]> de.git.xonotic.org Git - xonotic/netradiant.git/blobdiff - libs/jpeg6/jfdctflt.cpp
more eol-style
[xonotic/netradiant.git] / libs / jpeg6 / jfdctflt.cpp
index f41bff8287fe91cc095426a8c0bd9f2e4b5a0dc7..ee4d2bdc41fa8c4182b94517616f85b046c6daaf 100644 (file)
-/*\r
-\r
- * jfdctflt.c\r
-\r
- *\r
-\r
- * Copyright (C) 1994, Thomas G. Lane.\r
-\r
- * This file is part of the Independent JPEG Group's software.\r
-\r
- * For conditions of distribution and use, see the accompanying README file.\r
-\r
- *\r
-\r
- * This file contains a floating-point implementation of the\r
-\r
- * forward DCT (Discrete Cosine Transform).\r
-\r
- *\r
-\r
- * This implementation should be more accurate than either of the integer\r
-\r
- * DCT implementations.  However, it may not give the same results on all\r
-\r
- * machines because of differences in roundoff behavior.  Speed will depend\r
-\r
- * on the hardware's floating point capacity.\r
-\r
- *\r
-\r
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT\r
-\r
- * on each column.  Direct algorithms are also available, but they are\r
-\r
- * much more complex and seem not to be any faster when reduced to code.\r
-\r
- *\r
-\r
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for\r
-\r
- * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in\r
-\r
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell\r
-\r
- * JPEG textbook (see REFERENCES section in file README).  The following code\r
-\r
- * is based directly on figure 4-8 in P&M.\r
-\r
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is\r
-\r
- * possible to arrange the computation so that many of the multiplies are\r
-\r
- * simple scalings of the final outputs.  These multiplies can then be\r
-\r
- * folded into the multiplications or divisions by the JPEG quantization\r
-\r
- * table entries.  The AA&N method leaves only 5 multiplies and 29 adds\r
-\r
- * to be done in the DCT itself.\r
-\r
- * The primary disadvantage of this method is that with a fixed-point\r
-\r
- * implementation, accuracy is lost due to imprecise representation of the\r
-\r
- * scaled quantization values.  However, that problem does not arise if\r
-\r
- * we use floating point arithmetic.\r
-\r
- */\r
-\r
-\r
-\r
-#define JPEG_INTERNALS\r
-\r
-#include "jinclude.h"\r
-\r
-#include "radiant_jpeglib.h"\r
-\r
-#include "jdct.h"              /* Private declarations for DCT subsystem */\r
-\r
-\r
-\r
-#ifdef DCT_FLOAT_SUPPORTED\r
-\r
-\r
-\r
-\r
-\r
-/*\r
-\r
- * This module is specialized to the case DCTSIZE = 8.\r
-\r
- */\r
-\r
-\r
-\r
-#if DCTSIZE != 8\r
-\r
-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */\r
-\r
-#endif\r
-\r
-\r
-\r
-\r
-\r
-/*\r
-\r
- * Perform the forward DCT on one block of samples.\r
-\r
- */\r
-\r
-\r
-\r
-GLOBAL void\r
-\r
-jpeg_fdct_float (FAST_FLOAT * data)\r
-\r
-{\r
-\r
-  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;\r
-\r
-  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;\r
-\r
-  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;\r
-\r
-  FAST_FLOAT *dataptr;\r
-\r
-  int ctr;\r
-\r
-\r
-\r
-  /* Pass 1: process rows. */\r
-\r
-\r
-\r
-  dataptr = data;\r
-\r
-  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {\r
-\r
-    tmp0 = dataptr[0] + dataptr[7];\r
-\r
-    tmp7 = dataptr[0] - dataptr[7];\r
-\r
-    tmp1 = dataptr[1] + dataptr[6];\r
-\r
-    tmp6 = dataptr[1] - dataptr[6];\r
-\r
-    tmp2 = dataptr[2] + dataptr[5];\r
-\r
-    tmp5 = dataptr[2] - dataptr[5];\r
-\r
-    tmp3 = dataptr[3] + dataptr[4];\r
-\r
-    tmp4 = dataptr[3] - dataptr[4];\r
-\r
-    \r
-\r
-    /* Even part */\r
-\r
-    \r
-\r
-    tmp10 = tmp0 + tmp3;       /* phase 2 */\r
-\r
-    tmp13 = tmp0 - tmp3;\r
-\r
-    tmp11 = tmp1 + tmp2;\r
-\r
-    tmp12 = tmp1 - tmp2;\r
-\r
-    \r
-\r
-    dataptr[0] = tmp10 + tmp11; /* phase 3 */\r
-\r
-    dataptr[4] = tmp10 - tmp11;\r
-\r
-    \r
-\r
-    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */\r
-\r
-    dataptr[2] = tmp13 + z1;   /* phase 5 */\r
-\r
-    dataptr[6] = tmp13 - z1;\r
-\r
-    \r
-\r
-    /* Odd part */\r
-\r
-\r
-\r
-    tmp10 = tmp4 + tmp5;       /* phase 2 */\r
-\r
-    tmp11 = tmp5 + tmp6;\r
-\r
-    tmp12 = tmp6 + tmp7;\r
-\r
-\r
-\r
-    /* The rotator is modified from fig 4-8 to avoid extra negations. */\r
-\r
-    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */\r
-\r
-    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */\r
-\r
-    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */\r
-\r
-    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */\r
-\r
-\r
-\r
-    z11 = tmp7 + z3;           /* phase 5 */\r
-\r
-    z13 = tmp7 - z3;\r
-\r
-\r
-\r
-    dataptr[5] = z13 + z2;     /* phase 6 */\r
-\r
-    dataptr[3] = z13 - z2;\r
-\r
-    dataptr[1] = z11 + z4;\r
-\r
-    dataptr[7] = z11 - z4;\r
-\r
-\r
-\r
-    dataptr += DCTSIZE;                /* advance pointer to next row */\r
-\r
-  }\r
-\r
-\r
-\r
-  /* Pass 2: process columns. */\r
-\r
-\r
-\r
-  dataptr = data;\r
-\r
-  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {\r
-\r
-    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];\r
-\r
-    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];\r
-\r
-    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];\r
-\r
-    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];\r
-\r
-    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];\r
-\r
-    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];\r
-\r
-    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];\r
-\r
-    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];\r
-\r
-    \r
-\r
-    /* Even part */\r
-\r
-    \r
-\r
-    tmp10 = tmp0 + tmp3;       /* phase 2 */\r
-\r
-    tmp13 = tmp0 - tmp3;\r
-\r
-    tmp11 = tmp1 + tmp2;\r
-\r
-    tmp12 = tmp1 - tmp2;\r
-\r
-    \r
-\r
-    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */\r
-\r
-    dataptr[DCTSIZE*4] = tmp10 - tmp11;\r
-\r
-    \r
-\r
-    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */\r
-\r
-    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */\r
-\r
-    dataptr[DCTSIZE*6] = tmp13 - z1;\r
-\r
-    \r
-\r
-    /* Odd part */\r
-\r
-\r
-\r
-    tmp10 = tmp4 + tmp5;       /* phase 2 */\r
-\r
-    tmp11 = tmp5 + tmp6;\r
-\r
-    tmp12 = tmp6 + tmp7;\r
-\r
-\r
-\r
-    /* The rotator is modified from fig 4-8 to avoid extra negations. */\r
-\r
-    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */\r
-\r
-    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */\r
-\r
-    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */\r
-\r
-    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */\r
-\r
-\r
-\r
-    z11 = tmp7 + z3;           /* phase 5 */\r
-\r
-    z13 = tmp7 - z3;\r
-\r
-\r
-\r
-    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */\r
-\r
-    dataptr[DCTSIZE*3] = z13 - z2;\r
-\r
-    dataptr[DCTSIZE*1] = z11 + z4;\r
-\r
-    dataptr[DCTSIZE*7] = z11 - z4;\r
-\r
-\r
-\r
-    dataptr++;                 /* advance pointer to next column */\r
-\r
-  }\r
-\r
-}\r
-\r
-\r
-\r
-#endif /* DCT_FLOAT_SUPPORTED */\r
-\r
+/*
+
+ * jfdctflt.c
+
+ *
+
+ * Copyright (C) 1994, Thomas G. Lane.
+
+ * This file is part of the Independent JPEG Group's software.
+
+ * For conditions of distribution and use, see the accompanying README file.
+
+ *
+
+ * This file contains a floating-point implementation of the
+
+ * forward DCT (Discrete Cosine Transform).
+
+ *
+
+ * This implementation should be more accurate than either of the integer
+
+ * DCT implementations.  However, it may not give the same results on all
+
+ * machines because of differences in roundoff behavior.  Speed will depend
+
+ * on the hardware's floating point capacity.
+
+ *
+
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+
+ * on each column.  Direct algorithms are also available, but they are
+
+ * much more complex and seem not to be any faster when reduced to code.
+
+ *
+
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+
+ * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
+
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+
+ * JPEG textbook (see REFERENCES section in file README).  The following code
+
+ * is based directly on figure 4-8 in P&M.
+
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+
+ * possible to arrange the computation so that many of the multiplies are
+
+ * simple scalings of the final outputs.  These multiplies can then be
+
+ * folded into the multiplications or divisions by the JPEG quantization
+
+ * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
+
+ * to be done in the DCT itself.
+
+ * The primary disadvantage of this method is that with a fixed-point
+
+ * implementation, accuracy is lost due to imprecise representation of the
+
+ * scaled quantization values.  However, that problem does not arise if
+
+ * we use floating point arithmetic.
+
+ */
+
+
+
+#define JPEG_INTERNALS
+
+#include "jinclude.h"
+
+#include "radiant_jpeglib.h"
+
+#include "jdct.h"              /* Private declarations for DCT subsystem */
+
+
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+
+
+
+/*
+
+ * This module is specialized to the case DCTSIZE = 8.
+
+ */
+
+
+
+#if DCTSIZE != 8
+
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+
+#endif
+
+
+
+
+
+/*
+
+ * Perform the forward DCT on one block of samples.
+
+ */
+
+
+
+GLOBAL void
+
+jpeg_fdct_float (FAST_FLOAT * data)
+
+{
+
+  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+
+  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+
+  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
+
+  FAST_FLOAT *dataptr;
+
+  int ctr;
+
+
+
+  /* Pass 1: process rows. */
+
+
+
+  dataptr = data;
+
+  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+
+    tmp0 = dataptr[0] + dataptr[7];
+
+    tmp7 = dataptr[0] - dataptr[7];
+
+    tmp1 = dataptr[1] + dataptr[6];
+
+    tmp6 = dataptr[1] - dataptr[6];
+
+    tmp2 = dataptr[2] + dataptr[5];
+
+    tmp5 = dataptr[2] - dataptr[5];
+
+    tmp3 = dataptr[3] + dataptr[4];
+
+    tmp4 = dataptr[3] - dataptr[4];
+
+    
+
+    /* Even part */
+
+    
+
+    tmp10 = tmp0 + tmp3;       /* phase 2 */
+
+    tmp13 = tmp0 - tmp3;
+
+    tmp11 = tmp1 + tmp2;
+
+    tmp12 = tmp1 - tmp2;
+
+    
+
+    dataptr[0] = tmp10 + tmp11; /* phase 3 */
+
+    dataptr[4] = tmp10 - tmp11;
+
+    
+
+    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+    dataptr[2] = tmp13 + z1;   /* phase 5 */
+
+    dataptr[6] = tmp13 - z1;
+
+    
+
+    /* Odd part */
+
+
+
+    tmp10 = tmp4 + tmp5;       /* phase 2 */
+
+    tmp11 = tmp5 + tmp6;
+
+    tmp12 = tmp6 + tmp7;
+
+
+
+    /* The rotator is modified from fig 4-8 to avoid extra negations. */
+
+    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+
+    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+
+    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+
+    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+
+
+    z11 = tmp7 + z3;           /* phase 5 */
+
+    z13 = tmp7 - z3;
+
+
+
+    dataptr[5] = z13 + z2;     /* phase 6 */
+
+    dataptr[3] = z13 - z2;
+
+    dataptr[1] = z11 + z4;
+
+    dataptr[7] = z11 - z4;
+
+
+
+    dataptr += DCTSIZE;                /* advance pointer to next row */
+
+  }
+
+
+
+  /* Pass 2: process columns. */
+
+
+
+  dataptr = data;
+
+  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+
+    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+
+    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+
+    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+
+    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+
+    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+
+    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+
+    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+
+    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+    
+
+    /* Even part */
+
+    
+
+    tmp10 = tmp0 + tmp3;       /* phase 2 */
+
+    tmp13 = tmp0 - tmp3;
+
+    tmp11 = tmp1 + tmp2;
+
+    tmp12 = tmp1 - tmp2;
+
+    
+
+    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+
+    dataptr[DCTSIZE*4] = tmp10 - tmp11;
+
+    
+
+    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+
+    dataptr[DCTSIZE*6] = tmp13 - z1;
+
+    
+
+    /* Odd part */
+
+
+
+    tmp10 = tmp4 + tmp5;       /* phase 2 */
+
+    tmp11 = tmp5 + tmp6;
+
+    tmp12 = tmp6 + tmp7;
+
+
+
+    /* The rotator is modified from fig 4-8 to avoid extra negations. */
+
+    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+
+    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+
+    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+
+    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+
+
+    z11 = tmp7 + z3;           /* phase 5 */
+
+    z13 = tmp7 - z3;
+
+
+
+    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+
+    dataptr[DCTSIZE*3] = z13 - z2;
+
+    dataptr[DCTSIZE*1] = z11 + z4;
+
+    dataptr[DCTSIZE*7] = z11 - z4;
+
+
+
+    dataptr++;                 /* advance pointer to next column */
+
+  }
+
+}
+
+
+
+#endif /* DCT_FLOAT_SUPPORTED */
+