/* Copyright (C) 1999-2007 id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef __MATHLIB__ #define __MATHLIB__ // mathlib.h #include #include #include "bytebool.h" #ifdef __cplusplus extern "C" { #endif typedef float vec_t; typedef vec_t vec3_t[3]; typedef vec_t vec5_t[5]; typedef vec_t vec4_t[4]; // Smallest positive value for vec_t such that 1.0 + VEC_SMALLEST_EPSILON_AROUND_ONE != 1.0. // In the case of 32 bit floats (which is almost certainly the case), it's 0.00000011921. // Don't forget that your epsilons should depend on the possible range of values, // because for example adding VEC_SMALLEST_EPSILON_AROUND_ONE to 1024.0 will have no effect. #define VEC_SMALLEST_EPSILON_AROUND_ONE FLT_EPSILON #define SIDE_FRONT 0 #define SIDE_ON 2 #define SIDE_BACK 1 #define SIDE_CROSS -2 // plane types are used to speed some tests // 0-2 are axial planes #define PLANE_X 0 #define PLANE_Y 1 #define PLANE_Z 2 #define PLANE_NON_AXIAL 3 #define Q_PI 3.14159265358979323846f extern vec3_t vec3_origin; #define EQUAL_EPSILON 0.001 #ifndef VEC_MAX #define VEC_MAX 3.402823466e+38F #endif qboolean VectorCompare( vec3_t v1, vec3_t v2 ); #define DotProduct( x,y ) ( ( x )[0] * ( y )[0] + ( x )[1] * ( y )[1] + ( x )[2] * ( y )[2] ) #define VectorSubtract( a,b,c ) ( ( c )[0] = ( a )[0] - ( b )[0],( c )[1] = ( a )[1] - ( b )[1],( c )[2] = ( a )[2] - ( b )[2] ) #define VectorAdd( a,b,c ) ( ( c )[0] = ( a )[0] + ( b )[0],( c )[1] = ( a )[1] + ( b )[1],( c )[2] = ( a )[2] + ( b )[2] ) #define VectorIncrement( a,b ) ( ( b )[0] += ( a )[0],( b )[1] += ( a )[1],( b )[2] += ( a )[2] ) #define VectorCopy( a,b ) ( ( b )[0] = ( a )[0],( b )[1] = ( a )[1],( b )[2] = ( a )[2] ) #define VectorSet( v, a, b, c ) ( ( v )[0] = ( a ),( v )[1] = ( b ),( v )[2] = ( c ) ) #define VectorScale( a,b,c ) ( ( c )[0] = ( b ) * ( a )[0],( c )[1] = ( b ) * ( a )[1],( c )[2] = ( b ) * ( a )[2] ) #define VectorMid( a,b,c ) ( ( c )[0] = ( ( a )[0] + ( b )[0] ) * 0.5f,( c )[1] = ( ( a )[1] + ( b )[1] ) * 0.5f,( c )[2] = ( ( a )[2] + ( b )[2] ) * 0.5f ) #define VectorNegative( a,b ) ( ( b )[0] = -( a )[0],( b )[1] = -( a )[1],( b )[2] = -( a )[2] ) #define CrossProduct( a,b,c ) ( ( c )[0] = ( a )[1] * ( b )[2] - ( a )[2] * ( b )[1],( c )[1] = ( a )[2] * ( b )[0] - ( a )[0] * ( b )[2],( c )[2] = ( a )[0] * ( b )[1] - ( a )[1] * ( b )[0] ) #define VectorClear( x ) ( ( x )[0] = ( x )[1] = ( x )[2] = 0 ) #define Q_rint( in ) ( (vec_t)floor( in + 0.5 ) ) qboolean VectorIsOnAxis( vec3_t v ); qboolean VectorIsOnAxialPlane( vec3_t v ); vec_t VectorLength( vec3_t v ); void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc ); void _CrossProduct( vec3_t v1, vec3_t v2, vec3_t cross ); // I need this define in order to test some of the regression tests from time to time. // This define affect the precision of VectorNormalize() function only. #define MATHLIB_VECTOR_NORMALIZE_PRECISION_FIX 1 vec_t VectorNormalize( const vec3_t in, vec3_t out ); vec_t ColorNormalize( const vec3_t in, vec3_t out ); void VectorInverse( vec3_t v ); void VectorPolar( vec3_t v, float radius, float theta, float phi ); // default snapping, to 1 void VectorSnap( vec3_t v ); // integer snapping void VectorISnap( vec3_t point, int snap ); // Gef: added snap to float for sub-integer grid sizes // TTimo: we still use the int version of VectorSnap when possible // to avoid potential rounding issues // TTimo: renaming to VectorFSnap for C implementation void VectorFSnap( vec3_t point, float snap ); // NOTE: added these from Ritual's Q3Radiant void ClearBounds( vec3_t mins, vec3_t maxs ); void AddPointToBounds( vec3_t v, vec3_t mins, vec3_t maxs ); void AngleVectors( vec3_t angles, vec3_t forward, vec3_t right, vec3_t up ); void VectorToAngles( vec3_t vec, vec3_t angles ); #define ZERO_EPSILON 1.0E-6 #define RAD2DEGMULT 57.29577951308232f #define DEG2RADMULT 0.01745329251994329f #define RAD2DEG( a ) ( ( a ) * RAD2DEGMULT ) #define DEG2RAD( a ) ( ( a ) * DEG2RADMULT ) void VectorRotate( vec3_t vIn, vec3_t vRotation, vec3_t out ); void VectorRotateOrigin( vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out ); // some function merged from tools mathlib code qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ); void NormalToLatLong( const vec3_t normal, byte bytes[2] ); int PlaneTypeForNormal( vec3_t normal ); void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ); // Spog // code imported from geomlib /*! \todo FIXME test calls such as intersect tests should be named test_ */ typedef vec_t m3x3_t[9]; /*!NOTE m4x4 looks like this.. x y z x axis ( 0 1 2) y axis ( 4 5 6) z axis ( 8 9 10) translation (12 13 14) scale ( 0 5 10) */ typedef vec_t m4x4_t[16]; #define M4X4_INDEX( m,row,col ) ( m[( col << 2 ) + row] ) typedef enum { TRANSLATE, SCALE, ROTATE } transformtype; // legacy, used only in pmesh.cpp typedef enum { eXYZ, eYZX, eZXY, eXZY, eYXZ, eZYX } eulerOrder_t; // constructors /*! create m4x4 as identity matrix */ void m4x4_identity( m4x4_t matrix ); /*! create m4x4 as a translation matrix, for a translation vec3 */ void m4x4_translation_for_vec3( m4x4_t matrix, const vec3_t translation ); /*! create m4x4 as a rotation matrix, for an euler angles (degrees) vec3 */ void m4x4_rotation_for_vec3( m4x4_t matrix, const vec3_t euler, eulerOrder_t order ); /*! create m4x4 as a scaling matrix, for a scale vec3 */ void m4x4_scale_for_vec3( m4x4_t matrix, const vec3_t scale ); /*! create m4x4 as a rotation matrix, for a quaternion vec4 */ void m4x4_rotation_for_quat( m4x4_t matrix, const vec4_t rotation ); /*! create m4x4 as a rotation matrix, for an axis vec3 and an angle (radians) */ void m4x4_rotation_for_axisangle( m4x4_t matrix, const vec3_t axis, vec_t angle ); // a valid m4x4 to be modified is always first argument /*! translate m4x4 by a translation vec3 */ void m4x4_translate_by_vec3( m4x4_t matrix, const vec3_t translation ); /*! rotate m4x4 by a euler (degrees) vec3 */ void m4x4_rotate_by_vec3( m4x4_t matrix, const vec3_t euler, eulerOrder_t order ); /*! scale m4x4 by a scaling vec3 */ void m4x4_scale_by_vec3( m4x4_t matrix, const vec3_t scale ); /*! rotate m4x4 by a quaternion vec4 */ void m4x4_rotate_by_quat( m4x4_t matrix, const vec4_t rotation ); /*! rotate m4x4 by an axis vec3 and an angle (radians) */ void m4x4_rotate_by_axisangle( m4x4_t matrix, const vec3_t axis, vec_t angle ); /*! transform m4x4 by translation/euler/scaling vec3 (transform = translation.euler.scale) */ void m4x4_transform_by_vec3( m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale ); /*! rotate m4x4 around a pivot point by euler(degrees) vec3 */ void m4x4_pivoted_rotate_by_vec3( m4x4_t matrix, const vec3_t euler, eulerOrder_t order, const vec3_t pivotpoint ); /*! scale m4x4 around a pivot point by scaling vec3 */ void m4x4_pivoted_scale_by_vec3( m4x4_t matrix, const vec3_t scale, const vec3_t pivotpoint ); /*! transform m4x4 around a pivot point by translation/euler/scaling vec3 */ void m4x4_pivoted_transform_by_vec3( m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale, const vec3_t pivotpoint ); /*! rotate m4x4 around a pivot point by quaternion vec4 */ void m4x4_pivoted_rotate_by_quat( m4x4_t matrix, const vec4_t rotation, const vec3_t pivotpoint ); /*! rotate m4x4 around a pivot point by axis vec3 and angle (radians) */ void m4x4_pivoted_rotate_by_axisangle( m4x4_t matrix, const vec3_t axis, vec_t angle, const vec3_t pivotpoint ); /*! post-multiply m4x4 by another m4x4 */ void m4x4_multiply_by_m4x4( m4x4_t matrix, const m4x4_t other ); /*! pre-multiply m4x4 by another m4x4 */ void m4x4_premultiply_by_m4x4( m4x4_t matrix, const m4x4_t other ); /*! multiply a point (x,y,z,1) by matrix */ void m4x4_transform_point( const m4x4_t matrix, vec3_t point ); /*! multiply a normal (x,y,z,0) by matrix */ void m4x4_transform_normal( const m4x4_t matrix, vec3_t normal ); /*! multiply a vec4 (x,y,z,w) by matrix */ void m4x4_transform_vec4( const m4x4_t matrix, vec4_t vector ); /*! multiply a point (x,y,z,1) by matrix */ void m4x4_transform_point( const m4x4_t matrix, vec3_t point ); /*! multiply a normal (x,y,z,0) by matrix */ void m4x4_transform_normal( const m4x4_t matrix, vec3_t normal ); /*! transpose a m4x4 */ void m4x4_transpose( m4x4_t matrix ); /*! invert an orthogonal 4x3 subset of a 4x4 matrix */ void m4x4_orthogonal_invert( m4x4_t matrix ); /*! invert any m4x4 using Kramer's rule.. return 1 if matrix is singular, else return 0 */ int m4x4_invert( m4x4_t matrix ); /*! \todo object/ray intersection functions should maybe return a point rather than a distance? */ /*! aabb_t - "axis-aligned" bounding box... origin: centre of bounding box... extents: +/- extents of box from origin... radius: cached length of extents vector... */ typedef struct aabb_s { vec3_t origin; vec3_t extents; vec_t radius; } aabb_t; /*! bbox_t - oriented bounding box... aabb: axis-aligned bounding box... axes: orientation axes... */ typedef struct bbox_s { aabb_t aabb; vec3_t axes[3]; } bbox_t; /*! ray_t - origin point and direction unit-vector */ typedef struct ray_s { vec3_t origin; vec3_t direction; } ray_t; /*! Generate AABB from min/max. */ void aabb_construct_for_vec3( aabb_t *aabb, const vec3_t min, const vec3_t max ); /*! Update bounding-sphere radius. */ void aabb_update_radius( aabb_t *aabb ); /*! Initialise AABB to negative size. */ void aabb_clear( aabb_t *aabb ); /*! Extend AABB to include point. */ void aabb_extend_by_point( aabb_t *aabb, const vec3_t point ); /*! Extend AABB to include aabb_src. */ void aabb_extend_by_aabb( aabb_t *aabb, const aabb_t *aabb_src ); /*! Extend AABB by +/- extension vector. */ void aabb_extend_by_vec3( aabb_t *aabb, vec3_t extension ); /*! Return 2 if point is inside, else 1 if point is on surface, else 0. */ int aabb_intersect_point( const aabb_t *aabb, const vec3_t point ); /*! Return 2 if aabb_src intersects, else 1 if aabb_src touches exactly, else 0. */ int aabb_intersect_aabb( const aabb_t *aabb, const aabb_t *aabb_src ); /*! Return 2 if aabb is behind plane, else 1 if aabb intersects plane, else 0. */ int aabb_intersect_plane( const aabb_t *aabb, const float *plane ); /*! Return 1 if aabb intersects ray, else 0... dist = closest intersection. */ int aabb_intersect_ray( const aabb_t *aabb, const ray_t *ray, vec_t *dist ); /*! Return 1 if aabb intersects ray, else 0. Faster, but does not provide point of intersection */ int aabb_test_ray( const aabb_t* aabb, const ray_t* ray ); /*! Generate AABB from oriented bounding box. */ void aabb_for_bbox( aabb_t *aabb, const bbox_t *bbox ); /*! Generate AABB from 2-dimensions of min/max, specified by axis. */ void aabb_for_area( aabb_t *aabb, vec3_t area_tl, vec3_t area_br, int axis ); /*! Generate AABB to contain src * transform. NOTE: transform must be orthogonal */ void aabb_for_transformed_aabb( aabb_t* dst, const aabb_t* src, const m4x4_t transform ); /*! Generate oriented bounding box from AABB and transformation matrix. */ /*!\todo Remove need to specify euler/scale. */ void bbox_for_oriented_aabb( bbox_t *bbox, const aabb_t *aabb, const m4x4_t matrix, const vec3_t euler, const vec3_t scale ); /*! Return 2 is bbox is behind plane, else return 1 if bbox intersects plane, else return 0. */ int bbox_intersect_plane( const bbox_t *bbox, const vec_t* plane ); /*! Generate a ray from an origin point and a direction unit-vector */ void ray_construct_for_vec3( ray_t *ray, const vec3_t origin, const vec3_t direction ); /*! Transform a ray */ void ray_transform( ray_t *ray, const m4x4_t matrix ); /*! return true if point intersects cone formed by ray, divergence and epsilon */ vec_t ray_intersect_point( const ray_t *ray, const vec3_t point, vec_t epsilon, vec_t divergence ); /*! return true if triangle intersects ray... dist = dist from intersection point to ray-origin */ vec_t ray_intersect_triangle( const ray_t *ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2 ); //////////////////////////////////////////////////////////////////////////////// // Below is double-precision math stuff. This was initially needed by the new // "base winding" code in q3map2 brush processing in order to fix the famous // "disappearing triangles" issue. These definitions can be used wherever extra // precision is needed. //////////////////////////////////////////////////////////////////////////////// typedef double vec_accu_t; typedef vec_accu_t vec3_accu_t[3]; // Smallest positive value for vec_accu_t such that 1.0 + VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE != 1.0. // In the case of 64 bit doubles (which is almost certainly the case), it's 0.00000000000000022204. // Don't forget that your epsilons should depend on the possible range of values, // because for example adding VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE to 1024.0 will have no effect. #define VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE DBL_EPSILON vec_accu_t VectorLengthAccu( const vec3_accu_t v ); // I have a feeling it may be safer to break these #define functions out into actual functions // in order to avoid accidental loss of precision. For example, say you call // VectorScaleAccu(vec3_t, vec_t, vec3_accu_t). The scale would take place in 32 bit land // and the result would be cast to 64 bit, which would cause total loss of precision when // scaling by a large factor. //#define DotProductAccu(x, y) ((x)[0] * (y)[0] + (x)[1] * (y)[1] + (x)[2] * (y)[2]) //#define VectorSubtractAccu(a, b, c) ((c)[0] = (a)[0] - (b)[0], (c)[1] = (a)[1] - (b)[1], (c)[2] = (a)[2] - (b)[2]) //#define VectorAddAccu(a, b, c) ((c)[0] = (a)[0] + (b)[0], (c)[1] = (a)[1] + (b)[1], (c)[2] = (a)[2] + (b)[2]) //#define VectorCopyAccu(a, b) ((b)[0] = (a)[0], (b)[1] = (a)[1], (b)[2] = (a)[2]) //#define VectorScaleAccu(a, b, c) ((c)[0] = (b) * (a)[0], (c)[1] = (b) * (a)[1], (c)[2] = (b) * (a)[2]) //#define CrossProductAccu(a, b, c) ((c)[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1], (c)[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2], (c)[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0]) //#define Q_rintAccu(in) ((vec_accu_t) floor(in + 0.5)) vec_accu_t DotProductAccu( const vec3_accu_t a, const vec3_accu_t b ); void VectorSubtractAccu( const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out ); void VectorAddAccu( const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out ); void VectorCopyAccu( const vec3_accu_t in, vec3_accu_t out ); void VectorScaleAccu( const vec3_accu_t in, vec_accu_t scaleFactor, vec3_accu_t out ); void CrossProductAccu( const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out ); vec_accu_t Q_rintAccu( vec_accu_t val ); void VectorCopyAccuToRegular( const vec3_accu_t in, vec3_t out ); void VectorCopyRegularToAccu( const vec3_t in, vec3_accu_t out ); vec_accu_t VectorNormalizeAccu( const vec3_accu_t in, vec3_accu_t out ); #ifdef __cplusplus } #endif #endif /* __MATHLIB__ */