]> de.git.xonotic.org Git - xonotic/netradiant.git/blobdiff - tools/quake2/q2map/flow.c
set eol-style
[xonotic/netradiant.git] / tools / quake2 / q2map / flow.c
index 9a34f6f9a0fbc9be2acdc65a3de338eaebe94896..d831fbf0175479a97c538e549c7a0fea2262aa08 100644 (file)
-/*\r
-Copyright (C) 1999-2007 id Software, Inc. and contributors.\r
-For a list of contributors, see the accompanying CONTRIBUTORS file.\r
-\r
-This file is part of GtkRadiant.\r
-\r
-GtkRadiant is free software; you can redistribute it and/or modify\r
-it under the terms of the GNU General Public License as published by\r
-the Free Software Foundation; either version 2 of the License, or\r
-(at your option) any later version.\r
-\r
-GtkRadiant is distributed in the hope that it will be useful,\r
-but WITHOUT ANY WARRANTY; without even the implied warranty of\r
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the\r
-GNU General Public License for more details.\r
-\r
-You should have received a copy of the GNU General Public License\r
-along with GtkRadiant; if not, write to the Free Software\r
-Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA\r
-*/\r
-#include "qvis.h"\r
-\r
-/*\r
-\r
-  each portal will have a list of all possible to see from first portal\r
-\r
-  if (!thread->portalmightsee[portalnum])\r
-\r
-  portal mightsee\r
-\r
-  for p2 = all other portals in leaf\r
-       get sperating planes\r
-       for all portals that might be seen by p2\r
-               mark as unseen if not present in seperating plane\r
-       flood fill a new mightsee\r
-       save as passagemightsee\r
-\r
-\r
-  void CalcMightSee (leaf_t *leaf, \r
-*/\r
-\r
-int CountBits (byte *bits, int numbits)\r
-{\r
-       int             i;\r
-       int             c;\r
-\r
-       c = 0;\r
-       for (i=0 ; i<numbits ; i++)\r
-               if (bits[i>>3] & (1<<(i&7)) )\r
-                       c++;\r
-\r
-       return c;\r
-}\r
-\r
-int            c_fullskip;\r
-int            c_portalskip, c_leafskip;\r
-int            c_vistest, c_mighttest;\r
-\r
-int            c_chop, c_nochop;\r
-\r
-int            active;\r
-\r
-void CheckStack (leaf_t *leaf, threaddata_t *thread)\r
-{\r
-       pstack_t        *p, *p2;\r
-\r
-       for (p=thread->pstack_head.next ; p ; p=p->next)\r
-       {\r
-//             printf ("=");\r
-               if (p->leaf == leaf)\r
-                       Error ("CheckStack: leaf recursion");\r
-               for (p2=thread->pstack_head.next ; p2 != p ; p2=p2->next)\r
-                       if (p2->leaf == p->leaf)\r
-                               Error ("CheckStack: late leaf recursion");\r
-       }\r
-//     printf ("\n");\r
-}\r
-\r
-\r
-winding_t *AllocStackWinding (pstack_t *stack)\r
-{\r
-       int             i;\r
-\r
-       for (i=0 ; i<3 ; i++)\r
-       {\r
-               if (stack->freewindings[i])\r
-               {\r
-                       stack->freewindings[i] = 0;\r
-                       return &stack->windings[i];\r
-               }\r
-       }\r
-\r
-       Error ("AllocStackWinding: failed");\r
-\r
-       return NULL;\r
-}\r
-\r
-void FreeStackWinding (winding_t *w, pstack_t *stack)\r
-{\r
-       int             i;\r
-\r
-       i = w - stack->windings;\r
-\r
-       if (i<0 || i>2)\r
-               return;         // not from local\r
-\r
-       if (stack->freewindings[i])\r
-               Error ("FreeStackWinding: allready free");\r
-       stack->freewindings[i] = 1;\r
-}\r
-\r
-/*\r
-==============\r
-Vis_ChopWinding\r
-\r
-==============\r
-*/\r
-winding_t      *Vis_ChopWinding (winding_t *in, pstack_t *stack, plane_t *split)\r
-{\r
-       vec_t   dists[128];\r
-       int             sides[128];\r
-       int             counts[3];\r
-       vec_t   dot;\r
-       int             i, j;\r
-       vec_t   *p1, *p2;\r
-       vec3_t  mid;\r
-       winding_t       *neww;\r
-\r
-       counts[0] = counts[1] = counts[2] = 0;\r
-\r
-// determine sides for each point\r
-       for (i=0 ; i<in->numpoints ; i++)\r
-       {\r
-               dot = DotProduct (in->points[i], split->normal);\r
-               dot -= split->dist;\r
-               dists[i] = dot;\r
-               if (dot > ON_EPSILON)\r
-                       sides[i] = SIDE_FRONT;\r
-               else if (dot < -ON_EPSILON)\r
-                       sides[i] = SIDE_BACK;\r
-               else\r
-               {\r
-                       sides[i] = SIDE_ON;\r
-               }\r
-               counts[sides[i]]++;\r
-       }\r
-\r
-       if (!counts[1])\r
-               return in;              // completely on front side\r
-       \r
-       if (!counts[0])\r
-       {\r
-               FreeStackWinding (in, stack);\r
-               return NULL;\r
-       }\r
-\r
-       sides[i] = sides[0];\r
-       dists[i] = dists[0];\r
-       \r
-       neww = AllocStackWinding (stack);\r
-\r
-       neww->numpoints = 0;\r
-\r
-       for (i=0 ; i<in->numpoints ; i++)\r
-       {\r
-               p1 = in->points[i];\r
-\r
-               if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING)\r
-               {\r
-                       FreeStackWinding (neww, stack);\r
-                       return in;              // can't chop -- fall back to original\r
-               }\r
-\r
-               if (sides[i] == SIDE_ON)\r
-               {\r
-                       VectorCopy (p1, neww->points[neww->numpoints]);\r
-                       neww->numpoints++;\r
-                       continue;\r
-               }\r
-       \r
-               if (sides[i] == SIDE_FRONT)\r
-               {\r
-                       VectorCopy (p1, neww->points[neww->numpoints]);\r
-                       neww->numpoints++;\r
-               }\r
-               \r
-               if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])\r
-                       continue;\r
-                       \r
-               if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING)\r
-               {\r
-                       FreeStackWinding (neww, stack);\r
-                       return in;              // can't chop -- fall back to original\r
-               }\r
-\r
-       // generate a split point\r
-               p2 = in->points[(i+1)%in->numpoints];\r
-               \r
-               dot = dists[i] / (dists[i]-dists[i+1]);\r
-               for (j=0 ; j<3 ; j++)\r
-               {       // avoid round off error when possible\r
-                       if (split->normal[j] == 1)\r
-                               mid[j] = split->dist;\r
-                       else if (split->normal[j] == -1)\r
-                               mid[j] = -split->dist;\r
-                       else\r
-                               mid[j] = p1[j] + dot*(p2[j]-p1[j]);\r
-               }\r
-                       \r
-               VectorCopy (mid, neww->points[neww->numpoints]);\r
-               neww->numpoints++;\r
-       }\r
-       \r
-// free the original winding\r
-       FreeStackWinding (in, stack);\r
-       \r
-       return neww;\r
-}\r
-\r
-\r
-/*\r
-==============\r
-ClipToSeperators\r
-\r
-Source, pass, and target are an ordering of portals.\r
-\r
-Generates seperating planes canidates by taking two points from source and one\r
-point from pass, and clips target by them.\r
-\r
-If target is totally clipped away, that portal can not be seen through.\r
-\r
-Normal clip keeps target on the same side as pass, which is correct if the\r
-order goes source, pass, target.  If the order goes pass, source, target then\r
-flipclip should be set.\r
-==============\r
-*/\r
-winding_t      *ClipToSeperators (winding_t *source, winding_t *pass, winding_t *target, qboolean flipclip, pstack_t *stack)\r
-{\r
-       int                     i, j, k, l;\r
-       plane_t         plane;\r
-       vec3_t          v1, v2;\r
-       float           d;\r
-       vec_t           length;\r
-       int                     counts[3];\r
-       qboolean                fliptest;\r
-\r
-// check all combinations      \r
-       for (i=0 ; i<source->numpoints ; i++)\r
-       {\r
-               l = (i+1)%source->numpoints;\r
-               VectorSubtract (source->points[l] , source->points[i], v1);\r
-\r
-       // fing a vertex of pass that makes a plane that puts all of the\r
-       // vertexes of pass on the front side and all of the vertexes of\r
-       // source on the back side\r
-               for (j=0 ; j<pass->numpoints ; j++)\r
-               {\r
-                       VectorSubtract (pass->points[j], source->points[i], v2);\r
-\r
-                       plane.normal[0] = v1[1]*v2[2] - v1[2]*v2[1];\r
-                       plane.normal[1] = v1[2]*v2[0] - v1[0]*v2[2];\r
-                       plane.normal[2] = v1[0]*v2[1] - v1[1]*v2[0];\r
-                       \r
-               // if points don't make a valid plane, skip it\r
-\r
-                       length = plane.normal[0] * plane.normal[0]\r
-                       + plane.normal[1] * plane.normal[1]\r
-                       + plane.normal[2] * plane.normal[2];\r
-                       \r
-                       if (length < ON_EPSILON)\r
-                               continue;\r
-\r
-                       length = 1/sqrt(length);\r
-                       \r
-                       plane.normal[0] *= length;\r
-                       plane.normal[1] *= length;\r
-                       plane.normal[2] *= length;\r
-\r
-                       plane.dist = DotProduct (pass->points[j], plane.normal);\r
-\r
-               //\r
-               // find out which side of the generated seperating plane has the\r
-               // source portal\r
-               //\r
-#if 1\r
-                       fliptest = false;\r
-                       for (k=0 ; k<source->numpoints ; k++)\r
-                       {\r
-                               if (k == i || k == l)\r
-                                       continue;\r
-                               d = DotProduct (source->points[k], plane.normal) - plane.dist;\r
-                               if (d < -ON_EPSILON)\r
-                               {       // source is on the negative side, so we want all\r
-                                       // pass and target on the positive side\r
-                                       fliptest = false;\r
-                                       break;\r
-                               }\r
-                               else if (d > ON_EPSILON)\r
-                               {       // source is on the positive side, so we want all\r
-                                       // pass and target on the negative side\r
-                                       fliptest = true;\r
-                                       break;\r
-                               }\r
-                       }\r
-                       if (k == source->numpoints)\r
-                               continue;               // planar with source portal\r
-#else\r
-                       fliptest = flipclip;\r
-#endif\r
-               //\r
-               // flip the normal if the source portal is backwards\r
-               //\r
-                       if (fliptest)\r
-                       {\r
-                               VectorSubtract (vec3_origin, plane.normal, plane.normal);\r
-                               plane.dist = -plane.dist;\r
-                       }\r
-#if 1\r
-               //\r
-               // if all of the pass portal points are now on the positive side,\r
-               // this is the seperating plane\r
-               //\r
-                       counts[0] = counts[1] = counts[2] = 0;\r
-                       for (k=0 ; k<pass->numpoints ; k++)\r
-                       {\r
-                               if (k==j)\r
-                                       continue;\r
-                               d = DotProduct (pass->points[k], plane.normal) - plane.dist;\r
-                               if (d < -ON_EPSILON)\r
-                                       break;\r
-                               else if (d > ON_EPSILON)\r
-                                       counts[0]++;\r
-                               else\r
-                                       counts[2]++;\r
-                       }\r
-                       if (k != pass->numpoints)\r
-                               continue;       // points on negative side, not a seperating plane\r
-                               \r
-                       if (!counts[0])\r
-                               continue;       // planar with seperating plane\r
-#else\r
-                       k = (j+1)%pass->numpoints;\r
-                       d = DotProduct (pass->points[k], plane.normal) - plane.dist;\r
-                       if (d < -ON_EPSILON)\r
-                               continue;\r
-                       k = (j+pass->numpoints-1)%pass->numpoints;\r
-                       d = DotProduct (pass->points[k], plane.normal) - plane.dist;\r
-                       if (d < -ON_EPSILON)\r
-                               continue;                       \r
-#endif\r
-               //\r
-               // flip the normal if we want the back side\r
-               //\r
-                       if (flipclip)\r
-                       {\r
-                               VectorSubtract (vec3_origin, plane.normal, plane.normal);\r
-                               plane.dist = -plane.dist;\r
-                       }\r
-                       \r
-               //\r
-               // clip target by the seperating plane\r
-               //\r
-                       target = Vis_ChopWinding (target, stack, &plane);\r
-                       if (!target)\r
-                               return NULL;            // target is not visible\r
-               }\r
-       }\r
-       \r
-       return target;\r
-}\r
-\r
-\r
-\r
-/*\r
-==================\r
-RecursiveLeafFlow\r
-\r
-Flood fill through the leafs\r
-If src_portal is NULL, this is the originating leaf\r
-==================\r
-*/\r
-void RecursiveLeafFlow (int leafnum, threaddata_t *thread, pstack_t *prevstack)\r
-{\r
-       pstack_t        stack;\r
-       portal_t        *p;\r
-       plane_t         backplane;\r
-       leaf_t          *leaf;\r
-       int                     i, j;\r
-       long            *test, *might, *vis, more;\r
-       int                     pnum;\r
-\r
-       thread->c_chains++;\r
-\r
-       leaf = &leafs[leafnum];\r
-//     CheckStack (leaf, thread);\r
-\r
-       prevstack->next = &stack;\r
-\r
-       stack.next = NULL;\r
-       stack.leaf = leaf;\r
-       stack.portal = NULL;\r
-\r
-       might = (long *)stack.mightsee;\r
-       vis = (long *)thread->base->portalvis;\r
-       \r
-// check all portals for flowing into other leafs      \r
-       for (i=0 ; i<leaf->numportals ; i++)\r
-       {\r
-               p = leaf->portals[i];\r
-               pnum = p - portals;\r
-\r
-               if ( ! (prevstack->mightsee[pnum >> 3] & (1<<(pnum&7)) ) )\r
-               {\r
-                       continue;       // can't possibly see it\r
-               }\r
-\r
-       // if the portal can't see anything we haven't allready seen, skip it\r
-               if (p->status == stat_done)\r
-               {\r
-                       test = (long *)p->portalvis;\r
-               }\r
-               else\r
-               {\r
-                       test = (long *)p->portalflood;\r
-               }\r
-\r
-               more = 0;\r
-               for (j=0 ; j<portallongs ; j++)\r
-               {\r
-                       might[j] = ((long *)prevstack->mightsee)[j] & test[j];\r
-                       more |= (might[j] & ~vis[j]);\r
-               }\r
-               \r
-               if (!more && \r
-                       (thread->base->portalvis[pnum>>3] & (1<<(pnum&7))) )\r
-               {       // can't see anything new\r
-                       continue;\r
-               }\r
-\r
-               // get plane of portal, point normal into the neighbor leaf\r
-               stack.portalplane = p->plane;\r
-               VectorSubtract (vec3_origin, p->plane.normal, backplane.normal);\r
-               backplane.dist = -p->plane.dist;\r
-               \r
-//             c_portalcheck++;\r
-               \r
-               stack.portal = p;\r
-               stack.next = NULL;\r
-               stack.freewindings[0] = 1;\r
-               stack.freewindings[1] = 1;\r
-               stack.freewindings[2] = 1;\r
-               \r
-#if 1\r
-{\r
-float d;\r
-\r
-       d = DotProduct (p->origin, thread->pstack_head.portalplane.normal);\r
-       d -= thread->pstack_head.portalplane.dist;\r
-       if (d < -p->radius)\r
-       {\r
-               continue;\r
-       }\r
-       else if (d > p->radius)\r
-       {\r
-               stack.pass = p->winding;\r
-       }\r
-       else    \r
-       {\r
-               stack.pass = Vis_ChopWinding (p->winding, &stack, &thread->pstack_head.portalplane);\r
-               if (!stack.pass)\r
-                       continue;\r
-       }\r
-}\r
-#else\r
-               stack.pass = Vis_ChopWinding (p->winding, &stack, &thread->pstack_head.portalplane);\r
-               if (!stack.pass)\r
-                       continue;\r
-#endif\r
-\r
-       \r
-#if 1\r
-{\r
-float d;\r
-\r
-       d = DotProduct (thread->base->origin, p->plane.normal);\r
-       d -= p->plane.dist;\r
-       if (d > p->radius)\r
-       {\r
-               continue;\r
-       }\r
-       else if (d < -p->radius)\r
-       {\r
-               stack.source = prevstack->source;\r
-       }\r
-       else    \r
-       {\r
-               stack.source = Vis_ChopWinding (prevstack->source, &stack, &backplane);\r
-               if (!stack.source)\r
-                       continue;\r
-       }\r
-}\r
-#else\r
-               stack.source = Vis_ChopWinding (prevstack->source, &stack, &backplane);\r
-               if (!stack.source)\r
-                       continue;\r
-#endif\r
-\r
-               if (!prevstack->pass)\r
-               {       // the second leaf can only be blocked if coplanar\r
-\r
-                       // mark the portal as visible\r
-                       thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));\r
-\r
-                       RecursiveLeafFlow (p->leaf, thread, &stack);\r
-                       continue;\r
-               }\r
-\r
-               stack.pass = ClipToSeperators (stack.source, prevstack->pass, stack.pass, false, &stack);\r
-               if (!stack.pass)\r
-                       continue;\r
-               \r
-               stack.pass = ClipToSeperators (prevstack->pass, stack.source, stack.pass, true, &stack);\r
-               if (!stack.pass)\r
-                       continue;\r
-\r
-               // mark the portal as visible\r
-               thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));\r
-\r
-               // flow through it for real\r
-               RecursiveLeafFlow (p->leaf, thread, &stack);\r
-       }       \r
-}\r
-\r
-\r
-/*\r
-===============\r
-PortalFlow\r
-\r
-generates the portalvis bit vector\r
-===============\r
-*/\r
-void PortalFlow (int portalnum)\r
-{\r
-       threaddata_t    data;\r
-       int                             i;\r
-       portal_t                *p;\r
-       int                             c_might, c_can;\r
-\r
-       p = sorted_portals[portalnum];\r
-       p->status = stat_working;\r
-\r
-       c_might = CountBits (p->portalflood, numportals*2);\r
-\r
-       memset (&data, 0, sizeof(data));\r
-       data.base = p;\r
-       \r
-       data.pstack_head.portal = p;\r
-       data.pstack_head.source = p->winding;\r
-       data.pstack_head.portalplane = p->plane;\r
-       for (i=0 ; i<portallongs ; i++)\r
-               ((long *)data.pstack_head.mightsee)[i] = ((long *)p->portalflood)[i];\r
-       RecursiveLeafFlow (p->leaf, &data, &data.pstack_head);\r
-\r
-       p->status = stat_done;\r
-\r
-       c_can = CountBits (p->portalvis, numportals*2);\r
-\r
-       Sys_FPrintf ( SYS_VRB, "portal:%4i  mightsee:%4i  cansee:%4i (%i chains)\n", \r
-               (int)(p - portals),     c_might, c_can, data.c_chains);\r
-}\r
-\r
-\r
-/*\r
-===============================================================================\r
-\r
-This is a rough first-order aproximation that is used to trivially reject some\r
-of the final calculations.\r
-\r
-\r
-Calculates portalfront and portalflood bit vectors\r
-\r
-thinking about:\r
-\r
-typedef struct passage_s\r
-{\r
-       struct passage_s        *next;\r
-       struct portal_s         *to;\r
-       stryct sep_s            *seperators;\r
-       byte                            *mightsee;\r
-} passage_t;\r
-\r
-typedef struct portal_s\r
-{\r
-       struct passage_s        *passages;\r
-       int                                     leaf;           // leaf portal faces into\r
-} portal_s;\r
-\r
-leaf = portal->leaf\r
-clear \r
-for all portals\r
-\r
-\r
-calc portal visibility\r
-       clear bit vector\r
-       for all passages\r
-               passage visibility\r
-\r
-\r
-for a portal to be visible to a passage, it must be on the front of\r
-all seperating planes, and both portals must be behind the mew portal\r
-\r
-===============================================================================\r
-*/\r
-\r
-int            c_flood, c_vis;\r
-\r
-\r
-/*\r
-==================\r
-SimpleFlood\r
-\r
-==================\r
-*/\r
-void SimpleFlood (portal_t *srcportal, int leafnum)\r
-{\r
-       int             i;\r
-       leaf_t  *leaf;\r
-       portal_t        *p;\r
-       int             pnum;\r
-\r
-       leaf = &leafs[leafnum];\r
-       \r
-       for (i=0 ; i<leaf->numportals ; i++)\r
-       {\r
-               p = leaf->portals[i];\r
-               pnum = p - portals;\r
-               if ( ! (srcportal->portalfront[pnum>>3] & (1<<(pnum&7)) ) )\r
-                       continue;\r
-\r
-               if (srcportal->portalflood[pnum>>3] & (1<<(pnum&7)) )\r
-                       continue;\r
-\r
-               srcportal->portalflood[pnum>>3] |= (1<<(pnum&7));\r
-               \r
-               SimpleFlood (srcportal, p->leaf);\r
-       }\r
-}\r
-\r
-/*\r
-==============\r
-BasePortalVis\r
-==============\r
-*/\r
-void BasePortalVis (int portalnum)\r
-{\r
-       int                     j, k;\r
-       portal_t        *tp, *p;\r
-       float           d;\r
-       winding_t       *w;\r
-\r
-       p = portals+portalnum;\r
-\r
-       p->portalfront = malloc (portalbytes);\r
-       memset (p->portalfront, 0, portalbytes);\r
-\r
-       p->portalflood = malloc (portalbytes);\r
-       memset (p->portalflood, 0, portalbytes);\r
-       \r
-       p->portalvis = malloc (portalbytes);\r
-       memset (p->portalvis, 0, portalbytes);\r
-       \r
-       for (j=0, tp = portals ; j<numportals*2 ; j++, tp++)\r
-       {\r
-               if (j == portalnum)\r
-                       continue;\r
-               w = tp->winding;\r
-               for (k=0 ; k<w->numpoints ; k++)\r
-               {\r
-                       d = DotProduct (w->points[k], p->plane.normal)\r
-                               - p->plane.dist;\r
-                       if (d > ON_EPSILON)\r
-                               break;\r
-               }\r
-               if (k == w->numpoints)\r
-                       continue;       // no points on front\r
-\r
-               w = p->winding;\r
-               for (k=0 ; k<w->numpoints ; k++)\r
-               {\r
-                       d = DotProduct (w->points[k], tp->plane.normal)\r
-                               - tp->plane.dist;\r
-                       if (d < -ON_EPSILON)\r
-                               break;\r
-               }\r
-               if (k == w->numpoints)\r
-                       continue;       // no points on front\r
-\r
-               p->portalfront[j>>3] |= (1<<(j&7));\r
-       }\r
-       \r
-       SimpleFlood (p, p->leaf);\r
-\r
-       p->nummightsee = CountBits (p->portalflood, numportals*2);\r
-//     printf ("portal %i: %i mightsee\n", portalnum, p->nummightsee);\r
-       c_flood += p->nummightsee;\r
-}\r
-\r
-\r
-\r
-\r
-\r
-/*\r
-===============================================================================\r
-\r
-This is a second order aproximation \r
-\r
-Calculates portalvis bit vector\r
-\r
-WAAAAAAY too slow.\r
-\r
-===============================================================================\r
-*/\r
-\r
-/*\r
-==================\r
-RecursiveLeafBitFlow\r
-\r
-==================\r
-*/\r
-void RecursiveLeafBitFlow (int leafnum, byte *mightsee, byte *cansee)\r
-{\r
-       portal_t        *p;\r
-       leaf_t          *leaf;\r
-       int                     i, j;\r
-       long            more;\r
-       int                     pnum;\r
-       byte            newmight[MAX_PORTALS/8];\r
-\r
-       leaf = &leafs[leafnum];\r
-       \r
-// check all portals for flowing into other leafs      \r
-       for (i=0 ; i<leaf->numportals ; i++)\r
-       {\r
-               p = leaf->portals[i];\r
-               pnum = p - portals;\r
-\r
-               // if some previous portal can't see it, skip\r
-               if (! (mightsee[pnum>>3] & (1<<(pnum&7)) ) )\r
-                       continue;\r
-\r
-               // if this portal can see some portals we mightsee, recurse\r
-               more = 0;\r
-               for (j=0 ; j<portallongs ; j++)\r
-               {\r
-                       ((long *)newmight)[j] = ((long *)mightsee)[j] \r
-                               & ((long *)p->portalflood)[j];\r
-                       more |= ((long *)newmight)[j] & ~((long *)cansee)[j];\r
-               }\r
-\r
-               if (!more)\r
-                       continue;       // can't see anything new\r
-\r
-               cansee[pnum>>3] |= (1<<(pnum&7));\r
-\r
-               RecursiveLeafBitFlow (p->leaf, newmight, cansee);\r
-       }       \r
-}\r
-\r
-/*\r
-==============\r
-BetterPortalVis\r
-==============\r
-*/\r
-void BetterPortalVis (int portalnum)\r
-{\r
-       portal_t        *p;\r
-\r
-       p = portals+portalnum;\r
-\r
-       RecursiveLeafBitFlow (p->leaf, p->portalflood, p->portalvis);\r
-\r
-       // build leaf vis information\r
-       p->nummightsee = CountBits (p->portalvis, numportals*2);\r
-       c_vis += p->nummightsee;\r
-}\r
-\r
-\r
+/*
+Copyright (C) 1999-2007 id Software, Inc. and contributors.
+For a list of contributors, see the accompanying CONTRIBUTORS file.
+
+This file is part of GtkRadiant.
+
+GtkRadiant is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+GtkRadiant is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GtkRadiant; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+*/
+#include "qvis.h"
+
+/*
+
+  each portal will have a list of all possible to see from first portal
+
+  if (!thread->portalmightsee[portalnum])
+
+  portal mightsee
+
+  for p2 = all other portals in leaf
+       get sperating planes
+       for all portals that might be seen by p2
+               mark as unseen if not present in seperating plane
+       flood fill a new mightsee
+       save as passagemightsee
+
+
+  void CalcMightSee (leaf_t *leaf, 
+*/
+
+int CountBits (byte *bits, int numbits)
+{
+       int             i;
+       int             c;
+
+       c = 0;
+       for (i=0 ; i<numbits ; i++)
+               if (bits[i>>3] & (1<<(i&7)) )
+                       c++;
+
+       return c;
+}
+
+int            c_fullskip;
+int            c_portalskip, c_leafskip;
+int            c_vistest, c_mighttest;
+
+int            c_chop, c_nochop;
+
+int            active;
+
+void CheckStack (leaf_t *leaf, threaddata_t *thread)
+{
+       pstack_t        *p, *p2;
+
+       for (p=thread->pstack_head.next ; p ; p=p->next)
+       {
+//             printf ("=");
+               if (p->leaf == leaf)
+                       Error ("CheckStack: leaf recursion");
+               for (p2=thread->pstack_head.next ; p2 != p ; p2=p2->next)
+                       if (p2->leaf == p->leaf)
+                               Error ("CheckStack: late leaf recursion");
+       }
+//     printf ("\n");
+}
+
+
+winding_t *AllocStackWinding (pstack_t *stack)
+{
+       int             i;
+
+       for (i=0 ; i<3 ; i++)
+       {
+               if (stack->freewindings[i])
+               {
+                       stack->freewindings[i] = 0;
+                       return &stack->windings[i];
+               }
+       }
+
+       Error ("AllocStackWinding: failed");
+
+       return NULL;
+}
+
+void FreeStackWinding (winding_t *w, pstack_t *stack)
+{
+       int             i;
+
+       i = w - stack->windings;
+
+       if (i<0 || i>2)
+               return;         // not from local
+
+       if (stack->freewindings[i])
+               Error ("FreeStackWinding: allready free");
+       stack->freewindings[i] = 1;
+}
+
+/*
+==============
+Vis_ChopWinding
+
+==============
+*/
+winding_t      *Vis_ChopWinding (winding_t *in, pstack_t *stack, plane_t *split)
+{
+       vec_t   dists[128];
+       int             sides[128];
+       int             counts[3];
+       vec_t   dot;
+       int             i, j;
+       vec_t   *p1, *p2;
+       vec3_t  mid;
+       winding_t       *neww;
+
+       counts[0] = counts[1] = counts[2] = 0;
+
+// determine sides for each point
+       for (i=0 ; i<in->numpoints ; i++)
+       {
+               dot = DotProduct (in->points[i], split->normal);
+               dot -= split->dist;
+               dists[i] = dot;
+               if (dot > ON_EPSILON)
+                       sides[i] = SIDE_FRONT;
+               else if (dot < -ON_EPSILON)
+                       sides[i] = SIDE_BACK;
+               else
+               {
+                       sides[i] = SIDE_ON;
+               }
+               counts[sides[i]]++;
+       }
+
+       if (!counts[1])
+               return in;              // completely on front side
+       
+       if (!counts[0])
+       {
+               FreeStackWinding (in, stack);
+               return NULL;
+       }
+
+       sides[i] = sides[0];
+       dists[i] = dists[0];
+       
+       neww = AllocStackWinding (stack);
+
+       neww->numpoints = 0;
+
+       for (i=0 ; i<in->numpoints ; i++)
+       {
+               p1 = in->points[i];
+
+               if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING)
+               {
+                       FreeStackWinding (neww, stack);
+                       return in;              // can't chop -- fall back to original
+               }
+
+               if (sides[i] == SIDE_ON)
+               {
+                       VectorCopy (p1, neww->points[neww->numpoints]);
+                       neww->numpoints++;
+                       continue;
+               }
+       
+               if (sides[i] == SIDE_FRONT)
+               {
+                       VectorCopy (p1, neww->points[neww->numpoints]);
+                       neww->numpoints++;
+               }
+               
+               if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
+                       continue;
+                       
+               if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING)
+               {
+                       FreeStackWinding (neww, stack);
+                       return in;              // can't chop -- fall back to original
+               }
+
+       // generate a split point
+               p2 = in->points[(i+1)%in->numpoints];
+               
+               dot = dists[i] / (dists[i]-dists[i+1]);
+               for (j=0 ; j<3 ; j++)
+               {       // avoid round off error when possible
+                       if (split->normal[j] == 1)
+                               mid[j] = split->dist;
+                       else if (split->normal[j] == -1)
+                               mid[j] = -split->dist;
+                       else
+                               mid[j] = p1[j] + dot*(p2[j]-p1[j]);
+               }
+                       
+               VectorCopy (mid, neww->points[neww->numpoints]);
+               neww->numpoints++;
+       }
+       
+// free the original winding
+       FreeStackWinding (in, stack);
+       
+       return neww;
+}
+
+
+/*
+==============
+ClipToSeperators
+
+Source, pass, and target are an ordering of portals.
+
+Generates seperating planes canidates by taking two points from source and one
+point from pass, and clips target by them.
+
+If target is totally clipped away, that portal can not be seen through.
+
+Normal clip keeps target on the same side as pass, which is correct if the
+order goes source, pass, target.  If the order goes pass, source, target then
+flipclip should be set.
+==============
+*/
+winding_t      *ClipToSeperators (winding_t *source, winding_t *pass, winding_t *target, qboolean flipclip, pstack_t *stack)
+{
+       int                     i, j, k, l;
+       plane_t         plane;
+       vec3_t          v1, v2;
+       float           d;
+       vec_t           length;
+       int                     counts[3];
+       qboolean                fliptest;
+
+// check all combinations      
+       for (i=0 ; i<source->numpoints ; i++)
+       {
+               l = (i+1)%source->numpoints;
+               VectorSubtract (source->points[l] , source->points[i], v1);
+
+       // fing a vertex of pass that makes a plane that puts all of the
+       // vertexes of pass on the front side and all of the vertexes of
+       // source on the back side
+               for (j=0 ; j<pass->numpoints ; j++)
+               {
+                       VectorSubtract (pass->points[j], source->points[i], v2);
+
+                       plane.normal[0] = v1[1]*v2[2] - v1[2]*v2[1];
+                       plane.normal[1] = v1[2]*v2[0] - v1[0]*v2[2];
+                       plane.normal[2] = v1[0]*v2[1] - v1[1]*v2[0];
+                       
+               // if points don't make a valid plane, skip it
+
+                       length = plane.normal[0] * plane.normal[0]
+                       + plane.normal[1] * plane.normal[1]
+                       + plane.normal[2] * plane.normal[2];
+                       
+                       if (length < ON_EPSILON)
+                               continue;
+
+                       length = 1/sqrt(length);
+                       
+                       plane.normal[0] *= length;
+                       plane.normal[1] *= length;
+                       plane.normal[2] *= length;
+
+                       plane.dist = DotProduct (pass->points[j], plane.normal);
+
+               //
+               // find out which side of the generated seperating plane has the
+               // source portal
+               //
+#if 1
+                       fliptest = false;
+                       for (k=0 ; k<source->numpoints ; k++)
+                       {
+                               if (k == i || k == l)
+                                       continue;
+                               d = DotProduct (source->points[k], plane.normal) - plane.dist;
+                               if (d < -ON_EPSILON)
+                               {       // source is on the negative side, so we want all
+                                       // pass and target on the positive side
+                                       fliptest = false;
+                                       break;
+                               }
+                               else if (d > ON_EPSILON)
+                               {       // source is on the positive side, so we want all
+                                       // pass and target on the negative side
+                                       fliptest = true;
+                                       break;
+                               }
+                       }
+                       if (k == source->numpoints)
+                               continue;               // planar with source portal
+#else
+                       fliptest = flipclip;
+#endif
+               //
+               // flip the normal if the source portal is backwards
+               //
+                       if (fliptest)
+                       {
+                               VectorSubtract (vec3_origin, plane.normal, plane.normal);
+                               plane.dist = -plane.dist;
+                       }
+#if 1
+               //
+               // if all of the pass portal points are now on the positive side,
+               // this is the seperating plane
+               //
+                       counts[0] = counts[1] = counts[2] = 0;
+                       for (k=0 ; k<pass->numpoints ; k++)
+                       {
+                               if (k==j)
+                                       continue;
+                               d = DotProduct (pass->points[k], plane.normal) - plane.dist;
+                               if (d < -ON_EPSILON)
+                                       break;
+                               else if (d > ON_EPSILON)
+                                       counts[0]++;
+                               else
+                                       counts[2]++;
+                       }
+                       if (k != pass->numpoints)
+                               continue;       // points on negative side, not a seperating plane
+                               
+                       if (!counts[0])
+                               continue;       // planar with seperating plane
+#else
+                       k = (j+1)%pass->numpoints;
+                       d = DotProduct (pass->points[k], plane.normal) - plane.dist;
+                       if (d < -ON_EPSILON)
+                               continue;
+                       k = (j+pass->numpoints-1)%pass->numpoints;
+                       d = DotProduct (pass->points[k], plane.normal) - plane.dist;
+                       if (d < -ON_EPSILON)
+                               continue;                       
+#endif
+               //
+               // flip the normal if we want the back side
+               //
+                       if (flipclip)
+                       {
+                               VectorSubtract (vec3_origin, plane.normal, plane.normal);
+                               plane.dist = -plane.dist;
+                       }
+                       
+               //
+               // clip target by the seperating plane
+               //
+                       target = Vis_ChopWinding (target, stack, &plane);
+                       if (!target)
+                               return NULL;            // target is not visible
+               }
+       }
+       
+       return target;
+}
+
+
+
+/*
+==================
+RecursiveLeafFlow
+
+Flood fill through the leafs
+If src_portal is NULL, this is the originating leaf
+==================
+*/
+void RecursiveLeafFlow (int leafnum, threaddata_t *thread, pstack_t *prevstack)
+{
+       pstack_t        stack;
+       portal_t        *p;
+       plane_t         backplane;
+       leaf_t          *leaf;
+       int                     i, j;
+       long            *test, *might, *vis, more;
+       int                     pnum;
+
+       thread->c_chains++;
+
+       leaf = &leafs[leafnum];
+//     CheckStack (leaf, thread);
+
+       prevstack->next = &stack;
+
+       stack.next = NULL;
+       stack.leaf = leaf;
+       stack.portal = NULL;
+
+       might = (long *)stack.mightsee;
+       vis = (long *)thread->base->portalvis;
+       
+// check all portals for flowing into other leafs      
+       for (i=0 ; i<leaf->numportals ; i++)
+       {
+               p = leaf->portals[i];
+               pnum = p - portals;
+
+               if ( ! (prevstack->mightsee[pnum >> 3] & (1<<(pnum&7)) ) )
+               {
+                       continue;       // can't possibly see it
+               }
+
+       // if the portal can't see anything we haven't allready seen, skip it
+               if (p->status == stat_done)
+               {
+                       test = (long *)p->portalvis;
+               }
+               else
+               {
+                       test = (long *)p->portalflood;
+               }
+
+               more = 0;
+               for (j=0 ; j<portallongs ; j++)
+               {
+                       might[j] = ((long *)prevstack->mightsee)[j] & test[j];
+                       more |= (might[j] & ~vis[j]);
+               }
+               
+               if (!more && 
+                       (thread->base->portalvis[pnum>>3] & (1<<(pnum&7))) )
+               {       // can't see anything new
+                       continue;
+               }
+
+               // get plane of portal, point normal into the neighbor leaf
+               stack.portalplane = p->plane;
+               VectorSubtract (vec3_origin, p->plane.normal, backplane.normal);
+               backplane.dist = -p->plane.dist;
+               
+//             c_portalcheck++;
+               
+               stack.portal = p;
+               stack.next = NULL;
+               stack.freewindings[0] = 1;
+               stack.freewindings[1] = 1;
+               stack.freewindings[2] = 1;
+               
+#if 1
+{
+float d;
+
+       d = DotProduct (p->origin, thread->pstack_head.portalplane.normal);
+       d -= thread->pstack_head.portalplane.dist;
+       if (d < -p->radius)
+       {
+               continue;
+       }
+       else if (d > p->radius)
+       {
+               stack.pass = p->winding;
+       }
+       else    
+       {
+               stack.pass = Vis_ChopWinding (p->winding, &stack, &thread->pstack_head.portalplane);
+               if (!stack.pass)
+                       continue;
+       }
+}
+#else
+               stack.pass = Vis_ChopWinding (p->winding, &stack, &thread->pstack_head.portalplane);
+               if (!stack.pass)
+                       continue;
+#endif
+
+       
+#if 1
+{
+float d;
+
+       d = DotProduct (thread->base->origin, p->plane.normal);
+       d -= p->plane.dist;
+       if (d > p->radius)
+       {
+               continue;
+       }
+       else if (d < -p->radius)
+       {
+               stack.source = prevstack->source;
+       }
+       else    
+       {
+               stack.source = Vis_ChopWinding (prevstack->source, &stack, &backplane);
+               if (!stack.source)
+                       continue;
+       }
+}
+#else
+               stack.source = Vis_ChopWinding (prevstack->source, &stack, &backplane);
+               if (!stack.source)
+                       continue;
+#endif
+
+               if (!prevstack->pass)
+               {       // the second leaf can only be blocked if coplanar
+
+                       // mark the portal as visible
+                       thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));
+
+                       RecursiveLeafFlow (p->leaf, thread, &stack);
+                       continue;
+               }
+
+               stack.pass = ClipToSeperators (stack.source, prevstack->pass, stack.pass, false, &stack);
+               if (!stack.pass)
+                       continue;
+               
+               stack.pass = ClipToSeperators (prevstack->pass, stack.source, stack.pass, true, &stack);
+               if (!stack.pass)
+                       continue;
+
+               // mark the portal as visible
+               thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));
+
+               // flow through it for real
+               RecursiveLeafFlow (p->leaf, thread, &stack);
+       }       
+}
+
+
+/*
+===============
+PortalFlow
+
+generates the portalvis bit vector
+===============
+*/
+void PortalFlow (int portalnum)
+{
+       threaddata_t    data;
+       int                             i;
+       portal_t                *p;
+       int                             c_might, c_can;
+
+       p = sorted_portals[portalnum];
+       p->status = stat_working;
+
+       c_might = CountBits (p->portalflood, numportals*2);
+
+       memset (&data, 0, sizeof(data));
+       data.base = p;
+       
+       data.pstack_head.portal = p;
+       data.pstack_head.source = p->winding;
+       data.pstack_head.portalplane = p->plane;
+       for (i=0 ; i<portallongs ; i++)
+               ((long *)data.pstack_head.mightsee)[i] = ((long *)p->portalflood)[i];
+       RecursiveLeafFlow (p->leaf, &data, &data.pstack_head);
+
+       p->status = stat_done;
+
+       c_can = CountBits (p->portalvis, numportals*2);
+
+       Sys_FPrintf ( SYS_VRB, "portal:%4i  mightsee:%4i  cansee:%4i (%i chains)\n", 
+               (int)(p - portals),     c_might, c_can, data.c_chains);
+}
+
+
+/*
+===============================================================================
+
+This is a rough first-order aproximation that is used to trivially reject some
+of the final calculations.
+
+
+Calculates portalfront and portalflood bit vectors
+
+thinking about:
+
+typedef struct passage_s
+{
+       struct passage_s        *next;
+       struct portal_s         *to;
+       stryct sep_s            *seperators;
+       byte                            *mightsee;
+} passage_t;
+
+typedef struct portal_s
+{
+       struct passage_s        *passages;
+       int                                     leaf;           // leaf portal faces into
+} portal_s;
+
+leaf = portal->leaf
+clear 
+for all portals
+
+
+calc portal visibility
+       clear bit vector
+       for all passages
+               passage visibility
+
+
+for a portal to be visible to a passage, it must be on the front of
+all seperating planes, and both portals must be behind the mew portal
+
+===============================================================================
+*/
+
+int            c_flood, c_vis;
+
+
+/*
+==================
+SimpleFlood
+
+==================
+*/
+void SimpleFlood (portal_t *srcportal, int leafnum)
+{
+       int             i;
+       leaf_t  *leaf;
+       portal_t        *p;
+       int             pnum;
+
+       leaf = &leafs[leafnum];
+       
+       for (i=0 ; i<leaf->numportals ; i++)
+       {
+               p = leaf->portals[i];
+               pnum = p - portals;
+               if ( ! (srcportal->portalfront[pnum>>3] & (1<<(pnum&7)) ) )
+                       continue;
+
+               if (srcportal->portalflood[pnum>>3] & (1<<(pnum&7)) )
+                       continue;
+
+               srcportal->portalflood[pnum>>3] |= (1<<(pnum&7));
+               
+               SimpleFlood (srcportal, p->leaf);
+       }
+}
+
+/*
+==============
+BasePortalVis
+==============
+*/
+void BasePortalVis (int portalnum)
+{
+       int                     j, k;
+       portal_t        *tp, *p;
+       float           d;
+       winding_t       *w;
+
+       p = portals+portalnum;
+
+       p->portalfront = malloc (portalbytes);
+       memset (p->portalfront, 0, portalbytes);
+
+       p->portalflood = malloc (portalbytes);
+       memset (p->portalflood, 0, portalbytes);
+       
+       p->portalvis = malloc (portalbytes);
+       memset (p->portalvis, 0, portalbytes);
+       
+       for (j=0, tp = portals ; j<numportals*2 ; j++, tp++)
+       {
+               if (j == portalnum)
+                       continue;
+               w = tp->winding;
+               for (k=0 ; k<w->numpoints ; k++)
+               {
+                       d = DotProduct (w->points[k], p->plane.normal)
+                               - p->plane.dist;
+                       if (d > ON_EPSILON)
+                               break;
+               }
+               if (k == w->numpoints)
+                       continue;       // no points on front
+
+               w = p->winding;
+               for (k=0 ; k<w->numpoints ; k++)
+               {
+                       d = DotProduct (w->points[k], tp->plane.normal)
+                               - tp->plane.dist;
+                       if (d < -ON_EPSILON)
+                               break;
+               }
+               if (k == w->numpoints)
+                       continue;       // no points on front
+
+               p->portalfront[j>>3] |= (1<<(j&7));
+       }
+       
+       SimpleFlood (p, p->leaf);
+
+       p->nummightsee = CountBits (p->portalflood, numportals*2);
+//     printf ("portal %i: %i mightsee\n", portalnum, p->nummightsee);
+       c_flood += p->nummightsee;
+}
+
+
+
+
+
+/*
+===============================================================================
+
+This is a second order aproximation 
+
+Calculates portalvis bit vector
+
+WAAAAAAY too slow.
+
+===============================================================================
+*/
+
+/*
+==================
+RecursiveLeafBitFlow
+
+==================
+*/
+void RecursiveLeafBitFlow (int leafnum, byte *mightsee, byte *cansee)
+{
+       portal_t        *p;
+       leaf_t          *leaf;
+       int                     i, j;
+       long            more;
+       int                     pnum;
+       byte            newmight[MAX_PORTALS/8];
+
+       leaf = &leafs[leafnum];
+       
+// check all portals for flowing into other leafs      
+       for (i=0 ; i<leaf->numportals ; i++)
+       {
+               p = leaf->portals[i];
+               pnum = p - portals;
+
+               // if some previous portal can't see it, skip
+               if (! (mightsee[pnum>>3] & (1<<(pnum&7)) ) )
+                       continue;
+
+               // if this portal can see some portals we mightsee, recurse
+               more = 0;
+               for (j=0 ; j<portallongs ; j++)
+               {
+                       ((long *)newmight)[j] = ((long *)mightsee)[j] 
+                               & ((long *)p->portalflood)[j];
+                       more |= ((long *)newmight)[j] & ~((long *)cansee)[j];
+               }
+
+               if (!more)
+                       continue;       // can't see anything new
+
+               cansee[pnum>>3] |= (1<<(pnum&7));
+
+               RecursiveLeafBitFlow (p->leaf, newmight, cansee);
+       }       
+}
+
+/*
+==============
+BetterPortalVis
+==============
+*/
+void BetterPortalVis (int portalnum)
+{
+       portal_t        *p;
+
+       p = portals+portalnum;
+
+       RecursiveLeafBitFlow (p->leaf, p->portalflood, p->portalvis);
+
+       // build leaf vis information
+       p->nummightsee = CountBits (p->portalvis, numportals*2);
+       c_vis += p->nummightsee;
+}
+
+