a major rename - instead of q1bsp code having surf, and q3bsp code having face, both...
[xonotic/darkplaces.git] / r_light.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_light.c
21
22 #include "quakedef.h"
23 #include "cl_collision.h"
24 #include "r_shadow.h"
25
26 dlight_t r_dlight[MAX_DLIGHTS];
27 int r_numdlights = 0;
28
29 cvar_t r_modellights = {CVAR_SAVE, "r_modellights", "4"};
30 cvar_t r_vismarklights = {0, "r_vismarklights", "1"};
31 cvar_t r_coronas = {CVAR_SAVE, "r_coronas", "1"};
32 cvar_t gl_flashblend = {CVAR_SAVE, "gl_flashblend", "0"};
33
34 static rtexture_t *lightcorona;
35 static rtexturepool_t *lighttexturepool;
36
37 void r_light_start(void)
38 {
39         float dx, dy;
40         int x, y, a;
41         qbyte pixels[32][32][4];
42         lighttexturepool = R_AllocTexturePool();
43         for (y = 0;y < 32;y++)
44         {
45                 dy = (y - 15.5f) * (1.0f / 16.0f);
46                 for (x = 0;x < 32;x++)
47                 {
48                         dx = (x - 15.5f) * (1.0f / 16.0f);
49                         a = ((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2));
50                         a = bound(0, a, 255);
51                         pixels[y][x][0] = a;
52                         pixels[y][x][1] = a;
53                         pixels[y][x][2] = a;
54                         pixels[y][x][3] = 255;
55                 }
56         }
57         lightcorona = R_LoadTexture2D(lighttexturepool, "lightcorona", 32, 32, &pixels[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
58 }
59
60 void r_light_shutdown(void)
61 {
62         lighttexturepool = NULL;
63         lightcorona = NULL;
64 }
65
66 void r_light_newmap(void)
67 {
68         int i;
69         for (i = 0;i < 256;i++)
70                 d_lightstylevalue[i] = 264;             // normal light value
71 }
72
73 void R_Light_Init(void)
74 {
75         Cvar_RegisterVariable(&r_modellights);
76         Cvar_RegisterVariable(&r_vismarklights);
77         Cvar_RegisterVariable(&r_coronas);
78         Cvar_RegisterVariable(&gl_flashblend);
79         R_RegisterModule("R_Light", r_light_start, r_light_shutdown, r_light_newmap);
80 }
81
82 /*
83 ==================
84 R_UpdateLights
85 ==================
86 */
87 void R_UpdateLights(void)
88 {
89         float frac;
90         int i, j, k, l;
91
92 // light animations
93 // 'm' is normal light, 'a' is no light, 'z' is double bright
94         i = (int)(cl.time * 10);
95         frac = (cl.time * 10) - i;
96         for (j = 0;j < MAX_LIGHTSTYLES;j++)
97         {
98                 if (!cl_lightstyle || !cl_lightstyle[j].length)
99                 {
100                         d_lightstylevalue[j] = 256;
101                         continue;
102                 }
103                 k = i % cl_lightstyle[j].length;
104                 l = (i-1) % cl_lightstyle[j].length;
105                 k = cl_lightstyle[j].map[k] - 'a';
106                 l = cl_lightstyle[j].map[l] - 'a';
107                 d_lightstylevalue[j] = ((k*frac)+(l*(1-frac)))*22;
108         }
109
110         r_numdlights = 0;
111         c_dlights = 0;
112
113         if (!r_dynamic.integer || !cl_dlights)
114                 return;
115
116         // TODO: optimize to not scan whole cl_dlights array if possible
117         for (i = 0;i < MAX_DLIGHTS;i++)
118         {
119                 if (cl_dlights[i].radius > 0)
120                 {
121                         R_RTLight_UpdateFromDLight(&cl_dlights[i].rtlight, &cl_dlights[i], false);
122                         // FIXME: use pointer instead of copy
123                         r_dlight[r_numdlights++] = cl_dlights[i];
124                         c_dlights++; // count every dlight in use
125                 }
126         }
127 }
128
129 void R_DrawCoronas(void)
130 {
131         int i, lnum, flag;
132         float cscale, scale, viewdist, dist;
133         dlight_t *light;
134         if (r_coronas.value < 0.01)
135                 return;
136         R_Mesh_Matrix(&r_identitymatrix);
137         viewdist = DotProduct(r_vieworigin, r_viewforward);
138         flag = r_rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
139         for (lnum = 0, light = r_shadow_worldlightchain;light;light = light->next, lnum++)
140         {
141                 if ((light->flags & flag) && light->corona * r_coronas.value > 0 && (r_shadow_debuglight.integer < 0 || r_shadow_debuglight.integer == lnum) && (dist = (DotProduct(light->rtlight.shadoworigin, r_viewforward) - viewdist)) >= 24.0f && CL_TraceLine(light->rtlight.shadoworigin, r_vieworigin, NULL, NULL, true, NULL, SUPERCONTENTS_SOLID) == 1)
142                 {
143                         cscale = light->rtlight.corona * r_coronas.value * 0.25f;
144                         scale = light->rtlight.radius * light->rtlight.coronasizescale;
145                         R_DrawSprite(GL_ONE, GL_ONE, lightcorona, true, light->rtlight.shadoworigin, r_viewright, r_viewup, scale, -scale, -scale, scale, light->rtlight.color[0] * cscale, light->rtlight.color[1] * cscale, light->rtlight.color[2] * cscale, 1);
146                 }
147         }
148         for (i = 0, light = r_dlight;i < r_numdlights;i++, light++)
149         {
150                 if ((light->flags & flag) && light->corona * r_coronas.value > 0 && (dist = (DotProduct(light->origin, r_viewforward) - viewdist)) >= 24.0f && CL_TraceLine(light->origin, r_vieworigin, NULL, NULL, true, NULL, SUPERCONTENTS_SOLID) == 1)
151                 {
152                         cscale = light->corona * r_coronas.value * 0.25f;
153                         scale = light->rtlight.radius * light->rtlight.coronasizescale;
154                         if (gl_flashblend.integer)
155                         {
156                                 cscale *= 4.0f;
157                                 scale *= 2.0f;
158                         }
159                         R_DrawSprite(GL_ONE, GL_ONE, lightcorona, true, light->origin, r_viewright, r_viewup, scale, -scale, -scale, scale, light->color[0] * cscale, light->color[1] * cscale, light->color[2] * cscale, 1);
160                 }
161         }
162 }
163
164 /*
165 =============================================================================
166
167 DYNAMIC LIGHTS
168
169 =============================================================================
170 */
171
172 static int lightpvsbytes;
173 static qbyte lightpvs[(MAX_MAP_LEAFS+7)>>3];
174
175 /*
176 =============
177 R_MarkLights
178 =============
179 */
180 static void R_RecursiveMarkLights(entity_render_t *ent, vec3_t lightorigin, dlight_t *light, int bit, int bitindex, mnode_t *node, qbyte *pvs, int pvsbits)
181 {
182         int i;
183         mleaf_t *leaf;
184         float dist;
185
186         // for comparisons to minimum acceptable light
187         while(node->plane)
188         {
189                 dist = PlaneDiff(lightorigin, node->plane);
190                 if (dist > light->rtlight.lightmap_cullradius)
191                         node = node->children[0];
192                 else
193                 {
194                         if (dist >= -light->rtlight.lightmap_cullradius)
195                                 R_RecursiveMarkLights(ent, lightorigin, light, bit, bitindex, node->children[0], pvs, pvsbits);
196                         node = node->children[1];
197                 }
198         }
199
200         // check if leaf is visible according to pvs
201         leaf = (mleaf_t *)node;
202         i = leaf->clusterindex;
203         if (leaf->numleafsurfaces && (i >= pvsbits || CHECKPVSBIT(pvs, i)))
204         {
205                 int d, impacts, impactt;
206                 float sdist, maxdist, dist2, impact[3];
207                 msurface_t *surface;
208                 // mark the polygons
209                 maxdist = light->rtlight.lightmap_cullradius2;
210                 for (i = 0;i < leaf->numleafsurfaces;i++)
211                 {
212                         if (ent == r_refdef.worldentity && !r_worldsurfacevisible[leaf->firstleafsurface[i]])
213                                 continue;
214                         surface = ent->model->brushq1.surfaces + leaf->firstleafsurface[i];
215                         dist = sdist = PlaneDiff(lightorigin, surface->plane);
216                         if (surface->flags & SURF_PLANEBACK)
217                                 dist = -dist;
218
219                         if (dist < -0.25f && !(surface->flags & SURF_LIGHTBOTHSIDES))
220                                 continue;
221
222                         dist2 = dist * dist;
223                         if (dist2 >= maxdist)
224                                 continue;
225
226                         VectorCopy(lightorigin, impact);
227                         if (surface->plane->type >= 3)
228                                 VectorMA(impact, -sdist, surface->plane->normal, impact);
229                         else
230                                 impact[surface->plane->type] -= sdist;
231
232                         impacts = DotProduct (impact, surface->texinfo->vecs[0]) + surface->texinfo->vecs[0][3] - surface->texturemins[0];
233
234                         d = bound(0, impacts, surface->extents[0] + 16) - impacts;
235                         dist2 += d * d;
236                         if (dist2 > maxdist)
237                                 continue;
238
239                         impactt = DotProduct (impact, surface->texinfo->vecs[1]) + surface->texinfo->vecs[1][3] - surface->texturemins[1];
240
241                         d = bound(0, impactt, surface->extents[1] + 16) - impactt;
242                         dist2 += d * d;
243                         if (dist2 > maxdist)
244                                 continue;
245
246                         if (surface->dlightframe != r_framecount) // not dynamic until now
247                         {
248                                 surface->dlightbits[0] = surface->dlightbits[1] = surface->dlightbits[2] = surface->dlightbits[3] = surface->dlightbits[4] = surface->dlightbits[5] = surface->dlightbits[6] = surface->dlightbits[7] = 0;
249                                 surface->dlightframe = r_framecount;
250                                 surface->cached_dlight = true;
251                         }
252                         surface->dlightbits[bitindex] |= bit;
253                 }
254         }
255 }
256
257 void R_MarkLights(entity_render_t *ent)
258 {
259         int i, bit, bitindex;
260         dlight_t *light;
261         vec3_t lightorigin;
262         if (!gl_flashblend.integer && r_dynamic.integer && ent->model && ent->model->brush.num_leafs)
263         {
264                 for (i = 0, light = r_dlight;i < r_numdlights;i++, light++)
265                 {
266                         bit = 1 << (i & 31);
267                         bitindex = i >> 5;
268                         Matrix4x4_Transform(&ent->inversematrix, light->origin, lightorigin);
269                         lightpvsbytes = 0;
270                         if (r_vismarklights.integer && ent->model->brush.FatPVS)
271                                 lightpvsbytes = ent->model->brush.FatPVS(ent->model, lightorigin, 0, lightpvs, sizeof(lightpvs));
272                         R_RecursiveMarkLights(ent, lightorigin, light, bit, bitindex, ent->model->brush.data_nodes + ent->model->brushq1.hulls[0].firstclipnode, lightpvs, min(lightpvsbytes * 8, ent->model->brush.num_pvsclusters));
273                 }
274         }
275 }
276
277 /*
278 =============================================================================
279
280 LIGHT SAMPLING
281
282 =============================================================================
283 */
284
285 void R_CompleteLightPoint(vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal, const vec3_t p, int dynamic, const mleaf_t *leaf)
286 {
287         VectorClear(diffusecolor);
288         VectorClear(diffusenormal);
289
290         if (!r_fullbright.integer && r_refdef.worldmodel && r_refdef.worldmodel->brush.LightPoint)
291         {
292                 ambientcolor[0] = ambientcolor[1] = ambientcolor[2] = r_ambient.value * (2.0f / 128.0f);
293                 r_refdef.worldmodel->brush.LightPoint(r_refdef.worldmodel, p, ambientcolor, diffusecolor, diffusenormal);
294         }
295         else
296                 VectorSet(ambientcolor, 1, 1, 1);
297
298         // FIXME: this .lights related stuff needs to be ported into the Mod_Q1BSP code
299         if (r_refdef.worldmodel->brushq1.numlights)
300         {
301                 int i;
302                 vec3_t v;
303                 float f;
304                 mlight_t *sl;
305                 for (i = 0;i < r_refdef.worldmodel->brushq1.numlights;i++)
306                 {
307                         sl = r_refdef.worldmodel->brushq1.lights + i;
308                         if (d_lightstylevalue[sl->style] > 0)
309                         {
310                                 VectorSubtract (p, sl->origin, v);
311                                 f = ((1.0f / (DotProduct(v, v) * sl->falloff + sl->distbias)) - sl->subtract);
312                                 if (f > 0 && CL_TraceLine(p, sl->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) == 1)
313                                 {
314                                         f *= d_lightstylevalue[sl->style] * (1.0f / 65536.0f);
315                                         VectorMA(ambientcolor, f, sl->light, ambientcolor);
316                                 }
317                         }
318                 }
319         }
320
321         if (dynamic)
322         {
323                 int i;
324                 float f, v[3];
325                 dlight_t *light;
326                 // FIXME: this really should handle dlights as diffusecolor/diffusenormal somehow
327                 for (i = 0;i < r_numdlights;i++)
328                 {
329                         light = r_dlight + i;
330                         VectorSubtract(p, light->origin, v);
331                         f = DotProduct(v, v);
332                         if (f < light->rtlight.lightmap_cullradius2 && CL_TraceLine(p, light->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) == 1)
333                         {
334                                 f = (1.0f / (f + LIGHTOFFSET)) - light->rtlight.lightmap_subtract;
335                                 VectorMA(ambientcolor, f, light->rtlight.lightmap_light, ambientcolor);
336                         }
337                 }
338         }
339 }
340
341 typedef struct
342 {
343         vec3_t origin;
344         //vec_t cullradius2;
345         vec3_t light;
346         // how much this light would contribute to ambient if replaced
347         vec3_t ambientlight;
348         vec_t subtract;
349         vec_t falloff;
350         vec_t offset;
351         // used for choosing only the brightest lights
352         vec_t intensity;
353 }
354 nearlight_t;
355
356 static int nearlights;
357 static nearlight_t nearlight[MAX_DLIGHTS];
358
359 int R_LightModel(float *ambient4f, float *diffusecolor, float *diffusenormal, const entity_render_t *ent, float colorr, float colorg, float colorb, float colora, int worldcoords)
360 {
361         int i, j, maxnearlights;
362         float v[3], f, mscale, stylescale, intensity, ambientcolor[3], tempdiffusenormal[3];
363         nearlight_t *nl;
364         mlight_t *sl;
365         dlight_t *light;
366
367         nearlights = 0;
368         maxnearlights = r_modellights.integer;
369         ambient4f[0] = ambient4f[1] = ambient4f[2] = r_ambient.value * (2.0f / 128.0f);
370         VectorClear(diffusecolor);
371         VectorClear(diffusenormal);
372         if (!(ent->flags & RENDER_LIGHT))
373         {
374                 // highly rare
375                 VectorSet(ambient4f, 1, 1, 1);
376                 maxnearlights = 0;
377         }
378         else if (r_lightmapintensity <= 0 && !(ent->flags & RENDER_TRANSPARENT))
379                 maxnearlights = 0;
380         else
381         {
382                 if (r_refdef.worldmodel && r_refdef.worldmodel->brush.LightPoint)
383                 {
384                         r_refdef.worldmodel->brush.LightPoint(r_refdef.worldmodel, ent->origin, ambient4f, diffusecolor, tempdiffusenormal);
385                         Matrix4x4_Transform3x3(&ent->inversematrix, tempdiffusenormal, diffusenormal);
386                         VectorNormalize(diffusenormal);
387                 }
388                 else
389                         VectorSet(ambient4f, 1, 1, 1);
390         }
391
392         // scale of the model's coordinate space, to alter light attenuation to match
393         // make the mscale squared so it can scale the squared distance results
394         mscale = ent->scale * ent->scale;
395         // FIXME: no support for .lights on non-Q1BSP?
396         nl = &nearlight[0];
397         for (i = 0;i < ent->numentlights;i++)
398         {
399                 sl = r_refdef.worldmodel->brushq1.lights + ent->entlights[i];
400                 stylescale = d_lightstylevalue[sl->style] * (1.0f / 65536.0f);
401                 VectorSubtract (ent->origin, sl->origin, v);
402                 f = ((1.0f / (DotProduct(v, v) * sl->falloff + sl->distbias)) - sl->subtract) * stylescale;
403                 VectorScale(sl->light, f, ambientcolor);
404                 intensity = DotProduct(ambientcolor, ambientcolor);
405                 if (f < 0)
406                         intensity *= -1.0f;
407                 if (nearlights < maxnearlights)
408                         j = nearlights++;
409                 else
410                 {
411                         for (j = 0;j < maxnearlights;j++)
412                         {
413                                 if (nearlight[j].intensity < intensity)
414                                 {
415                                         if (nearlight[j].intensity > 0)
416                                                 VectorAdd(ambient4f, nearlight[j].ambientlight, ambient4f);
417                                         break;
418                                 }
419                         }
420                 }
421                 if (j >= maxnearlights)
422                 {
423                         // this light is less significant than all others,
424                         // add it to ambient
425                         if (intensity > 0)
426                                 VectorAdd(ambient4f, ambientcolor, ambient4f);
427                 }
428                 else
429                 {
430                         nl = nearlight + j;
431                         nl->intensity = intensity;
432                         // transform the light into the model's coordinate system
433                         if (worldcoords)
434                                 VectorCopy(sl->origin, nl->origin);
435                         else
436                                 Matrix4x4_Transform(&ent->inversematrix, sl->origin, nl->origin);
437                         // integrate mscale into falloff, for maximum speed
438                         nl->falloff = sl->falloff * mscale;
439                         VectorCopy(ambientcolor, nl->ambientlight);
440                         nl->light[0] = sl->light[0] * stylescale * colorr * 4.0f;
441                         nl->light[1] = sl->light[1] * stylescale * colorg * 4.0f;
442                         nl->light[2] = sl->light[2] * stylescale * colorb * 4.0f;
443                         nl->subtract = sl->subtract;
444                         nl->offset = sl->distbias;
445                 }
446         }
447         if (!r_rtdlight || (ent->flags & RENDER_TRANSPARENT))
448         {
449                 // FIXME: this dlighting doesn't look like rtlights
450                 for (i = 0;i < r_numdlights;i++)
451                 {
452                         light = r_dlight + i;
453                         VectorCopy(light->origin, v);
454                         if (v[0] < ent->mins[0]) v[0] = ent->mins[0];if (v[0] > ent->maxs[0]) v[0] = ent->maxs[0];
455                         if (v[1] < ent->mins[1]) v[1] = ent->mins[1];if (v[1] > ent->maxs[1]) v[1] = ent->maxs[1];
456                         if (v[2] < ent->mins[2]) v[2] = ent->mins[2];if (v[2] > ent->maxs[2]) v[2] = ent->maxs[2];
457                         VectorSubtract (v, light->origin, v);
458                         if (DotProduct(v, v) < light->rtlight.lightmap_cullradius2)
459                         {
460                                 if (CL_TraceLine(ent->origin, light->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) != 1)
461                                         continue;
462                                 VectorSubtract (ent->origin, light->origin, v);
463                                 f = ((1.0f / (DotProduct(v, v) + LIGHTOFFSET)) - light->rtlight.lightmap_subtract);
464                                 VectorScale(light->rtlight.lightmap_light, f, ambientcolor);
465                                 intensity = DotProduct(ambientcolor, ambientcolor);
466                                 if (f < 0)
467                                         intensity *= -1.0f;
468                                 if (nearlights < maxnearlights)
469                                         j = nearlights++;
470                                 else
471                                 {
472                                         for (j = 0;j < maxnearlights;j++)
473                                         {
474                                                 if (nearlight[j].intensity < intensity)
475                                                 {
476                                                         if (nearlight[j].intensity > 0)
477                                                                 VectorAdd(ambient4f, nearlight[j].ambientlight, ambient4f);
478                                                         break;
479                                                 }
480                                         }
481                                 }
482                                 if (j >= maxnearlights)
483                                 {
484                                         // this light is less significant than all others,
485                                         // add it to ambient
486                                         if (intensity > 0)
487                                                 VectorAdd(ambient4f, ambientcolor, ambient4f);
488                                 }
489                                 else
490                                 {
491                                         nl = nearlight + j;
492                                         nl->intensity = intensity;
493                                         // transform the light into the model's coordinate system
494                                         if (worldcoords)
495                                                 VectorCopy(light->origin, nl->origin);
496                                         else
497                                         {
498                                                 Matrix4x4_Transform(&ent->inversematrix, light->origin, nl->origin);
499                                                 /*
500                                                 Con_Printf("%i %s : %f %f %f : %f %f %f\n%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n"
501                                                 , rd - r_dlight, ent->model->name
502                                                 , light->origin[0], light->origin[1], light->origin[2]
503                                                 , nl->origin[0], nl->origin[1], nl->origin[2]
504                                                 , ent->inversematrix.m[0][0], ent->inversematrix.m[0][1], ent->inversematrix.m[0][2], ent->inversematrix.m[0][3]
505                                                 , ent->inversematrix.m[1][0], ent->inversematrix.m[1][1], ent->inversematrix.m[1][2], ent->inversematrix.m[1][3]
506                                                 , ent->inversematrix.m[2][0], ent->inversematrix.m[2][1], ent->inversematrix.m[2][2], ent->inversematrix.m[2][3]
507                                                 , ent->inversematrix.m[3][0], ent->inversematrix.m[3][1], ent->inversematrix.m[3][2], ent->inversematrix.m[3][3]);
508                                                 */
509                                         }
510                                         // integrate mscale into falloff, for maximum speed
511                                         nl->falloff = mscale;
512                                         VectorCopy(ambientcolor, nl->ambientlight);
513                                         nl->light[0] = light->rtlight.lightmap_light[0] * colorr * 4.0f;
514                                         nl->light[1] = light->rtlight.lightmap_light[1] * colorg * 4.0f;
515                                         nl->light[2] = light->rtlight.lightmap_light[2] * colorb * 4.0f;
516                                         nl->subtract = light->rtlight.lightmap_subtract;
517                                         nl->offset = LIGHTOFFSET;
518                                 }
519                         }
520                 }
521         }
522         ambient4f[0] *= colorr;
523         ambient4f[1] *= colorg;
524         ambient4f[2] *= colorb;
525         ambient4f[3] = colora;
526         diffusecolor[0] *= colorr;
527         diffusecolor[1] *= colorg;
528         diffusecolor[2] *= colorb;
529         return nearlights != 0 || DotProduct(diffusecolor, diffusecolor) > 0;
530 }
531
532 void R_LightModel_CalcVertexColors(const float *ambientcolor4f, const float *diffusecolor, const float *diffusenormal, int numverts, const float *vertex3f, const float *normal3f, float *color4f)
533 {
534         int i, j, usediffuse;
535         float color[4], v[3], dot, dist2, f, dnormal[3];
536         nearlight_t *nl;
537         usediffuse = DotProduct(diffusecolor, diffusecolor) > 0;
538         // negate the diffuse normal to avoid the need to negate the
539         // dotproduct on each vertex
540         VectorNegate(diffusenormal, dnormal);
541         if (usediffuse)
542                 VectorNormalize(dnormal);
543         // directional shading code here
544         for (i = 0;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
545         {
546                 VectorCopy4(ambientcolor4f, color);
547
548                 // silly directional diffuse shading
549                 if (usediffuse)
550                 {
551                         dot = DotProduct(normal3f, dnormal);
552                         if (dot > 0)
553                                 VectorMA(color, dot, diffusecolor, color);
554                 }
555
556                 // pretty good lighting
557                 for (j = 0, nl = &nearlight[0];j < nearlights;j++, nl++)
558                 {
559                         VectorSubtract(nl->origin, vertex3f, v);
560                         // first eliminate negative lighting (back side)
561                         dot = DotProduct(normal3f, v);
562                         if (dot > 0)
563                         {
564                                 // we'll need this again later to normalize the dotproduct
565                                 dist2 = DotProduct(v,v);
566                                 // do the distance attenuation math
567                                 f = (1.0f / (dist2 * nl->falloff + nl->offset)) - nl->subtract;
568                                 if (f > 0)
569                                 {
570                                         // we must divide dot by sqrt(dist2) to compensate for
571                                         // the fact we did not normalize v before doing the
572                                         // dotproduct, the result is in the range 0 to 1 (we
573                                         // eliminated negative numbers already)
574                                         f *= dot / sqrt(dist2);
575                                         // blend in the lighting
576                                         VectorMA(color, f, nl->light, color);
577                                 }
578                         }
579                 }
580                 VectorCopy4(color, color4f);
581         }
582 }
583
584 void R_UpdateEntLights(entity_render_t *ent)
585 {
586         int i;
587         const mlight_t *sl;
588         vec3_t v;
589         if (r_lightmapintensity <= 0 && !(ent->flags & RENDER_TRANSPARENT))
590                 return;
591         VectorSubtract(ent->origin, ent->entlightsorigin, v);
592         if (ent->entlightsframe != (r_framecount - 1) || (realtime > ent->entlightstime && DotProduct(v,v) >= 1.0f))
593         {
594                 ent->entlightstime = realtime + 0.1;
595                 VectorCopy(ent->origin, ent->entlightsorigin);
596                 ent->numentlights = 0;
597                 if (r_refdef.worldmodel)
598                         for (i = 0, sl = r_refdef.worldmodel->brushq1.lights;i < r_refdef.worldmodel->brushq1.numlights && ent->numentlights < MAXENTLIGHTS;i++, sl++)
599                                 if (CL_TraceLine(ent->origin, sl->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) == 1)
600                                         ent->entlights[ent->numentlights++] = i;
601         }
602         ent->entlightsframe = r_framecount;
603 }
604