler) { return matrix4_rotation_for_euler_xyz(euler_degrees_to_radians(euler)); } /// \brief Concatenates \p self with the rotation transform produced by \p euler angles (degrees) in the order (x, y, z). /// The concatenated rotation occurs before \p self. inline void matrix4_rotate_by_euler_xyz_degrees(Matrix4& self, const Vector3& euler) { matrix4_multiply_by_matrix4(self, matrix4_rotation_for_euler_xyz_degrees(euler)); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (y, z, x). inline Matrix4 matrix4_rotation_for_euler_yzx(const Vector3& euler) { return matrix4_premultiplied_by_matrix4( matrix4_premultiplied_by_matrix4( matrix4_rotation_for_y(euler[1]), matrix4_rotation_for_z(euler[2]) ), matrix4_rotation_for_x(euler[0]) ); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (y, z, x). inline Matrix4 matrix4_rotation_for_euler_yzx_degrees(const Vector3& euler) { return matrix4_rotation_for_euler_yzx(euler_degrees_to_radians(euler)); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (x, z, y). inline Matrix4 matrix4_rotation_for_euler_xzy(const Vector3& euler) { return matrix4_premultiplied_by_matrix4( matrix4_premultiplied_by_matrix4( matrix4_rotation_for_x(euler[0]), matrix4_rotation_for_z(euler[2]) ), matrix4_rotation_for_y(euler[1]) ); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (x, z, y). inline Matrix4 matrix4_rotation_for_euler_xzy_degrees(const Vector3& euler) { return matrix4_rotation_for_euler_xzy(euler_degrees_to_radians(euler)); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (y, x, z). /*! \verbatim | cy.cz + sx.sy.-sz + -cx.sy.0 0.cz + cx.-sz + sx.0 sy.cz + -sx.cy.-sz + cx.cy.0 | | cy.sz + sx.sy.cz + -cx.sy.0 0.sz + cx.cz + sx.0 sy.sz + -sx.cy.cz + cx.cy.0 | | cy.0 + sx.sy.0 + -cx.sy.1 0.0 + cx.0 + sx.1 sy.0 + -sx.cy.0 + cx.cy.1 | \endverbatim */ inline Matrix4 matrix4_rotation_for_euler_yxz(const Vector3& euler) { #if 1 double cx = cos(euler[0]); double sx = sin(euler[0]); double cy = cos(euler[1]); double sy = sin(euler[1]); double cz = cos(euler[2]); double sz = sin(euler[2]); return Matrix4( static_cast(cy*cz + sx*sy*-sz), static_cast(cy*sz + sx*sy*cz), static_cast(-cx*sy), 0, static_cast(cx*-sz), static_cast(cx*cz), static_cast(sx), 0, static_cast(sy*cz + -sx*cy*-sz), static_cast(sy*sz + -sx*cy*cz), static_cast(cx*cy), 0, 0, 0, 0, 1 ); #else return matrix4_premultiply_by_matrix4( matrix4_premultiply_by_matrix4( matrix4_rotation_for_y(euler[1]), matrix4_rotation_for_x(euler[0]) ), matrix4_rotation_for_z(euler[2]) ); #endif } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (y, x, z). inline Matrix4 matrix4_rotation_for_euler_yxz_degrees(const Vector3& euler) { return matrix4_rotation_for_euler_yxz(euler_degrees_to_radians(euler)); } /// \brief Returns \p self concatenated with the rotation transform produced by \p euler angles (degrees) in the order (y, x, z). /// The concatenated rotation occurs before \p self. inline Matrix4 matrix4_rotated_by_euler_yxz_degrees(const Matrix4& self, const Vector3& euler) { return matrix4_multiplied_by_matrix4(self, matrix4_rotation_for_euler_yxz_degrees(euler)); } /// \brief Concatenates \p self with the rotation transform produced by \p euler angles (degrees) in the order (y, x, z). /// The concatenated rotation occurs before \p self. inline void matrix4_rotate_by_euler_yxz_degrees(Matrix4& self, const Vector3& euler) { self = matrix4_rotated_by_euler_yxz_degrees(self, euler); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (z, x, y). inline Matrix4 matrix4_rotation_for_euler_zxy(const Vector3& euler) { #if 1 return matrix4_premultiplied_by_matrix4( matrix4_premultiplied_by_matrix4( matrix4_rotation_for_z(euler[2]), matrix4_rotation_for_x(euler[0]) ), matrix4_rotation_for_y(euler[1]) ); #else double cx = cos(euler[0]); double sx = sin(euler[0]); double cy = cos(euler[1]); double sy = sin(euler[1]); double cz = cos(euler[2]); double sz = sin(euler[2]); return Matrix4( static_cast(cz * cy + sz * sx * sy), static_cast(sz * cx), static_cast(cz * -sy + sz * sx * cy), 0, static_cast(-sz * cy + cz * sx * sy), static_cast(cz * cx), static_cast(-sz * -sy + cz * cx * cy), 0, static_cast(cx* sy), static_cast(-sx), static_cast(cx* cy), 0, 0, 0, 0, 1 ); #endif } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degres=es) in the order (z, x, y). inline Matrix4 matrix4_rotation_for_euler_zxy_degrees(const Vector3& euler) { return matrix4_rotation_for_euler_zxy(euler_degrees_to_radians(euler)); } /// \brief Returns \p self concatenated with the rotation transform produced by \p euler angles (degrees) in the order (z, x, y). /// The concatenated rotation occurs before \p self. inline Matrix4 matrix4_rotated_by_euler_zxy_degrees(const Matrix4& self, const Vector3& euler) { return matrix4_multiplied_by_matrix4(self, matrix4_rotation_for_euler_zxy_degrees(euler)); } /// \brief Concatenates \p self with the rotation transform produced by \p euler angles (degrees) in the order (z, x, y). /// The concatenated rotation occurs before \p self. inline void matrix4_rotate_by_euler_zxy_degrees(Matrix4& self, const Vector3& euler) { self = matrix4_rotated_by_euler_zxy_degrees(self, euler); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (z, y, x). inline Matrix4 matrix4_rotation_for_euler_zyx(const Vector3& euler) { #if 1 double cx = cos(euler[0]); double sx = sin(euler[0]); double cy = cos(euler[1]); double sy = sin(euler[1]); double cz = cos(euler[2]); double sz = sin(euler[2]); return Matrix4( static_cast(cy*cz), static_cast(sx*sy*cz + cx*sz), static_cast(cx*-sy*cz + sx*sz), 0, static_cast(cy*-sz), static_cast(sx*sy*-sz + cx*cz), static_cast(cx*-sy*-sz + sx*cz), 0, static_cast(sy), static_cast(-sx*cy), static_cast(cx*cy), 0, 0, 0, 0, 1 ); #else return matrix4_premultiply_by_matrix4( matrix4_premultiply_by_matrix4( matrix4_rotation_for_z(euler[2]), matrix4_rotation_for_y(euler[1]) ), matrix4_rotation_for_x(euler[0]) ); #endif } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (z, y, x). inline Matrix4 matrix4_rotation_for_euler_zyx_degrees(const Vector3& euler) { return matrix4_rotation_for_euler_zyx(euler_degrees_to_radians(euler)); } /// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (x, y, z). /// \p self must be affine and orthonormal (unscaled) to produce a meaningful result. inline Vector3 matrix4_get_rotation_euler_xyz(const Matrix4& self) { double a = asin(-self[2]); double ca = cos(a); if (fabs(ca) > 0.005) // Gimbal lock? { return Vector3( static_cast(atan2(self[6] / ca, self[10] / ca)), static_cast(a), static_cast(atan2(self[1] / ca, self[0]/ ca)) ); } else // Gimbal lock has occurred { return Vector3( static_cast(atan2(-self[9], self[5])), static_cast(a), 0 ); } } /// \brief \copydoc matrix4_get_rotation_euler_xyz(const Matrix4&) inline Vector3 matrix4_get_rotation_euler_xyz_degrees(const Matrix4& self) { return euler_radians_to_degrees(matrix4_get_rotation_euler_xyz(self)); } /// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (y, x, z). /// \p self must be affine and orthonormal (unscaled) to produce a meaningful result. inline Vector3 matrix4_get_rotation_euler_yxz(const Matrix4& self) { double a = asin(self[6]); double ca = cos(a); if (fabs(ca) > 0.005) // Gimbal lock? { return Vector3( static_cast(a), static_cast(atan2(-self[2] / ca, self[10]/ ca)), static_cast(atan2(-self[4] / ca, self[5] / ca)) ); } else // Gimbal lock has occurred { return Vector3( static_cast(a), static_cast(atan2(self[8], self[0])), 0 ); } } /// \brief \copydoc matrix4_get_rotation_euler_yxz(const Matrix4&) inline Vector3 matrix4_get_rotation_euler_yxz_degrees(const Matrix4& self) { return euler_radians_to_degrees(matrix4_get_rotation_euler_yxz(self)); } /// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (z, x, y). /// \p self must be affine and orthonormal (unscaled) to produce a meaningful result. inline Vector3 matrix4_get_rotation_euler_zxy(const Matrix4& self) { double a = asin(-self[9]); double ca = cos(a); if (fabs(ca) > 0.005) // Gimbal lock? { return Vector3( static_cast(a), static_cast(atan2(self[8] / ca, self[10] / ca)), static_cast(atan2(self[1] / ca, self[5]/ ca)) ); } else // Gimbal lock has occurred { return Vector3( static_cast(a), 0, static_cast(atan2(-self[4], self[0])) ); } } /// \brief \copydoc matrix4_get_rotation_euler_zxy(const Matrix4&) inline Vector3 matrix4_get_rotation_euler_zxy_degrees(const Matrix4& self) { return euler_radians_to_degrees(matrix4_get_rotation_euler_zxy(self)); } /// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (z, y, x). /// \p self must be affine and orthonormal (unscaled) to produce a meaningful result. inline Vector3 matrix4_get_rotation_euler_zyx(const Matrix4& self) { double a = asin(self[8]); double ca = cos(a); if (fabs(ca) > 0.005) // Gimbal lock? { return Vector3( static_cast(atan2(-self[9] / ca, self[10]/ ca)), static_cast(a), static_cast(atan2(-self[4] / ca, self[0] / ca)) ); } else // Gimbal lock has occurred { return Vector3( 0, static_cast(a), static_cast(atan2(self[1], self[5])) ); } } /// \brief \copydoc matrix4_get_rotation_euler_zyx(const Matrix4&) inline Vector3 matrix4_get_rotation_euler_zyx_degrees(const Matrix4& self) { return euler_radians_to_degrees(matrix4_get_rotation_euler_zyx(self)); } /// \brief Rotate \p self by \p euler angles (degrees) applied in the order (x, y, z), using \p pivotpoint. inline void matrix4_pivoted_rotate_by_euler_xyz_degrees(Matrix4& self, const Vector3& euler, const Vector3& pivotpoint) { matrix4_translate_by_vec3(self, pivotpoint); matrix4_rotate_by_euler_xyz_degrees(self, euler); matrix4_translate_by_vec3(self, vector3_negated(pivotpoint)); } /// \brief Constructs a pure-scale matrix from \p scale. inline Matrix4 matrix4_scale_for_vec3(const Vector3& scale) { return Matrix4( scale[0], 0, 0, 0, 0, scale[1], 0, 0, 0, 0, scale[2], 0, 0, 0, 0, 1 ); } /// \brief Calculates and returns the (x, y, z) scale values that produce the scale component of \p self. /// \p self must be affine and orthogonal to produce a meaningful result. inline Vector3 matrix4_get_scale_vec3(const Matrix4& self) { return Vector3( static_cast(vector3_length(vector4_to_vector3(self.x()))), static_cast(vector3_length(vector4_to_vector3(self.y()))), static_cast(vector3_length(vector4_to_vector3(self.z()))) ); } /// \brief Scales \p self by \p scale. inline void matrix4_scale_by_vec3(Matrix4& self, const Vector3& scale) { matrix4_multiply_by_matrix4(self, matrix4_scale_for_vec3(scale)); } /// \brief Scales \p self by \p scale, using \p pivotpoint. inline void matrix4_pivoted_scale_by_vec3(Matrix4& self, const Vector3& scale, const Vector3& pivotpoint) { matrix4_translate_by_vec3(self, pivotpoint); matrix4_scale_by_vec3(self, scale); matrix4_translate_by_vec3(self, vector3_negated(pivotpoint)); } /// \brief Transforms \p self by \p translation, \p euler and \p scale. /// The transforms are combined in the order: scale, rotate-z, rotate-y, rotate-x, translate. inline void matrix4_transform_by_euler_xyz_degrees(Matrix4& self, const Vector3& translation, const Vector3& euler, const Vector3& scale) { matrix4_translate_by_vec3(self, translation); matrix4_rotate_by_euler_xyz_degrees(self, euler); matrix4_scale_by_vec3(self, scale); } /// \brief Transforms \p self by \p translation, \p euler and \p scale, using \p pivotpoint. inline void matrix4_pivoted_transform_by_euler_xyz_degrees(Matrix4& self, const Vector3& translation, const Vector3& euler, const Vector3& scale, const Vector3& pivotpoint) { matrix4_translate_by_vec3(self, pivotpoint + translation); matrix4_rotate_by_euler_xyz_degrees(self, euler); matrix4_scale_by_vec3(self, scale); matrix4_translate_by_vec3(self, vector3_negated(pivotpoint)); } #endif