]> de.git.xonotic.org Git - xonotic/darkplaces.git/blob - gl_models.c
fc23da5249e5d61bf8e459a96bca5d17d72afebf
[xonotic/darkplaces.git] / gl_models.c
1
2 #include "quakedef.h"
3
4 cvar_t r_quickmodels = {0, "r_quickmodels", "1"};
5
6 typedef struct
7 {
8         float m[3][4];
9 } zymbonematrix;
10
11 // LordHavoc: vertex arrays
12
13 float *aliasvertbuf;
14 float *aliasvertcolorbuf;
15 float *aliasvert; // this may point at aliasvertbuf or at vertex arrays in the mesh backend
16 float *aliasvertcolor; // this may point at aliasvertcolorbuf or at vertex arrays in the mesh backend
17
18 float *aliasvertcolor2;
19 float *aliasvertnorm;
20 int *aliasvertusage;
21 zymbonematrix *zymbonepose;
22
23 mempool_t *gl_models_mempool;
24
25 void gl_models_start(void)
26 {
27         // allocate vertex processing arrays
28         gl_models_mempool = Mem_AllocPool("GL_Models");
29         aliasvert = aliasvertbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
30         aliasvertcolor = aliasvertcolorbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
31         aliasvertnorm = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][3]));
32         aliasvertcolor2 = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); // used temporarily for tinted coloring
33         zymbonepose = Mem_Alloc(gl_models_mempool, sizeof(zymbonematrix[256]));
34         aliasvertusage = Mem_Alloc(gl_models_mempool, sizeof(int[MD2MAX_VERTS]));
35 }
36
37 void gl_models_shutdown(void)
38 {
39         Mem_FreePool(&gl_models_mempool);
40 }
41
42 void gl_models_newmap(void)
43 {
44 }
45
46 void GL_Models_Init(void)
47 {
48         Cvar_RegisterVariable(&r_quickmodels);
49
50         R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap);
51 }
52
53 /*
54 void R_AliasTransformVerts(int vertcount)
55 {
56         vec3_t point;
57         float *av;
58         av = aliasvert;
59         while (vertcount >= 4)
60         {
61                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
62                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
63                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
64                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
65                 vertcount -= 4;
66         }
67         while(vertcount > 0)
68         {
69                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
70                 vertcount--;
71         }
72 }
73 */
74
75 void R_AliasLerpVerts(int vertcount,
76                 float lerp1, const trivertx_t *verts1, const vec3_t fscale1, const vec3_t translate1,
77                 float lerp2, const trivertx_t *verts2, const vec3_t fscale2, const vec3_t translate2,
78                 float lerp3, const trivertx_t *verts3, const vec3_t fscale3, const vec3_t translate3,
79                 float lerp4, const trivertx_t *verts4, const vec3_t fscale4, const vec3_t translate4)
80 {
81         int i;
82         vec3_t scale1, scale2, scale3, scale4, translate;
83         const float *n1, *n2, *n3, *n4;
84         float *av, *avn;
85         av = aliasvert;
86         avn = aliasvertnorm;
87         VectorScale(fscale1, lerp1, scale1);
88         if (lerp2)
89         {
90                 VectorScale(fscale2, lerp2, scale2);
91                 if (lerp3)
92                 {
93                         VectorScale(fscale3, lerp3, scale3);
94                         if (lerp4)
95                         {
96                                 VectorScale(fscale4, lerp4, scale4);
97                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3 + translate4[0] * lerp4;
98                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3 + translate4[1] * lerp4;
99                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3 + translate4[2] * lerp4;
100                                 // generate vertices
101                                 for (i = 0;i < vertcount;i++)
102                                 {
103                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + verts4->v[0] * scale4[0] + translate[0];
104                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + verts4->v[1] * scale4[1] + translate[1];
105                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + verts4->v[2] * scale4[2] + translate[2];
106                                         n1 = m_bytenormals[verts1->lightnormalindex];
107                                         n2 = m_bytenormals[verts2->lightnormalindex];
108                                         n3 = m_bytenormals[verts3->lightnormalindex];
109                                         n4 = m_bytenormals[verts4->lightnormalindex];
110                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3 + n4[0] * lerp4;
111                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3 + n4[1] * lerp4;
112                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3 + n4[2] * lerp4;
113                                         av += 4;
114                                         avn += 3;
115                                         verts1++;verts2++;verts3++;verts4++;
116                                 }
117                         }
118                         else
119                         {
120                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3;
121                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3;
122                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3;
123                                 // generate vertices
124                                 for (i = 0;i < vertcount;i++)
125                                 {
126                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + translate[0];
127                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + translate[1];
128                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + translate[2];
129                                         n1 = m_bytenormals[verts1->lightnormalindex];
130                                         n2 = m_bytenormals[verts2->lightnormalindex];
131                                         n3 = m_bytenormals[verts3->lightnormalindex];
132                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3;
133                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3;
134                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3;
135                                         av += 4;
136                                         avn += 3;
137                                         verts1++;verts2++;verts3++;
138                                 }
139                         }
140                 }
141                 else
142                 {
143                         translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2;
144                         translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2;
145                         translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2;
146                         // generate vertices
147                         for (i = 0;i < vertcount;i++)
148                         {
149                                 av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + translate[0];
150                                 av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + translate[1];
151                                 av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + translate[2];
152                                 n1 = m_bytenormals[verts1->lightnormalindex];
153                                 n2 = m_bytenormals[verts2->lightnormalindex];
154                                 avn[0] = n1[0] * lerp1 + n2[0] * lerp2;
155                                 avn[1] = n1[1] * lerp1 + n2[1] * lerp2;
156                                 avn[2] = n1[2] * lerp1 + n2[2] * lerp2;
157                                 av += 4;
158                                 avn += 3;
159                                 verts1++;verts2++;
160                         }
161                 }
162         }
163         else
164         {
165                 translate[0] = translate1[0] * lerp1;
166                 translate[1] = translate1[1] * lerp1;
167                 translate[2] = translate1[2] * lerp1;
168                 // generate vertices
169                 if (lerp1 != 1)
170                 {
171                         // general but almost never used case
172                         for (i = 0;i < vertcount;i++)
173                         {
174                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
175                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
176                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
177                                 n1 = m_bytenormals[verts1->lightnormalindex];
178                                 avn[0] = n1[0] * lerp1;
179                                 avn[1] = n1[1] * lerp1;
180                                 avn[2] = n1[2] * lerp1;
181                                 av += 4;
182                                 avn += 3;
183                                 verts1++;
184                         }
185                 }
186                 else
187                 {
188                         // fast normal case
189                         for (i = 0;i < vertcount;i++)
190                         {
191                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
192                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
193                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
194                                 VectorCopy(m_bytenormals[verts1->lightnormalindex], avn);
195                                 av += 4;
196                                 avn += 3;
197                                 verts1++;
198                         }
199                 }
200         }
201 }
202
203 skinframe_t *R_FetchSkinFrame(const entity_render_t *ent)
204 {
205         model_t *model = ent->model;
206         unsigned int s = (unsigned int) ent->skinnum;
207         if (s >= model->numskins)
208                 s = 0;
209         if (model->skinscenes[s].framecount > 1)
210                 return &model->skinframes[model->skinscenes[s].firstframe + (int) (cl.time * 10) % model->skinscenes[s].framecount];
211         else
212                 return &model->skinframes[model->skinscenes[s].firstframe];
213 }
214
215 void R_SetupMDLMD2Frames(const entity_render_t *ent, float colorr, float colorg, float colorb)
216 {
217         const md2frame_t *frame1, *frame2, *frame3, *frame4;
218         const trivertx_t *frame1verts, *frame2verts, *frame3verts, *frame4verts;
219         const model_t *model = ent->model;
220
221         frame1 = &model->mdlmd2data_frames[ent->frameblend[0].frame];
222         frame2 = &model->mdlmd2data_frames[ent->frameblend[1].frame];
223         frame3 = &model->mdlmd2data_frames[ent->frameblend[2].frame];
224         frame4 = &model->mdlmd2data_frames[ent->frameblend[3].frame];
225         frame1verts = &model->mdlmd2data_pose[ent->frameblend[0].frame * model->numverts];
226         frame2verts = &model->mdlmd2data_pose[ent->frameblend[1].frame * model->numverts];
227         frame3verts = &model->mdlmd2data_pose[ent->frameblend[2].frame * model->numverts];
228         frame4verts = &model->mdlmd2data_pose[ent->frameblend[3].frame * model->numverts];
229         R_AliasLerpVerts(model->numverts,
230                 ent->frameblend[0].lerp, frame1verts, frame1->scale, frame1->translate,
231                 ent->frameblend[1].lerp, frame2verts, frame2->scale, frame2->translate,
232                 ent->frameblend[2].lerp, frame3verts, frame3->scale, frame3->translate,
233                 ent->frameblend[3].lerp, frame4verts, frame4->scale, frame4->translate);
234
235         R_LightModel(ent, model->numverts, colorr, colorg, colorb, false);
236
237         //R_AliasTransformVerts(model->numverts);
238 }
239
240 void R_DrawQ1Q2AliasModelCallback (const void *calldata1, int calldata2)
241 {
242         int c, pantsfullbright, shirtfullbright, colormapped;
243         float pantscolor[3], shirtcolor[3];
244         float fog;
245         vec3_t diff;
246         qbyte *bcolor;
247         rmeshbufferinfo_t m;
248         model_t *model;
249         skinframe_t *skinframe;
250         const entity_render_t *ent = calldata1;
251         int blendfunc1, blendfunc2;
252
253 //      softwaretransformforentity(ent);
254
255         fog = 0;
256         if (fogenabled)
257         {
258                 VectorSubtract(ent->origin, r_origin, diff);
259                 fog = DotProduct(diff,diff);
260                 if (fog < 0.01f)
261                         fog = 0.01f;
262                 fog = exp(fogdensity/fog);
263                 if (fog > 1)
264                         fog = 1;
265                 if (fog < 0.01f)
266                         fog = 0;
267                 // fog method: darken, additive fog
268                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
269                 // 2. render fog as additive
270         }
271
272         model = ent->model;
273
274         skinframe = R_FetchSkinFrame(ent);
275
276         colormapped = !skinframe->merged || (ent->colormap >= 0 && skinframe->base && (skinframe->pants || skinframe->shirt));
277         if (!colormapped && !fog && !skinframe->glow && !skinframe->fog)
278         {
279                 // fastpath for the normal situation (one texture)
280                 memset(&m, 0, sizeof(m));
281                 if (ent->effects & EF_ADDITIVE)
282                 {
283                         m.blendfunc1 = GL_SRC_ALPHA;
284                         m.blendfunc2 = GL_ONE;
285                 }
286                 else if (ent->alpha != 1.0 || skinframe->fog != NULL)
287                 {
288                         m.blendfunc1 = GL_SRC_ALPHA;
289                         m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
290                 }
291                 else
292                 {
293                         m.blendfunc1 = GL_ONE;
294                         m.blendfunc2 = GL_ZERO;
295                 }
296                 m.numtriangles = model->numtris;
297                 m.numverts = model->numverts;
298                 m.tex[0] = R_GetTexture(skinframe->merged);
299                 m.matrix = ent->matrix;
300
301                 c_alias_polys += m.numtriangles;
302                 if (R_Mesh_Draw_GetBuffer(&m, true))
303                 {
304                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
305                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
306
307                         aliasvert = m.vertex;
308                         aliasvertcolor = m.color;
309                         R_SetupMDLMD2Frames(ent, m.colorscale, m.colorscale, m.colorscale);
310                         aliasvert = aliasvertbuf;
311                         aliasvertcolor = aliasvertcolorbuf;
312
313                         R_Mesh_Render();
314                 }
315                 return;
316         }
317
318         R_SetupMDLMD2Frames(ent, 1 - fog, 1 - fog, 1 - fog);
319
320         if (colormapped)
321         {
322                 // 128-224 are backwards ranges
323                 c = (ent->colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12;
324                 bcolor = (qbyte *) (&d_8to24table[c]);
325                 pantsfullbright = c >= 224;
326                 VectorScale(bcolor, (1.0f / 255.0f), pantscolor);
327                 c = (ent->colormap & 0xF0);c += (c >= 128 && c < 224) ? 4 : 12;
328                 bcolor = (qbyte *) (&d_8to24table[c]);
329                 shirtfullbright = c >= 224;
330                 VectorScale(bcolor, (1.0f / 255.0f), shirtcolor);
331         }
332         else
333         {
334                 pantscolor[0] = pantscolor[1] = pantscolor[2] = shirtcolor[0] = shirtcolor[1] = shirtcolor[2] = 1;
335                 pantsfullbright = shirtfullbright = false;
336         }
337
338         if (ent->effects & EF_ADDITIVE)
339         {
340                 blendfunc1 = GL_SRC_ALPHA;
341                 blendfunc2 = GL_ONE;
342         }
343         else if (ent->alpha != 1.0 || skinframe->fog != NULL)
344         {
345                 blendfunc1 = GL_SRC_ALPHA;
346                 blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
347         }
348         else
349         {
350                 blendfunc1 = GL_ONE;
351                 blendfunc2 = GL_ZERO;
352         }
353
354         memset(&m, 0, sizeof(m));
355         m.blendfunc1 = blendfunc1;
356         m.blendfunc2 = blendfunc2;
357         m.numtriangles = model->numtris;
358         m.numverts = model->numverts;
359         m.matrix = ent->matrix;
360         m.tex[0] = colormapped ? R_GetTexture(skinframe->base) : R_GetTexture(skinframe->merged);
361         if (m.tex[0] && R_Mesh_Draw_GetBuffer(&m, true))
362         {
363                 blendfunc1 = GL_SRC_ALPHA;
364                 blendfunc2 = GL_ONE;
365                 c_alias_polys += m.numtriangles;
366                 R_ModulateColors(aliasvertcolor, m.color, m.numverts, m.colorscale, m.colorscale, m.colorscale);
367                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
368                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
369                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
370                 R_Mesh_Render();
371         }
372
373         if (colormapped)
374         {
375                 if (skinframe->pants)
376                 {
377                         memset(&m, 0, sizeof(m));
378                         m.blendfunc1 = blendfunc1;
379                         m.blendfunc2 = blendfunc2;
380                         m.numtriangles = model->numtris;
381                         m.numverts = model->numverts;
382                         m.matrix = ent->matrix;
383                         m.tex[0] = R_GetTexture(skinframe->pants);
384                         if (m.tex[0] && R_Mesh_Draw_GetBuffer(&m, true))
385                         {
386                                 blendfunc1 = GL_SRC_ALPHA;
387                                 blendfunc2 = GL_ONE;
388                                 c_alias_polys += m.numtriangles;
389                                 if (pantsfullbright)
390                                         R_FillColors(m.color, m.numverts, pantscolor[0] * m.colorscale, pantscolor[1] * m.colorscale, pantscolor[2] * m.colorscale, ent->alpha);
391                                 else
392                                         R_ModulateColors(aliasvertcolor, m.color, m.numverts, pantscolor[0] * m.colorscale, pantscolor[1] * m.colorscale, pantscolor[2] * m.colorscale);
393                                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
394                                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
395                                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
396                                 R_Mesh_Render();
397                         }
398                 }
399                 if (skinframe->shirt)
400                 {
401                         memset(&m, 0, sizeof(m));
402                         m.blendfunc1 = blendfunc1;
403                         m.blendfunc2 = blendfunc2;
404                         m.numtriangles = model->numtris;
405                         m.numverts = model->numverts;
406                         m.matrix = ent->matrix;
407                         m.tex[0] = R_GetTexture(skinframe->shirt);
408                         if (m.tex[0] && R_Mesh_Draw_GetBuffer(&m, true))
409                         {
410                                 blendfunc1 = GL_SRC_ALPHA;
411                                 blendfunc2 = GL_ONE;
412                                 c_alias_polys += m.numtriangles;
413                                 if (shirtfullbright)
414                                         R_FillColors(m.color, m.numverts, shirtcolor[0] * m.colorscale, shirtcolor[1] * m.colorscale, shirtcolor[2] * m.colorscale, ent->alpha);
415                                 else
416                                         R_ModulateColors(aliasvertcolor, m.color, m.numverts, shirtcolor[0] * m.colorscale, shirtcolor[1] * m.colorscale, shirtcolor[2] * m.colorscale);
417                                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
418                                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
419                                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
420                                 R_Mesh_Render();
421                         }
422                 }
423         }
424         if (skinframe->glow)
425         {
426                 memset(&m, 0, sizeof(m));
427                 m.blendfunc1 = blendfunc1;
428                 m.blendfunc2 = blendfunc2;
429                 m.numtriangles = model->numtris;
430                 m.numverts = model->numverts;
431                 m.matrix = ent->matrix;
432                 m.tex[0] = R_GetTexture(skinframe->glow);
433                 if (m.tex[0] && R_Mesh_Draw_GetBuffer(&m, true))
434                 {
435                         blendfunc1 = GL_SRC_ALPHA;
436                         blendfunc2 = GL_ONE;
437                         c_alias_polys += m.numtriangles;
438                         R_FillColors(m.color, m.numverts, (1 - fog) * m.colorscale, (1 - fog) * m.colorscale, (1 - fog) * m.colorscale, ent->alpha);
439                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
440                         memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
441                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
442                         R_Mesh_Render();
443                 }
444         }
445         if (fog)
446         {
447                 memset(&m, 0, sizeof(m));
448                 m.blendfunc1 = GL_SRC_ALPHA;
449                 m.blendfunc2 = GL_ONE;
450                 m.numtriangles = model->numtris;
451                 m.numverts = model->numverts;
452                 m.matrix = ent->matrix;
453                 m.tex[0] = R_GetTexture(skinframe->fog);
454                 if (m.tex[0] && R_Mesh_Draw_GetBuffer(&m, true))
455                 {
456                         c_alias_polys += m.numtriangles;
457                         R_FillColors(m.color, m.numverts, fogcolor[0] * fog * m.colorscale, fogcolor[1] * fog * m.colorscale, fogcolor[2] * fog * m.colorscale, ent->alpha);
458                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
459                         memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
460                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
461                         R_Mesh_Render();
462                 }
463         }
464 }
465
466 int ZymoticLerpBones(int count, const zymbonematrix *bonebase, const frameblend_t *blend, const zymbone_t *bone)
467 {
468         int i;
469         float lerp1, lerp2, lerp3, lerp4;
470         zymbonematrix *out, rootmatrix, m;
471         const zymbonematrix *bone1, *bone2, *bone3, *bone4;
472
473         /*
474         // LordHavoc: combine transform from zym coordinate space to quake coordinate space with model to world transform matrix
475         rootmatrix.m[0][0] = softwaretransform_matrix[0][1];
476         rootmatrix.m[0][1] = -softwaretransform_matrix[0][0];
477         rootmatrix.m[0][2] = softwaretransform_matrix[0][2];
478         rootmatrix.m[0][3] = softwaretransform_matrix[0][3];
479         rootmatrix.m[1][0] = softwaretransform_matrix[1][1];
480         rootmatrix.m[1][1] = -softwaretransform_matrix[1][0];
481         rootmatrix.m[1][2] = softwaretransform_matrix[1][2];
482         rootmatrix.m[1][3] = softwaretransform_matrix[1][3];
483         rootmatrix.m[2][0] = softwaretransform_matrix[2][1];
484         rootmatrix.m[2][1] = -softwaretransform_matrix[2][0];
485         rootmatrix.m[2][2] = softwaretransform_matrix[2][2];
486         rootmatrix.m[2][3] = softwaretransform_matrix[2][3];
487         */
488         rootmatrix.m[0][0] = 1;
489         rootmatrix.m[0][1] = 0;
490         rootmatrix.m[0][2] = 0;
491         rootmatrix.m[0][3] = 0;
492         rootmatrix.m[1][0] = 0;
493         rootmatrix.m[1][1] = 1;
494         rootmatrix.m[1][2] = 0;
495         rootmatrix.m[1][3] = 0;
496         rootmatrix.m[2][0] = 0;
497         rootmatrix.m[2][1] = 0;
498         rootmatrix.m[2][2] = 1;
499         rootmatrix.m[2][3] = 0;
500
501         bone1 = bonebase + blend[0].frame * count;
502         lerp1 = blend[0].lerp;
503         if (blend[1].lerp)
504         {
505                 bone2 = bonebase + blend[1].frame * count;
506                 lerp2 = blend[1].lerp;
507                 if (blend[2].lerp)
508                 {
509                         bone3 = bonebase + blend[2].frame * count;
510                         lerp3 = blend[2].lerp;
511                         if (blend[3].lerp)
512                         {
513                                 // 4 poses
514                                 bone4 = bonebase + blend[3].frame * count;
515                                 lerp4 = blend[3].lerp;
516                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
517                                 {
518                                         // interpolate matrices
519                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4;
520                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4;
521                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4;
522                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4;
523                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4;
524                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4;
525                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4;
526                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4;
527                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4;
528                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4;
529                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4;
530                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4;
531                                         if (bone->parent >= 0)
532                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
533                                         else
534                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
535                                         bone1++;
536                                         bone2++;
537                                         bone3++;
538                                         bone4++;
539                                         bone++;
540                                 }
541                         }
542                         else
543                         {
544                                 // 3 poses
545                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
546                                 {
547                                         // interpolate matrices
548                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3;
549                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3;
550                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3;
551                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3;
552                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3;
553                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3;
554                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3;
555                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3;
556                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3;
557                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3;
558                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3;
559                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3;
560                                         if (bone->parent >= 0)
561                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
562                                         else
563                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
564                                         bone1++;
565                                         bone2++;
566                                         bone3++;
567                                         bone++;
568                                 }
569                         }
570                 }
571                 else
572                 {
573                         // 2 poses
574                         for (i = 0, out = zymbonepose;i < count;i++, out++)
575                         {
576                                 // interpolate matrices
577                                 m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2;
578                                 m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2;
579                                 m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2;
580                                 m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2;
581                                 m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2;
582                                 m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2;
583                                 m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2;
584                                 m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2;
585                                 m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2;
586                                 m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2;
587                                 m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2;
588                                 m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2;
589                                 if (bone->parent >= 0)
590                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
591                                 else
592                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
593                                 bone1++;
594                                 bone2++;
595                                 bone++;
596                         }
597                 }
598         }
599         else
600         {
601                 // 1 pose
602                 if (lerp1 != 1)
603                 {
604                         // lerp != 1.0
605                         for (i = 0, out = zymbonepose;i < count;i++, out++)
606                         {
607                                 // interpolate matrices
608                                 m.m[0][0] = bone1->m[0][0] * lerp1;
609                                 m.m[0][1] = bone1->m[0][1] * lerp1;
610                                 m.m[0][2] = bone1->m[0][2] * lerp1;
611                                 m.m[0][3] = bone1->m[0][3] * lerp1;
612                                 m.m[1][0] = bone1->m[1][0] * lerp1;
613                                 m.m[1][1] = bone1->m[1][1] * lerp1;
614                                 m.m[1][2] = bone1->m[1][2] * lerp1;
615                                 m.m[1][3] = bone1->m[1][3] * lerp1;
616                                 m.m[2][0] = bone1->m[2][0] * lerp1;
617                                 m.m[2][1] = bone1->m[2][1] * lerp1;
618                                 m.m[2][2] = bone1->m[2][2] * lerp1;
619                                 m.m[2][3] = bone1->m[2][3] * lerp1;
620                                 if (bone->parent >= 0)
621                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
622                                 else
623                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
624                                 bone1++;
625                                 bone++;
626                         }
627                 }
628                 else
629                 {
630                         // lerp == 1.0
631                         for (i = 0, out = zymbonepose;i < count;i++, out++)
632                         {
633                                 if (bone->parent >= 0)
634                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &bone1->m[0][0], &out->m[0][0]);
635                                 else
636                                         R_ConcatTransforms(&rootmatrix.m[0][0], &bone1->m[0][0], &out->m[0][0]);
637                                 bone1++;
638                                 bone++;
639                         }
640                 }
641         }
642         return true;
643 }
644
645 void ZymoticTransformVerts(int vertcount, int *bonecounts, zymvertex_t *vert)
646 {
647         int c;
648         float *out = aliasvert;
649         zymbonematrix *matrix;
650         while(vertcount--)
651         {
652                 c = *bonecounts++;
653                 // FIXME: validate bonecounts at load time (must be >= 1)
654                 // FIXME: need 4th component in origin, for how much of the translate to blend in
655                 if (c == 1)
656                 {
657                         matrix = &zymbonepose[vert->bonenum];
658                         out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
659                         out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
660                         out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
661                         vert++;
662                 }
663                 else
664                 {
665                         VectorClear(out);
666                         while(c--)
667                         {
668                                 matrix = &zymbonepose[vert->bonenum];
669                                 out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
670                                 out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
671                                 out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
672                                 vert++;
673                         }
674                 }
675                 out += 4;
676         }
677 }
678
679 void ZymoticCalcNormals(int vertcount, int shadercount, int *renderlist)
680 {
681         int a, b, c, d;
682         float *out, v1[3], v2[3], normal[3], s;
683         int *u;
684         // clear normals
685         memset(aliasvertnorm, 0, sizeof(float) * vertcount * 3);
686         memset(aliasvertusage, 0, sizeof(int) * vertcount);
687         // parse render list and accumulate surface normals
688         while(shadercount--)
689         {
690                 d = *renderlist++;
691                 while (d--)
692                 {
693                         a = renderlist[0]*4;
694                         b = renderlist[1]*4;
695                         c = renderlist[2]*4;
696                         v1[0] = aliasvert[a+0] - aliasvert[b+0];
697                         v1[1] = aliasvert[a+1] - aliasvert[b+1];
698                         v1[2] = aliasvert[a+2] - aliasvert[b+2];
699                         v2[0] = aliasvert[c+0] - aliasvert[b+0];
700                         v2[1] = aliasvert[c+1] - aliasvert[b+1];
701                         v2[2] = aliasvert[c+2] - aliasvert[b+2];
702                         CrossProduct(v1, v2, normal);
703                         VectorNormalizeFast(normal);
704                         // add surface normal to vertices
705                         a = renderlist[0] * 3;
706                         aliasvertnorm[a+0] += normal[0];
707                         aliasvertnorm[a+1] += normal[1];
708                         aliasvertnorm[a+2] += normal[2];
709                         aliasvertusage[renderlist[0]]++;
710                         a = renderlist[1] * 3;
711                         aliasvertnorm[a+0] += normal[0];
712                         aliasvertnorm[a+1] += normal[1];
713                         aliasvertnorm[a+2] += normal[2];
714                         aliasvertusage[renderlist[1]]++;
715                         a = renderlist[2] * 3;
716                         aliasvertnorm[a+0] += normal[0];
717                         aliasvertnorm[a+1] += normal[1];
718                         aliasvertnorm[a+2] += normal[2];
719                         aliasvertusage[renderlist[2]]++;
720                         renderlist += 3;
721                 }
722         }
723         // FIXME: precalc this
724         // average surface normals
725         out = aliasvertnorm;
726         u = aliasvertusage;
727         while(vertcount--)
728         {
729                 if (*u > 1)
730                 {
731                         s = ixtable[*u];
732                         out[0] *= s;
733                         out[1] *= s;
734                         out[2] *= s;
735                 }
736                 u++;
737                 out += 3;
738         }
739 }
740
741 void R_DrawZymoticModelMeshCallback (const void *calldata1, int calldata2)
742 {
743         float fog;
744         vec3_t diff;
745         int i, *renderlist;
746         zymtype1header_t *m;
747         rtexture_t *texture;
748         rmeshbufferinfo_t mbuf;
749         const entity_render_t *ent = calldata1;
750         int shadernum = calldata2;
751
752         // find the vertex index list and texture
753         m = ent->model->zymdata_header;
754         renderlist = (int *)(m->lump_render.start + (int) m);
755         for (i = 0;i < shadernum;i++)
756                 renderlist += renderlist[0] * 3 + 1;
757         texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[shadernum];
758
759         fog = 0;
760         if (fogenabled)
761         {
762                 VectorSubtract(ent->origin, r_origin, diff);
763                 fog = DotProduct(diff,diff);
764                 if (fog < 0.01f)
765                         fog = 0.01f;
766                 fog = exp(fogdensity/fog);
767                 if (fog > 1)
768                         fog = 1;
769                 if (fog < 0.01f)
770                         fog = 0;
771                 // fog method: darken, additive fog
772                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
773                 // 2. render fog as additive
774         }
775
776         ZymoticLerpBones(m->numbones, (zymbonematrix *)(m->lump_poses.start + (int) m), ent->frameblend, (zymbone_t *)(m->lump_bones.start + (int) m));
777         ZymoticTransformVerts(m->numverts, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m));
778         ZymoticCalcNormals(m->numverts, m->numshaders, (int *)(m->lump_render.start + (int) m));
779
780         R_LightModel(ent, m->numverts, 1 - fog, 1 - fog, 1 - fog, false);
781
782         memset(&mbuf, 0, sizeof(mbuf));
783         mbuf.numverts = m->numverts;
784         mbuf.numtriangles = renderlist[0];
785         if (ent->effects & EF_ADDITIVE)
786         {
787                 mbuf.blendfunc1 = GL_SRC_ALPHA;
788                 mbuf.blendfunc2 = GL_ONE;
789         }
790         else if (ent->alpha != 1.0 || R_TextureHasAlpha(texture))
791         {
792                 mbuf.blendfunc1 = GL_SRC_ALPHA;
793                 mbuf.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
794         }
795         else
796         {
797                 mbuf.blendfunc1 = GL_ONE;
798                 mbuf.blendfunc2 = GL_ZERO;
799         }
800         mbuf.tex[0] = R_GetTexture(texture);
801         mbuf.matrix = ent->matrix;
802         if (R_Mesh_Draw_GetBuffer(&mbuf, true))
803         {
804                 c_alias_polys += mbuf.numtriangles;
805                 memcpy(mbuf.index, renderlist + 1, mbuf.numtriangles * sizeof(int[3]));
806                 memcpy(mbuf.vertex, aliasvert, mbuf.numverts * sizeof(float[4]));
807                 R_ModulateColors(aliasvertcolor, mbuf.color, mbuf.numverts, mbuf.colorscale, mbuf.colorscale, mbuf.colorscale);
808                 //memcpy(mbuf.color, aliasvertcolor, mbuf.numverts * sizeof(float[4]));
809                 memcpy(mbuf.texcoords[0], (float *)(m->lump_texcoords.start + (int) m), mbuf.numverts * sizeof(float[2]));
810                 R_Mesh_Render();
811         }
812
813         if (fog)
814         {
815                 memset(&mbuf, 0, sizeof(mbuf));
816                 mbuf.numverts = m->numverts;
817                 mbuf.numtriangles = renderlist[0];
818                 mbuf.blendfunc1 = GL_SRC_ALPHA;
819                 mbuf.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
820                 // FIXME: need alpha mask for fogging...
821                 //mbuf.tex[0] = R_GetTexture(texture);
822                 mbuf.matrix = ent->matrix;
823                 if (R_Mesh_Draw_GetBuffer(&mbuf, false))
824                 {
825                         c_alias_polys += mbuf.numtriangles;
826                         memcpy(mbuf.index, renderlist + 1, mbuf.numtriangles * sizeof(int[3]));
827                         memcpy(mbuf.vertex, aliasvert, mbuf.numverts * sizeof(float[4]));
828                         R_FillColors(mbuf.color, mbuf.numverts, fogcolor[0] * mbuf.colorscale, fogcolor[1] * mbuf.colorscale, fogcolor[2] * mbuf.colorscale, ent->alpha * fog);
829                         //memcpy(mbuf.texcoords[0], (float *)(m->lump_texcoords.start + (int) m), mbuf.numverts * sizeof(float[2]));
830                         R_Mesh_Render();
831                 }
832         }
833 }
834
835 void R_DrawZymoticModel (entity_render_t *ent)
836 {
837         int i;
838         zymtype1header_t *m;
839         rtexture_t *texture;
840
841         if (ent->alpha < (1.0f / 64.0f))
842                 return; // basically completely transparent
843
844         c_models++;
845
846         m = ent->model->zymdata_header;
847         for (i = 0;i < m->numshaders;i++)
848         {
849                 texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[i];
850                 if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_TextureHasAlpha(texture))
851                         R_MeshQueue_AddTransparent(ent->origin, R_DrawZymoticModelMeshCallback, ent, i);
852                 else
853                         R_MeshQueue_Add(R_DrawZymoticModelMeshCallback, ent, i);
854         }
855 }
856
857 void R_DrawQ1Q2AliasModel(entity_render_t *ent)
858 {
859         if (ent->alpha < (1.0f / 64.0f))
860                 return; // basically completely transparent
861
862         c_models++;
863
864         if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_FetchSkinFrame(ent)->fog != NULL)
865                 R_MeshQueue_AddTransparent(ent->origin, R_DrawQ1Q2AliasModelCallback, ent, 0);
866         else
867                 R_MeshQueue_Add(R_DrawQ1Q2AliasModelCallback, ent, 0);
868 }
869