/* Copyright (C) 2001-2006, William Joseph. All Rights Reserved. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "patch.h" #include #include "preferences.h" #include "brush_primit.h" #include "signal/signal.h" Signal0 g_patchTextureChangedCallbacks; void Patch_addTextureChangedCallback(const SignalHandler& handler) { g_patchTextureChangedCallbacks.connectLast(handler); } void Patch_textureChanged() { g_patchTextureChangedCallbacks(); } Shader* PatchInstance::m_state_selpoint; Shader* Patch::m_state_ctrl; Shader* Patch::m_state_lattice; EPatchType Patch::m_type; std::size_t MAX_PATCH_WIDTH = 0; std::size_t MAX_PATCH_HEIGHT = 0; int g_PatchSubdivideThreshold = 4; void BezierCurveTree_Delete(BezierCurveTree *pCurve) { if(pCurve) { BezierCurveTree_Delete(pCurve->left); BezierCurveTree_Delete(pCurve->right); delete pCurve; } } std::size_t BezierCurveTree_Setup(BezierCurveTree *pCurve, std::size_t index, std::size_t stride) { if(pCurve) { if(pCurve->left && pCurve->right) { index = BezierCurveTree_Setup(pCurve->left, index, stride); pCurve->index = index*stride; index++; index = BezierCurveTree_Setup(pCurve->right, index, stride); } else { pCurve->index = BEZIERCURVETREE_MAX_INDEX; } } return index; } bool BezierCurve_IsCurved(BezierCurve *pCurve) { Vector3 vTemp(vector3_subtracted(pCurve->right, pCurve->left)); Vector3 v1(vector3_subtracted(pCurve->crd, pCurve->left)); Vector3 v2(vector3_subtracted(pCurve->right, pCurve->crd)); if(vector3_equal(v1, g_vector3_identity) || vector3_equal(vTemp, v1)) // return 0 if 1->2 == 0 or 1->2 == 1->3 return false; vector3_normalise(v1); vector3_normalise(v2); if(vector3_equal(v1, v2)) return false; Vector3 v3(vTemp); const double width = vector3_length(v3); vector3_scale(v3, 1.0 / width); if(vector3_equal(v1, v3) && vector3_equal(v2, v3)) return false; const double angle = acos(vector3_dot(v1, v2)) / c_pi; const double index = width * angle; if(index > static_cast(g_PatchSubdivideThreshold)) return true; return false; } void BezierInterpolate(BezierCurve *pCurve) { pCurve->left = vector3_mid(pCurve->left, pCurve->crd); pCurve->right = vector3_mid(pCurve->crd, pCurve->right); pCurve->crd = vector3_mid(pCurve->left, pCurve->right); } const std::size_t PATCH_MAX_SUBDIVISION_DEPTH = 16; void BezierCurveTree_FromCurveList(BezierCurveTree *pTree, GSList *pCurveList, std::size_t depth = 0) { GSList *pLeftList = 0; GSList *pRightList = 0; BezierCurve *pCurve, *pLeftCurve, *pRightCurve; bool bSplit = false; for (GSList *l = pCurveList; l; l = l->next) { pCurve = (BezierCurve *)(l->data); if(bSplit || BezierCurve_IsCurved(pCurve)) { bSplit = true; pLeftCurve = new BezierCurve; pRightCurve = new BezierCurve; pLeftCurve->left = pCurve->left; pRightCurve->right = pCurve->right; BezierInterpolate(pCurve); pLeftCurve->crd = pCurve->left; pRightCurve->crd = pCurve->right; pLeftCurve->right = pCurve->crd; pRightCurve->left = pCurve->crd; pLeftList = g_slist_prepend(pLeftList, pLeftCurve); pRightList = g_slist_prepend(pRightList, pRightCurve); } } if(pLeftList != 0 && pRightList != 0 && depth != PATCH_MAX_SUBDIVISION_DEPTH) { pTree->left = new BezierCurveTree; pTree->right = new BezierCurveTree; BezierCurveTree_FromCurveList(pTree->left, pLeftList, depth + 1); BezierCurveTree_FromCurveList(pTree->right, pRightList, depth + 1); for(GSList* l = pLeftList; l != 0; l = g_slist_next(l)) { delete (BezierCurve*)l->data; } for(GSList* l = pRightList; l != 0; l = g_slist_next(l)) { delete (BezierCurve*)l->data; } g_slist_free(pLeftList); g_slist_free(pRightList); } else { pTree->left = 0; pTree->right = 0; } } int Patch::m_CycleCapIndex = 0; void Patch::setDims (std::size_t w, std::size_t h) { if((w%2)==0) w -= 1; ASSERT_MESSAGE(w <= MAX_PATCH_WIDTH, "patch too wide"); if(w > MAX_PATCH_WIDTH) w = MAX_PATCH_WIDTH; else if(w < MIN_PATCH_WIDTH) w = MIN_PATCH_WIDTH; if((h%2)==0) m_height -= 1; ASSERT_MESSAGE(h <= MAX_PATCH_HEIGHT, "patch too tall"); if(h > MAX_PATCH_HEIGHT) h = MAX_PATCH_HEIGHT; else if(h < MIN_PATCH_HEIGHT) h = MIN_PATCH_HEIGHT; m_width = w; m_height = h; if(m_width * m_height != m_ctrl.size()) { m_ctrl.resize(m_width * m_height); onAllocate(m_ctrl.size()); } } inline const Colour4b& colour_for_index(std::size_t i, std::size_t width) { return (i%2 || (i/width)%2) ? colour_inside : colour_corner; } inline bool float_valid(float f) { return f == f; } bool Patch::isValid() const { if(!m_width || !m_height) { return false; } for(const_iterator i = m_ctrl.begin(); i != m_ctrl.end(); ++i) { if(!float_valid((*i).m_vertex.x()) || !float_valid((*i).m_vertex.y()) || !float_valid((*i).m_vertex.z()) || !float_valid((*i).m_texcoord.x()) || !float_valid((*i).m_texcoord.y())) { globalErrorStream() << "patch has invalid control points\n"; return false; } } return true; } void Patch::UpdateCachedData() { m_ctrl_vertices.clear(); m_lattice_indices.clear(); if(!isValid()) { m_tess.m_numStrips = 0; m_tess.m_lenStrips = 0; m_tess.m_nArrayHeight = 0; m_tess.m_nArrayWidth = 0; m_tess.m_curveTreeU.resize(0); m_tess.m_curveTreeV.resize(0); m_tess.m_indices.resize(0); m_tess.m_vertices.resize(0); m_tess.m_arrayHeight.resize(0); m_tess.m_arrayWidth.resize(0); m_aabb_local = AABB(); return; } BuildTesselationCurves(ROW); BuildTesselationCurves(COL); BuildVertexArray(); AccumulateBBox(); IndexBuffer ctrl_indices; m_lattice_indices.reserve(((m_width * (m_height - 1)) + (m_height * (m_width - 1))) << 1); ctrl_indices.reserve(m_ctrlTransformed.size()); { UniqueVertexBuffer inserter(m_ctrl_vertices); for(iterator i = m_ctrlTransformed.begin(); i != m_ctrlTransformed.end(); ++i) { ctrl_indices.insert(inserter.insert(pointvertex_quantised(PointVertex(reinterpret_cast((*i).m_vertex), colour_for_index(i - m_ctrlTransformed.begin(), m_width))))); } } { for(IndexBuffer::iterator i = ctrl_indices.begin(); i != ctrl_indices.end(); ++i) { if(std::size_t(i - ctrl_indices.begin()) % m_width) { m_lattice_indices.insert(*(i - 1)); m_lattice_indices.insert(*i); } if(std::size_t(i - ctrl_indices.begin()) >= m_width) { m_lattice_indices.insert(*(i - m_width)); m_lattice_indices.insert(*i); } } } #if 0 { Array::iterator first = m_tess.m_indices.begin(); for(std::size_t s=0; s::iterator last = first + m_tess.m_lenStrips; for(Array::iterator i(first); i+2 != last; i += 2) { ArbitraryMeshTriangle_sumTangents(m_tess.m_vertices[*(i+0)], m_tess.m_vertices[*(i+1)], m_tess.m_vertices[*(i+2)]); ArbitraryMeshTriangle_sumTangents(m_tess.m_vertices[*(i+2)], m_tess.m_vertices[*(i+1)], m_tess.m_vertices[*(i+3)]); } first = last; } for(Array::iterator i = m_tess.m_vertices.begin(); i != m_tess.m_vertices.end(); ++i) { vector3_normalise(reinterpret_cast((*i).tangent)); vector3_normalise(reinterpret_cast((*i).bitangent)); } } #endif SceneChangeNotify(); } void Patch::InvertMatrix() { undoSave(); PatchControlArray_invert(m_ctrl, m_width, m_height); controlPointsChanged(); } void Patch::TransposeMatrix() { undoSave(); { Array tmp(m_width * m_height); copy_ctrl(tmp.data(), m_ctrl.data(), m_ctrl.data() + m_width * m_height); PatchControlIter from = tmp.data(); for(std::size_t h = 0; h != m_height; ++h) { PatchControlIter to = m_ctrl.data() + h; for(std::size_t w = 0; w != m_width; ++w, ++from, to += m_height) { *to = *from; } } } { std::size_t tmp = m_width; m_width = m_height; m_height = tmp; } controlPointsChanged(); } void Patch::Redisperse(EMatrixMajor mt) { std::size_t w, h, width, height, row_stride, col_stride; PatchControl* p1, * p2, * p3; undoSave(); switch(mt) { case COL: width = (m_width-1)>>1; height = m_height; col_stride = 1; row_stride = m_width; break; case ROW: width = (m_height-1)>>1; height = m_width; col_stride = m_width; row_stride = 1; break; default: ERROR_MESSAGE("neither row-major nor column-major"); return; } for(h=0;hm_vertex = vector3_mid(p1->m_vertex, p3->m_vertex); p1 = p3; } } controlPointsChanged(); } void Patch::InsertRemove(bool bInsert, bool bColumn, bool bFirst) { undoSave(); if(bInsert) { if(bColumn && (m_width + 2 <= MAX_PATCH_WIDTH)) InsertPoints(COL, bFirst); else if(m_height + 2 <= MAX_PATCH_HEIGHT) InsertPoints(ROW, bFirst); } else { if(bColumn && (m_width - 2 >= MIN_PATCH_WIDTH)) RemovePoints(COL, bFirst); else if(m_height - 2 >= MIN_PATCH_HEIGHT) RemovePoints(ROW, bFirst); } controlPointsChanged(); } Patch* Patch::MakeCap(Patch* patch, EPatchCap eType, EMatrixMajor mt, bool bFirst) { std::size_t i, width, height; switch(mt) { case ROW: width = m_width; height = m_height; break; case COL: width = m_height; height = m_width; break; default: ERROR_MESSAGE("neither row-major nor column-major"); return 0; } Array p(width); std::size_t nIndex = (bFirst) ? 0 : height-1; if(mt == ROW) { for (i=0; iConstructSeam(eType, p.data(), width); return patch; } void Patch::FlipTexture(int nAxis) { undoSave(); for(PatchControlIter i = m_ctrl.data(); i != m_ctrl.data() + m_ctrl.size(); ++i) { (*i).m_texcoord[nAxis] = -(*i).m_texcoord[nAxis]; } controlPointsChanged(); } void Patch::TranslateTexture(float s, float t) { undoSave(); s = -1 * s / m_state->getTexture().width; t = t / m_state->getTexture().height; for(PatchControlIter i = m_ctrl.data(); i != m_ctrl.data() + m_ctrl.size(); ++i) { (*i).m_texcoord[0] += s; (*i).m_texcoord[1] += t; } controlPointsChanged(); } void Patch::ScaleTexture(float s, float t) { undoSave(); for(PatchControlIter i = m_ctrl.data(); i != m_ctrl.data() + m_ctrl.size(); ++i) { (*i).m_texcoord[0] *= s; (*i).m_texcoord[1] *= t; } controlPointsChanged(); } void Patch::RotateTexture(float angle) { undoSave(); const float s = static_cast(sin(degrees_to_radians(angle))); const float c = static_cast(cos(degrees_to_radians(angle))); for(PatchControlIter i = m_ctrl.data(); i != m_ctrl.data() + m_ctrl.size(); ++i) { const float x = (*i).m_texcoord[0]; const float y = (*i).m_texcoord[1]; (*i).m_texcoord[0] = (x * c) - (y * s); (*i).m_texcoord[1] = (y * c) + (x * s); } controlPointsChanged(); } void Patch::SetTextureRepeat(float s, float t) { std::size_t w, h; float si, ti, sc, tc; PatchControl *pDest; undoSave(); si = s / (float)(m_width - 1); ti = t / (float)(m_height - 1); pDest = m_ctrl.data(); for (h=0, tc = 0.0f; hm_texcoord[0] = sc; pDest->m_texcoord[1] = tc; pDest++; } } controlPointsChanged(); } /* void Patch::SetTextureInfo(texdef_t *pt) { if(pt->getShift()[0] || pt->getShift()[1]) TranslateTexture (pt->getShift()[0], pt->getShift()[1]); else if(pt->getScale()[0] || pt->getScale()[1]) { if(pt->getScale()[0] == 0.0f) pt->setScale(0, 1.0f); if(pt->getScale()[1] == 0.0f) pt->setScale(1, 1.0f); ScaleTexture (pt->getScale()[0], pt->getScale()[1]); } else if(pt->rotate) RotateTexture (pt->rotate); } */ inline int texture_axis(const Vector3& normal) { // axis dominance order: Z, X, Y return (normal.x() >= normal.y()) ? (normal.x() > normal.z()) ? 0 : 2 : (normal.y() > normal.z()) ? 1 : 2; } void Patch::CapTexture() { const PatchControl& p1 = m_ctrl[m_width]; const PatchControl& p2 = m_ctrl[m_width*(m_height-1)]; const PatchControl& p3 = m_ctrl[(m_width*m_height)-1]; Vector3 normal(g_vector3_identity); { Vector3 tmp(vector3_cross( vector3_subtracted(p2.m_vertex, m_ctrl[0].m_vertex), vector3_subtracted(p3.m_vertex, m_ctrl[0].m_vertex) )); if(!vector3_equal(tmp, g_vector3_identity)) { vector3_add(normal, tmp); } } { Vector3 tmp(vector3_cross( vector3_subtracted(p1.m_vertex, p3.m_vertex), vector3_subtracted(m_ctrl[0].m_vertex, p3.m_vertex) )); if(!vector3_equal(tmp, g_vector3_identity)) { vector3_add(normal, tmp); } } ProjectTexture(texture_axis(normal)); } // uses longest parallel chord to calculate texture coords for each row/col void Patch::NaturalTexture() { undoSave(); { float fSize = (float)m_state->getTexture().width * Texdef_getDefaultTextureScale(); double texBest = 0; double tex = 0; PatchControl* pWidth = m_ctrl.data(); for (std::size_t w=0; wm_texcoord[0] = static_cast(tex); } if(w+1 == m_width) break; { PatchControl* pHeight = pWidth; for (std::size_t h=0; hm_vertex, (pHeight+1)->m_vertex)); double length = tex + (vector3_length(v) / fSize); if(fabs(length) > texBest) texBest = length; } } tex=texBest; } } { float fSize = -(float)m_state->getTexture().height * Texdef_getDefaultTextureScale(); double texBest = 0; double tex = 0; PatchControl* pHeight = m_ctrl.data(); for (std::size_t h=0; hm_texcoord[1] = static_cast(tex); } if(h+1 == m_height) break; { PatchControl* pWidth = pHeight; for (std::size_t w=0; wm_vertex, (pWidth+m_width)->m_vertex)); double length = tex + (vector3_length(v) / fSize); if(fabs(length) > texBest) texBest = length; } } tex=texBest; } } controlPointsChanged(); } // private: void Patch::AccumulateBBox() { m_aabb_local = AABB(); for(PatchControlArray::iterator i = m_ctrlTransformed.begin(); i != m_ctrlTransformed.end(); ++i) { aabb_extend_by_point_safe(m_aabb_local, (*i).m_vertex); } m_boundsChanged(); m_lightsChanged(); } void Patch::InsertPoints(EMatrixMajor mt, bool bFirst) { std::size_t width, height, row_stride, col_stride; switch(mt) { case ROW: col_stride = 1; row_stride = m_width; width = m_width; height = m_height; break; case COL: col_stride = m_width; row_stride = 1; width = m_height; height = m_width; break; default: ERROR_MESSAGE("neither row-major nor column-major"); return; } std::size_t pos = 0; { PatchControl* p1 = m_ctrl.data(); for(std::size_t w = 0; w != width; ++w, p1 += col_stride) { { PatchControl* p2 = p1; for(std::size_t h = 1; h < height; h += 2, p2 += 2 * row_stride) { if(0)//p2->m_selectable.isSelected()) { pos = h; break; } } if(pos != 0) { break; } } { PatchControl* p2 = p1; for(std::size_t h = 0; h < height; h += 2, p2 += 2 * row_stride) { if(0)//p2->m_selectable.isSelected()) { pos = h; break; } } if(pos != 0) { break; } } } } Array tmp(m_ctrl); std::size_t row_stride2, col_stride2; switch(mt) { case ROW: setDims(m_width, m_height+2); col_stride2 = 1; row_stride2 = m_width; break; case COL: setDims(m_width+2, m_height); col_stride2 = m_width; row_stride2 = 1; break; default: ERROR_MESSAGE("neither row-major nor column-major"); return; } if(pos >= height) { if(bFirst) { pos = height - 1; } else { pos = 2; } } else if(pos == 0) { pos = 2; } else if(pos % 2) { ++pos; } for(std::size_t w = 0; w != width; ++w) { PatchControl* p1 = tmp.data() + (w*col_stride); PatchControl* p2 = m_ctrl.data() + (w*col_stride2); for(std::size_t h = 0; h != height; ++h, p2 += row_stride2, p1 += row_stride) { if(h == pos) { p2 += 2 * row_stride2; } *p2 = *p1; } p1 = tmp.data() + (w*col_stride+pos*row_stride); p2 = m_ctrl.data() + (w*col_stride2+pos*row_stride2); PatchControl* r2a = (p2+row_stride2); PatchControl* r2b = (p2-row_stride2); PatchControl* c2a = (p1-2*row_stride); PatchControl* c2b = (p1-row_stride); // set two new row points *(p2+2*row_stride2) = *p1; *r2a = *c2b; for(std::size_t i = 0; i != 3; ++i) { r2a->m_vertex[i] = float_mid(c2b->m_vertex[i], p1->m_vertex[i]); r2b->m_vertex[i] = float_mid(c2a->m_vertex[i], c2b->m_vertex[i]); p2->m_vertex[i] = float_mid(r2a->m_vertex[i], r2b->m_vertex[i]); } for(std::size_t i = 0; i != 2; ++i) { r2a->m_texcoord[i] = float_mid(c2b->m_texcoord[i], p1->m_texcoord[i]); r2b->m_texcoord[i] = float_mid(c2a->m_texcoord[i], c2b->m_texcoord[i]); p2->m_texcoord[i] = float_mid(r2a->m_texcoord[i], r2b->m_texcoord[i]); } } } void Patch::RemovePoints(EMatrixMajor mt, bool bFirst) { std::size_t width, height, row_stride, col_stride; switch(mt) { case ROW: col_stride = 1; row_stride = m_width; width = m_width; height = m_height; break; case COL: col_stride = m_width; row_stride = 1; width = m_height; height = m_width; break; default: ERROR_MESSAGE("neither row-major nor column-major"); return; } std::size_t pos = 0; { PatchControl* p1 = m_ctrl.data(); for(std::size_t w = 0; w != width; ++w, p1 += col_stride) { { PatchControl* p2 = p1; for(std::size_t h=1; h < height; h += 2, p2 += 2 * row_stride) { if(0)//p2->m_selectable.isSelected()) { pos = h; break; } } if(pos != 0) { break; } } { PatchControl* p2 = p1; for(std::size_t h=0; h < height; h += 2, p2 += 2 * row_stride) { if(0)//p2->m_selectable.isSelected()) { pos = h; break; } } if(pos != 0) { break; } } } } Array tmp(m_ctrl); std::size_t row_stride2, col_stride2; switch(mt) { case ROW: setDims(m_width, m_height-2); col_stride2 = 1; row_stride2 = m_width; break; case COL: setDims(m_width-2, m_height); col_stride2 = m_width; row_stride2 = 1; break; default: ERROR_MESSAGE("neither row-major nor column-major"); return; } if(pos >= height) { if(bFirst) { pos=height-3; } else { pos=2; } } else if(pos == 0) { pos=2; } else if(pos > height - 3) { pos = height - 3; } else if(pos % 2) { ++pos; } for(std::size_t w = 0; w != width; w++) { PatchControl* p1 = tmp.data() + (w*col_stride); PatchControl* p2 = m_ctrl.data() + (w*col_stride2); for(std::size_t h = 0; h != height; ++h, p2 += row_stride2, p1 += row_stride) { if(h == pos) { p1 += 2 * row_stride2; h += 2; } *p2 = *p1; } p1 = tmp.data() + (w*col_stride+pos*row_stride); p2 = m_ctrl.data() + (w*col_stride2+pos*row_stride2); for(std::size_t i=0; i<3; i++) { (p2-row_stride2)->m_vertex[i] = ((p1+2*row_stride)->m_vertex[i]+(p1-2*row_stride)->m_vertex[i]) * 0.5f; (p2-row_stride2)->m_vertex[i] = (p2-row_stride2)->m_vertex[i]+(2.0f * ((p1)->m_vertex[i]-(p2-row_stride2)->m_vertex[i])); } for(std::size_t i=0; i<2; i++) { (p2-row_stride2)->m_texcoord[i] = ((p1+2*row_stride)->m_texcoord[i]+(p1-2*row_stride)->m_texcoord[i]) * 0.5f; (p2-row_stride2)->m_texcoord[i] = (p2-row_stride2)->m_texcoord[i]+(2.0f * ((p1)->m_texcoord[i]-(p2-row_stride2)->m_texcoord[i])); } } } void Patch::ConstructSeam(EPatchCap eType, Vector3* p, std::size_t width) { switch(eType) { case eCapIBevel: { setDims(3, 3); m_ctrl[0].m_vertex = p[0]; m_ctrl[1].m_vertex = p[1]; m_ctrl[2].m_vertex = p[1]; m_ctrl[3].m_vertex = p[1]; m_ctrl[4].m_vertex = p[1]; m_ctrl[5].m_vertex = p[1]; m_ctrl[6].m_vertex = p[2]; m_ctrl[7].m_vertex = p[1]; m_ctrl[8].m_vertex = p[1]; } break; case eCapBevel: { setDims(3, 3); Vector3 p3(vector3_added(p[2], vector3_subtracted(p[0], p[1]))); m_ctrl[0].m_vertex = p3; m_ctrl[1].m_vertex = p3; m_ctrl[2].m_vertex = p[2]; m_ctrl[3].m_vertex = p3; m_ctrl[4].m_vertex = p3; m_ctrl[5].m_vertex = p[1]; m_ctrl[6].m_vertex = p3; m_ctrl[7].m_vertex = p3; m_ctrl[8].m_vertex = p[0]; } break; case eCapEndCap: { Vector3 p5(vector3_mid(p[0], p[4])); setDims(3, 3); m_ctrl[0].m_vertex = p[0]; m_ctrl[1].m_vertex = p5; m_ctrl[2].m_vertex = p[4]; m_ctrl[3].m_vertex = p[1]; m_ctrl[4].m_vertex = p[2]; m_ctrl[5].m_vertex = p[3]; m_ctrl[6].m_vertex = p[2]; m_ctrl[7].m_vertex = p[2]; m_ctrl[8].m_vertex = p[2]; } break; case eCapIEndCap: { setDims(5, 3); m_ctrl[0].m_vertex = p[4]; m_ctrl[1].m_vertex = p[3]; m_ctrl[2].m_vertex = p[2]; m_ctrl[3].m_vertex = p[1]; m_ctrl[4].m_vertex = p[0]; m_ctrl[5].m_vertex = p[3]; m_ctrl[6].m_vertex = p[3]; m_ctrl[7].m_vertex = p[2]; m_ctrl[8].m_vertex = p[1]; m_ctrl[9].m_vertex = p[1]; m_ctrl[10].m_vertex = p[3]; m_ctrl[11].m_vertex = p[3]; m_ctrl[12].m_vertex = p[2]; m_ctrl[13].m_vertex = p[1]; m_ctrl[14].m_vertex = p[1]; } break; case eCapCylinder: { std::size_t mid = (width - 1) >> 1; bool degenerate = (mid % 2) != 0; std::size_t newHeight = mid + (degenerate ? 2 : 1); setDims(3, newHeight); if(degenerate) { ++mid; for(std::size_t i = width; i != width + 2; ++i) { p[i] = p[width - 1]; } } { PatchControl* pCtrl = m_ctrl.data(); for(std::size_t i = 0; i != m_height; ++i, pCtrl += m_width) { pCtrl->m_vertex = p[i]; } } { PatchControl* pCtrl = m_ctrl.data() + 2; std::size_t h = m_height - 1; for(std::size_t i = 0; i != m_height; ++i, pCtrl += m_width) { pCtrl->m_vertex = p[h + (h - i)]; } } Redisperse(COL); } break; default: ERROR_MESSAGE("invalid patch-cap type"); return; } CapTexture(); controlPointsChanged(); } void Patch::ProjectTexture(int nAxis) { undoSave(); int s, t; switch (nAxis) { case 2: s = 0; t = 1; break; case 0: s = 1; t = 2; break; case 1: s = 0; t = 2; break; default: ERROR_MESSAGE("invalid axis"); return; } float fWidth = 1 / (m_state->getTexture().width * Texdef_getDefaultTextureScale()); float fHeight = 1 / (m_state->getTexture().height * -Texdef_getDefaultTextureScale()); for(PatchControlIter i = m_ctrl.data(); i != m_ctrl.data() + m_ctrl.size(); ++i) { (*i).m_texcoord[0] = (*i).m_vertex[s] * fWidth; (*i).m_texcoord[1] = (*i).m_vertex[t] * fHeight; } controlPointsChanged(); } void Patch::constructPlane(const AABB& aabb, int axis, std::size_t width, std::size_t height) { setDims(width, height); int x, y, z; switch(axis) { case 2: x=0; y=1; z=2; break; case 1: x=0; y=2; z=1; break; case 0: x=1; y=2; z=0; break; default: ERROR_MESSAGE("invalid view-type"); return; } if(m_width < MIN_PATCH_WIDTH || m_width > MAX_PATCH_WIDTH) m_width = 3; if(m_height < MIN_PATCH_HEIGHT || m_height > MAX_PATCH_HEIGHT) m_height = 3; Vector3 vStart; vStart[x] = aabb.origin[x] - aabb.extents[x]; vStart[y] = aabb.origin[y] - aabb.extents[y]; vStart[z] = aabb.origin[z]; float xAdj = fabsf((vStart[x] - (aabb.origin[x] + aabb.extents[x])) / (float)(m_width - 1)); float yAdj = fabsf((vStart[y] - (aabb.origin[y] + aabb.extents[y])) / (float)(m_height - 1)); Vector3 vTmp; vTmp[z] = vStart[z]; PatchControl* pCtrl = m_ctrl.data(); vTmp[y]=vStart[y]; for (std::size_t h=0; hm_vertex = vTmp; vTmp[x]+=xAdj; } vTmp[y]+=yAdj; } NaturalTexture(); } void Patch::ConstructPrefab(const AABB& aabb, EPatchPrefab eType, int axis, std::size_t width, std::size_t height) { Vector3 vPos[3]; if(eType != ePlane) { vPos[0] = vector3_subtracted(aabb.origin, aabb.extents); vPos[1] = aabb.origin; vPos[2] = vector3_added(aabb.origin, aabb.extents); } if(eType == ePlane) { constructPlane(aabb, axis, width, height); } else if(eType == eSqCylinder || eType == eCylinder || eType == eDenseCylinder || eType == eVeryDenseCylinder || eType == eCone || eType == eSphere) { unsigned char *pIndex; unsigned char pCylIndex[] = { 0, 0, 1, 0, 2, 0, 2, 1, 2, 2, 1, 2, 0, 2, 0, 1, 0, 0 }; PatchControl *pStart; switch(eType) { case eSqCylinder: setDims(9, 3); pStart = m_ctrl.data(); break; case eDenseCylinder: case eVeryDenseCylinder: case eCylinder: setDims(9, 3); pStart = m_ctrl.data() + 1; break; case eCone: setDims(9, 3); pStart = m_ctrl.data() + 1; break; case eSphere: setDims(9, 5); pStart = m_ctrl.data() + (9+1); break; default: ERROR_MESSAGE("this should be unreachable"); return; } for(std::size_t h=0; h<3; h++, pStart+=9) { pIndex = pCylIndex; PatchControl* pCtrl = pStart; for(std::size_t w=0; w<8; w++, pCtrl++) { pCtrl->m_vertex[0] = vPos[pIndex[0]][0]; pCtrl->m_vertex[1] = vPos[pIndex[1]][1]; pCtrl->m_vertex[2] = vPos[h][2]; pIndex+=2; } } switch(eType) { case eSqCylinder: { PatchControl* pCtrl=m_ctrl.data(); for(std::size_t h=0; h<3; h++, pCtrl+=9) { pCtrl[8].m_vertex = pCtrl[0].m_vertex; } } break; case eDenseCylinder: case eVeryDenseCylinder: case eCylinder: { PatchControl* pCtrl=m_ctrl.data(); for (std::size_t h=0; h<3; h++, pCtrl+=9) { pCtrl[0].m_vertex = pCtrl[8].m_vertex; } } break; case eCone: { PatchControl* pCtrl=m_ctrl.data(); for (std::size_t h=0; h<2; h++, pCtrl+=9) { pCtrl[0].m_vertex = pCtrl[8].m_vertex; } } { PatchControl* pCtrl=m_ctrl.data()+9*2; for (std::size_t w=0; w<9; w++, pCtrl++) { pCtrl->m_vertex[0] = vPos[1][0]; pCtrl->m_vertex[1] = vPos[1][1]; pCtrl->m_vertex[2] = vPos[2][2]; } } break; case eSphere: { PatchControl* pCtrl=m_ctrl.data()+9; for (std::size_t h=0; h<3; h++, pCtrl+=9) { pCtrl[0].m_vertex = pCtrl[8].m_vertex; } } { PatchControl* pCtrl = m_ctrl.data(); for (std::size_t w=0; w<9; w++, pCtrl++) { pCtrl->m_vertex[0] = vPos[1][0]; pCtrl->m_vertex[1] = vPos[1][1]; pCtrl->m_vertex[2] = vPos[2][2]; } } { PatchControl* pCtrl = m_ctrl.data()+(9*4); for (std::size_t w=0; w<9; w++, pCtrl++) { pCtrl->m_vertex[0] = vPos[1][0]; pCtrl->m_vertex[1] = vPos[1][1]; pCtrl->m_vertex[2] = vPos[2][2]; } } default: ERROR_MESSAGE("this should be unreachable"); return; } } else if (eType == eBevel) { unsigned char *pIndex; unsigned char pBevIndex[] = { 0, 0, 2, 0, 2, 2, }; setDims(3, 3); PatchControl* pCtrl = m_ctrl.data(); for(std::size_t h=0; h<3; h++) { pIndex=pBevIndex; for(std::size_t w=0; w<3; w++, pIndex+=2, pCtrl++) { pCtrl->m_vertex[0] = vPos[pIndex[0]][0]; pCtrl->m_vertex[1] = vPos[pIndex[1]][1]; pCtrl->m_vertex[2] = vPos[h][2]; } } } else if(eType == eEndCap) { unsigned char *pIndex; unsigned char pEndIndex[] = { 2, 0, 2, 2, 1, 2, 0, 2, 0, 0, }; setDims(5, 3); PatchControl* pCtrl = m_ctrl.data(); for(std::size_t h=0; h<3; h++) { pIndex=pEndIndex; for(std::size_t w=0; w<5; w++, pIndex+=2, pCtrl++) { pCtrl->m_vertex[0] = vPos[pIndex[0]][0]; pCtrl->m_vertex[1] = vPos[pIndex[1]][1]; pCtrl->m_vertex[2] = vPos[h][2]; } } } if(eType == eDenseCylinder) { InsertRemove(true, false, true); } if(eType == eVeryDenseCylinder) { InsertRemove(true, false, false); InsertRemove(true, false, true); } NaturalTexture(); } void Patch::RenderDebug(RenderStateFlags state) const { for (std::size_t i = 0; inormal)); glTexCoord2fv(texcoord2f_to_array((m_tess.m_vertices.data() + m_tess.m_indices[i*m_tess.m_lenStrips+j])->texcoord)); glVertex3fv(vertex3f_to_array((m_tess.m_vertices.data() + m_tess.m_indices[i*m_tess.m_lenStrips+j])->vertex)); } glEnd(); } } void RenderablePatchSolid::RenderNormals() const { const std::size_t width = m_tess.m_numStrips+1; const std::size_t height = m_tess.m_lenStrips>>1; glBegin(GL_LINES); for(std::size_t i=0;ivertex), vector3_scaled(normal3f_to_vector3((m_tess.m_vertices.data() + (j*width+i))->normal), 8) ) ); glVertex3fv(vertex3f_to_array((m_tess.m_vertices.data() + (j*width+i))->vertex)); glVertex3fv(&vNormal[0]); } { Vector3 vNormal( vector3_added( vertex3f_to_vector3((m_tess.m_vertices.data() + (j*width+i))->vertex), vector3_scaled(normal3f_to_vector3((m_tess.m_vertices.data() + (j*width+i))->tangent), 8) ) ); glVertex3fv(vertex3f_to_array((m_tess.m_vertices.data() + (j*width+i))->vertex)); glVertex3fv(&vNormal[0]); } { Vector3 vNormal( vector3_added( vertex3f_to_vector3((m_tess.m_vertices.data() + (j*width+i))->vertex), vector3_scaled(normal3f_to_vector3((m_tess.m_vertices.data() + (j*width+i))->bitangent), 8) ) ); glVertex3fv(vertex3f_to_array((m_tess.m_vertices.data() + (j*width+i))->vertex)); glVertex3fv(&vNormal[0]); } } } glEnd(); } #define DEGEN_0a 0x01 #define DEGEN_1a 0x02 #define DEGEN_2a 0x04 #define DEGEN_0b 0x08 #define DEGEN_1b 0x10 #define DEGEN_2b 0x20 #define SPLIT 0x40 #define AVERAGE 0x80 unsigned int subarray_get_degen(PatchControlIter subarray, std::size_t strideU, std::size_t strideV) { unsigned int nDegen = 0; const PatchControl* p1; const PatchControl* p2; p1 = subarray; p2 = p1 + strideU; if(vector3_equal(p1->m_vertex, p2->m_vertex)) nDegen |= DEGEN_0a; p1 = p2; p2 = p1 + strideU; if(vector3_equal(p1->m_vertex, p2->m_vertex)) nDegen |= DEGEN_0b; p1 = subarray + strideV; p2 = p1 + strideU; if(vector3_equal(p1->m_vertex, p2->m_vertex)) nDegen |= DEGEN_1a; p1 = p2; p2 = p1 + strideU; if(vector3_equal(p1->m_vertex, p2->m_vertex)) nDegen |= DEGEN_1b; p1 = subarray + (strideV << 1); p2 = p1 + strideU; if(vector3_equal(p1->m_vertex, p2->m_vertex)) nDegen |= DEGEN_2a; p1 = p2; p2 = p1 + strideU; if(vector3_equal(p1->m_vertex, p2->m_vertex)) nDegen |= DEGEN_2b; return nDegen; } inline void deCasteljau3(const Vector3& P0, const Vector3& P1, const Vector3& P2, Vector3& P01, Vector3& P12, Vector3& P012) { P01 = vector3_mid(P0, P1); P12 = vector3_mid(P1, P2); P012 = vector3_mid(P01, P12); } inline void BezierInterpolate3( const Vector3& start, Vector3& left, Vector3& mid, Vector3& right, const Vector3& end ) { left = vector3_mid(start, mid); right = vector3_mid(mid, end); mid = vector3_mid(left, right); } inline void BezierInterpolate2( const Vector2& start, Vector2& left, Vector2& mid, Vector2& right, const Vector2& end ) { left[0]= float_mid(start[0], mid[0]); left[1] = float_mid(start[1], mid[1]); right[0] = float_mid(mid[0], end[0]); right[1] = float_mid(mid[1], end[1]); mid[0] = float_mid(left[0], right[0]); mid[1] = float_mid(left[1], right[1]); } inline Vector2& texcoord_for_index(Array& vertices, std::size_t index) { return reinterpret_cast(vertices[index].texcoord); } inline Vector3& vertex_for_index(Array& vertices, std::size_t index) { return reinterpret_cast(vertices[index].vertex); } inline Vector3& normal_for_index(Array& vertices, std::size_t index) { return reinterpret_cast(vertices[index].normal); } inline Vector3& tangent_for_index(Array& vertices, std::size_t index) { return reinterpret_cast(vertices[index].tangent); } inline Vector3& bitangent_for_index(Array& vertices, std::size_t index) { return reinterpret_cast(vertices[index].bitangent); } inline const Vector2& texcoord_for_index(const Array& vertices, std::size_t index) { return reinterpret_cast(vertices[index].texcoord); } inline const Vector3& vertex_for_index(const Array& vertices, std::size_t index) { return reinterpret_cast(vertices[index].vertex); } inline const Vector3& normal_for_index(const Array& vertices, std::size_t index) { return reinterpret_cast(vertices[index].normal); } inline const Vector3& tangent_for_index(const Array& vertices, std::size_t index) { return reinterpret_cast(vertices[index].tangent); } inline const Vector3& bitangent_for_index(const Array& vertices, std::size_t index) { return reinterpret_cast(vertices[index].bitangent); } #include "math/curve.h" inline PatchControl QuadraticBezier_evaluate(const PatchControl* firstPoint, double t) { PatchControl result = { Vector3(0, 0, 0), Vector2(0, 0) }; double denominator = 0; { double weight = BernsteinPolynomial::apply(t); vector3_add(result.m_vertex, vector3_scaled(firstPoint[0].m_vertex, weight)); vector2_add(result.m_texcoord, vector2_scaled(firstPoint[0].m_texcoord, weight)); denominator += weight; } { double weight = BernsteinPolynomial::apply(t); vector3_add(result.m_vertex, vector3_scaled(firstPoint[1].m_vertex, weight)); vector2_add(result.m_texcoord, vector2_scaled(firstPoint[1].m_texcoord, weight)); denominator += weight; } { double weight = BernsteinPolynomial::apply(t); vector3_add(result.m_vertex, vector3_scaled(firstPoint[2].m_vertex, weight)); vector2_add(result.m_texcoord, vector2_scaled(firstPoint[2].m_texcoord, weight)); denominator += weight; } vector3_divide(result.m_vertex, denominator); vector2_divide(result.m_texcoord, denominator); return result; } inline Vector3 vector3_linear_interpolated(const Vector3& a, const Vector3& b, double t) { return vector3_added(vector3_scaled(a, 1.0 - t), vector3_scaled(b, t)); } inline Vector2 vector2_linear_interpolated(const Vector2& a, const Vector2& b, double t) { return vector2_added(vector2_scaled(a, 1.0 - t), vector2_scaled(b, t)); } void normalise_safe(Vector3& normal) { if(!vector3_equal(normal, g_vector3_identity)) { vector3_normalise(normal); } } inline void QuadraticBezier_evaluate(const PatchControl& a, const PatchControl& b, const PatchControl& c, double t, PatchControl& point, PatchControl& left, PatchControl& right) { left.m_vertex = vector3_linear_interpolated(a.m_vertex, b.m_vertex, t); left.m_texcoord = vector2_linear_interpolated(a.m_texcoord, b.m_texcoord, t); right.m_vertex = vector3_linear_interpolated(b.m_vertex, c.m_vertex, t); right.m_texcoord = vector2_linear_interpolated(b.m_texcoord, c.m_texcoord, t); point.m_vertex = vector3_linear_interpolated(left.m_vertex, right.m_vertex, t); point.m_texcoord = vector2_linear_interpolated(left.m_texcoord, right.m_texcoord, t); } void Patch::TesselateSubMatrixFixed(ArbitraryMeshVertex* vertices, std::size_t strideX, std::size_t strideY, unsigned int nFlagsX, unsigned int nFlagsY, PatchControl* subMatrix[3][3]) { double incrementU = 1.0 / m_subdivisions_x; double incrementV = 1.0 / m_subdivisions_y; const std::size_t width = m_subdivisions_x + 1; const std::size_t height = m_subdivisions_y + 1; for(std::size_t i = 0; i != width; ++i) { double tU = (i + 1 == width) ? 1 : i * incrementU; PatchControl pointX[3]; PatchControl leftX[3]; PatchControl rightX[3]; QuadraticBezier_evaluate(*subMatrix[0][0], *subMatrix[0][1], *subMatrix[0][2], tU, pointX[0], leftX[0], rightX[0]); QuadraticBezier_evaluate(*subMatrix[1][0], *subMatrix[1][1], *subMatrix[1][2], tU, pointX[1], leftX[1], rightX[1]); QuadraticBezier_evaluate(*subMatrix[2][0], *subMatrix[2][1], *subMatrix[2][2], tU, pointX[2], leftX[2], rightX[2]); ArbitraryMeshVertex* p = vertices + i * strideX; for(std::size_t j = 0; j != height; ++j) { if((j == 0 || j + 1 == height) && (i == 0 || i + 1 == width)) { } else { double tV = (j + 1 == height) ? 1 : j * incrementV; PatchControl pointY[3]; PatchControl leftY[3]; PatchControl rightY[3]; QuadraticBezier_evaluate(*subMatrix[0][0], *subMatrix[1][0], *subMatrix[2][0], tV, pointY[0], leftY[0], rightY[0]); QuadraticBezier_evaluate(*subMatrix[0][1], *subMatrix[1][1], *subMatrix[2][1], tV, pointY[1], leftY[1], rightY[1]); QuadraticBezier_evaluate(*subMatrix[0][2], *subMatrix[1][2], *subMatrix[2][2], tV, pointY[2], leftY[2], rightY[2]); PatchControl point; PatchControl left; PatchControl right; QuadraticBezier_evaluate(pointX[0], pointX[1], pointX[2], tV, point, left, right); PatchControl up; PatchControl down; QuadraticBezier_evaluate(pointY[0], pointY[1], pointY[2], tU, point, up, down); vertex3f_to_vector3(p->vertex) = point.m_vertex; texcoord2f_to_vector2(p->texcoord) = point.m_texcoord; ArbitraryMeshVertex a, b, c; a.vertex = vertex3f_for_vector3(left.m_vertex); a.texcoord = texcoord2f_for_vector2(left.m_texcoord); b.vertex = vertex3f_for_vector3(right.m_vertex); b.texcoord = texcoord2f_for_vector2(right.m_texcoord); if(i != 0) { c.vertex = vertex3f_for_vector3(up.m_vertex); c.texcoord = texcoord2f_for_vector2(up.m_texcoord); } else { c.vertex = vertex3f_for_vector3(down.m_vertex); c.texcoord = texcoord2f_for_vector2(down.m_texcoord); } Vector3 normal = vector3_normalised(vector3_cross(right.m_vertex - left.m_vertex, up.m_vertex - down.m_vertex)); Vector3 tangent, bitangent; ArbitraryMeshTriangle_calcTangents(a, b, c, tangent, bitangent); vector3_normalise(tangent); vector3_normalise(bitangent); if(((nFlagsX & AVERAGE) != 0 && i == 0) || ((nFlagsY & AVERAGE) != 0 && j == 0)) { normal3f_to_vector3(p->normal) = vector3_normalised(vector3_added(normal3f_to_vector3(p->normal), normal)); normal3f_to_vector3(p->tangent) = vector3_normalised(vector3_added(normal3f_to_vector3(p->tangent), tangent)); normal3f_to_vector3(p->bitangent) = vector3_normalised(vector3_added(normal3f_to_vector3(p->bitangent), bitangent)); } else { normal3f_to_vector3(p->normal) = normal; normal3f_to_vector3(p->tangent) = tangent; normal3f_to_vector3(p->bitangent) = bitangent; } } p += strideY; } } } void Patch::TesselateSubMatrix( const BezierCurveTree *BX, const BezierCurveTree *BY, std::size_t offStartX, std::size_t offStartY, std::size_t offEndX, std::size_t offEndY, std::size_t nFlagsX, std::size_t nFlagsY, Vector3& left, Vector3& mid, Vector3& right, Vector2& texLeft, Vector2& texMid, Vector2& texRight, bool bTranspose ) { int newFlagsX, newFlagsY; Vector3 tmp; Vector3 vertex_0_0, vertex_0_1, vertex_1_0, vertex_1_1, vertex_2_0, vertex_2_1; Vector2 texTmp; Vector2 texcoord_0_0, texcoord_0_1, texcoord_1_0, texcoord_1_1, texcoord_2_0, texcoord_2_1; { // texcoords BezierInterpolate2( texcoord_for_index(m_tess.m_vertices, offStartX + offStartY), texcoord_0_0, texcoord_for_index(m_tess.m_vertices, BX->index + offStartY), texcoord_0_1, texcoord_for_index(m_tess.m_vertices, offEndX + offStartY) ); BezierInterpolate2( texcoord_for_index(m_tess.m_vertices, offStartX + offEndY), texcoord_2_0, texcoord_for_index(m_tess.m_vertices, BX->index + offEndY), texcoord_2_1, texcoord_for_index(m_tess.m_vertices, offEndX + offEndY) ); texTmp = texMid; BezierInterpolate2(texLeft, texcoord_1_0, texTmp, texcoord_1_1, texRight); if(!BezierCurveTree_isLeaf(BY)) { texcoord_for_index(m_tess.m_vertices, BX->index + BY->index) = texTmp; } if(!BezierCurveTree_isLeaf(BX->left)) { texcoord_for_index(m_tess.m_vertices, BX->left->index + offStartY) = texcoord_0_0; texcoord_for_index(m_tess.m_vertices, BX->left->index + offEndY) = texcoord_2_0; if(!BezierCurveTree_isLeaf(BY)) { texcoord_for_index(m_tess.m_vertices, BX->left->index + BY->index) = texcoord_1_0; } } if(!BezierCurveTree_isLeaf(BX->right)) { texcoord_for_index(m_tess.m_vertices, BX->right->index + offStartY) = texcoord_0_1; texcoord_for_index(m_tess.m_vertices, BX->right->index + offEndY) = texcoord_2_1; if(!BezierCurveTree_isLeaf(BY)) { texcoord_for_index(m_tess.m_vertices, BX->right->index + BY->index) = texcoord_1_1; } } // verts BezierInterpolate3( vertex_for_index(m_tess.m_vertices, offStartX + offStartY), vertex_0_0, vertex_for_index(m_tess.m_vertices, BX->index + offStartY), vertex_0_1, vertex_for_index(m_tess.m_vertices, offEndX + offStartY) ); BezierInterpolate3( vertex_for_index(m_tess.m_vertices, offStartX + offEndY), vertex_2_0, vertex_for_index(m_tess.m_vertices, BX->index + offEndY), vertex_2_1, vertex_for_index(m_tess.m_vertices, offEndX + offEndY) ); tmp = mid; BezierInterpolate3( left, vertex_1_0, tmp, vertex_1_1, right ); if(!BezierCurveTree_isLeaf(BY)) { vertex_for_index(m_tess.m_vertices, BX->index + BY->index) = tmp; } if(!BezierCurveTree_isLeaf(BX->left)) { vertex_for_index(m_tess.m_vertices, BX->left->index + offStartY) = vertex_0_0; vertex_for_index(m_tess.m_vertices, BX->left->index + offEndY) = vertex_2_0; if(!BezierCurveTree_isLeaf(BY)) { vertex_for_index(m_tess.m_vertices, BX->left->index + BY->index) = vertex_1_0; } } if(!BezierCurveTree_isLeaf(BX->right)) { vertex_for_index(m_tess.m_vertices, BX->right->index + offStartY) = vertex_0_1; vertex_for_index(m_tess.m_vertices, BX->right->index + offEndY) = vertex_2_1; if(!BezierCurveTree_isLeaf(BY)) { vertex_for_index(m_tess.m_vertices, BX->right->index + BY->index) = vertex_1_1; } } // normals if(nFlagsX & SPLIT) { ArbitraryMeshVertex a, b, c; Vector3 tangentU; if(!(nFlagsX & DEGEN_0a) || !(nFlagsX & DEGEN_0b)) { tangentU = vector3_subtracted(vertex_0_1, vertex_0_0); a.vertex = vertex3f_for_vector3(vertex_0_0); a.texcoord = texcoord2f_for_vector2(texcoord_0_0); c.vertex = vertex3f_for_vector3(vertex_0_1); c.texcoord = texcoord2f_for_vector2(texcoord_0_1); } else if(!(nFlagsX & DEGEN_1a) || !(nFlagsX & DEGEN_1b)) { tangentU = vector3_subtracted(vertex_1_1, vertex_1_0); a.vertex = vertex3f_for_vector3(vertex_1_0); a.texcoord = texcoord2f_for_vector2(texcoord_1_0); c.vertex = vertex3f_for_vector3(vertex_1_1); c.texcoord = texcoord2f_for_vector2(texcoord_1_1); } else { tangentU = vector3_subtracted(vertex_2_1, vertex_2_0); a.vertex = vertex3f_for_vector3(vertex_2_0); a.texcoord = texcoord2f_for_vector2(texcoord_2_0); c.vertex = vertex3f_for_vector3(vertex_2_1); c.texcoord = texcoord2f_for_vector2(texcoord_2_1); } Vector3 tangentV; if((nFlagsY & DEGEN_0a) && (nFlagsY & DEGEN_1a) && (nFlagsY & DEGEN_2a)) { tangentV = vector3_subtracted(vertex_for_index(m_tess.m_vertices, BX->index + offEndY), tmp); b.vertex = vertex3f_for_vector3(tmp);//m_tess.m_vertices[BX->index + offEndY].vertex; b.texcoord = texcoord2f_for_vector2(texTmp);//m_tess.m_vertices[BX->index + offEndY].texcoord; } else { tangentV = vector3_subtracted(tmp, vertex_for_index(m_tess.m_vertices, BX->index + offStartY)); b.vertex = vertex3f_for_vector3(tmp);//m_tess.m_vertices[BX->index + offStartY].vertex; b.texcoord = texcoord2f_for_vector2(texTmp); //m_tess.m_vertices[BX->index + offStartY].texcoord; } Vector3 normal, s, t; ArbitraryMeshVertex& v = m_tess.m_vertices[offStartY + BX->index]; Vector3& p = normal3f_to_vector3(v.normal); Vector3& ps = normal3f_to_vector3(v.tangent); Vector3& pt = normal3f_to_vector3(v.bitangent); if(bTranspose) { normal = vector3_cross(tangentV, tangentU); } else { normal = vector3_cross(tangentU, tangentV); } normalise_safe(normal); ArbitraryMeshTriangle_calcTangents(a, b, c, s, t); normalise_safe(s); normalise_safe(t); if(nFlagsX & AVERAGE) { p = vector3_normalised(vector3_added(p, normal)); ps = vector3_normalised(vector3_added(ps, s)); pt = vector3_normalised(vector3_added(pt, t)); } else { p = normal; ps = s; pt = t; } } { ArbitraryMeshVertex a, b, c; Vector3 tangentU; if(!(nFlagsX & DEGEN_2a) || !(nFlagsX & DEGEN_2b)) { tangentU = vector3_subtracted(vertex_2_1, vertex_2_0); a.vertex = vertex3f_for_vector3(vertex_2_0); a.texcoord = texcoord2f_for_vector2(texcoord_2_0); c.vertex = vertex3f_for_vector3(vertex_2_1); c.texcoord = texcoord2f_for_vector2(texcoord_2_1); } else if(!(nFlagsX & DEGEN_1a) || !(nFlagsX & DEGEN_1b)) { tangentU = vector3_subtracted(vertex_1_1, vertex_1_0); a.vertex = vertex3f_for_vector3(vertex_1_0); a.texcoord = texcoord2f_for_vector2(texcoord_1_0); c.vertex = vertex3f_for_vector3(vertex_1_1); c.texcoord = texcoord2f_for_vector2(texcoord_1_1); } else { tangentU = vector3_subtracted(vertex_0_1, vertex_0_0); a.vertex = vertex3f_for_vector3(vertex_0_0); a.texcoord = texcoord2f_for_vector2(texcoord_0_0); c.vertex = vertex3f_for_vector3(vertex_0_1); c.texcoord = texcoord2f_for_vector2(texcoord_0_1); } Vector3 tangentV; if((nFlagsY & DEGEN_0b) && (nFlagsY & DEGEN_1b) && (nFlagsY & DEGEN_2b)) { tangentV = vector3_subtracted(tmp, vertex_for_index(m_tess.m_vertices, BX->index + offStartY)); b.vertex = vertex3f_for_vector3(tmp);//m_tess.m_vertices[BX->index + offStartY].vertex; b.texcoord = texcoord2f_for_vector2(texTmp);//m_tess.m_vertices[BX->index + offStartY].texcoord; } else { tangentV = vector3_subtracted(vertex_for_index(m_tess.m_vertices, BX->index + offEndY), tmp); b.vertex = vertex3f_for_vector3(tmp);//m_tess.m_vertices[BX->index + offEndY].vertex; b.texcoord = texcoord2f_for_vector2(texTmp);//m_tess.m_vertices[BX->index + offEndY].texcoord; } ArbitraryMeshVertex& v = m_tess.m_vertices[offEndY+BX->index]; Vector3& p = normal3f_to_vector3(v.normal); Vector3& ps = normal3f_to_vector3(v.tangent); Vector3& pt = normal3f_to_vector3(v.bitangent); if(bTranspose) { p = vector3_cross(tangentV, tangentU); } else { p = vector3_cross(tangentU, tangentV); } normalise_safe(p); ArbitraryMeshTriangle_calcTangents(a, b, c, ps, pt); normalise_safe(ps); normalise_safe(pt); } } newFlagsX = newFlagsY = 0; if((nFlagsX & DEGEN_0a) && (nFlagsX & DEGEN_0b)) { newFlagsX |= DEGEN_0a; newFlagsX |= DEGEN_0b; } if((nFlagsX & DEGEN_1a) && (nFlagsX & DEGEN_1b)) { newFlagsX |= DEGEN_1a; newFlagsX |= DEGEN_1b; } if((nFlagsX & DEGEN_2a) && (nFlagsX & DEGEN_2b)) { newFlagsX |= DEGEN_2a; newFlagsX |= DEGEN_2b; } if((nFlagsY & DEGEN_0a) && (nFlagsY & DEGEN_1a) && (nFlagsY & DEGEN_2a)) { newFlagsY |= DEGEN_0a; newFlagsY |= DEGEN_1a; newFlagsY |= DEGEN_2a; } if((nFlagsY & DEGEN_0b) && (nFlagsY & DEGEN_1b) && (nFlagsY & DEGEN_2b)) { newFlagsY |= DEGEN_0b; newFlagsY |= DEGEN_1b; newFlagsY |= DEGEN_2b; } //if((nFlagsX & DEGEN_0a) && (nFlagsX & DEGEN_1a) && (nFlagsX & DEGEN_2a)) { newFlagsX |= DEGEN_0a; newFlagsX |= DEGEN_1a; newFlagsX |= DEGEN_2a; } //if((nFlagsX & DEGEN_0b) && (nFlagsX & DEGEN_1b) && (nFlagsX & DEGEN_2b)) { newFlagsX |= DEGEN_0b; newFlagsX |= DEGEN_1b; newFlagsX |= DEGEN_2b; } newFlagsX |= (nFlagsX & SPLIT); newFlagsX |= (nFlagsX & AVERAGE); if(!BezierCurveTree_isLeaf(BY)) { { int nTemp = newFlagsY; if((nFlagsY & DEGEN_0a) && (nFlagsY & DEGEN_0b)) { newFlagsY |= DEGEN_0a; newFlagsY |= DEGEN_0b; } newFlagsY |= (nFlagsY & SPLIT); newFlagsY |= (nFlagsY & AVERAGE); Vector3& p = vertex_for_index(m_tess.m_vertices, BX->index+BY->index); Vector3 vTemp(p); Vector2& p2 = texcoord_for_index(m_tess.m_vertices, BX->index+BY->index); Vector2 stTemp(p2); TesselateSubMatrix( BY, BX->left, offStartY, offStartX, offEndY, BX->index, newFlagsY, newFlagsX, vertex_0_0, vertex_1_0, vertex_2_0, texcoord_0_0, texcoord_1_0, texcoord_2_0, !bTranspose ); newFlagsY = nTemp; p = vTemp; p2 = stTemp; } if((nFlagsY & DEGEN_2a) && (nFlagsY & DEGEN_2b)) { newFlagsY |= DEGEN_2a; newFlagsY |= DEGEN_2b; } TesselateSubMatrix( BY, BX->right, offStartY, BX->index, offEndY, offEndX, newFlagsY, newFlagsX, vertex_0_1, vertex_1_1, vertex_2_1, texcoord_0_1, texcoord_1_1, texcoord_2_1, !bTranspose ); } else { if(!BezierCurveTree_isLeaf(BX->left)) { TesselateSubMatrix( BX->left, BY, offStartX, offStartY, BX->index, offEndY, newFlagsX, newFlagsY, left, vertex_1_0, tmp, texLeft, texcoord_1_0, texTmp, bTranspose ); } if(!BezierCurveTree_isLeaf(BX->right)) { TesselateSubMatrix( BX->right, BY, BX->index, offStartY, offEndX, offEndY, newFlagsX, newFlagsY, tmp, vertex_1_1, right, texTmp, texcoord_1_1, texRight, bTranspose ); } } } void Patch::BuildTesselationCurves(EMatrixMajor major) { std::size_t nArrayStride, length, cross, strideU, strideV; switch(major) { case ROW: nArrayStride = 1; length = (m_width - 1) >> 1; cross = m_height; strideU = 1; strideV = m_width; if(!m_patchDef3) { BezierCurveTreeArray_deleteAll(m_tess.m_curveTreeU); } break; case COL: nArrayStride = m_tess.m_nArrayWidth; length = (m_height - 1) >> 1; cross = m_width; strideU = m_width; strideV = 1; if(!m_patchDef3) { BezierCurveTreeArray_deleteAll(m_tess.m_curveTreeV); } break; default: ERROR_MESSAGE("neither row-major nor column-major"); return; } Array arrayLength(length); Array pCurveTree(length); std::size_t nArrayLength = 1; if(m_patchDef3) { for(Array::iterator i = arrayLength.begin(); i != arrayLength.end(); ++i) { *i = Array::value_type((major == ROW) ? m_subdivisions_x : m_subdivisions_y); nArrayLength += *i; } } else { // create a list of the horizontal control curves in each column of sub-patches // adaptively tesselate each horizontal control curve in the list // create a binary tree representing the combined tesselation of the list for(std::size_t i = 0; i != length; ++i) { PatchControl* p1 = m_ctrlTransformed.data() + (i * 2 * strideU); GSList* pCurveList = 0; for(std::size_t j = 0; j < cross; j += 2) { PatchControl* p2 = p1+strideV; PatchControl* p3 = p2+strideV; // directly taken from one row of control points { BezierCurve* pCurve = new BezierCurve; pCurve->crd = (p1+strideU)->m_vertex; pCurve->left = p1->m_vertex; pCurve->right = (p1+(strideU<<1))->m_vertex; pCurveList = g_slist_prepend(pCurveList, pCurve); } if(j+2 >= cross) { break; } // interpolated from three columns of control points { BezierCurve* pCurve = new BezierCurve; pCurve->crd = vector3_mid((p1+strideU)->m_vertex, (p3+strideU)->m_vertex); pCurve->left = vector3_mid(p1->m_vertex, p3->m_vertex); pCurve->right = vector3_mid((p1+(strideU<<1))->m_vertex, (p3+(strideU<<1))->m_vertex); pCurve->crd = vector3_mid(pCurve->crd, (p2+strideU)->m_vertex); pCurve->left = vector3_mid(pCurve->left, p2->m_vertex); pCurve->right = vector3_mid(pCurve->right, (p2+(strideU<<1))->m_vertex); pCurveList = g_slist_prepend(pCurveList, pCurve); } p1 = p3; } pCurveTree[i] = new BezierCurveTree; BezierCurveTree_FromCurveList(pCurveTree[i], pCurveList); for(GSList* l = pCurveList; l != 0; l = g_slist_next(l)) { delete static_cast((*l).data); } g_slist_free(pCurveList); // set up array indices for binary tree // accumulate subarray width arrayLength[i] = Array::value_type(BezierCurveTree_Setup(pCurveTree[i], nArrayLength, nArrayStride) - (nArrayLength - 1)); // accumulate total array width nArrayLength += arrayLength[i]; } } switch(major) { case ROW: m_tess.m_nArrayWidth = nArrayLength; std::swap(m_tess.m_arrayWidth, arrayLength); if(!m_patchDef3) { std::swap(m_tess.m_curveTreeU, pCurveTree); } break; case COL: m_tess.m_nArrayHeight = nArrayLength; std::swap(m_tess.m_arrayHeight, arrayLength); if(!m_patchDef3) { std::swap(m_tess.m_curveTreeV, pCurveTree); } break; } } inline void vertex_assign_ctrl(ArbitraryMeshVertex& vertex, const PatchControl& ctrl) { vertex.vertex = vertex3f_for_vector3(ctrl.m_vertex); vertex.texcoord = texcoord2f_for_vector2(ctrl.m_texcoord); } inline void vertex_clear_normal(ArbitraryMeshVertex& vertex) { vertex.normal = Normal3f(0, 0, 0); vertex.tangent = Normal3f(0, 0, 0); vertex.bitangent = Normal3f(0, 0, 0); } inline void tangents_remove_degenerate(Vector3 tangents[6], Vector2 textureTangents[6], unsigned int flags) { if(flags & DEGEN_0a) { const std::size_t i = (flags & DEGEN_0b) ? (flags & DEGEN_1a) ? (flags & DEGEN_1b) ? (flags & DEGEN_2a) ? 5 : 4 : 3 : 2 : 1; tangents[0] = tangents[i]; textureTangents[0] = textureTangents[i]; } if(flags & DEGEN_0b) { const std::size_t i = (flags & DEGEN_0a) ? (flags & DEGEN_1b) ? (flags & DEGEN_1a) ? (flags & DEGEN_2b) ? 4 : 5 : 2 : 3 : 0; tangents[1] = tangents[i]; textureTangents[1] = textureTangents[i]; } if(flags & DEGEN_2a) { const std::size_t i = (flags & DEGEN_2b) ? (flags & DEGEN_1a) ? (flags & DEGEN_1b) ? (flags & DEGEN_0a) ? 1 : 0 : 3 : 2 : 5; tangents[4] = tangents[i]; textureTangents[4] = textureTangents[i]; } if(flags & DEGEN_2b) { const std::size_t i = (flags & DEGEN_2a) ? (flags & DEGEN_1b) ? (flags & DEGEN_1a) ? (flags & DEGEN_0b) ? 0 : 1 : 2 : 3 : 4; tangents[5] = tangents[i]; textureTangents[5] = textureTangents[i]; } } void bestTangents00(unsigned int degenerateFlags, double dot, double length, std::size_t& index0, std::size_t& index1) { if(fabs(dot + length) < 0.001) // opposing direction = degenerate { if(!(degenerateFlags & DEGEN_1a)) // if this tangent is degenerate we cannot use it { index0 = 2; index1 = 0; } else if(!(degenerateFlags & DEGEN_0b)) { index0 = 0; index1 = 1; } else { index0 = 1; index1 = 0; } } else if(fabs(dot - length) < 0.001) // same direction = degenerate { if(degenerateFlags & DEGEN_0b) { index0 = 0; index1 = 1; } else { index0 = 1; index1 = 0; } } } void bestTangents01(unsigned int degenerateFlags, double dot, double length, std::size_t& index0, std::size_t& index1) { if(fabs(dot - length) < 0.001) // same direction = degenerate { if(!(degenerateFlags & DEGEN_1a)) // if this tangent is degenerate we cannot use it { index0 = 2; index1 = 1; } else if(!(degenerateFlags & DEGEN_2b)) { index0 = 4; index1 = 0; } else { index0 = 5; index1 = 1; } } else if(fabs(dot + length) < 0.001) // opposing direction = degenerate { if(degenerateFlags & DEGEN_2b) { index0 = 4; index1 = 0; } else { index0 = 5; index1 = 1; } } } void bestTangents10(unsigned int degenerateFlags, double dot, double length, std::size_t& index0, std::size_t& index1) { if(fabs(dot - length) < 0.001) // same direction = degenerate { if(!(degenerateFlags & DEGEN_1b)) // if this tangent is degenerate we cannot use it { index0 = 3; index1 = 4; } else if(!(degenerateFlags & DEGEN_0a)) { index0 = 1; index1 = 5; } else { index0 = 0; index1 = 4; } } else if(fabs(dot + length) < 0.001) // opposing direction = degenerate { if(degenerateFlags & DEGEN_0a) { index0 = 1; index1 = 5; } else { index0 = 0; index1 = 4; } } } void bestTangents11(unsigned int degenerateFlags, double dot, double length, std::size_t& index0, std::size_t& index1) { if(fabs(dot + length) < 0.001) // opposing direction = degenerate { if(!(degenerateFlags & DEGEN_1b)) // if this tangent is degenerate we cannot use it { index0 = 3; index1 = 5; } else if(!(degenerateFlags & DEGEN_2a)) { index0 = 5; index1 = 4; } else { index0 = 4; index1 = 5; } } else if(fabs(dot - length) < 0.001) // same direction = degenerate { if(degenerateFlags & DEGEN_2a) { index0 = 5; index1 = 4; } else { index0 = 4; index1 = 5; } } } void Patch::accumulateVertexTangentSpace(std::size_t index, Vector3 tangentX[6], Vector3 tangentY[6], Vector2 tangentS[6], Vector2 tangentT[6], std::size_t index0, std::size_t index1) { { Vector3 normal(vector3_cross(tangentX[index0], tangentY[index1])); if(!vector3_equal(normal, g_vector3_identity)) { vector3_add(normal_for_index(m_tess.m_vertices, index), vector3_normalised(normal)); } } { ArbitraryMeshVertex a, b, c; a.vertex = Vertex3f(0, 0, 0); a.texcoord = TexCoord2f(0, 0); b.vertex = vertex3f_for_vector3(tangentX[index0]); b.texcoord = texcoord2f_for_vector2(tangentS[index0]); c.vertex = vertex3f_for_vector3(tangentY[index1]); c.texcoord = texcoord2f_for_vector2(tangentT[index1]); Vector3 s, t; ArbitraryMeshTriangle_calcTangents(a, b, c, s, t); if(!vector3_equal(s, g_vector3_identity)) { vector3_add(tangent_for_index(m_tess.m_vertices, index), vector3_normalised(s)); } if(!vector3_equal(t, g_vector3_identity)) { vector3_add(bitangent_for_index(m_tess.m_vertices, index), vector3_normalised(t)); } } } const std::size_t PATCH_MAX_VERTEX_ARRAY = 1048576; void Patch::BuildVertexArray() { const std::size_t strideU = 1; const std::size_t strideV = m_width; const std::size_t numElems = m_tess.m_nArrayWidth*m_tess.m_nArrayHeight; // total number of elements in vertex array const bool bWidthStrips = (m_tess.m_nArrayWidth >= m_tess.m_nArrayHeight); // decide if horizontal strips are longer than vertical // allocate vertex, normal, texcoord and primitive-index arrays m_tess.m_vertices.resize(numElems); m_tess.m_indices.resize(m_tess.m_nArrayWidth *2 * (m_tess.m_nArrayHeight - 1)); // set up strip indices if(bWidthStrips) { m_tess.m_numStrips = m_tess.m_nArrayHeight-1; m_tess.m_lenStrips = m_tess.m_nArrayWidth*2; for(std::size_t i=0; i>1]); const std::size_t offMidY = (m_patchDef3) ? 0 : m_tess.m_curveTreeV[j>>1]->index; const std::size_t widthY = m_tess.m_arrayHeight[j>>1] * m_tess.m_nArrayWidth; const std::size_t offEndY = offStartY + widthY; for(std::size_t i = 0, offStartX = 0; i+1 < m_width; i += 2, pCtrl += (strideU << 1)) { const bool leafX = (m_patchDef3) ? false : BezierCurveTree_isLeaf(m_tess.m_curveTreeU[i>>1]); const std::size_t offMidX = (m_patchDef3) ? 0 : m_tess.m_curveTreeU[i>>1]->index; const std::size_t widthX = m_tess.m_arrayWidth[i>>1]; const std::size_t offEndX = offStartX + widthX; PatchControl *subMatrix[3][3]; subMatrix[0][0] = pCtrl; subMatrix[0][1] = subMatrix[0][0]+strideU; subMatrix[0][2] = subMatrix[0][1]+strideU; subMatrix[1][0] = subMatrix[0][0]+strideV; subMatrix[1][1] = subMatrix[1][0]+strideU; subMatrix[1][2] = subMatrix[1][1]+strideU; subMatrix[2][0] = subMatrix[1][0]+strideV; subMatrix[2][1] = subMatrix[2][0]+strideU; subMatrix[2][2] = subMatrix[2][1]+strideU; // assign on-patch control points to vertex array if(i == 0 && j == 0) { vertex_clear_normal(m_tess.m_vertices[offStartX + offStartY]); } vertex_assign_ctrl(m_tess.m_vertices[offStartX + offStartY], *subMatrix[0][0]); if(j == 0) { vertex_clear_normal(m_tess.m_vertices[offEndX + offStartY]); } vertex_assign_ctrl(m_tess.m_vertices[offEndX + offStartY], *subMatrix[0][2]); if(i == 0) { vertex_clear_normal(m_tess.m_vertices[offStartX + offEndY]); } vertex_assign_ctrl(m_tess.m_vertices[offStartX + offEndY], *subMatrix[2][0]); vertex_clear_normal(m_tess.m_vertices[offEndX + offEndY]); vertex_assign_ctrl(m_tess.m_vertices[offEndX + offEndY], *subMatrix[2][2]); if(!m_patchDef3) { // assign remaining control points to vertex array if(!leafX) { vertex_assign_ctrl(m_tess.m_vertices[offMidX + offStartY], *subMatrix[0][1]); vertex_assign_ctrl(m_tess.m_vertices[offMidX + offEndY], *subMatrix[2][1]); } if(!leafY) { vertex_assign_ctrl(m_tess.m_vertices[offStartX + offMidY], *subMatrix[1][0]); vertex_assign_ctrl(m_tess.m_vertices[offEndX + offMidY], *subMatrix[1][2]); if(!leafX) { vertex_assign_ctrl(m_tess.m_vertices[offMidX + offMidY], *subMatrix[1][1]); } } } // test all 12 edges for degeneracy unsigned int nFlagsX = subarray_get_degen(pCtrl, strideU, strideV); unsigned int nFlagsY = subarray_get_degen(pCtrl, strideV, strideU); Vector3 tangentX[6], tangentY[6]; Vector2 tangentS[6], tangentT[6]; // set up tangents for each of the 12 edges if they were not degenerate if(!(nFlagsX & DEGEN_0a)) { tangentX[0] = vector3_subtracted(subMatrix[0][1]->m_vertex, subMatrix[0][0]->m_vertex); tangentS[0] = vector2_subtracted(subMatrix[0][1]->m_texcoord, subMatrix[0][0]->m_texcoord); } if(!(nFlagsX & DEGEN_0b)) { tangentX[1] = vector3_subtracted(subMatrix[0][2]->m_vertex, subMatrix[0][1]->m_vertex); tangentS[1] = vector2_subtracted(subMatrix[0][2]->m_texcoord, subMatrix[0][1]->m_texcoord); } if(!(nFlagsX & DEGEN_1a)) { tangentX[2] = vector3_subtracted(subMatrix[1][1]->m_vertex, subMatrix[1][0]->m_vertex); tangentS[2] = vector2_subtracted(subMatrix[1][1]->m_texcoord, subMatrix[1][0]->m_texcoord); } if(!(nFlagsX & DEGEN_1b)) { tangentX[3] = vector3_subtracted(subMatrix[1][2]->m_vertex, subMatrix[1][1]->m_vertex); tangentS[3] = vector2_subtracted(subMatrix[1][2]->m_texcoord, subMatrix[1][1]->m_texcoord); } if(!(nFlagsX & DEGEN_2a)) { tangentX[4] = vector3_subtracted(subMatrix[2][1]->m_vertex, subMatrix[2][0]->m_vertex); tangentS[4] = vector2_subtracted(subMatrix[2][1]->m_texcoord, subMatrix[2][0]->m_texcoord); } if(!(nFlagsX & DEGEN_2b)) { tangentX[5] = vector3_subtracted(subMatrix[2][2]->m_vertex, subMatrix[2][1]->m_vertex); tangentS[5] = vector2_subtracted(subMatrix[2][2]->m_texcoord, subMatrix[2][1]->m_texcoord); } if(!(nFlagsY & DEGEN_0a)) { tangentY[0] = vector3_subtracted(subMatrix[1][0]->m_vertex, subMatrix[0][0]->m_vertex); tangentT[0] = vector2_subtracted(subMatrix[1][0]->m_texcoord, subMatrix[0][0]->m_texcoord); } if(!(nFlagsY & DEGEN_0b)) { tangentY[1] = vector3_subtracted(subMatrix[2][0]->m_vertex, subMatrix[1][0]->m_vertex); tangentT[1] = vector2_subtracted(subMatrix[2][0]->m_texcoord, subMatrix[1][0]->m_texcoord); } if(!(nFlagsY & DEGEN_1a)) { tangentY[2] = vector3_subtracted(subMatrix[1][1]->m_vertex, subMatrix[0][1]->m_vertex); tangentT[2] = vector2_subtracted(subMatrix[1][1]->m_texcoord, subMatrix[0][1]->m_texcoord); } if(!(nFlagsY & DEGEN_1b)) { tangentY[3] = vector3_subtracted(subMatrix[2][1]->m_vertex, subMatrix[1][1]->m_vertex); tangentT[3] = vector2_subtracted(subMatrix[2][1]->m_texcoord, subMatrix[1][1]->m_texcoord); } if(!(nFlagsY & DEGEN_2a)) { tangentY[4] = vector3_subtracted(subMatrix[1][2]->m_vertex, subMatrix[0][2]->m_vertex); tangentT[4] = vector2_subtracted(subMatrix[1][2]->m_texcoord, subMatrix[0][2]->m_texcoord); } if(!(nFlagsY & DEGEN_2b)) { tangentY[5] = vector3_subtracted(subMatrix[2][2]->m_vertex, subMatrix[1][2]->m_vertex); tangentT[5] = vector2_subtracted(subMatrix[2][2]->m_texcoord, subMatrix[1][2]->m_texcoord); } // set up remaining edge tangents by borrowing the tangent from the closest parallel non-degenerate edge tangents_remove_degenerate(tangentX, tangentS, nFlagsX); tangents_remove_degenerate(tangentY, tangentT, nFlagsY); { // x=0, y=0 std::size_t index = offStartX + offStartY; std::size_t index0 = 0; std::size_t index1 = 0; double dot = vector3_dot(tangentX[index0], tangentY[index1]); double length = vector3_length(tangentX[index0]) * vector3_length(tangentY[index1]); bestTangents00(nFlagsX, dot, length, index0, index1); accumulateVertexTangentSpace(index, tangentX, tangentY, tangentS, tangentT, index0, index1); } { // x=1, y=0 std::size_t index = offEndX + offStartY; std::size_t index0 = 1; std::size_t index1 = 4; double dot = vector3_dot(tangentX[index0],tangentY[index1]); double length = vector3_length(tangentX[index0]) * vector3_length(tangentY[index1]); bestTangents10(nFlagsX, dot, length, index0, index1); accumulateVertexTangentSpace(index, tangentX, tangentY, tangentS, tangentT, index0, index1); } { // x=0, y=1 std::size_t index = offStartX + offEndY; std::size_t index0 = 4; std::size_t index1 = 1; double dot = vector3_dot(tangentX[index0], tangentY[index1]); double length = vector3_length(tangentX[index1]) * vector3_length(tangentY[index1]); bestTangents01(nFlagsX, dot, length, index0, index1); accumulateVertexTangentSpace(index, tangentX, tangentY, tangentS, tangentT, index0, index1); } { // x=1, y=1 std::size_t index = offEndX + offEndY; std::size_t index0 = 5; std::size_t index1 = 5; double dot = vector3_dot(tangentX[index0],tangentY[index1]); double length = vector3_length(tangentX[index0]) * vector3_length(tangentY[index1]); bestTangents11(nFlagsX, dot, length, index0, index1); accumulateVertexTangentSpace(index, tangentX, tangentY, tangentS, tangentT, index0, index1); } //normalise normals that won't be accumulated again if(i!=0 || j!=0) { normalise_safe(normal_for_index(m_tess.m_vertices, offStartX + offStartY)); normalise_safe(tangent_for_index(m_tess.m_vertices, offStartX + offStartY)); normalise_safe(bitangent_for_index(m_tess.m_vertices, offStartX + offStartY)); } if(i+3 == m_width) { normalise_safe(normal_for_index(m_tess.m_vertices, offEndX + offStartY)); normalise_safe(tangent_for_index(m_tess.m_vertices, offEndX + offStartY)); normalise_safe(bitangent_for_index(m_tess.m_vertices, offEndX + offStartY)); } if(j+3 == m_height) { normalise_safe(normal_for_index(m_tess.m_vertices, offStartX + offEndY)); normalise_safe(tangent_for_index(m_tess.m_vertices, offStartX + offEndY)); normalise_safe(bitangent_for_index(m_tess.m_vertices, offStartX + offEndY)); } if(i+3 == m_width && j+3 == m_height) { normalise_safe(normal_for_index(m_tess.m_vertices, offEndX + offEndY)); normalise_safe(tangent_for_index(m_tess.m_vertices, offEndX + offEndY)); normalise_safe(bitangent_for_index(m_tess.m_vertices, offEndX + offEndY)); } // set flags to average normals between shared edges if(j != 0) { nFlagsX |= AVERAGE; } if(i != 0) { nFlagsY |= AVERAGE; } // set flags to save evaluating shared edges twice nFlagsX |= SPLIT; nFlagsY |= SPLIT; // if the patch is curved.. tesselate recursively // use the relevant control curves for this sub-patch if(m_patchDef3) { TesselateSubMatrixFixed(m_tess.m_vertices.data() + offStartX + offStartY, 1, m_tess.m_nArrayWidth, nFlagsX, nFlagsY, subMatrix); } else { if(!leafX) { TesselateSubMatrix( m_tess.m_curveTreeU[i>>1], m_tess.m_curveTreeV[j>>1], offStartX, offStartY, offEndX, offEndY, // array offsets nFlagsX, nFlagsY, subMatrix[1][0]->m_vertex, subMatrix[1][1]->m_vertex, subMatrix[1][2]->m_vertex, subMatrix[1][0]->m_texcoord, subMatrix[1][1]->m_texcoord, subMatrix[1][2]->m_texcoord, false ); } else if(!leafY) { TesselateSubMatrix( m_tess.m_curveTreeV[j>>1], m_tess.m_curveTreeU[i>>1], offStartY, offStartX, offEndY, offEndX, // array offsets nFlagsY, nFlagsX, subMatrix[0][1]->m_vertex, subMatrix[1][1]->m_vertex, subMatrix[2][1]->m_vertex, subMatrix[0][1]->m_texcoord, subMatrix[1][1]->m_texcoord, subMatrix[2][1]->m_texcoord, true ); } } offStartX = offEndX; } offStartY = offEndY; } } } class PatchFilterWrapper : public Filter { bool m_active; bool m_invert; PatchFilter& m_filter; public: PatchFilterWrapper(PatchFilter& filter, bool invert) : m_invert(invert), m_filter(filter) { } void setActive(bool active) { m_active = active; } bool active() { return m_active; } bool filter(const Patch& patch) { return m_invert ^ m_filter.filter(patch); } }; typedef std::list PatchFilters; PatchFilters g_patchFilters; void add_patch_filter(PatchFilter& filter, int mask, bool invert) { g_patchFilters.push_back(PatchFilterWrapper(filter, invert)); GlobalFilterSystem().addFilter(g_patchFilters.back(), mask); } bool patch_filtered(Patch& patch) { for(PatchFilters::iterator i = g_patchFilters.begin(); i != g_patchFilters.end(); ++i) { if((*i).active() && (*i).filter(patch)) { return true; } } return false; }