/* Copyright (C) 1999-2006 Id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "q_shared.h" #include "splines.h" extern "C" { int FS_Write( const void *buffer, int len, fileHandle_t h ); int FS_ReadFile( const char *qpath, void **buffer ); void FS_FreeFile( void *buffer ); fileHandle_t FS_FOpenFileWrite( const char *filename ); void FS_FCloseFile( fileHandle_t f ); void Cbuf_AddText( const char *text ); void Cbuf_Execute (void); } float Q_fabs( float f ) { int tmp = * ( int * ) &f; tmp &= 0x7FFFFFFF; return * ( float * ) &tmp; } // (SA) making a list of cameras so I can use // the splines as targets for other things. // Certainly better ways to do this, but this lets // me get underway quickly with ents that need spline // targets. #define MAX_CAMERAS 64 idCameraDef camera[MAX_CAMERAS]; extern "C" { qboolean loadCamera(int camNum, const char *name) { if(camNum < 0 || camNum >= MAX_CAMERAS ) return qfalse; camera[camNum].clear(); return (qboolean)camera[camNum].load(name); } qboolean getCameraInfo(int camNum, int time, float *origin, float *angles, float *fov) { idVec3 dir, org; if(camNum < 0 || camNum >= MAX_CAMERAS ) return qfalse; org[0] = origin[0]; org[1] = origin[1]; org[2] = origin[2]; if (camera[camNum].getCameraInfo(time, org, dir, fov)) { origin[0] = org[0]; origin[1] = org[1]; origin[2] = org[2]; angles[1] = atan2 (dir[1], dir[0])*180/3.14159; angles[0] = asin (dir[2])*180/3.14159; return qtrue; } return qfalse; } void startCamera(int camNum, int time) { if(camNum < 0 || camNum >= MAX_CAMERAS ) return; camera[camNum].startCamera(time); } } //#include "../shared/windings.h" //#include "../qcommon/qcommon.h" //#include "../sys/sys_public.h" //#include "../game/game_entity.h" idCameraDef splineList; idCameraDef *g_splineList = &splineList; idVec3 idSplineList::zero(0,0,0); void glLabeledPoint(idVec3 &color, idVec3 &point, float size, const char *label) { glColor3fv(color); glPointSize(size); glBegin(GL_POINTS); glVertex3fv(point); glEnd(); idVec3 v = point; v.x += 1; v.y += 1; v.z += 1; glRasterPos3fv (v); glCallLists (strlen(label), GL_UNSIGNED_BYTE, label); } void glBox(idVec3 &color, idVec3 &point, float size) { idVec3 mins(point); idVec3 maxs(point); mins[0] -= size; mins[1] += size; mins[2] -= size; maxs[0] += size; maxs[1] -= size; maxs[2] += size; glColor3fv(color); glBegin(GL_LINE_LOOP); glVertex3f(mins[0],mins[1],mins[2]); glVertex3f(maxs[0],mins[1],mins[2]); glVertex3f(maxs[0],maxs[1],mins[2]); glVertex3f(mins[0],maxs[1],mins[2]); glEnd(); glBegin(GL_LINE_LOOP); glVertex3f(mins[0],mins[1],maxs[2]); glVertex3f(maxs[0],mins[1],maxs[2]); glVertex3f(maxs[0],maxs[1],maxs[2]); glVertex3f(mins[0],maxs[1],maxs[2]); glEnd(); glBegin(GL_LINES); glVertex3f(mins[0],mins[1],mins[2]); glVertex3f(mins[0],mins[1],maxs[2]); glVertex3f(mins[0],maxs[1],maxs[2]); glVertex3f(mins[0],maxs[1],mins[2]); glVertex3f(maxs[0],mins[1],mins[2]); glVertex3f(maxs[0],mins[1],maxs[2]); glVertex3f(maxs[0],maxs[1],maxs[2]); glVertex3f(maxs[0],maxs[1],mins[2]); glEnd(); } void splineTest() { //g_splineList->load("p:/doom/base/maps/test_base1.camera"); } void splineDraw() { //g_splineList->addToRenderer(); } //extern void D_DebugLine( const idVec3 &color, const idVec3 &start, const idVec3 &end ); void debugLine(idVec3 &color, float x, float y, float z, float x2, float y2, float z2) { idVec3 from(x, y, z); idVec3 to(x2, y2, z2); //D_DebugLine(color, from, to); } void idSplineList::addToRenderer() { if (controlPoints.Num() == 0) { return; } idVec3 mins, maxs; idVec3 yellow(1.0, 1.0, 0); idVec3 white(1.0, 1.0, 1.0); int i; for(i = 0; i < controlPoints.Num(); i++) { VectorCopy(*controlPoints[i], mins); VectorCopy(mins, maxs); mins[0] -= 8; mins[1] += 8; mins[2] -= 8; maxs[0] += 8; maxs[1] -= 8; maxs[2] += 8; debugLine( yellow, mins[0], mins[1], mins[2], maxs[0], mins[1], mins[2]); debugLine( yellow, maxs[0], mins[1], mins[2], maxs[0], maxs[1], mins[2]); debugLine( yellow, maxs[0], maxs[1], mins[2], mins[0], maxs[1], mins[2]); debugLine( yellow, mins[0], maxs[1], mins[2], mins[0], mins[1], mins[2]); debugLine( yellow, mins[0], mins[1], maxs[2], maxs[0], mins[1], maxs[2]); debugLine( yellow, maxs[0], mins[1], maxs[2], maxs[0], maxs[1], maxs[2]); debugLine( yellow, maxs[0], maxs[1], maxs[2], mins[0], maxs[1], maxs[2]); debugLine( yellow, mins[0], maxs[1], maxs[2], mins[0], mins[1], maxs[2]); } int step = 0; idVec3 step1; for(i = 3; i < controlPoints.Num(); i++) { for (float tension = 0.0f; tension < 1.001f; tension += 0.1f) { float x = 0; float y = 0; float z = 0; for (int j = 0; j < 4; j++) { x += controlPoints[i - (3 - j)]->x * calcSpline(j, tension); y += controlPoints[i - (3 - j)]->y * calcSpline(j, tension); z += controlPoints[i - (3 - j)]->z * calcSpline(j, tension); } if (step == 0) { step1[0] = x; step1[1] = y; step1[2] = z; step = 1; } else { debugLine( white, step1[0], step1[1], step1[2], x, y, z); step = 0; } } } } void idSplineList::buildSpline() { //int start = Sys_Milliseconds(); clearSpline(); for(int i = 3; i < controlPoints.Num(); i++) { for (float tension = 0.0f; tension < 1.001f; tension += granularity) { float x = 0; float y = 0; float z = 0; for (int j = 0; j < 4; j++) { x += controlPoints[i - (3 - j)]->x * calcSpline(j, tension); y += controlPoints[i - (3 - j)]->y * calcSpline(j, tension); z += controlPoints[i - (3 - j)]->z * calcSpline(j, tension); } splinePoints.Append(new idVec3(x, y, z)); } } dirty = false; //Com_Printf("Spline build took %f seconds\n", (float)(Sys_Milliseconds() - start) / 1000); } void idSplineList::draw(bool editMode) { int i; idVec4 yellow(1, 1, 0, 1); if (controlPoints.Num() == 0) { return; } if (dirty) { buildSpline(); } glColor3fv(controlColor); glPointSize(5); glBegin(GL_POINTS); for (i = 0; i < controlPoints.Num(); i++) { glVertex3fv(*controlPoints[i]); } glEnd(); if (editMode) { for(i = 0; i < controlPoints.Num(); i++) { glBox(activeColor, *controlPoints[i], 4); } } //Draw the curve glColor3fv(pathColor); glBegin(GL_LINE_STRIP); int count = splinePoints.Num(); for (i = 0; i < count; i++) { glVertex3fv(*splinePoints[i]); } glEnd(); if (editMode) { glColor3fv(segmentColor); glPointSize(3); glBegin(GL_POINTS); for (i = 0; i < count; i++) { glVertex3fv(*splinePoints[i]); } glEnd(); } if (count > 0) { //assert(activeSegment >=0 && activeSegment < count); if (activeSegment >=0 && activeSegment < count) { glBox(activeColor, *splinePoints[activeSegment], 6); glBox(yellow, *splinePoints[activeSegment], 8); } } } float idSplineList::totalDistance() { // FIXME: save dist and return // if (controlPoints.Num() == 0) { return 0.0; } if (dirty) { buildSpline(); } float dist = 0.0; idVec3 temp; int count = splinePoints.Num(); for(int i = 1; i < count; i++) { temp = *splinePoints[i-1]; temp -= *splinePoints[i]; dist += temp.Length(); } return dist; } void idSplineList::initPosition(long bt, long totalTime) { if (dirty) { buildSpline(); } if (splinePoints.Num() == 0) { return; } baseTime = bt; time = totalTime; // calc distance to travel ( this will soon be broken into time segments ) splineTime.Clear(); splineTime.Append(bt); double dist = totalDistance(); double distSoFar = 0.0; idVec3 temp; int count = splinePoints.Num(); //for(int i = 2; i < count - 1; i++) { for(int i = 1; i < count; i++) { temp = *splinePoints[i-1]; temp -= *splinePoints[i]; distSoFar += temp.Length(); double percent = distSoFar / dist; percent *= totalTime; splineTime.Append(percent + bt); } assert(splineTime.Num() == splinePoints.Num()); activeSegment = 0; } float idSplineList::calcSpline(int step, float tension) { switch(step) { case 0: return (pow(1 - tension, 3)) / 6; case 1: return (3 * pow(tension, 3) - 6 * pow(tension, 2) + 4) / 6; case 2: return (-3 * pow(tension, 3) + 3 * pow(tension, 2) + 3 * tension + 1) / 6; case 3: return pow(tension, 3) / 6; } return 0.0; } void idSplineList::updateSelection(const idVec3 &move) { if (selected) { dirty = true; VectorAdd(*selected, move, *selected); } } void idSplineList::setSelectedPoint(idVec3 *p) { if (p) { p->Snap(); for(int i = 0; i < controlPoints.Num(); i++) { if (*p == *controlPoints[i]) { selected = controlPoints[i]; } } } else { selected = NULL; } } const idVec3 *idSplineList::getPosition(long t) { static idVec3 interpolatedPos; static long lastTime = -1; int count = splineTime.Num(); if (count == 0) { return &zero; } // Com_Printf("Time: %d\n", t); assert(splineTime.Num() == splinePoints.Num()); while (activeSegment < count) { if (splineTime[activeSegment] >= t) { if (activeSegment > 0 && activeSegment < count - 1) { double timeHi = splineTime[activeSegment + 1]; double timeLo = splineTime[activeSegment - 1]; double percent = (timeHi - t) / (timeHi - timeLo); // pick two bounding points idVec3 v1 = *splinePoints[activeSegment-1]; idVec3 v2 = *splinePoints[activeSegment+1]; v2 *= (1.0 - percent); v1 *= percent; v2 += v1; interpolatedPos = v2; return &interpolatedPos; } return splinePoints[activeSegment]; } else { activeSegment++; } } return splinePoints[count-1]; } void idSplineList::parse(const char *(*text) ) { const char *token; //Com_MatchToken( text, "{" ); do { token = Com_Parse( text ); if ( !token[0] ) { break; } if ( !Q_stricmp (token, "}") ) { break; } do { // if token is not a brace, it is a key for a key/value pair if ( !token[0] || !Q_stricmp (token, "(") || !Q_stricmp(token, "}")) { break; } Com_UngetToken(); idStr key = Com_ParseOnLine(text); const char *token = Com_Parse(text); if (Q_stricmp(key.c_str(), "granularity") == 0) { granularity = atof(token); } else if (Q_stricmp(key.c_str(), "name") == 0) { name = token; } token = Com_Parse(text); } while (1); if ( !Q_stricmp (token, "}") ) { break; } Com_UngetToken(); // read the control point idVec3 point; Com_Parse1DMatrix( text, 3, point ); addPoint(point.x, point.y, point.z); } while (1); //Com_UngetToken(); //Com_MatchToken( text, "}" ); dirty = true; } void idSplineList::write(fileHandle_t file, const char *p) { idStr s = va("\t\t%s {\n", p); FS_Write(s.c_str(), s.length(), file); //s = va("\t\tname %s\n", name.c_str()); //FS_Write(s.c_str(), s.length(), file); s = va("\t\t\tgranularity %f\n", granularity); FS_Write(s.c_str(), s.length(), file); int count = controlPoints.Num(); for (int i = 0; i < count; i++) { s = va("\t\t\t( %f %f %f )\n", controlPoints[i]->x, controlPoints[i]->y, controlPoints[i]->z); FS_Write(s.c_str(), s.length(), file); } s = "\t\t}\n"; FS_Write(s.c_str(), s.length(), file); } void idCameraDef::getActiveSegmentInfo(int segment, idVec3 &origin, idVec3 &direction, float *fov) { #if 0 if (!cameraSpline.validTime()) { buildCamera(); } double d = (double)segment / numSegments(); getCameraInfo(d * totalTime * 1000, origin, direction, fov); #endif /* if (!cameraSpline.validTime()) { buildCamera(); } origin = *cameraSpline.getSegmentPoint(segment); idVec3 temp; int numTargets = getTargetSpline()->controlPoints.Num(); int count = cameraSpline.splineTime.Num(); if (numTargets == 0) { // follow the path if (cameraSpline.getActiveSegment() < count - 1) { temp = *cameraSpline.splinePoints[cameraSpline.getActiveSegment()+1]; } } else if (numTargets == 1) { temp = *getTargetSpline()->controlPoints[0]; } else { temp = *getTargetSpline()->getSegmentPoint(segment); } temp -= origin; temp.Normalize(); direction = temp; */ } bool idCameraDef::getCameraInfo(long time, idVec3 &origin, idVec3 &direction, float *fv) { char buff[1024]; if ((time - startTime) / 1000 > totalTime) { return false; } for (int i = 0; i < events.Num(); i++) { if (time >= startTime + events[i]->getTime() && !events[i]->getTriggered()) { events[i]->setTriggered(true); if (events[i]->getType() == idCameraEvent::EVENT_TARGET) { setActiveTargetByName(events[i]->getParam()); getActiveTarget()->start(startTime + events[i]->getTime()); //Com_Printf("Triggered event switch to target: %s\n",events[i]->getParam()); } else if (events[i]->getType() == idCameraEvent::EVENT_TRIGGER) { //idEntity *ent = NULL; //ent = level.FindTarget( ent, events[i]->getParam()); //if (ent) { // ent->signal( SIG_TRIGGER ); // ent->ProcessEvent( &EV_Activate, world ); //} } else if (events[i]->getType() == idCameraEvent::EVENT_FOV) { memset(buff, 0, sizeof(buff)); strcpy(buff, events[i]->getParam()); const char *param1 = strtok(buff, " \t,\0"); const char *param2 = strtok(NULL, " \t,\0"); float len = (param2) ? atof(param2) : 0; float newfov = (param1) ? atof(param1) : 90; fov.reset(fov.getFOV(time), newfov, time, len); //*fv = fov = atof(events[i]->getParam()); } else if (events[i]->getType() == idCameraEvent::EVENT_FADEIN) { float time = atof(events[i]->getParam()); Cbuf_AddText(va("fade 0 0 0 0 %f", time)); Cbuf_Execute(); } else if (events[i]->getType() == idCameraEvent::EVENT_FADEOUT) { float time = atof(events[i]->getParam()); Cbuf_AddText(va("fade 0 0 0 255 %f", time)); Cbuf_Execute(); } else if (events[i]->getType() == idCameraEvent::EVENT_CAMERA) { memset(buff, 0, sizeof(buff)); strcpy(buff, events[i]->getParam()); const char *param1 = strtok(buff, " \t,\0"); const char *param2 = strtok(NULL, " \t,\0"); if(param2) { loadCamera(atoi(param1), va("cameras/%s.camera", param2)); startCamera(time); } else { loadCamera(0, va("cameras/%s.camera", events[i]->getParam())); startCamera(time); } return true; } else if (events[i]->getType() == idCameraEvent::EVENT_STOP) { return false; } } } origin = *cameraPosition->getPosition(time); *fv = fov.getFOV(time); idVec3 temp = origin; int numTargets = targetPositions.Num(); if (numTargets == 0) { /* // follow the path if (cameraSpline.getActiveSegment() < count - 1) { temp = *cameraSpline.splinePoints[cameraSpline.getActiveSegment()+1]; if (temp == origin) { int index = cameraSpline.getActiveSegment() + 2; while (temp == origin && index < count - 1) { temp = *cameraSpline.splinePoints[index++]; } } } */ } else { if( getActiveTarget()->numPoints() > 0 ) { temp = *getActiveTarget()->getPosition(time); } } temp -= origin; temp.Normalize(); direction = temp; return true; } bool idCameraDef::waitEvent(int index) { //for (int i = 0; i < events.Num(); i++) { // if (events[i]->getSegment() == index && events[i]->getType() == idCameraEvent::EVENT_WAIT) { // return true; // } //} return false; } #define NUM_CCELERATION_SEGS 10 #define CELL_AMT 5 void idCameraDef::buildCamera() { int i; int lastSwitch = 0; idList waits; idList targets; totalTime = baseTime; cameraPosition->setTime((long)totalTime * 1000); // we have a base time layout for the path and the target path // now we need to layer on any wait or speed changes for (i = 0; i < events.Num(); i++) { idCameraEvent *ev = events[i]; events[i]->setTriggered(false); switch (events[i]->getType()) { case idCameraEvent::EVENT_TARGET : { targets.Append(i); break; } case idCameraEvent::EVENT_FEATHER : { long startTime = 0; float speed = 0; long loopTime = 10; float stepGoal = cameraPosition->getBaseVelocity() / (1000 / loopTime); while (startTime <= 1000) { cameraPosition->addVelocity(startTime, loopTime, speed); speed += stepGoal; if (speed > cameraPosition->getBaseVelocity()) { speed = cameraPosition->getBaseVelocity(); } startTime += loopTime; } startTime = (long)(totalTime * 1000 - 1000); long endTime = startTime + 1000; speed = cameraPosition->getBaseVelocity(); while (startTime < endTime) { speed -= stepGoal; if (speed < 0) { speed = 0; } cameraPosition->addVelocity(startTime, loopTime, speed); startTime += loopTime; } break; } case idCameraEvent::EVENT_WAIT : { waits.Append(atof(events[i]->getParam())); //FIXME: this is quite hacky for Wolf E3, accel and decel needs // do be parameter based etc.. long startTime = events[i]->getTime() - 1000; if (startTime < 0) { startTime = 0; } float speed = cameraPosition->getBaseVelocity(); long loopTime = 10; float steps = speed / ((events[i]->getTime() - startTime) / loopTime); while (startTime <= events[i]->getTime() - loopTime) { cameraPosition->addVelocity(startTime, loopTime, speed); speed -= steps; startTime += loopTime; } cameraPosition->addVelocity(events[i]->getTime(), (long)atof(events[i]->getParam()) * 1000, 0); startTime = (long)(events[i]->getTime() + atof(events[i]->getParam()) * 1000); long endTime = startTime + 1000; speed = 0; while (startTime <= endTime) { cameraPosition->addVelocity(startTime, loopTime, speed); speed += steps; startTime += loopTime; } break; } case idCameraEvent::EVENT_TARGETWAIT : { //targetWaits.Append(i); break; } case idCameraEvent::EVENT_SPEED : { /* // take the average delay between up to the next five segments float adjust = atof(events[i]->getParam()); int index = events[i]->getSegment(); total = 0; count = 0; // get total amount of time over the remainder of the segment for (j = index; j < cameraSpline.numSegments() - 1; j++) { total += cameraSpline.getSegmentTime(j + 1) - cameraSpline.getSegmentTime(j); count++; } // multiply that by the adjustment double newTotal = total * adjust; // what is the difference.. newTotal -= total; totalTime += newTotal / 1000; // per segment difference newTotal /= count; int additive = newTotal; // now propogate that difference out to each segment for (j = index; j < cameraSpline.numSegments(); j++) { cameraSpline.addSegmentTime(j, additive); additive += newTotal; } break; */ } } } for (i = 0; i < waits.Num(); i++) { totalTime += waits[i]; } // on a new target switch, we need to take time to this point ( since last target switch ) // and allocate it across the active target, then reset time to this point long timeSoFar = 0; long total = (long)(totalTime * 1000); for (i = 0; i < targets.Num(); i++) { long t; if (i < targets.Num() - 1) { t = events[targets[i+1]]->getTime(); } else { t = total - timeSoFar; } // t is how much time to use for this target setActiveTargetByName(events[targets[i]]->getParam()); getActiveTarget()->setTime(t); timeSoFar += t; } } void idCameraDef::startCamera(long t) { cameraPosition->clearVelocities(); cameraPosition->start(t); buildCamera(); fov.reset(90, 90, t, 0); //for (int i = 0; i < targetPositions.Num(); i++) { // targetPositions[i]-> //} startTime = t; cameraRunning = true; } void idCameraDef::parse(const char *(*text) ) { const char *token; do { token = Com_Parse( text ); if ( !token[0] ) { break; } if ( !Q_stricmp (token, "}") ) { break; } if (Q_stricmp(token, "time") == 0) { baseTime = Com_ParseFloat(text); } else if (Q_stricmp(token, "camera_fixed") == 0) { cameraPosition = new idFixedPosition(); cameraPosition->parse(text); } else if (Q_stricmp(token, "camera_interpolated") == 0) { cameraPosition = new idInterpolatedPosition(); cameraPosition->parse(text); } else if (Q_stricmp(token, "camera_spline") == 0) { cameraPosition = new idSplinePosition(); cameraPosition->parse(text); } else if (Q_stricmp(token, "target_fixed") == 0) { idFixedPosition *pos = new idFixedPosition(); pos->parse(text); targetPositions.Append(pos); } else if (Q_stricmp(token, "target_interpolated") == 0) { idInterpolatedPosition *pos = new idInterpolatedPosition(); pos->parse(text); targetPositions.Append(pos); } else if (Q_stricmp(token, "target_spline") == 0) { idSplinePosition *pos = new idSplinePosition(); pos->parse(text); targetPositions.Append(pos); } else if (Q_stricmp(token, "fov") == 0) { fov.parse(text); } else if (Q_stricmp(token, "event") == 0) { idCameraEvent *event = new idCameraEvent(); event->parse(text); addEvent(event); } } while (1); if ( !cameraPosition ) { Com_Printf( "no camera position specified\n" ); // prevent a crash later on cameraPosition = new idFixedPosition(); } Com_UngetToken(); Com_MatchToken( text, "}" ); } bool idCameraDef::load(const char *filename) { char *buf; const char *buf_p; int length = FS_ReadFile( filename, (void **)&buf ); if ( !buf ) { return false; } clear(); Com_BeginParseSession( filename ); buf_p = buf; parse(&buf_p); Com_EndParseSession(); FS_FreeFile( buf ); return true; } void idCameraDef::save(const char *filename) { fileHandle_t file = FS_FOpenFileWrite(filename); if (file) { int i; idStr s = "cameraPathDef { \n"; FS_Write(s.c_str(), s.length(), file); s = va("\ttime %f\n", baseTime); FS_Write(s.c_str(), s.length(), file); cameraPosition->write(file, va("camera_%s",cameraPosition->typeStr())); for (i = 0; i < numTargets(); i++) { targetPositions[i]->write(file, va("target_%s", targetPositions[i]->typeStr())); } for (i = 0; i < events.Num(); i++) { events[i]->write(file, "event"); } fov.write(file, "fov"); s = "}\n"; FS_Write(s.c_str(), s.length(), file); } FS_FCloseFile(file); } int idCameraDef::sortEvents(const void *p1, const void *p2) { idCameraEvent *ev1 = (idCameraEvent*)(p1); idCameraEvent *ev2 = (idCameraEvent*)(p2); if (ev1->getTime() > ev2->getTime()) { return -1; } if (ev1->getTime() < ev2->getTime()) { return 1; } return 0; } void idCameraDef::addEvent(idCameraEvent *event) { events.Append(event); //events.Sort(&sortEvents); } void idCameraDef::addEvent(idCameraEvent::eventType t, const char *param, long time) { addEvent(new idCameraEvent(t, param, time)); buildCamera(); } void idCameraDef::removeEvent(int index) { events.RemoveIndex(index); buildCamera(); } const char *idCameraEvent::eventStr[] = { "NA", "WAIT", "TARGETWAIT", "SPEED", "TARGET", "SNAPTARGET", "FOV", "CMD", "TRIGGER", "STOP", "CAMERA", "FADEOUT", "FADEIN", "FEATHER" }; void idCameraEvent::parse(const char *(*text) ) { const char *token; Com_MatchToken( text, "{" ); do { token = Com_Parse( text ); if ( !token[0] ) { break; } if ( !strcmp (token, "}") ) { break; } // here we may have to jump over brush epairs ( only used in editor ) do { // if token is not a brace, it is a key for a key/value pair if ( !token[0] || !strcmp (token, "(") || !strcmp(token, "}")) { break; } Com_UngetToken(); idStr key = Com_ParseOnLine(text); const char *token = Com_Parse(text); if (Q_stricmp(key.c_str(), "type") == 0) { type = static_cast(atoi(token)); } else if (Q_stricmp(key.c_str(), "param") == 0) { paramStr = token; } else if (Q_stricmp(key.c_str(), "time") == 0) { time = atoi(token); } token = Com_Parse(text); } while (1); if ( !strcmp (token, "}") ) { break; } } while (1); Com_UngetToken(); Com_MatchToken( text, "}" ); } void idCameraEvent::write(fileHandle_t file, const char *name) { idStr s = va("\t%s {\n", name); FS_Write(s.c_str(), s.length(), file); s = va("\t\ttype %d\n", static_cast(type)); FS_Write(s.c_str(), s.length(), file); s = va("\t\tparam \"%s\"\n", paramStr.c_str()); FS_Write(s.c_str(), s.length(), file); s = va("\t\ttime %d\n", time); FS_Write(s.c_str(), s.length(), file); s = "\t}\n"; FS_Write(s.c_str(), s.length(), file); } const char *idCameraPosition::positionStr[] = { "Fixed", "Interpolated", "Spline", }; const idVec3 *idInterpolatedPosition::getPosition(long t) { static idVec3 interpolatedPos; float velocity = getVelocity(t); float timePassed = t - lastTime; lastTime = t; // convert to seconds timePassed /= 1000; float distToTravel = timePassed * velocity; idVec3 temp = startPos; temp -= endPos; float distance = temp.Length(); distSoFar += distToTravel; float percent = (float)(distSoFar) / distance; if (percent > 1.0) { percent = 1.0; } else if (percent < 0.0) { percent = 0.0; } // the following line does a straigt calc on percentage of time // float percent = (float)(startTime + time - t) / time; idVec3 v1 = startPos; idVec3 v2 = endPos; v1 *= (1.0 - percent); v2 *= percent; v1 += v2; interpolatedPos = v1; return &interpolatedPos; } void idCameraFOV::parse(const char *(*text) ) { const char *token; Com_MatchToken( text, "{" ); do { token = Com_Parse( text ); if ( !token[0] ) { break; } if ( !strcmp (token, "}") ) { break; } // here we may have to jump over brush epairs ( only used in editor ) do { // if token is not a brace, it is a key for a key/value pair if ( !token[0] || !strcmp (token, "(") || !strcmp(token, "}")) { break; } Com_UngetToken(); idStr key = Com_ParseOnLine(text); const char *token = Com_Parse(text); if (Q_stricmp(key.c_str(), "fov") == 0) { fov = atof(token); } else if (Q_stricmp(key.c_str(), "startFOV") == 0) { startFOV = atof(token); } else if (Q_stricmp(key.c_str(), "endFOV") == 0) { endFOV = atof(token); } else if (Q_stricmp(key.c_str(), "time") == 0) { time = atoi(token); } token = Com_Parse(text); } while (1); if ( !strcmp (token, "}") ) { break; } } while (1); Com_UngetToken(); Com_MatchToken( text, "}" ); } bool idCameraPosition::parseToken(const char *key, const char *(*text)) { const char *token = Com_Parse(text); if (Q_stricmp(key, "time") == 0) { time = atol(token); return true; } else if (Q_stricmp(key, "type") == 0) { type = static_cast(atoi(token)); return true; } else if (Q_stricmp(key, "velocity") == 0) { long t = atol(token); token = Com_Parse(text); long d = atol(token); token = Com_Parse(text); float s = atof(token); addVelocity(t, d, s); return true; } else if (Q_stricmp(key, "baseVelocity") == 0) { baseVelocity = atof(token); return true; } else if (Q_stricmp(key, "name") == 0) { name = token; return true; } else if (Q_stricmp(key, "time") == 0) { time = atoi(token); return true; } Com_UngetToken(); return false; } void idFixedPosition::parse(const char *(*text) ) { const char *token; Com_MatchToken( text, "{" ); do { token = Com_Parse( text ); if ( !token[0] ) { break; } if ( !strcmp (token, "}") ) { break; } // here we may have to jump over brush epairs ( only used in editor ) do { // if token is not a brace, it is a key for a key/value pair if ( !token[0] || !strcmp (token, "(") || !strcmp(token, "}")) { break; } Com_UngetToken(); idStr key = Com_ParseOnLine(text); const char *token = Com_Parse(text); if (Q_stricmp(key.c_str(), "pos") == 0) { Com_UngetToken(); Com_Parse1DMatrix( text, 3, pos ); } else { Com_UngetToken(); idCameraPosition::parseToken(key.c_str(), text); } token = Com_Parse(text); } while (1); if ( !strcmp (token, "}") ) { break; } } while (1); Com_UngetToken(); Com_MatchToken( text, "}" ); } void idInterpolatedPosition::parse(const char *(*text) ) { const char *token; Com_MatchToken( text, "{" ); do { token = Com_Parse( text ); if ( !token[0] ) { break; } if ( !strcmp (token, "}") ) { break; } // here we may have to jump over brush epairs ( only used in editor ) do { // if token is not a brace, it is a key for a key/value pair if ( !token[0] || !strcmp (token, "(") || !strcmp(token, "}")) { break; } Com_UngetToken(); idStr key = Com_ParseOnLine(text); const char *token = Com_Parse(text); if (Q_stricmp(key.c_str(), "startPos") == 0) { Com_UngetToken(); Com_Parse1DMatrix( text, 3, startPos ); } else if (Q_stricmp(key.c_str(), "endPos") == 0) { Com_UngetToken(); Com_Parse1DMatrix( text, 3, endPos ); } else { Com_UngetToken(); idCameraPosition::parseToken(key.c_str(), text); } token = Com_Parse(text); } while (1); if ( !strcmp (token, "}") ) { break; } } while (1); Com_UngetToken(); Com_MatchToken( text, "}" ); } void idSplinePosition::parse(const char *(*text) ) { const char *token; Com_MatchToken( text, "{" ); do { token = Com_Parse( text ); if ( !token[0] ) { break; } if ( !strcmp (token, "}") ) { break; } // here we may have to jump over brush epairs ( only used in editor ) do { // if token is not a brace, it is a key for a key/value pair if ( !token[0] || !strcmp (token, "(") || !strcmp(token, "}")) { break; } Com_UngetToken(); idStr key = Com_ParseOnLine(text); const char *token = Com_Parse(text); if (Q_stricmp(key.c_str(), "target") == 0) { target.parse(text); } else { Com_UngetToken(); idCameraPosition::parseToken(key.c_str(), text); } token = Com_Parse(text); } while (1); if ( !strcmp (token, "}") ) { break; } } while (1); Com_UngetToken(); Com_MatchToken( text, "}" ); } void idCameraFOV::write(fileHandle_t file, const char *p) { idStr s = va("\t%s {\n", p); FS_Write(s.c_str(), s.length(), file); s = va("\t\tfov %f\n", fov); FS_Write(s.c_str(), s.length(), file); s = va("\t\tstartFOV %f\n", startFOV); FS_Write(s.c_str(), s.length(), file); s = va("\t\tendFOV %f\n", endFOV); FS_Write(s.c_str(), s.length(), file); s = va("\t\ttime %i\n", time); FS_Write(s.c_str(), s.length(), file); s = "\t}\n"; FS_Write(s.c_str(), s.length(), file); } void idCameraPosition::write(fileHandle_t file, const char *p) { idStr s = va("\t\ttime %i\n", time); FS_Write(s.c_str(), s.length(), file); s = va("\t\ttype %i\n", static_cast(type)); FS_Write(s.c_str(), s.length(), file); s = va("\t\tname %s\n", name.c_str()); FS_Write(s.c_str(), s.length(), file); s = va("\t\tbaseVelocity %f\n", baseVelocity); FS_Write(s.c_str(), s.length(), file); for (int i = 0; i < velocities.Num(); i++) { s = va("\t\tvelocity %i %i %f\n", velocities[i]->startTime, velocities[i]->time, velocities[i]->speed); FS_Write(s.c_str(), s.length(), file); } } void idFixedPosition::write(fileHandle_t file, const char *p) { idStr s = va("\t%s {\n", p); FS_Write(s.c_str(), s.length(), file); idCameraPosition::write(file, p); s = va("\t\tpos ( %f %f %f )\n", pos.x, pos.y, pos.z); FS_Write(s.c_str(), s.length(), file); s = "\t}\n"; FS_Write(s.c_str(), s.length(), file); } void idInterpolatedPosition::write(fileHandle_t file, const char *p) { idStr s = va("\t%s {\n", p); FS_Write(s.c_str(), s.length(), file); idCameraPosition::write(file, p); s = va("\t\tstartPos ( %f %f %f )\n", startPos.x, startPos.y, startPos.z); FS_Write(s.c_str(), s.length(), file); s = va("\t\tendPos ( %f %f %f )\n", endPos.x, endPos.y, endPos.z); FS_Write(s.c_str(), s.length(), file); s = "\t}\n"; FS_Write(s.c_str(), s.length(), file); } void idSplinePosition::write(fileHandle_t file, const char *p) { idStr s = va("\t%s {\n", p); FS_Write(s.c_str(), s.length(), file); idCameraPosition::write(file, p); target.write(file, "target"); s = "\t}\n"; FS_Write(s.c_str(), s.length(), file); } void idCameraDef::addTarget(const char *name, idCameraPosition::positionType type) { const char *text = (name == NULL) ? va("target0%d", numTargets()+1) : name; idCameraPosition *pos = newFromType(type); if (pos) { pos->setName(name); targetPositions.Append(pos); activeTarget = numTargets()-1; if (activeTarget == 0) { // first one addEvent(idCameraEvent::EVENT_TARGET, name, 0); } } } const idVec3 *idSplinePosition::getPosition(long t) { static idVec3 interpolatedPos; float velocity = getVelocity(t); float timePassed = t - lastTime; lastTime = t; // convert to seconds timePassed /= 1000; float distToTravel = timePassed * velocity; distSoFar += distToTravel; double tempDistance = target.totalDistance(); double percent = (double)(distSoFar) / tempDistance; double targetDistance = percent * tempDistance; tempDistance = 0; double lastDistance1,lastDistance2; lastDistance1 = lastDistance2 = 0; idVec3 temp; int count = target.numSegments(); int i; for(i = 1; i < count; i++) { temp = *target.getSegmentPoint(i-1); temp -= *target.getSegmentPoint(i); tempDistance += temp.Length(); if (i & 1) { lastDistance1 = tempDistance; } else { lastDistance2 = tempDistance; } if (tempDistance >= targetDistance) { break; } } if ( i >= count - 1) { interpolatedPos = *target.getSegmentPoint(i-1); } else { #if 0 double timeHi = target.getSegmentTime(i + 1); double timeLo = target.getSegmentTime(i - 1); double percent = (timeHi - t) / (timeHi - timeLo); idVec3 v1 = *target.getSegmentPoint(i - 1); idVec3 v2 = *target.getSegmentPoint(i + 1); v2 *= (1.0 - percent); v1 *= percent; v2 += v1; interpolatedPos = v2; #else if (lastDistance1 > lastDistance2) { double d = lastDistance2; lastDistance2 = lastDistance1; lastDistance1 = d; } idVec3 v1 = *target.getSegmentPoint(i - 1); idVec3 v2 = *target.getSegmentPoint(i); double percent = (lastDistance2 - targetDistance) / (lastDistance2 - lastDistance1); v2 *= (1.0 - percent); v1 *= percent; v2 += v1; interpolatedPos = v2; #endif } return &interpolatedPos; }