#ifndef __APPLE__ #include #else #include #endif #include #include #include "mathlib.h" #define TINY FLT_MIN void lubksb( float **a, int n, int *indx, float b[] ){ // Solves the set of n linear equations A.X=B. Here a[n][n] is input, not as the matrix // A but rather as its LU decomposition determined by the routine ludcmp. indx[n] is input // as the permutation vector returned by ludcmp. b[n] is input as the right-hand side vector // B, and returns with the solution vector X. a, n and indx are not modified by this routine // and can be left in place for successive calls with different right-hand sides b. This routine takes // into account the possibility that b will begin with many zero elements, so it is efficient for use // in matrix inversion int i,ii = -1,ip,j; float sum; for ( i = 0; i < n; i++ ) { ip = indx[i]; sum = b[ip]; b[ip] = b[i]; if ( ii >= 0 ) { for ( j = ii; j < i; j++ ) sum -= a[i][j] * b[j]; } else if ( sum ) { ii = i; } b[i] = sum; } for ( i = n - 1; i >= 0; i-- ) { sum = b[i]; for ( j = i + 1; j < n; j++ ) sum -= a[i][j] * b[j]; b[i] = sum / a[i][i]; } } /* (C) Copr. 1986-92 Numerical Recipes Software */ int ludcmp( float **a, int n, int *indx, float *d ){ // given a matrix a[n][n] this routine replaces it with the LU decomposition of a rowwise // permutation of itself. a and n are input. a is output, arranged as in above equation; // indx[n] is an output vector that records the row permutation effected by the partial // pivoting; d is output as +/-1 depending on whether the number of row interchanges was even // or odd, respectively. This routine is used in combination with lubksb to solve linear // equations or invert a matrix. int i,imax,j,k; float big,dum,sum,temp; float *vv; imax = 0; vv = (float*)malloc( sizeof( float ) * n ); *d = 1.0; for ( i = 0; i < n; i++ ) { big = 0.0; for ( j = 0; j < n; j++ ) if ( ( temp = (float)fabs( a[i][j] ) ) > big ) { big = temp; } if ( big == 0.0 ) { return 1; } vv[i] = 1.0f / big; } for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { sum = a[i][j]; for ( k = 0; k < i; k++ ) sum -= a[i][k] * a[k][j]; a[i][j] = sum; } big = 0.0; for ( i = j; i < n; i++ ) { sum = a[i][j]; for ( k = 0; k < j; k++ ) sum -= a[i][k] * a[k][j]; a[i][j] = sum; if ( ( dum = vv[i] * (float)fabs( sum ) ) >= big ) { big = dum; imax = i; } } if ( j != imax ) { for ( k = 0; k < n; k++ ) { dum = a[imax][k]; a[imax][k] = a[j][k]; a[j][k] = dum; } *d = -( *d ); vv[imax] = vv[j]; } indx[j] = imax; if ( a[j][j] == 0.0 ) { a[j][j] = TINY; } if ( j != n ) { dum = 1.0f / ( a[j][j] ); for ( i = j + 1; i < n; i++ ) a[i][j] *= dum; } } free( vv ); return 0; } /* (C) Copr. 1986-92 Numerical Recipes Software */