/* Copyright (C) 1999-2006 Id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef __MATHLIB__ #define __MATHLIB__ // mathlib.h #include #include #ifdef __cplusplus // start declarations of functions defined in C library. extern "C" { #endif #include "bytebool.h" typedef float vec_t; typedef vec_t vec3_t[3]; typedef vec_t vec5_t[5]; typedef vec_t vec4_t[4]; // Smallest positive value for vec_t such that 1.0 + VEC_SMALLEST_EPSILON_AROUND_ONE != 1.0. // In the case of 32 bit floats (which is almost certainly the case), it's 0.00000011921. // Don't forget that your epsilons should depend on the possible range of values, // because for example adding VEC_SMALLEST_EPSILON_AROUND_ONE to 1024.0 will have no effect. #define VEC_SMALLEST_EPSILON_AROUND_ONE FLT_EPSILON #define SIDE_FRONT 0 #define SIDE_ON 2 #define SIDE_BACK 1 #define SIDE_CROSS -2 // plane types are used to speed some tests // 0-2 are axial planes #define PLANE_X 0 #define PLANE_Y 1 #define PLANE_Z 2 #define PLANE_NON_AXIAL 3 #define Q_PI 3.14159265358979323846f extern const vec3_t vec3_origin; extern const vec3_t g_vec3_axis_x; extern const vec3_t g_vec3_axis_y; extern const vec3_t g_vec3_axis_z; #define EQUAL_EPSILON 0.001 #define DotProduct( x,y ) ( ( x )[0] * ( y )[0] + ( x )[1] * ( y )[1] + ( x )[2] * ( y )[2] ) #define VectorSubtract( a,b,c ) ( ( c )[0] = ( a )[0] - ( b )[0],( c )[1] = ( a )[1] - ( b )[1],( c )[2] = ( a )[2] - ( b )[2] ) #define VectorAdd( a,b,c ) ( ( c )[0] = ( a )[0] + ( b )[0],( c )[1] = ( a )[1] + ( b )[1],( c )[2] = ( a )[2] + ( b )[2] ) #define VectorIncrement( a,b ) ( ( b )[0] += ( a )[0],( b )[1] += ( a )[1],( b )[2] += ( a )[2] ) #define VectorCopy( a,b ) ( ( b )[0] = ( a )[0],( b )[1] = ( a )[1],( b )[2] = ( a )[2] ) #define VectorSet( v, a, b, c ) ( ( v )[0] = ( a ),( v )[1] = ( b ),( v )[2] = ( c ) ) #define VectorScale( a,b,c ) ( ( c )[0] = ( b ) * ( a )[0],( c )[1] = ( b ) * ( a )[1],( c )[2] = ( b ) * ( a )[2] ) #define VectorMid( a,b,c ) ( ( c )[0] = ( ( a )[0] + ( b )[0] ) * 0.5f,( c )[1] = ( ( a )[1] + ( b )[1] ) * 0.5f,( c )[2] = ( ( a )[2] + ( b )[2] ) * 0.5f ) #define VectorNegate( a,b ) ( ( b )[0] = -( a )[0],( b )[1] = -( a )[1],( b )[2] = -( a )[2] ) #define CrossProduct( a,b,c ) ( ( c )[0] = ( a )[1] * ( b )[2] - ( a )[2] * ( b )[1],( c )[1] = ( a )[2] * ( b )[0] - ( a )[0] * ( b )[2],( c )[2] = ( a )[0] * ( b )[1] - ( a )[1] * ( b )[0] ) #define VectorClear( x ) ( ( x )[0] = ( x )[1] = ( x )[2] = 0 ) #define FLOAT_SNAP( f,snap ) ( (float)( floor( ( f ) / ( snap ) + 0.5 ) * ( snap ) ) ) #define FLOAT_TO_INTEGER( f ) ( (float)( floor( ( f ) + 0.5 ) ) ) #define RGBTOGRAY( x ) ( (float)( ( x )[0] ) * 0.2989f + (float)( ( x )[1] ) * 0.5870f + (float)( ( x )[2] ) * 0.1140f ) #define Q_rint( in ) ( (vec_t)floor( in + 0.5 ) ) qboolean VectorCompare( const vec3_t v1, const vec3_t v2 ); qboolean VectorIsOnAxis( vec3_t v ); qboolean VectorIsOnAxialPlane( vec3_t v ); vec_t VectorLength( const vec3_t v ); void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc ); void _CrossProduct( vec3_t v1, vec3_t v2, vec3_t cross ); // I need this define in order to test some of the regression tests from time to time. // This define affect the precision of VectorNormalize() function only. #define MATHLIB_VECTOR_NORMALIZE_PRECISION_FIX 1 vec_t VectorNormalize( const vec3_t in, vec3_t out ); vec_t ColorNormalize( const vec3_t in, vec3_t out ); void VectorInverse( vec3_t v ); void VectorPolar( vec3_t v, float radius, float theta, float phi ); // default snapping, to 1 void VectorSnap( vec3_t v ); // integer snapping void VectorISnap( vec3_t point, int snap ); // Gef: added snap to float for sub-integer grid sizes // TTimo: we still use the int version of VectorSnap when possible // to avoid potential rounding issues // TTimo: renaming to VectorFSnap for C implementation void VectorFSnap( vec3_t point, float snap ); // NOTE: added these from Ritual's Q3Radiant void ClearBounds( vec3_t mins, vec3_t maxs ); void AddPointToBounds( vec3_t v, vec3_t mins, vec3_t maxs ); #define PITCH 0 // up / down #define YAW 1 // left / right #define ROLL 2 // fall over void AngleVectors( vec3_t angles, vec3_t forward, vec3_t right, vec3_t up ); void VectorToAngles( vec3_t vec, vec3_t angles ); #define ZERO_EPSILON 1.0E-6 #define RAD2DEGMULT 57.29577951308232f #define DEG2RADMULT 0.01745329251994329f #define RAD2DEG( a ) ( ( a ) * RAD2DEGMULT ) #define DEG2RAD( a ) ( ( a ) * DEG2RADMULT ) void VectorRotate( vec3_t vIn, vec3_t vRotation, vec3_t out ); void VectorRotateOrigin( vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out ); // some function merged from tools mathlib code qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ); void NormalToLatLong( const vec3_t normal, byte bytes[2] ); int PlaneTypeForNormal( vec3_t normal ); void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ); /*! \todo FIXME test calls such as intersect tests should be named test_ */ typedef vec_t m3x3_t[9]; /*!NOTE m4x4 looks like this.. x y z x axis ( 0 1 2) y axis ( 4 5 6) z axis ( 8 9 10) translation (12 13 14) scale ( 0 5 10) */ typedef vec_t m4x4_t[16]; #define M4X4_INDEX( m,row,col ) ( m[( col << 2 ) + row] ) typedef enum { eXYZ, eYZX, eZXY, eXZY, eYXZ, eZYX } eulerOrder_t; #define CLIP_PASS 0x00 // 000000 #define CLIP_LT_X 0x01 // 000001 #define CLIP_GT_X 0x02 // 000010 #define CLIP_LT_Y 0x04 // 000100 #define CLIP_GT_Y 0x08 // 001000 #define CLIP_LT_Z 0x10 // 010000 #define CLIP_GT_Z 0x20 // 100000 #define CLIP_FAIL 0x3F // 111111 typedef unsigned char clipmask_t; extern const m4x4_t g_m4x4_identity; #define M4X4_COPY( dst,src ) ( \ ( dst )[0] = ( src )[0], \ ( dst )[1] = ( src )[1], \ ( dst )[2] = ( src )[2], \ ( dst )[3] = ( src )[3], \ ( dst )[4] = ( src )[4], \ ( dst )[5] = ( src )[5], \ ( dst )[6] = ( src )[6], \ ( dst )[7] = ( src )[7], \ ( dst )[8] = ( src )[8], \ ( dst )[9] = ( src )[9], \ ( dst )[10] = ( src )[10], \ ( dst )[11] = ( src )[11], \ ( dst )[12] = ( src )[12], \ ( dst )[13] = ( src )[13], \ ( dst )[14] = ( src )[14], \ ( dst )[15] = ( src )[15] ) typedef enum { eRightHanded = 0, eLeftHanded = 1, } m4x4Handedness_t; m4x4Handedness_t m4x4_handedness( const m4x4_t matrix ); /*! assign other m4x4 to this m4x4 */ void m4x4_assign( m4x4_t matrix, const m4x4_t other ); // constructors /*! create m4x4 as identity matrix */ void m4x4_identity( m4x4_t matrix ); /*! create m4x4 as a translation matrix, for a translation vec3 */ void m4x4_translation_for_vec3( m4x4_t matrix, const vec3_t translation ); /*! create m4x4 as a rotation matrix, for an euler angles (degrees) vec3 */ void m4x4_rotation_for_vec3( m4x4_t matrix, const vec3_t euler, eulerOrder_t order ); /*! create m4x4 as a scaling matrix, for a scale vec3 */ void m4x4_scale_for_vec3( m4x4_t matrix, const vec3_t scale ); /*! create m4x4 as a rotation matrix, for a quaternion vec4 */ void m4x4_rotation_for_quat( m4x4_t matrix, const vec4_t rotation ); /*! create m4x4 as a rotation matrix, for an axis vec3 and an angle (radians) */ void m4x4_rotation_for_axisangle( m4x4_t matrix, const vec3_t axis, double angle ); /*! generate a perspective matrix by specifying the view frustum */ void m4x4_frustum( m4x4_t matrix, vec_t left, vec_t right, vec_t bottom, vec_t top, vec_t nearval, vec_t farval ); // a valid m4x4 to access is always first argument /*! extract translation vec3 from matrix */ void m4x4_get_translation_vec3( const m4x4_t matrix, vec3_t translation ); /*! extract euler rotation angles from a rotation-only matrix */ void m4x4_get_rotation_vec3( const m4x4_t matrix, vec3_t euler, eulerOrder_t order ); /*! extract scale vec3 from matrix */ void m4x4_get_scale_vec3( const m4x4_t matrix, vec3_t scale ); /*! extract translation/euler/scale from an orthogonal matrix. NOTE: requires right-handed axis-base */ void m4x4_get_transform_vec3( const m4x4_t matrix, vec3_t translation, vec3_t euler, eulerOrder_t order, vec3_t scale ); // a valid m4x4 to be modified is always first argument /*! translate m4x4 by a translation vec3 */ void m4x4_translate_by_vec3( m4x4_t matrix, const vec3_t translation ); /*! rotate m4x4 by a euler (degrees) vec3 */ void m4x4_rotate_by_vec3( m4x4_t matrix, const vec3_t euler, eulerOrder_t order ); /*! scale m4x4 by a scaling vec3 */ void m4x4_scale_by_vec3( m4x4_t matrix, const vec3_t scale ); /*! rotate m4x4 by a quaternion vec4 */ void m4x4_rotate_by_quat( m4x4_t matrix, const vec4_t rotation ); /*! rotate m4x4 by an axis vec3 and an angle (radians) */ void m4x4_rotate_by_axisangle( m4x4_t matrix, const vec3_t axis, double angle ); /*! transform m4x4 by translation/eulerZYX/scaling vec3 (transform = scale * eulerZ * eulerY * eulerX * translation) */ void m4x4_transform_by_vec3( m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale ); /*! rotate m4x4 around a pivot point by eulerZYX vec3 */ void m4x4_pivoted_rotate_by_vec3( m4x4_t matrix, const vec3_t euler, eulerOrder_t order, const vec3_t pivotpoint ); /*! scale m4x4 around a pivot point by scaling vec3 */ void m4x4_pivoted_scale_by_vec3( m4x4_t matrix, const vec3_t scale, const vec3_t pivotpoint ); /*! transform m4x4 around a pivot point by translation/eulerZYX/scaling vec3 */ void m4x4_pivoted_transform_by_vec3( m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale, const vec3_t pivotpoint ); /*! transform m4x4 around a pivot point by translation/rotation/scaling vec3 */ void m4x4_pivoted_transform_by_rotation( m4x4_t matrix, const vec3_t translation, const m4x4_t rotation, const vec3_t scale, const vec3_t pivotpoint ); /*! rotate m4x4 around a pivot point by quaternion vec4 */ void m4x4_pivoted_rotate_by_quat( m4x4_t matrix, const vec4_t quat, const vec3_t pivotpoint ); /*! rotate m4x4 around a pivot point by axis vec3 and angle (radians) */ void m4x4_pivoted_rotate_by_axisangle( m4x4_t matrix, const vec3_t axis, double angle, const vec3_t pivotpoint ); /*! postmultiply m4x4 by another m4x4 */ void m4x4_multiply_by_m4x4( m4x4_t matrix, const m4x4_t matrix_src ); /*! premultiply m4x4 by another m4x4 */ void m4x4_premultiply_by_m4x4( m4x4_t matrix, const m4x4_t matrix_src ); /*! postmultiply orthogonal m4x4 by another orthogonal m4x4 */ void m4x4_orthogonal_multiply_by_m4x4( m4x4_t matrix, const m4x4_t matrix_src ); /*! premultiply orthogonal m4x4 by another orthogonal m4x4 */ void m4x4_orthogonal_premultiply_by_m4x4( m4x4_t matrix, const m4x4_t matrix_src ); /*! multiply a point (x,y,z,1) by matrix */ void m4x4_transform_point( const m4x4_t matrix, vec3_t point ); /*! multiply a normal (x,y,z,0) by matrix */ void m4x4_transform_normal( const m4x4_t matrix, vec3_t normal ); /*! multiply a vec4 (x,y,z,w) by matrix */ void m4x4_transform_vec4( const m4x4_t matrix, vec4_t vector ); /*! multiply a point (x,y,z,1) by matrix */ void m4x4_transform_point( const m4x4_t matrix, vec3_t point ); /*! multiply a normal (x,y,z,0) by matrix */ void m4x4_transform_normal( const m4x4_t matrix, vec3_t normal ); /*! transpose a m4x4 */ void m4x4_transpose( m4x4_t matrix ); /*! invert an orthogonal 4x3 subset of a 4x4 matrix */ int m4x4_orthogonal_invert( m4x4_t matrix ); /*! m4_det */ float m4_det( m4x4_t mr ); /*! invert any m4x4 using Kramer's rule.. return 1 if matrix is singular, else return 0 */ int m4x4_invert( m4x4_t matrix ); /*! clip a point (x,y,z,1) by canonical matrix */ clipmask_t m4x4_clip_point( const m4x4_t matrix, const vec3_t point, vec4_t clipped ); /*! device-space polygon for clipped triangle */ unsigned int m4x4_clip_triangle( const m4x4_t matrix, const vec3_t p0, const vec3_t p1, const vec3_t p2, vec4_t clipped[9] ); /*! device-space line for clipped line */ unsigned int m4x4_clip_line( const m4x4_t matrix, const vec3_t p0, const vec3_t p1, vec4_t clipped[2] ); //! quaternion identity void quat_identity( vec4_t quat ); //! quaternion from two unit vectors void quat_for_unit_vectors( vec4_t quat, const vec3_t from, const vec3_t to ); //! quaternion from axis and angle (radians) void quat_for_axisangle( vec4_t quat, const vec3_t axis, double angle ); //! concatenates two rotations.. equivalent to m4x4_multiply_by_m4x4 .. postmultiply.. the right-hand side is the first rotation performed void quat_multiply_by_quat( vec4_t quat, const vec4_t other ); //! negate a quaternion void quat_conjugate( vec4_t quat ); //! normalise a quaternion void quat_normalise( vec4_t quat ); /*! \todo object/ray intersection functions should maybe return a point rather than a distance? */ /*! aabb_t - "axis-aligned" bounding box... origin: centre of bounding box... extents: +/- extents of box from origin... */ typedef struct aabb_s { vec3_t origin; vec3_t extents; } aabb_t; extern const aabb_t g_aabb_null; /*! bbox_t - oriented bounding box... aabb: axis-aligned bounding box... axes: orientation axes... */ typedef struct bbox_s { aabb_t aabb; vec3_t axes[3]; vec_t radius; } bbox_t; /*! ray_t - origin point and direction unit-vector */ typedef struct ray_s { vec3_t origin; vec3_t direction; } ray_t; /*! line_t - centre point and displacement of end point from centre */ typedef struct line_s { vec3_t origin; vec3_t extents; } line_t; /*! Generate line from start/end points. */ void line_construct_for_vec3( line_t* line, const vec3_t start, const vec3_t end ); /*! Return 2 if line is behind plane, else return 1 if line intersects plane, else return 0. */ int line_test_plane( const line_t* line, const vec4_t plane ); /*! Generate AABB from min/max. */ void aabb_construct_for_vec3( aabb_t* aabb, const vec3_t min, const vec3_t max ); /*! Initialise AABB to negative size. */ void aabb_clear( aabb_t* aabb ); /*! Extend AABB to include point. */ void aabb_extend_by_point( aabb_t* aabb, const vec3_t point ); /*! Extend AABB to include aabb_src. */ void aabb_extend_by_aabb( aabb_t* aabb, const aabb_t* aabb_src ); /*! Extend AABB by +/- extension vector. */ void aabb_extend_by_vec3( aabb_t* aabb, vec3_t extension ); /*! Return 2 if point is inside, else 1 if point is on surface, else 0. */ int aabb_test_point( const aabb_t* aabb, const vec3_t point ); /*! Return 2 if aabb_src intersects, else 1 if aabb_src touches exactly, else 0. */ int aabb_test_aabb( const aabb_t* aabb, const aabb_t* aabb_src ); /*! Return 2 if aabb is behind plane, else 1 if aabb intersects plane, else 0. */ int aabb_test_plane( const aabb_t* aabb, const float* plane ); /*! Return 1 if aabb intersects ray, else 0... dist = closest intersection. */ int aabb_intersect_ray( const aabb_t* aabb, const ray_t* ray, vec3_t intersection ); /*! Return 1 if aabb intersects ray, else 0. Faster, but does not provide point of intersection */ int aabb_test_ray( const aabb_t* aabb, const ray_t* ray ); /*! Return 2 if oriented aabb is behind plane, else 1 if aabb intersects plane, else 0. */ int aabb_oriented_intersect_plane( const aabb_t* aabb, const m4x4_t transform, const vec_t* plane ); /*! Calculate the corners of the aabb. */ void aabb_corners( const aabb_t * aabb, vec3_t corners[8] ); /*! (deprecated) Generate AABB from oriented bounding box. */ void aabb_for_bbox( aabb_t* aabb, const bbox_t* bbox ); /*! (deprecated) Generate AABB from 2-dimensions of min/max, specified by axis. */ void aabb_for_area( aabb_t* aabb, vec3_t area_tl, vec3_t area_br, int axis ); /*! Generate AABB to contain src* transform. NOTE: transform must be orthogonal */ void aabb_for_transformed_aabb( aabb_t* dst, const aabb_t* src, const m4x4_t transform ); /*! Update bounding-sphere radius. */ void bbox_update_radius( bbox_t* bbox ); /*! Generate oriented bounding box from AABB and transformation matrix. */ /*!\todo Remove need to specify eulerZYX/scale. */ void bbox_for_oriented_aabb( bbox_t* bbox, const aabb_t* aabb, const m4x4_t matrix, const vec3_t eulerZYX, const vec3_t scale ); /*! Return 2 if bbox is behind plane, else return 1 if bbox intersects plane, else return 0. */ int bbox_intersect_plane( const bbox_t* bbox, const vec_t* plane ); /*! Generate a ray from an origin point and a direction unit-vector */ void ray_construct_for_vec3( ray_t* ray, const vec3_t origin, const vec3_t direction ); /*! Transform a ray */ void ray_transform( ray_t* ray, const m4x4_t matrix ); /*! distance from ray origin in ray direction to point. FLT_MAX if no intersection. */ vec_t ray_intersect_point( const ray_t* ray, const vec3_t point, vec_t epsilon, vec_t divergence ); /*! distance from ray origin in ray direction to triangle. FLT_MAX if no intersection. */ vec_t ray_intersect_triangle( const ray_t* ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2 ); /*! distance from ray origin in ray direction to plane. */ vec_t ray_intersect_plane( const ray_t* ray, const vec3_t normal, vec_t dist ); int plane_intersect_planes( const vec4_t plane1, const vec4_t plane2, const vec4_t plane3, vec3_t intersection ); //////////////////////////////////////////////////////////////////////////////// // Below is double-precision math stuff. This was initially needed by the new // "base winding" code in q3map2 brush processing in order to fix the famous // "disappearing triangles" issue. These definitions can be used wherever extra // precision is needed. //////////////////////////////////////////////////////////////////////////////// typedef double vec_accu_t; typedef vec_accu_t vec3_accu_t[3]; // Smallest positive value for vec_accu_t such that 1.0 + VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE != 1.0. // In the case of 64 bit doubles (which is almost certainly the case), it's 0.00000000000000022204. // Don't forget that your epsilons should depend on the possible range of values, // because for example adding VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE to 1024.0 will have no effect. #define VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE DBL_EPSILON vec_accu_t VectorLengthAccu( const vec3_accu_t v ); // I have a feeling it may be safer to break these #define functions out into actual functions // in order to avoid accidental loss of precision. For example, say you call // VectorScaleAccu(vec3_t, vec_t, vec3_accu_t). The scale would take place in 32 bit land // and the result would be cast to 64 bit, which would cause total loss of precision when // scaling by a large factor. //#define DotProductAccu(x, y) ((x)[0] * (y)[0] + (x)[1] * (y)[1] + (x)[2] * (y)[2]) //#define VectorSubtractAccu(a, b, c) ((c)[0] = (a)[0] - (b)[0], (c)[1] = (a)[1] - (b)[1], (c)[2] = (a)[2] - (b)[2]) //#define VectorAddAccu(a, b, c) ((c)[0] = (a)[0] + (b)[0], (c)[1] = (a)[1] + (b)[1], (c)[2] = (a)[2] + (b)[2]) //#define VectorCopyAccu(a, b) ((b)[0] = (a)[0], (b)[1] = (a)[1], (b)[2] = (a)[2]) //#define VectorScaleAccu(a, b, c) ((c)[0] = (b) * (a)[0], (c)[1] = (b) * (a)[1], (c)[2] = (b) * (a)[2]) //#define CrossProductAccu(a, b, c) ((c)[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1], (c)[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2], (c)[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0]) //#define Q_rintAccu(in) ((vec_accu_t) floor(in + 0.5)) vec_accu_t DotProductAccu( const vec3_accu_t a, const vec3_accu_t b ); void VectorSubtractAccu( const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out ); void VectorAddAccu( const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out ); void VectorCopyAccu( const vec3_accu_t in, vec3_accu_t out ); void VectorScaleAccu( const vec3_accu_t in, vec_accu_t scaleFactor, vec3_accu_t out ); void CrossProductAccu( const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out ); vec_accu_t Q_rintAccu( vec_accu_t val ); void VectorCopyAccuToRegular( const vec3_accu_t in, vec3_t out ); void VectorCopyRegularToAccu( const vec3_t in, vec3_accu_t out ); vec_accu_t VectorNormalizeAccu( const vec3_accu_t in, vec3_accu_t out ); #ifdef __cplusplus } #endif #endif /* __MATHLIB__ */