]> de.git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
properly fill the token string for TOKEN_ATTRIBUTE_*
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38
39 /* It must not be possible to get here. */
40 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 {
42     (void)self;
43     con_err("ast node missing destroy()\n");
44     abort();
45 }
46
47 /* Initialize main ast node aprts */
48 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
49 {
50     self->node.context = ctx;
51     self->node.destroy = &_ast_node_destroy;
52     self->node.keep    = false;
53     self->node.nodetype = nodetype;
54     self->node.side_effects = false;
55 }
56
57 /* weight and side effects */
58 static void _ast_propagate_effects(ast_node *self, ast_node *other)
59 {
60     if (ast_side_effects(other))
61         ast_side_effects(self) = true;
62 }
63 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
64
65 /* General expression initialization */
66 static void ast_expression_init(ast_expression *self,
67                                 ast_expression_codegen *codegen)
68 {
69     self->expression.codegen  = codegen;
70     self->expression.vtype    = TYPE_VOID;
71     self->expression.next     = NULL;
72     self->expression.outl     = NULL;
73     self->expression.outr     = NULL;
74     self->expression.params   = NULL;
75     self->expression.count    = 0;
76     self->expression.flags    = 0;
77 }
78
79 static void ast_expression_delete(ast_expression *self)
80 {
81     size_t i;
82     if (self->expression.next)
83         ast_delete(self->expression.next);
84     for (i = 0; i < vec_size(self->expression.params); ++i) {
85         ast_delete(self->expression.params[i]);
86     }
87     vec_free(self->expression.params);
88 }
89
90 static void ast_expression_delete_full(ast_expression *self)
91 {
92     ast_expression_delete(self);
93     mem_d(self);
94 }
95
96 ast_value* ast_value_copy(const ast_value *self)
97 {
98     size_t i;
99     const ast_expression_common *fromex;
100     ast_expression_common *selfex;
101     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
102     if (self->expression.next) {
103         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
104         if (!cp->expression.next) {
105             ast_value_delete(cp);
106             return NULL;
107         }
108     }
109     fromex   = &self->expression;
110     selfex = &cp->expression;
111     selfex->count    = fromex->count;
112     selfex->flags    = fromex->flags;
113     for (i = 0; i < vec_size(fromex->params); ++i) {
114         ast_value *v = ast_value_copy(fromex->params[i]);
115         if (!v) {
116             ast_value_delete(cp);
117             return NULL;
118         }
119         vec_push(selfex->params, v);
120     }
121     return cp;
122 }
123
124 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
125 {
126     size_t i;
127     const ast_expression_common *fromex;
128     ast_expression_common *selfex;
129     self->expression.vtype = other->expression.vtype;
130     if (other->expression.next) {
131         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
132         if (!self->expression.next)
133             return false;
134     }
135     fromex   = &other->expression;
136     selfex = &self->expression;
137     selfex->count    = fromex->count;
138     selfex->flags    = fromex->flags;
139     for (i = 0; i < vec_size(fromex->params); ++i) {
140         ast_value *v = ast_value_copy(fromex->params[i]);
141         if (!v)
142             return false;
143         vec_push(selfex->params, v);
144     }
145     return true;
146 }
147
148 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
149 {
150     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
151     ast_expression_init(self, NULL);
152     self->expression.codegen = NULL;
153     self->expression.next    = NULL;
154     self->expression.vtype   = vtype;
155     return self;
156 }
157
158 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
159 {
160     size_t i;
161     const ast_expression_common *fromex;
162     ast_expression_common *selfex;
163
164     if (!ex)
165         return NULL;
166     else
167     {
168         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
169         ast_expression_init(self, NULL);
170
171         fromex   = &ex->expression;
172         selfex = &self->expression;
173
174         /* This may never be codegen()d */
175         selfex->codegen = NULL;
176
177         selfex->vtype = fromex->vtype;
178         if (fromex->next)
179         {
180             selfex->next = ast_type_copy(ctx, fromex->next);
181             if (!selfex->next) {
182                 ast_expression_delete_full(self);
183                 return NULL;
184             }
185         }
186         else
187             selfex->next = NULL;
188
189         selfex->count    = fromex->count;
190         selfex->flags    = fromex->flags;
191         for (i = 0; i < vec_size(fromex->params); ++i) {
192             ast_value *v = ast_value_copy(fromex->params[i]);
193             if (!v) {
194                 ast_expression_delete_full(self);
195                 return NULL;
196             }
197             vec_push(selfex->params, v);
198         }
199
200         return self;
201     }
202 }
203
204 bool ast_compare_type(ast_expression *a, ast_expression *b)
205 {
206     if (a->expression.vtype != b->expression.vtype)
207         return false;
208     if (!a->expression.next != !b->expression.next)
209         return false;
210     if (vec_size(a->expression.params) != vec_size(b->expression.params))
211         return false;
212     if (a->expression.flags != b->expression.flags)
213         return false;
214     if (vec_size(a->expression.params)) {
215         size_t i;
216         for (i = 0; i < vec_size(a->expression.params); ++i) {
217             if (!ast_compare_type((ast_expression*)a->expression.params[i],
218                                   (ast_expression*)b->expression.params[i]))
219                 return false;
220         }
221     }
222     if (a->expression.next)
223         return ast_compare_type(a->expression.next, b->expression.next);
224     return true;
225 }
226
227 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
228 {
229     const char *typestr;
230     size_t typelen;
231     size_t i;
232
233     if (!e) {
234         if (pos + 6 >= bufsize)
235             goto full;
236         strcpy(buf + pos, "(null)");
237         return pos + 6;
238     }
239
240     if (pos + 1 >= bufsize)
241         goto full;
242
243     switch (e->expression.vtype) {
244         case TYPE_VARIANT:
245             strcpy(buf + pos, "(variant)");
246             return pos + 9;
247
248         case TYPE_FIELD:
249             buf[pos++] = '.';
250             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251
252         case TYPE_POINTER:
253             if (pos + 3 >= bufsize)
254                 goto full;
255             buf[pos++] = '*';
256             buf[pos++] = '(';
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 1 >= bufsize)
259                 goto full;
260             buf[pos++] = ')';
261             return pos;
262
263         case TYPE_FUNCTION:
264             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
265             if (pos + 2 >= bufsize)
266                 goto full;
267             if (!vec_size(e->expression.params)) {
268                 buf[pos++] = '(';
269                 buf[pos++] = ')';
270                 return pos;
271             }
272             buf[pos++] = '(';
273             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
274             for (i = 1; i < vec_size(e->expression.params); ++i) {
275                 if (pos + 2 >= bufsize)
276                     goto full;
277                 buf[pos++] = ',';
278                 buf[pos++] = ' ';
279                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
280             }
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = ')';
284             return pos;
285
286         case TYPE_ARRAY:
287             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = '[';
291             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
292             if (pos + 1 >= bufsize)
293                 goto full;
294             buf[pos++] = ']';
295             return pos;
296
297         default:
298             typestr = type_name[e->expression.vtype];
299             typelen = strlen(typestr);
300             if (pos + typelen >= bufsize)
301                 goto full;
302             strcpy(buf + pos, typestr);
303             return pos + typelen;
304     }
305
306 full:
307     buf[bufsize-3] = '.';
308     buf[bufsize-2] = '.';
309     buf[bufsize-1] = '.';
310     return bufsize;
311 }
312
313 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
314 {
315     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
316     buf[pos] = 0;
317 }
318
319 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
320 {
321     ast_instantiate(ast_value, ctx, ast_value_delete);
322     ast_expression_init((ast_expression*)self,
323                         (ast_expression_codegen*)&ast_value_codegen);
324     self->expression.node.keep = true; /* keep */
325
326     self->name = name ? util_strdup(name) : NULL;
327     self->expression.vtype = t;
328     self->expression.next  = NULL;
329     self->isfield  = false;
330     self->cvq      = CV_NONE;
331     self->hasvalue = false;
332     self->uses    = 0;
333     memset(&self->constval, 0, sizeof(self->constval));
334
335     self->ir_v           = NULL;
336     self->ir_values      = NULL;
337     self->ir_value_count = 0;
338
339     self->setter = NULL;
340     self->getter = NULL;
341
342     return self;
343 }
344
345 void ast_value_delete(ast_value* self)
346 {
347     if (self->name)
348         mem_d((void*)self->name);
349     if (self->hasvalue) {
350         switch (self->expression.vtype)
351         {
352         case TYPE_STRING:
353             mem_d((void*)self->constval.vstring);
354             break;
355         case TYPE_FUNCTION:
356             /* unlink us from the function node */
357             self->constval.vfunc->vtype = NULL;
358             break;
359         /* NOTE: delete function? currently collected in
360          * the parser structure
361          */
362         default:
363             break;
364         }
365     }
366     if (self->ir_values)
367         mem_d(self->ir_values);
368     ast_expression_delete((ast_expression*)self);
369     mem_d(self);
370 }
371
372 void ast_value_params_add(ast_value *self, ast_value *p)
373 {
374     vec_push(self->expression.params, p);
375 }
376
377 bool ast_value_set_name(ast_value *self, const char *name)
378 {
379     if (self->name)
380         mem_d((void*)self->name);
381     self->name = util_strdup(name);
382     return !!self->name;
383 }
384
385 ast_binary* ast_binary_new(lex_ctx ctx, int op,
386                            ast_expression* left, ast_expression* right)
387 {
388     ast_instantiate(ast_binary, ctx, ast_binary_delete);
389     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
390
391     self->op = op;
392     self->left = left;
393     self->right = right;
394
395     ast_propagate_effects(self, left);
396     ast_propagate_effects(self, right);
397
398     if (op >= INSTR_EQ_F && op <= INSTR_GT)
399         self->expression.vtype = TYPE_FLOAT;
400     else if (op == INSTR_AND || op == INSTR_OR) {
401         if (OPTS_FLAG(PERL_LOGIC))
402             ast_type_adopt(self, right);
403         else
404             self->expression.vtype = TYPE_FLOAT;
405     }
406     else if (op == INSTR_BITAND || op == INSTR_BITOR)
407         self->expression.vtype = TYPE_FLOAT;
408     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
409         self->expression.vtype = TYPE_VECTOR;
410     else if (op == INSTR_MUL_V)
411         self->expression.vtype = TYPE_FLOAT;
412     else
413         self->expression.vtype = left->expression.vtype;
414
415     return self;
416 }
417
418 void ast_binary_delete(ast_binary *self)
419 {
420     ast_unref(self->left);
421     ast_unref(self->right);
422     ast_expression_delete((ast_expression*)self);
423     mem_d(self);
424 }
425
426 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
427                                ast_expression* left, ast_expression* right)
428 {
429     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
430     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
431
432     ast_side_effects(self) = true;
433
434     self->opstore = storop;
435     self->opbin   = op;
436     self->dest    = left;
437     self->source  = right;
438
439     self->keep_dest = false;
440
441     if (!ast_type_adopt(self, left)) {
442         ast_delete(self);
443         return NULL;
444     }
445
446     return self;
447 }
448
449 void ast_binstore_delete(ast_binstore *self)
450 {
451     if (!self->keep_dest)
452         ast_unref(self->dest);
453     ast_unref(self->source);
454     ast_expression_delete((ast_expression*)self);
455     mem_d(self);
456 }
457
458 ast_unary* ast_unary_new(lex_ctx ctx, int op,
459                          ast_expression *expr)
460 {
461     ast_instantiate(ast_unary, ctx, ast_unary_delete);
462     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
463
464     self->op = op;
465     self->operand = expr;
466
467     ast_propagate_effects(self, expr);
468
469     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
470         self->expression.vtype = TYPE_FLOAT;
471     } else
472         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
473
474     return self;
475 }
476
477 void ast_unary_delete(ast_unary *self)
478 {
479     if (self->operand) ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
485 {
486     ast_instantiate(ast_return, ctx, ast_return_delete);
487     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
488
489     self->operand = expr;
490
491     if (expr)
492         ast_propagate_effects(self, expr);
493
494     return self;
495 }
496
497 void ast_return_delete(ast_return *self)
498 {
499     if (self->operand)
500         ast_unref(self->operand);
501     ast_expression_delete((ast_expression*)self);
502     mem_d(self);
503 }
504
505 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
506 {
507     if (field->expression.vtype != TYPE_FIELD) {
508         compile_error(ctx, "ast_entfield_new with expression not of type field");
509         return NULL;
510     }
511     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
512 }
513
514 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
515 {
516     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
517
518     if (!outtype) {
519         mem_d(self);
520         /* Error: field has no type... */
521         return NULL;
522     }
523
524     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
525
526     self->entity = entity;
527     self->field  = field;
528     ast_propagate_effects(self, entity);
529     ast_propagate_effects(self, field);
530
531     if (!ast_type_adopt(self, outtype)) {
532         ast_entfield_delete(self);
533         return NULL;
534     }
535
536     return self;
537 }
538
539 void ast_entfield_delete(ast_entfield *self)
540 {
541     ast_unref(self->entity);
542     ast_unref(self->field);
543     ast_expression_delete((ast_expression*)self);
544     mem_d(self);
545 }
546
547 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
548 {
549     ast_instantiate(ast_member, ctx, ast_member_delete);
550     if (field >= 3) {
551         mem_d(self);
552         return NULL;
553     }
554
555     if (owner->expression.vtype != TYPE_VECTOR &&
556         owner->expression.vtype != TYPE_FIELD) {
557         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
558         mem_d(self);
559         return NULL;
560     }
561
562     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
563     self->expression.node.keep = true; /* keep */
564
565     if (owner->expression.vtype == TYPE_VECTOR) {
566         self->expression.vtype = TYPE_FLOAT;
567         self->expression.next  = NULL;
568     } else {
569         self->expression.vtype = TYPE_FIELD;
570         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
571     }
572
573     self->owner = owner;
574     ast_propagate_effects(self, owner);
575
576     self->field = field;
577     if (name)
578         self->name = util_strdup(name);
579     else
580         self->name = NULL;
581
582     return self;
583 }
584
585 void ast_member_delete(ast_member *self)
586 {
587     /* The owner is always an ast_value, which has .keep=true,
588      * also: ast_members are usually deleted after the owner, thus
589      * this will cause invalid access
590     ast_unref(self->owner);
591      * once we allow (expression).x to access a vector-member, we need
592      * to change this: preferably by creating an alternate ast node for this
593      * purpose that is not garbage-collected.
594     */
595     ast_expression_delete((ast_expression*)self);
596     mem_d(self);
597 }
598
599 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
600 {
601     ast_expression *outtype;
602     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
603
604     outtype = array->expression.next;
605     if (!outtype) {
606         mem_d(self);
607         /* Error: field has no type... */
608         return NULL;
609     }
610
611     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
612
613     self->array = array;
614     self->index = index;
615     ast_propagate_effects(self, array);
616     ast_propagate_effects(self, index);
617
618     if (!ast_type_adopt(self, outtype)) {
619         ast_array_index_delete(self);
620         return NULL;
621     }
622     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
623         if (self->expression.vtype != TYPE_ARRAY) {
624             compile_error(ast_ctx(self), "array_index node on type");
625             ast_array_index_delete(self);
626             return NULL;
627         }
628         self->array = outtype;
629         self->expression.vtype = TYPE_FIELD;
630     }
631
632     return self;
633 }
634
635 void ast_array_index_delete(ast_array_index *self)
636 {
637     ast_unref(self->array);
638     ast_unref(self->index);
639     ast_expression_delete((ast_expression*)self);
640     mem_d(self);
641 }
642
643 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
644 {
645     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
646     if (!ontrue && !onfalse) {
647         /* because it is invalid */
648         mem_d(self);
649         return NULL;
650     }
651     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
652
653     self->cond     = cond;
654     self->on_true  = ontrue;
655     self->on_false = onfalse;
656     ast_propagate_effects(self, cond);
657     if (ontrue)
658         ast_propagate_effects(self, ontrue);
659     if (onfalse)
660         ast_propagate_effects(self, onfalse);
661
662     return self;
663 }
664
665 void ast_ifthen_delete(ast_ifthen *self)
666 {
667     ast_unref(self->cond);
668     if (self->on_true)
669         ast_unref(self->on_true);
670     if (self->on_false)
671         ast_unref(self->on_false);
672     ast_expression_delete((ast_expression*)self);
673     mem_d(self);
674 }
675
676 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
677 {
678     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
679     /* This time NEITHER must be NULL */
680     if (!ontrue || !onfalse) {
681         mem_d(self);
682         return NULL;
683     }
684     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
685
686     self->cond     = cond;
687     self->on_true  = ontrue;
688     self->on_false = onfalse;
689     ast_propagate_effects(self, cond);
690     ast_propagate_effects(self, ontrue);
691     ast_propagate_effects(self, onfalse);
692
693     if (!ast_type_adopt(self, ontrue)) {
694         ast_ternary_delete(self);
695         return NULL;
696     }
697
698     return self;
699 }
700
701 void ast_ternary_delete(ast_ternary *self)
702 {
703     ast_unref(self->cond);
704     ast_unref(self->on_true);
705     ast_unref(self->on_false);
706     ast_expression_delete((ast_expression*)self);
707     mem_d(self);
708 }
709
710 ast_loop* ast_loop_new(lex_ctx ctx,
711                        ast_expression *initexpr,
712                        ast_expression *precond, bool pre_not,
713                        ast_expression *postcond, bool post_not,
714                        ast_expression *increment,
715                        ast_expression *body)
716 {
717     ast_instantiate(ast_loop, ctx, ast_loop_delete);
718     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
719
720     self->initexpr  = initexpr;
721     self->precond   = precond;
722     self->postcond  = postcond;
723     self->increment = increment;
724     self->body      = body;
725
726     self->pre_not   = pre_not;
727     self->post_not  = post_not;
728
729     if (initexpr)
730         ast_propagate_effects(self, initexpr);
731     if (precond)
732         ast_propagate_effects(self, precond);
733     if (postcond)
734         ast_propagate_effects(self, postcond);
735     if (increment)
736         ast_propagate_effects(self, increment);
737     if (body)
738         ast_propagate_effects(self, body);
739
740     return self;
741 }
742
743 void ast_loop_delete(ast_loop *self)
744 {
745     if (self->initexpr)
746         ast_unref(self->initexpr);
747     if (self->precond)
748         ast_unref(self->precond);
749     if (self->postcond)
750         ast_unref(self->postcond);
751     if (self->increment)
752         ast_unref(self->increment);
753     if (self->body)
754         ast_unref(self->body);
755     ast_expression_delete((ast_expression*)self);
756     mem_d(self);
757 }
758
759 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
760 {
761     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
762     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
763
764     self->is_continue = iscont;
765
766     return self;
767 }
768
769 void ast_breakcont_delete(ast_breakcont *self)
770 {
771     ast_expression_delete((ast_expression*)self);
772     mem_d(self);
773 }
774
775 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
776 {
777     ast_instantiate(ast_switch, ctx, ast_switch_delete);
778     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
779
780     self->operand = op;
781     self->cases   = NULL;
782
783     ast_propagate_effects(self, op);
784
785     return self;
786 }
787
788 void ast_switch_delete(ast_switch *self)
789 {
790     size_t i;
791     ast_unref(self->operand);
792
793     for (i = 0; i < vec_size(self->cases); ++i) {
794         if (self->cases[i].value)
795             ast_unref(self->cases[i].value);
796         ast_unref(self->cases[i].code);
797     }
798     vec_free(self->cases);
799
800     ast_expression_delete((ast_expression*)self);
801     mem_d(self);
802 }
803
804 ast_label* ast_label_new(lex_ctx ctx, const char *name)
805 {
806     ast_instantiate(ast_label, ctx, ast_label_delete);
807     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
808
809     self->name    = util_strdup(name);
810     self->irblock = NULL;
811     self->gotos   = NULL;
812
813     return self;
814 }
815
816 void ast_label_delete(ast_label *self)
817 {
818     mem_d((void*)self->name);
819     vec_free(self->gotos);
820     ast_expression_delete((ast_expression*)self);
821     mem_d(self);
822 }
823
824 void ast_label_register_goto(ast_label *self, ast_goto *g)
825 {
826     vec_push(self->gotos, g);
827 }
828
829 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
830 {
831     ast_instantiate(ast_goto, ctx, ast_goto_delete);
832     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
833
834     self->name    = util_strdup(name);
835     self->target  = NULL;
836     self->irblock_from = NULL;
837
838     return self;
839 }
840
841 void ast_goto_delete(ast_goto *self)
842 {
843     mem_d((void*)self->name);
844     ast_expression_delete((ast_expression*)self);
845     mem_d(self);
846 }
847
848 void ast_goto_set_label(ast_goto *self, ast_label *label)
849 {
850     self->target = label;
851 }
852
853 ast_call* ast_call_new(lex_ctx ctx,
854                        ast_expression *funcexpr)
855 {
856     ast_instantiate(ast_call, ctx, ast_call_delete);
857     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
858
859     ast_side_effects(self) = true;
860
861     self->params = NULL;
862     self->func   = funcexpr;
863
864     ast_type_adopt(self, funcexpr->expression.next);
865
866     return self;
867 }
868
869 void ast_call_delete(ast_call *self)
870 {
871     size_t i;
872     for (i = 0; i < vec_size(self->params); ++i)
873         ast_unref(self->params[i]);
874     vec_free(self->params);
875
876     if (self->func)
877         ast_unref(self->func);
878
879     ast_expression_delete((ast_expression*)self);
880     mem_d(self);
881 }
882
883 bool ast_call_check_types(ast_call *self)
884 {
885     size_t i;
886     bool   retval = true;
887     const  ast_expression *func = self->func;
888     size_t count = vec_size(self->params);
889     if (count > vec_size(func->expression.params))
890         count = vec_size(func->expression.params);
891
892     for (i = 0; i < count; ++i) {
893         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
894             char texp[1024];
895             char tgot[1024];
896             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
897             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
898             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
899                      (unsigned int)(i+1), texp, tgot);
900             /* we don't immediately return */
901             retval = false;
902         }
903     }
904     return retval;
905 }
906
907 ast_store* ast_store_new(lex_ctx ctx, int op,
908                          ast_expression *dest, ast_expression *source)
909 {
910     ast_instantiate(ast_store, ctx, ast_store_delete);
911     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
912
913     ast_side_effects(self) = true;
914
915     self->op = op;
916     self->dest = dest;
917     self->source = source;
918
919     if (!ast_type_adopt(self, dest)) {
920         ast_delete(self);
921         return NULL;
922     }
923
924     return self;
925 }
926
927 void ast_store_delete(ast_store *self)
928 {
929     ast_unref(self->dest);
930     ast_unref(self->source);
931     ast_expression_delete((ast_expression*)self);
932     mem_d(self);
933 }
934
935 ast_block* ast_block_new(lex_ctx ctx)
936 {
937     ast_instantiate(ast_block, ctx, ast_block_delete);
938     ast_expression_init((ast_expression*)self,
939                         (ast_expression_codegen*)&ast_block_codegen);
940
941     self->locals  = NULL;
942     self->exprs   = NULL;
943     self->collect = NULL;
944
945     return self;
946 }
947
948 bool ast_block_add_expr(ast_block *self, ast_expression *e)
949 {
950     ast_propagate_effects(self, e);
951     vec_push(self->exprs, e);
952     if (self->expression.next) {
953         ast_delete(self->expression.next);
954         self->expression.next = NULL;
955     }
956     if (!ast_type_adopt(self, e)) {
957         compile_error(ast_ctx(self), "internal error: failed to adopt type");
958         return false;
959     }
960     return true;
961 }
962
963 void ast_block_collect(ast_block *self, ast_expression *expr)
964 {
965     vec_push(self->collect, expr);
966     expr->expression.node.keep = true;
967 }
968
969 void ast_block_delete(ast_block *self)
970 {
971     size_t i;
972     for (i = 0; i < vec_size(self->exprs); ++i)
973         ast_unref(self->exprs[i]);
974     vec_free(self->exprs);
975     for (i = 0; i < vec_size(self->locals); ++i)
976         ast_delete(self->locals[i]);
977     vec_free(self->locals);
978     for (i = 0; i < vec_size(self->collect); ++i)
979         ast_delete(self->collect[i]);
980     vec_free(self->collect);
981     ast_expression_delete((ast_expression*)self);
982     mem_d(self);
983 }
984
985 bool ast_block_set_type(ast_block *self, ast_expression *from)
986 {
987     if (self->expression.next)
988         ast_delete(self->expression.next);
989     if (!ast_type_adopt(self, from))
990         return false;
991     return true;
992 }
993
994 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
995 {
996     ast_instantiate(ast_function, ctx, ast_function_delete);
997
998     if (!vtype ||
999         vtype->hasvalue ||
1000         vtype->expression.vtype != TYPE_FUNCTION)
1001     {
1002         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1003                  (int)!vtype,
1004                  (int)vtype->hasvalue,
1005                  vtype->expression.vtype);
1006         mem_d(self);
1007         return NULL;
1008     }
1009
1010     self->vtype  = vtype;
1011     self->name   = name ? util_strdup(name) : NULL;
1012     self->blocks = NULL;
1013
1014     self->labelcount = 0;
1015     self->builtin = 0;
1016
1017     self->ir_func = NULL;
1018     self->curblock = NULL;
1019
1020     self->breakblock    = NULL;
1021     self->continueblock = NULL;
1022
1023     vtype->hasvalue = true;
1024     vtype->constval.vfunc = self;
1025
1026     return self;
1027 }
1028
1029 void ast_function_delete(ast_function *self)
1030 {
1031     size_t i;
1032     if (self->name)
1033         mem_d((void*)self->name);
1034     if (self->vtype) {
1035         /* ast_value_delete(self->vtype); */
1036         self->vtype->hasvalue = false;
1037         self->vtype->constval.vfunc = NULL;
1038         /* We use unref - if it was stored in a global table it is supposed
1039          * to be deleted from *there*
1040          */
1041         ast_unref(self->vtype);
1042     }
1043     for (i = 0; i < vec_size(self->blocks); ++i)
1044         ast_delete(self->blocks[i]);
1045     vec_free(self->blocks);
1046     mem_d(self);
1047 }
1048
1049 const char* ast_function_label(ast_function *self, const char *prefix)
1050 {
1051     size_t id;
1052     size_t len;
1053     char  *from;
1054
1055     if (!opts.dump && !opts.dumpfin && !opts.debug)
1056         return NULL;
1057
1058     id  = (self->labelcount++);
1059     len = strlen(prefix);
1060
1061     from = self->labelbuf + sizeof(self->labelbuf)-1;
1062     *from-- = 0;
1063     do {
1064         *from-- = (id%10) + '0';
1065         id /= 10;
1066     } while (id);
1067     ++from;
1068     memcpy(from - len, prefix, len);
1069     return from - len;
1070 }
1071
1072 /*********************************************************************/
1073 /* AST codegen part
1074  * by convention you must never pass NULL to the 'ir_value **out'
1075  * parameter. If you really don't care about the output, pass a dummy.
1076  * But I can't imagine a pituation where the output is truly unnecessary.
1077  */
1078
1079 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1080 {
1081     if (out->vtype == TYPE_FIELD)
1082         out->fieldtype = self->next->expression.vtype;
1083     if (out->vtype == TYPE_FUNCTION)
1084         out->outtype = self->next->expression.vtype;
1085 }
1086
1087 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1088
1089 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1090 {
1091     (void)func;
1092     (void)lvalue;
1093     /* NOTE: This is the codegen for a variable used in an expression.
1094      * It is not the codegen to generate the value. For this purpose,
1095      * ast_local_codegen and ast_global_codegen are to be used before this
1096      * is executed. ast_function_codegen should take care of its locals,
1097      * and the ast-user should take care of ast_global_codegen to be used
1098      * on all the globals.
1099      */
1100     if (!self->ir_v) {
1101         char typename[1024];
1102         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
1103         compile_error(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
1104         return false;
1105     }
1106     *out = self->ir_v;
1107     return true;
1108 }
1109
1110 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1111 {
1112     ir_value *v = NULL;
1113
1114     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1115     {
1116         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1117         if (!func)
1118             return false;
1119         func->context = ast_ctx(self);
1120         func->value->context = ast_ctx(self);
1121
1122         self->constval.vfunc->ir_func = func;
1123         self->ir_v = func->value;
1124         /* The function is filled later on ast_function_codegen... */
1125         return true;
1126     }
1127
1128     if (isfield && self->expression.vtype == TYPE_FIELD) {
1129         ast_expression *fieldtype = self->expression.next;
1130
1131         if (self->hasvalue) {
1132             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1133             goto error;
1134         }
1135
1136         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1137             size_t ai;
1138             char   *name;
1139             size_t  namelen;
1140
1141             ast_expression_common *elemtype;
1142             int                    vtype;
1143             ast_value             *array = (ast_value*)fieldtype;
1144
1145             if (!ast_istype(fieldtype, ast_value)) {
1146                 compile_error(ast_ctx(self), "internal error: ast_value required");
1147                 return false;
1148             }
1149
1150             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1151             if (!array->expression.count || array->expression.count > opts.max_array_size)
1152                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1153
1154             elemtype = &array->expression.next->expression;
1155             vtype = elemtype->vtype;
1156
1157             v = ir_builder_create_field(ir, self->name, vtype);
1158             if (!v) {
1159                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1160                 return false;
1161             }
1162             v->context = ast_ctx(self);
1163             v->unique_life = true;
1164             array->ir_v = self->ir_v = v;
1165
1166             namelen = strlen(self->name);
1167             name    = (char*)mem_a(namelen + 16);
1168             strcpy(name, self->name);
1169
1170             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1171             array->ir_values[0] = v;
1172             for (ai = 1; ai < array->expression.count; ++ai) {
1173                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1174                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1175                 if (!array->ir_values[ai]) {
1176                     mem_d(name);
1177                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1178                     return false;
1179                 }
1180                 array->ir_values[ai]->context = ast_ctx(self);
1181                 array->ir_values[ai]->unique_life = true;
1182             }
1183             mem_d(name);
1184         }
1185         else
1186         {
1187             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1188             if (!v)
1189                 return false;
1190             v->context = ast_ctx(self);
1191             self->ir_v = v;
1192         }
1193         return true;
1194     }
1195
1196     if (self->expression.vtype == TYPE_ARRAY) {
1197         size_t ai;
1198         char   *name;
1199         size_t  namelen;
1200
1201         ast_expression_common *elemtype = &self->expression.next->expression;
1202         int vtype = elemtype->vtype;
1203
1204         /* same as with field arrays */
1205         if (!self->expression.count || self->expression.count > opts.max_array_size)
1206             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1207
1208         v = ir_builder_create_global(ir, self->name, vtype);
1209         if (!v) {
1210             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1211             return false;
1212         }
1213         v->context = ast_ctx(self);
1214         v->unique_life = true;
1215
1216         namelen = strlen(self->name);
1217         name    = (char*)mem_a(namelen + 16);
1218         strcpy(name, self->name);
1219
1220         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1221         self->ir_values[0] = v;
1222         for (ai = 1; ai < self->expression.count; ++ai) {
1223             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1224             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1225             if (!self->ir_values[ai]) {
1226                 mem_d(name);
1227                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1228                 return false;
1229             }
1230             self->ir_values[ai]->context = ast_ctx(self);
1231             self->ir_values[ai]->unique_life = true;
1232         }
1233         mem_d(name);
1234     }
1235     else
1236     {
1237         /* Arrays don't do this since there's no "array" value which spans across the
1238          * whole thing.
1239          */
1240         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1241         if (!v) {
1242             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1243             return false;
1244         }
1245         codegen_output_type(self, v);
1246         v->context = ast_ctx(self);
1247     }
1248
1249     if (self->hasvalue) {
1250         switch (self->expression.vtype)
1251         {
1252             case TYPE_FLOAT:
1253                 if (!ir_value_set_float(v, self->constval.vfloat))
1254                     goto error;
1255                 break;
1256             case TYPE_VECTOR:
1257                 if (!ir_value_set_vector(v, self->constval.vvec))
1258                     goto error;
1259                 break;
1260             case TYPE_STRING:
1261                 if (!ir_value_set_string(v, self->constval.vstring))
1262                     goto error;
1263                 break;
1264             case TYPE_ARRAY:
1265                 compile_error(ast_ctx(self), "TODO: global constant array");
1266                 break;
1267             case TYPE_FUNCTION:
1268                 compile_error(ast_ctx(self), "global of type function not properly generated");
1269                 goto error;
1270                 /* Cannot generate an IR value for a function,
1271                  * need a pointer pointing to a function rather.
1272                  */
1273             case TYPE_FIELD:
1274                 if (!self->constval.vfield) {
1275                     compile_error(ast_ctx(self), "field constant without vfield set");
1276                     goto error;
1277                 }
1278                 if (!self->constval.vfield->ir_v) {
1279                     compile_error(ast_ctx(self), "field constant generated before its field");
1280                     goto error;
1281                 }
1282                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1283                     goto error;
1284                 break;
1285             default:
1286                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1287                 break;
1288         }
1289     }
1290
1291     /* link us to the ir_value */
1292     v->cvq = self->cvq;
1293     self->ir_v = v;
1294     return true;
1295
1296 error: /* clean up */
1297     ir_value_delete(v);
1298     return false;
1299 }
1300
1301 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1302 {
1303     ir_value *v = NULL;
1304     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1305     {
1306         /* Do we allow local functions? I think not...
1307          * this is NOT a function pointer atm.
1308          */
1309         return false;
1310     }
1311
1312     if (self->expression.vtype == TYPE_ARRAY) {
1313         size_t ai;
1314         char   *name;
1315         size_t  namelen;
1316
1317         ast_expression_common *elemtype = &self->expression.next->expression;
1318         int vtype = elemtype->vtype;
1319
1320         if (param) {
1321             compile_error(ast_ctx(self), "array-parameters are not supported");
1322             return false;
1323         }
1324
1325         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1326         if (!self->expression.count || self->expression.count > opts.max_array_size) {
1327             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1328         }
1329
1330         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1331         if (!self->ir_values) {
1332             compile_error(ast_ctx(self), "failed to allocate array values");
1333             return false;
1334         }
1335
1336         v = ir_function_create_local(func, self->name, vtype, param);
1337         if (!v) {
1338             compile_error(ast_ctx(self), "ir_function_create_local failed");
1339             return false;
1340         }
1341         v->context = ast_ctx(self);
1342         v->unique_life = true;
1343
1344         namelen = strlen(self->name);
1345         name    = (char*)mem_a(namelen + 16);
1346         strcpy(name, self->name);
1347
1348         self->ir_values[0] = v;
1349         for (ai = 1; ai < self->expression.count; ++ai) {
1350             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1351             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1352             if (!self->ir_values[ai]) {
1353                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1354                 return false;
1355             }
1356             self->ir_values[ai]->context = ast_ctx(self);
1357             self->ir_values[ai]->unique_life = true;
1358         }
1359     }
1360     else
1361     {
1362         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1363         if (!v)
1364             return false;
1365         codegen_output_type(self, v);
1366         v->context = ast_ctx(self);
1367     }
1368
1369     /* A constant local... hmmm...
1370      * I suppose the IR will have to deal with this
1371      */
1372     if (self->hasvalue) {
1373         switch (self->expression.vtype)
1374         {
1375             case TYPE_FLOAT:
1376                 if (!ir_value_set_float(v, self->constval.vfloat))
1377                     goto error;
1378                 break;
1379             case TYPE_VECTOR:
1380                 if (!ir_value_set_vector(v, self->constval.vvec))
1381                     goto error;
1382                 break;
1383             case TYPE_STRING:
1384                 if (!ir_value_set_string(v, self->constval.vstring))
1385                     goto error;
1386                 break;
1387             default:
1388                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1389                 break;
1390         }
1391     }
1392
1393     /* link us to the ir_value */
1394     v->cvq = self->cvq;
1395     self->ir_v = v;
1396
1397     if (!ast_generate_accessors(self, func->owner))
1398         return false;
1399     return true;
1400
1401 error: /* clean up */
1402     ir_value_delete(v);
1403     return false;
1404 }
1405
1406 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1407 {
1408     size_t i;
1409     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1410     if (!self->setter || !self->getter)
1411         return true;
1412     for (i = 0; i < self->expression.count; ++i) {
1413         if (!self->ir_values) {
1414             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1415             return false;
1416         }
1417         if (!self->ir_values[i]) {
1418             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1419             return false;
1420         }
1421         if (self->ir_values[i]->life) {
1422             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1423             return false;
1424         }
1425     }
1426
1427     opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
1428     if (self->setter) {
1429         if (!ast_global_codegen  (self->setter, ir, false) ||
1430             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1431             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1432         {
1433             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1434             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1435             return false;
1436         }
1437     }
1438     if (self->getter) {
1439         if (!ast_global_codegen  (self->getter, ir, false) ||
1440             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1441             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1442         {
1443             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1444             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1445             return false;
1446         }
1447     }
1448     for (i = 0; i < self->expression.count; ++i) {
1449         vec_free(self->ir_values[i]->life);
1450     }
1451     opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1452     return true;
1453 }
1454
1455 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1456 {
1457     ir_function *irf;
1458     ir_value    *dummy;
1459     ast_expression_common *ec;
1460     size_t    i;
1461
1462     (void)ir;
1463
1464     irf = self->ir_func;
1465     if (!irf) {
1466         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1467         return false;
1468     }
1469
1470     /* fill the parameter list */
1471     ec = &self->vtype->expression;
1472     for (i = 0; i < vec_size(ec->params); ++i)
1473     {
1474         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1475             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1476         else
1477             vec_push(irf->params, ec->params[i]->expression.vtype);
1478         if (!self->builtin) {
1479             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1480                 return false;
1481         }
1482     }
1483
1484     if (self->builtin) {
1485         irf->builtin = self->builtin;
1486         return true;
1487     }
1488
1489     if (!vec_size(self->blocks)) {
1490         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1491         return false;
1492     }
1493
1494     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1495     if (!self->curblock) {
1496         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1497         return false;
1498     }
1499
1500     for (i = 0; i < vec_size(self->blocks); ++i) {
1501         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1502         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1503             return false;
1504     }
1505
1506     /* TODO: check return types */
1507     if (!self->curblock->final)
1508     {
1509         if (!self->vtype->expression.next ||
1510             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1511         {
1512             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1513         }
1514         else if (vec_size(self->curblock->entries))
1515         {
1516             /* error("missing return"); */
1517             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1518                                 "control reaches end of non-void function (`%s`) via %s",
1519                                 self->name, self->curblock->label))
1520             {
1521                 return false;
1522             }
1523             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1524         }
1525     }
1526     return true;
1527 }
1528
1529 /* Note, you will not see ast_block_codegen generate ir_blocks.
1530  * To the AST and the IR, blocks are 2 different things.
1531  * In the AST it represents a block of code, usually enclosed in
1532  * curly braces {...}.
1533  * While in the IR it represents a block in terms of control-flow.
1534  */
1535 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1536 {
1537     size_t i;
1538
1539     /* We don't use this
1540      * Note: an ast-representation using the comma-operator
1541      * of the form: (a, b, c) = x should not assign to c...
1542      */
1543     if (lvalue) {
1544         compile_error(ast_ctx(self), "not an l-value (code-block)");
1545         return false;
1546     }
1547
1548     if (self->expression.outr) {
1549         *out = self->expression.outr;
1550         return true;
1551     }
1552
1553     /* output is NULL at first, we'll have each expression
1554      * assign to out output, thus, a comma-operator represention
1555      * using an ast_block will return the last generated value,
1556      * so: (b, c) + a  executed both b and c, and returns c,
1557      * which is then added to a.
1558      */
1559     *out = NULL;
1560
1561     /* generate locals */
1562     for (i = 0; i < vec_size(self->locals); ++i)
1563     {
1564         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1565             if (opts.debug)
1566                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1567             return false;
1568         }
1569     }
1570
1571     for (i = 0; i < vec_size(self->exprs); ++i)
1572     {
1573         ast_expression_codegen *gen;
1574         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1575             if (compile_warning(ast_ctx(self->exprs[i]), WARN_UNREACHABLE_CODE, "unreachable statement"))
1576                 return false;
1577             continue;
1578         }
1579         gen = self->exprs[i]->expression.codegen;
1580         if (!(*gen)(self->exprs[i], func, false, out))
1581             return false;
1582     }
1583
1584     self->expression.outr = *out;
1585
1586     return true;
1587 }
1588
1589 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1590 {
1591     ast_expression_codegen *cgen;
1592     ir_value *left  = NULL;
1593     ir_value *right = NULL;
1594
1595     ast_value       *arr;
1596     ast_value       *idx = 0;
1597     ast_array_index *ai = NULL;
1598
1599     if (lvalue && self->expression.outl) {
1600         *out = self->expression.outl;
1601         return true;
1602     }
1603
1604     if (!lvalue && self->expression.outr) {
1605         *out = self->expression.outr;
1606         return true;
1607     }
1608
1609     if (ast_istype(self->dest, ast_array_index))
1610     {
1611
1612         ai = (ast_array_index*)self->dest;
1613         idx = (ast_value*)ai->index;
1614
1615         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1616             ai = NULL;
1617     }
1618
1619     if (ai) {
1620         /* we need to call the setter */
1621         ir_value  *iridx, *funval;
1622         ir_instr  *call;
1623
1624         if (lvalue) {
1625             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1626             return false;
1627         }
1628
1629         arr = (ast_value*)ai->array;
1630         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1631             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1632             return false;
1633         }
1634
1635         cgen = idx->expression.codegen;
1636         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1637             return false;
1638
1639         cgen = arr->setter->expression.codegen;
1640         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1641             return false;
1642
1643         cgen = self->source->expression.codegen;
1644         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1645             return false;
1646
1647         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1648         if (!call)
1649             return false;
1650         ir_call_param(call, iridx);
1651         ir_call_param(call, right);
1652         self->expression.outr = right;
1653     }
1654     else
1655     {
1656         /* regular code */
1657
1658         cgen = self->dest->expression.codegen;
1659         /* lvalue! */
1660         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1661             return false;
1662         self->expression.outl = left;
1663
1664         cgen = self->source->expression.codegen;
1665         /* rvalue! */
1666         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1667             return false;
1668
1669         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1670             return false;
1671         self->expression.outr = right;
1672     }
1673
1674     /* Theoretically, an assinment returns its left side as an
1675      * lvalue, if we don't need an lvalue though, we return
1676      * the right side as an rvalue, otherwise we have to
1677      * somehow know whether or not we need to dereference the pointer
1678      * on the left side - that is: OP_LOAD if it was an address.
1679      * Also: in original QC we cannot OP_LOADP *anyway*.
1680      */
1681     *out = (lvalue ? left : right);
1682
1683     return true;
1684 }
1685
1686 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1687 {
1688     ast_expression_codegen *cgen;
1689     ir_value *left, *right;
1690
1691     /* A binary operation cannot yield an l-value */
1692     if (lvalue) {
1693         compile_error(ast_ctx(self), "not an l-value (binop)");
1694         return false;
1695     }
1696
1697     if (self->expression.outr) {
1698         *out = self->expression.outr;
1699         return true;
1700     }
1701
1702     if (OPTS_FLAG(SHORT_LOGIC) &&
1703         (self->op == INSTR_AND || self->op == INSTR_OR))
1704     {
1705         /* short circuit evaluation */
1706         ir_block *other, *merge;
1707         ir_block *from_left, *from_right;
1708         ir_instr *phi;
1709         size_t    merge_id;
1710
1711         /* prepare end-block */
1712         merge_id = vec_size(func->ir_func->blocks);
1713         merge    = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1714
1715         /* generate the left expression */
1716         cgen = self->left->expression.codegen;
1717         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1718             return false;
1719         /* remember the block */
1720         from_left = func->curblock;
1721
1722         /* create a new block for the right expression */
1723         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1724         if (self->op == INSTR_AND) {
1725             /* on AND: left==true -> other */
1726             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1727                 return false;
1728         } else {
1729             /* on OR: left==false -> other */
1730             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1731                 return false;
1732         }
1733         /* use the likely flag */
1734         vec_last(func->curblock->instr)->likely = true;
1735
1736         /* enter the right-expression's block */
1737         func->curblock = other;
1738         /* generate */
1739         cgen = self->right->expression.codegen;
1740         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1741             return false;
1742         /* remember block */
1743         from_right = func->curblock;
1744
1745         /* jump to the merge block */
1746         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1747             return false;
1748
1749         vec_remove(func->ir_func->blocks, merge_id, 1);
1750         vec_push(func->ir_func->blocks, merge);
1751
1752         func->curblock = merge;
1753         phi = ir_block_create_phi(func->curblock, ast_ctx(self), ast_function_label(func, "sce_value"), TYPE_FLOAT);
1754         ir_phi_add(phi, from_left, left);
1755         ir_phi_add(phi, from_right, right);
1756         *out = ir_phi_value(phi);
1757         if (!*out)
1758             return false;
1759         self->expression.outr = *out;
1760         return true;
1761     }
1762
1763     cgen = self->left->expression.codegen;
1764     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1765         return false;
1766
1767     cgen = self->right->expression.codegen;
1768     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1769         return false;
1770
1771     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1772                                  self->op, left, right);
1773     if (!*out)
1774         return false;
1775     self->expression.outr = *out;
1776
1777     return true;
1778 }
1779
1780 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1781 {
1782     ast_expression_codegen *cgen;
1783     ir_value *leftl = NULL, *leftr, *right, *bin;
1784
1785     ast_value       *arr;
1786     ast_value       *idx = 0;
1787     ast_array_index *ai = NULL;
1788     ir_value        *iridx = NULL;
1789
1790     if (lvalue && self->expression.outl) {
1791         *out = self->expression.outl;
1792         return true;
1793     }
1794
1795     if (!lvalue && self->expression.outr) {
1796         *out = self->expression.outr;
1797         return true;
1798     }
1799
1800     if (ast_istype(self->dest, ast_array_index))
1801     {
1802
1803         ai = (ast_array_index*)self->dest;
1804         idx = (ast_value*)ai->index;
1805
1806         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1807             ai = NULL;
1808     }
1809
1810     /* for a binstore we need both an lvalue and an rvalue for the left side */
1811     /* rvalue of destination! */
1812     if (ai) {
1813         cgen = idx->expression.codegen;
1814         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1815             return false;
1816     }
1817     cgen = self->dest->expression.codegen;
1818     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1819         return false;
1820
1821     /* source as rvalue only */
1822     cgen = self->source->expression.codegen;
1823     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1824         return false;
1825
1826     /* now the binary */
1827     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1828                                 self->opbin, leftr, right);
1829     self->expression.outr = bin;
1830
1831
1832     if (ai) {
1833         /* we need to call the setter */
1834         ir_value  *funval;
1835         ir_instr  *call;
1836
1837         if (lvalue) {
1838             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1839             return false;
1840         }
1841
1842         arr = (ast_value*)ai->array;
1843         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1844             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1845             return false;
1846         }
1847
1848         cgen = arr->setter->expression.codegen;
1849         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1850             return false;
1851
1852         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1853         if (!call)
1854             return false;
1855         ir_call_param(call, iridx);
1856         ir_call_param(call, bin);
1857         self->expression.outr = bin;
1858     } else {
1859         /* now store them */
1860         cgen = self->dest->expression.codegen;
1861         /* lvalue of destination */
1862         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1863             return false;
1864         self->expression.outl = leftl;
1865
1866         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1867             return false;
1868         self->expression.outr = bin;
1869     }
1870
1871     /* Theoretically, an assinment returns its left side as an
1872      * lvalue, if we don't need an lvalue though, we return
1873      * the right side as an rvalue, otherwise we have to
1874      * somehow know whether or not we need to dereference the pointer
1875      * on the left side - that is: OP_LOAD if it was an address.
1876      * Also: in original QC we cannot OP_LOADP *anyway*.
1877      */
1878     *out = (lvalue ? leftl : bin);
1879
1880     return true;
1881 }
1882
1883 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1884 {
1885     ast_expression_codegen *cgen;
1886     ir_value *operand;
1887
1888     /* An unary operation cannot yield an l-value */
1889     if (lvalue) {
1890         compile_error(ast_ctx(self), "not an l-value (binop)");
1891         return false;
1892     }
1893
1894     if (self->expression.outr) {
1895         *out = self->expression.outr;
1896         return true;
1897     }
1898
1899     cgen = self->operand->expression.codegen;
1900     /* lvalue! */
1901     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1902         return false;
1903
1904     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
1905                                  self->op, operand);
1906     if (!*out)
1907         return false;
1908     self->expression.outr = *out;
1909
1910     return true;
1911 }
1912
1913 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1914 {
1915     ast_expression_codegen *cgen;
1916     ir_value *operand;
1917
1918     *out = NULL;
1919
1920     /* In the context of a return operation, we don't actually return
1921      * anything...
1922      */
1923     if (lvalue) {
1924         compile_error(ast_ctx(self), "return-expression is not an l-value");
1925         return false;
1926     }
1927
1928     if (self->expression.outr) {
1929         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1930         return false;
1931     }
1932     self->expression.outr = (ir_value*)1;
1933
1934     if (self->operand) {
1935         cgen = self->operand->expression.codegen;
1936         /* lvalue! */
1937         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1938             return false;
1939
1940         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
1941             return false;
1942     } else {
1943         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
1944             return false;
1945     }
1946
1947     return true;
1948 }
1949
1950 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1951 {
1952     ast_expression_codegen *cgen;
1953     ir_value *ent, *field;
1954
1955     /* This function needs to take the 'lvalue' flag into account!
1956      * As lvalue we provide a field-pointer, as rvalue we provide the
1957      * value in a temp.
1958      */
1959
1960     if (lvalue && self->expression.outl) {
1961         *out = self->expression.outl;
1962         return true;
1963     }
1964
1965     if (!lvalue && self->expression.outr) {
1966         *out = self->expression.outr;
1967         return true;
1968     }
1969
1970     cgen = self->entity->expression.codegen;
1971     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1972         return false;
1973
1974     cgen = self->field->expression.codegen;
1975     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1976         return false;
1977
1978     if (lvalue) {
1979         /* address! */
1980         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
1981                                             ent, field);
1982     } else {
1983         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
1984                                              ent, field, self->expression.vtype);
1985         /* Done AFTER error checking: 
1986         codegen_output_type(self, *out);
1987         */
1988     }
1989     if (!*out) {
1990         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
1991                  (lvalue ? "ADDRESS" : "FIELD"),
1992                  type_name[self->expression.vtype]);
1993         return false;
1994     }
1995     if (!lvalue)
1996         codegen_output_type(self, *out);
1997
1998     if (lvalue)
1999         self->expression.outl = *out;
2000     else
2001         self->expression.outr = *out;
2002
2003     /* Hm that should be it... */
2004     return true;
2005 }
2006
2007 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2008 {
2009     ast_expression_codegen *cgen;
2010     ir_value *vec;
2011
2012     /* in QC this is always an lvalue */
2013     (void)lvalue;
2014     if (self->expression.outl) {
2015         *out = self->expression.outl;
2016         return true;
2017     }
2018
2019     cgen = self->owner->expression.codegen;
2020     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
2021         return false;
2022
2023     if (vec->vtype != TYPE_VECTOR &&
2024         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2025     {
2026         return false;
2027     }
2028
2029     *out = ir_value_vector_member(vec, self->field);
2030     self->expression.outl = *out;
2031
2032     return (*out != NULL);
2033 }
2034
2035 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2036 {
2037     ast_value *arr;
2038     ast_value *idx;
2039
2040     if (!lvalue && self->expression.outr) {
2041         *out = self->expression.outr;
2042     }
2043     if (lvalue && self->expression.outl) {
2044         *out = self->expression.outl;
2045     }
2046
2047     if (!ast_istype(self->array, ast_value)) {
2048         compile_error(ast_ctx(self), "array indexing this way is not supported");
2049         /* note this would actually be pointer indexing because the left side is
2050          * not an actual array but (hopefully) an indexable expression.
2051          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2052          * support this path will be filled.
2053          */
2054         return false;
2055     }
2056
2057     arr = (ast_value*)self->array;
2058     idx = (ast_value*)self->index;
2059
2060     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2061         /* Time to use accessor functions */
2062         ast_expression_codegen *cgen;
2063         ir_value               *iridx, *funval;
2064         ir_instr               *call;
2065
2066         if (lvalue) {
2067             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2068             return false;
2069         }
2070
2071         if (!arr->getter) {
2072             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2073             return false;
2074         }
2075
2076         cgen = self->index->expression.codegen;
2077         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2078             return false;
2079
2080         cgen = arr->getter->expression.codegen;
2081         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2082             return false;
2083
2084         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
2085         if (!call)
2086             return false;
2087         ir_call_param(call, iridx);
2088
2089         *out = ir_call_value(call);
2090         self->expression.outr = *out;
2091         return true;
2092     }
2093
2094     if (idx->expression.vtype == TYPE_FLOAT) {
2095         unsigned int arridx = idx->constval.vfloat;
2096         if (arridx >= self->array->expression.count)
2097         {
2098             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2099             return false;
2100         }
2101         *out = arr->ir_values[arridx];
2102     }
2103     else if (idx->expression.vtype == TYPE_INTEGER) {
2104         unsigned int arridx = idx->constval.vint;
2105         if (arridx >= self->array->expression.count)
2106         {
2107             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2108             return false;
2109         }
2110         *out = arr->ir_values[arridx];
2111     }
2112     else {
2113         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2114         return false;
2115     }
2116     return true;
2117 }
2118
2119 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2120 {
2121     ast_expression_codegen *cgen;
2122
2123     ir_value *condval;
2124     ir_value *dummy;
2125
2126     ir_block *cond;
2127     ir_block *ontrue;
2128     ir_block *onfalse;
2129     ir_block *ontrue_endblock = NULL;
2130     ir_block *onfalse_endblock = NULL;
2131     ir_block *merge = NULL;
2132
2133     /* We don't output any value, thus also don't care about r/lvalue */
2134     (void)out;
2135     (void)lvalue;
2136
2137     if (self->expression.outr) {
2138         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2139         return false;
2140     }
2141     self->expression.outr = (ir_value*)1;
2142
2143     /* generate the condition */
2144     cgen = self->cond->expression.codegen;
2145     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2146         return false;
2147     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2148     cond = func->curblock;
2149
2150     /* on-true path */
2151
2152     if (self->on_true) {
2153         /* create on-true block */
2154         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2155         if (!ontrue)
2156             return false;
2157
2158         /* enter the block */
2159         func->curblock = ontrue;
2160
2161         /* generate */
2162         cgen = self->on_true->expression.codegen;
2163         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2164             return false;
2165
2166         /* we now need to work from the current endpoint */
2167         ontrue_endblock = func->curblock;
2168     } else
2169         ontrue = NULL;
2170
2171     /* on-false path */
2172     if (self->on_false) {
2173         /* create on-false block */
2174         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2175         if (!onfalse)
2176             return false;
2177
2178         /* enter the block */
2179         func->curblock = onfalse;
2180
2181         /* generate */
2182         cgen = self->on_false->expression.codegen;
2183         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2184             return false;
2185
2186         /* we now need to work from the current endpoint */
2187         onfalse_endblock = func->curblock;
2188     } else
2189         onfalse = NULL;
2190
2191     /* Merge block were they all merge in to */
2192     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2193     {
2194         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2195         if (!merge)
2196             return false;
2197         /* add jumps ot the merge block */
2198         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2199             return false;
2200         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2201             return false;
2202
2203         /* Now enter the merge block */
2204         func->curblock = merge;
2205     }
2206
2207     /* we create the if here, that way all blocks are ordered :)
2208      */
2209     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2210                             (ontrue  ? ontrue  : merge),
2211                             (onfalse ? onfalse : merge)))
2212     {
2213         return false;
2214     }
2215
2216     return true;
2217 }
2218
2219 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2220 {
2221     ast_expression_codegen *cgen;
2222
2223     ir_value *condval;
2224     ir_value *trueval, *falseval;
2225     ir_instr *phi;
2226
2227     ir_block *cond = func->curblock;
2228     ir_block *cond_out = NULL;
2229     ir_block *ontrue, *ontrue_out = NULL;
2230     ir_block *onfalse, *onfalse_out = NULL;
2231     ir_block *merge;
2232
2233     /* Ternary can never create an lvalue... */
2234     if (lvalue)
2235         return false;
2236
2237     /* In theory it shouldn't be possible to pass through a node twice, but
2238      * in case we add any kind of optimization pass for the AST itself, it
2239      * may still happen, thus we remember a created ir_value and simply return one
2240      * if it already exists.
2241      */
2242     if (self->expression.outr) {
2243         *out = self->expression.outr;
2244         return true;
2245     }
2246
2247     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2248
2249     /* generate the condition */
2250     func->curblock = cond;
2251     cgen = self->cond->expression.codegen;
2252     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2253         return false;
2254     cond_out = func->curblock;
2255
2256     /* create on-true block */
2257     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2258     if (!ontrue)
2259         return false;
2260     else
2261     {
2262         /* enter the block */
2263         func->curblock = ontrue;
2264
2265         /* generate */
2266         cgen = self->on_true->expression.codegen;
2267         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2268             return false;
2269
2270         ontrue_out = func->curblock;
2271     }
2272
2273     /* create on-false block */
2274     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2275     if (!onfalse)
2276         return false;
2277     else
2278     {
2279         /* enter the block */
2280         func->curblock = onfalse;
2281
2282         /* generate */
2283         cgen = self->on_false->expression.codegen;
2284         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2285             return false;
2286
2287         onfalse_out = func->curblock;
2288     }
2289
2290     /* create merge block */
2291     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2292     if (!merge)
2293         return false;
2294     /* jump to merge block */
2295     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2296         return false;
2297     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2298         return false;
2299
2300     /* create if instruction */
2301     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2302         return false;
2303
2304     /* Now enter the merge block */
2305     func->curblock = merge;
2306
2307     /* Here, now, we need a PHI node
2308      * but first some sanity checking...
2309      */
2310     if (trueval->vtype != falseval->vtype) {
2311         /* error("ternary with different types on the two sides"); */
2312         return false;
2313     }
2314
2315     /* create PHI */
2316     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), trueval->vtype);
2317     if (!phi)
2318         return false;
2319     ir_phi_add(phi, ontrue_out,  trueval);
2320     ir_phi_add(phi, onfalse_out, falseval);
2321
2322     self->expression.outr = ir_phi_value(phi);
2323     *out = self->expression.outr;
2324
2325     codegen_output_type(self, *out);
2326
2327     return true;
2328 }
2329
2330 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2331 {
2332     ast_expression_codegen *cgen;
2333
2334     ir_value *dummy      = NULL;
2335     ir_value *precond    = NULL;
2336     ir_value *postcond   = NULL;
2337
2338     /* Since we insert some jumps "late" so we have blocks
2339      * ordered "nicely", we need to keep track of the actual end-blocks
2340      * of expressions to add the jumps to.
2341      */
2342     ir_block *bbody      = NULL, *end_bbody      = NULL;
2343     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2344     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2345     ir_block *bincrement = NULL, *end_bincrement = NULL;
2346     ir_block *bout       = NULL, *bin            = NULL;
2347
2348     /* let's at least move the outgoing block to the end */
2349     size_t    bout_id;
2350
2351     /* 'break' and 'continue' need to be able to find the right blocks */
2352     ir_block *bcontinue     = NULL;
2353     ir_block *bbreak        = NULL;
2354
2355     ir_block *old_bcontinue = NULL;
2356     ir_block *old_bbreak    = NULL;
2357
2358     ir_block *tmpblock      = NULL;
2359
2360     (void)lvalue;
2361     (void)out;
2362
2363     if (self->expression.outr) {
2364         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2365         return false;
2366     }
2367     self->expression.outr = (ir_value*)1;
2368
2369     /* NOTE:
2370      * Should we ever need some kind of block ordering, better make this function
2371      * move blocks around than write a block ordering algorithm later... after all
2372      * the ast and ir should work together, not against each other.
2373      */
2374
2375     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2376      * anyway if for example it contains a ternary.
2377      */
2378     if (self->initexpr)
2379     {
2380         cgen = self->initexpr->expression.codegen;
2381         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2382             return false;
2383     }
2384
2385     /* Store the block from which we enter this chaos */
2386     bin = func->curblock;
2387
2388     /* The pre-loop condition needs its own block since we
2389      * need to be able to jump to the start of that expression.
2390      */
2391     if (self->precond)
2392     {
2393         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2394         if (!bprecond)
2395             return false;
2396
2397         /* the pre-loop-condition the least important place to 'continue' at */
2398         bcontinue = bprecond;
2399
2400         /* enter */
2401         func->curblock = bprecond;
2402
2403         /* generate */
2404         cgen = self->precond->expression.codegen;
2405         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2406             return false;
2407
2408         end_bprecond = func->curblock;
2409     } else {
2410         bprecond = end_bprecond = NULL;
2411     }
2412
2413     /* Now the next blocks won't be ordered nicely, but we need to
2414      * generate them this early for 'break' and 'continue'.
2415      */
2416     if (self->increment) {
2417         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2418         if (!bincrement)
2419             return false;
2420         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2421     } else {
2422         bincrement = end_bincrement = NULL;
2423     }
2424
2425     if (self->postcond) {
2426         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2427         if (!bpostcond)
2428             return false;
2429         bcontinue = bpostcond; /* postcond comes before the increment */
2430     } else {
2431         bpostcond = end_bpostcond = NULL;
2432     }
2433
2434     bout_id = vec_size(func->ir_func->blocks);
2435     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2436     if (!bout)
2437         return false;
2438     bbreak = bout;
2439
2440     /* The loop body... */
2441     /* if (self->body) */
2442     {
2443         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2444         if (!bbody)
2445             return false;
2446
2447         /* enter */
2448         func->curblock = bbody;
2449
2450         old_bbreak          = func->breakblock;
2451         old_bcontinue       = func->continueblock;
2452         func->breakblock    = bbreak;
2453         func->continueblock = bcontinue;
2454         if (!func->continueblock)
2455             func->continueblock = bbody;
2456
2457         /* generate */
2458         if (self->body) {
2459             cgen = self->body->expression.codegen;
2460             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2461                 return false;
2462         }
2463
2464         end_bbody = func->curblock;
2465         func->breakblock    = old_bbreak;
2466         func->continueblock = old_bcontinue;
2467     }
2468
2469     /* post-loop-condition */
2470     if (self->postcond)
2471     {
2472         /* enter */
2473         func->curblock = bpostcond;
2474
2475         /* generate */
2476         cgen = self->postcond->expression.codegen;
2477         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2478             return false;
2479
2480         end_bpostcond = func->curblock;
2481     }
2482
2483     /* The incrementor */
2484     if (self->increment)
2485     {
2486         /* enter */
2487         func->curblock = bincrement;
2488
2489         /* generate */
2490         cgen = self->increment->expression.codegen;
2491         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2492             return false;
2493
2494         end_bincrement = func->curblock;
2495     }
2496
2497     /* In any case now, we continue from the outgoing block */
2498     func->curblock = bout;
2499
2500     /* Now all blocks are in place */
2501     /* From 'bin' we jump to whatever comes first */
2502     if      (bprecond)   tmpblock = bprecond;
2503     else if (bbody)      tmpblock = bbody;
2504     else if (bpostcond)  tmpblock = bpostcond;
2505     else                 tmpblock = bout;
2506     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2507         return false;
2508
2509     /* From precond */
2510     if (bprecond)
2511     {
2512         ir_block *ontrue, *onfalse;
2513         if      (bbody)      ontrue = bbody;
2514         else if (bincrement) ontrue = bincrement;
2515         else if (bpostcond)  ontrue = bpostcond;
2516         else                 ontrue = bprecond;
2517         onfalse = bout;
2518         if (self->pre_not) {
2519             tmpblock = ontrue;
2520             ontrue   = onfalse;
2521             onfalse  = tmpblock;
2522         }
2523         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2524             return false;
2525     }
2526
2527     /* from body */
2528     if (bbody)
2529     {
2530         if      (bincrement) tmpblock = bincrement;
2531         else if (bpostcond)  tmpblock = bpostcond;
2532         else if (bprecond)   tmpblock = bprecond;
2533         else                 tmpblock = bbody;
2534         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2535             return false;
2536     }
2537
2538     /* from increment */
2539     if (bincrement)
2540     {
2541         if      (bpostcond)  tmpblock = bpostcond;
2542         else if (bprecond)   tmpblock = bprecond;
2543         else if (bbody)      tmpblock = bbody;
2544         else                 tmpblock = bout;
2545         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2546             return false;
2547     }
2548
2549     /* from postcond */
2550     if (bpostcond)
2551     {
2552         ir_block *ontrue, *onfalse;
2553         if      (bprecond)   ontrue = bprecond;
2554         else if (bbody)      ontrue = bbody;
2555         else if (bincrement) ontrue = bincrement;
2556         else                 ontrue = bpostcond;
2557         onfalse = bout;
2558         if (self->post_not) {
2559             tmpblock = ontrue;
2560             ontrue   = onfalse;
2561             onfalse  = tmpblock;
2562         }
2563         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2564             return false;
2565     }
2566
2567     /* Move 'bout' to the end */
2568     vec_remove(func->ir_func->blocks, bout_id, 1);
2569     vec_push(func->ir_func->blocks, bout);
2570
2571     return true;
2572 }
2573
2574 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2575 {
2576     ir_block *target;
2577
2578     *out = NULL;
2579
2580     if (lvalue) {
2581         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2582         return false;
2583     }
2584
2585     if (self->expression.outr) {
2586         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2587         return false;
2588     }
2589     self->expression.outr = (ir_value*)1;
2590
2591     if (self->is_continue)
2592         target = func->continueblock;
2593     else
2594         target = func->breakblock;
2595
2596     if (!target) {
2597         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2598         return false;
2599     }
2600
2601     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2602         return false;
2603     return true;
2604 }
2605
2606 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2607 {
2608     ast_expression_codegen *cgen;
2609
2610     ast_switch_case *def_case     = NULL;
2611     ir_block        *def_bfall    = NULL;
2612     ir_block        *def_bfall_to = NULL;
2613     bool set_def_bfall_to = false;
2614
2615     ir_value *dummy     = NULL;
2616     ir_value *irop      = NULL;
2617     ir_block *old_break = NULL;
2618     ir_block *bout      = NULL;
2619     ir_block *bfall     = NULL;
2620     size_t    bout_id;
2621     size_t    c;
2622
2623     char      typestr[1024];
2624     uint16_t  cmpinstr;
2625
2626     if (lvalue) {
2627         compile_error(ast_ctx(self), "switch expression is not an l-value");
2628         return false;
2629     }
2630
2631     if (self->expression.outr) {
2632         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2633         return false;
2634     }
2635     self->expression.outr = (ir_value*)1;
2636
2637     (void)lvalue;
2638     (void)out;
2639
2640     cgen = self->operand->expression.codegen;
2641     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2642         return false;
2643
2644     if (!vec_size(self->cases))
2645         return true;
2646
2647     cmpinstr = type_eq_instr[irop->vtype];
2648     if (cmpinstr >= AINSTR_END) {
2649         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2650         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2651         return false;
2652     }
2653
2654     bout_id = vec_size(func->ir_func->blocks);
2655     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2656     if (!bout)
2657         return false;
2658
2659     /* setup the break block */
2660     old_break        = func->breakblock;
2661     func->breakblock = bout;
2662
2663     /* Now create all cases */
2664     for (c = 0; c < vec_size(self->cases); ++c) {
2665         ir_value *cond, *val;
2666         ir_block *bcase, *bnot;
2667         size_t bnot_id;
2668
2669         ast_switch_case *swcase = &self->cases[c];
2670
2671         if (swcase->value) {
2672             /* A regular case */
2673             /* generate the condition operand */
2674             cgen = swcase->value->expression.codegen;
2675             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2676                 return false;
2677             /* generate the condition */
2678             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2679             if (!cond)
2680                 return false;
2681
2682             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2683             bnot_id = vec_size(func->ir_func->blocks);
2684             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2685             if (!bcase || !bnot)
2686                 return false;
2687             if (set_def_bfall_to) {
2688                 set_def_bfall_to = false;
2689                 def_bfall_to = bcase;
2690             }
2691             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2692                 return false;
2693
2694             /* Make the previous case-end fall through */
2695             if (bfall && !bfall->final) {
2696                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2697                     return false;
2698             }
2699
2700             /* enter the case */
2701             func->curblock = bcase;
2702             cgen = swcase->code->expression.codegen;
2703             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2704                 return false;
2705
2706             /* remember this block to fall through from */
2707             bfall = func->curblock;
2708
2709             /* enter the else and move it down */
2710             func->curblock = bnot;
2711             vec_remove(func->ir_func->blocks, bnot_id, 1);
2712             vec_push(func->ir_func->blocks, bnot);
2713         } else {
2714             /* The default case */
2715             /* Remember where to fall through from: */
2716             def_bfall = bfall;
2717             bfall     = NULL;
2718             /* remember which case it was */
2719             def_case  = swcase;
2720             /* And the next case will be remembered */
2721             set_def_bfall_to = true;
2722         }
2723     }
2724
2725     /* Jump from the last bnot to bout */
2726     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2727         /*
2728         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2729         */
2730         return false;
2731     }
2732
2733     /* If there was a default case, put it down here */
2734     if (def_case) {
2735         ir_block *bcase;
2736
2737         /* No need to create an extra block */
2738         bcase = func->curblock;
2739
2740         /* Insert the fallthrough jump */
2741         if (def_bfall && !def_bfall->final) {
2742             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2743                 return false;
2744         }
2745
2746         /* Now generate the default code */
2747         cgen = def_case->code->expression.codegen;
2748         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2749             return false;
2750
2751         /* see if we need to fall through */
2752         if (def_bfall_to && !func->curblock->final)
2753         {
2754             if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
2755                 return false;
2756         }
2757     }
2758
2759     /* Jump from the last bnot to bout */
2760     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2761         return false;
2762     /* enter the outgoing block */
2763     func->curblock = bout;
2764
2765     /* restore the break block */
2766     func->breakblock = old_break;
2767
2768     /* Move 'bout' to the end, it's nicer */
2769     vec_remove(func->ir_func->blocks, bout_id, 1);
2770     vec_push(func->ir_func->blocks, bout);
2771
2772     return true;
2773 }
2774
2775 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2776 {
2777     size_t i;
2778     ir_value *dummy;
2779
2780     *out = NULL;
2781     if (lvalue) {
2782         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2783         return false;
2784     }
2785
2786     /* simply create a new block and jump to it */
2787     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2788     if (!self->irblock) {
2789         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2790         return false;
2791     }
2792     if (!func->curblock->final) {
2793         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2794             return false;
2795     }
2796
2797     /* enter the new block */
2798     func->curblock = self->irblock;
2799
2800     /* Generate all the leftover gotos */
2801     for (i = 0; i < vec_size(self->gotos); ++i) {
2802         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2803             return false;
2804     }
2805
2806     return true;
2807 }
2808
2809 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2810 {
2811     *out = NULL;
2812     if (lvalue) {
2813         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2814         return false;
2815     }
2816
2817     if (self->target->irblock) {
2818         if (self->irblock_from) {
2819             /* we already tried once, this is the callback */
2820             self->irblock_from->final = false;
2821             if (!ir_block_create_jump(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2822                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2823                 return false;
2824             }
2825         }
2826         else
2827         {
2828             if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->target->irblock)) {
2829                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2830                 return false;
2831             }
2832         }
2833     }
2834     else
2835     {
2836         /* the target has not yet been created...
2837          * close this block in a sneaky way:
2838          */
2839         func->curblock->final = true;
2840         self->irblock_from = func->curblock;
2841         ast_label_register_goto(self->target, self);
2842     }
2843
2844     return true;
2845 }
2846
2847 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2848 {
2849     ast_expression_codegen *cgen;
2850     ir_value              **params;
2851     ir_instr               *callinstr;
2852     size_t i;
2853
2854     ir_value *funval = NULL;
2855
2856     /* return values are never lvalues */
2857     if (lvalue) {
2858         compile_error(ast_ctx(self), "not an l-value (function call)");
2859         return false;
2860     }
2861
2862     if (self->expression.outr) {
2863         *out = self->expression.outr;
2864         return true;
2865     }
2866
2867     cgen = self->func->expression.codegen;
2868     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2869         return false;
2870     if (!funval)
2871         return false;
2872
2873     params = NULL;
2874
2875     /* parameters */
2876     for (i = 0; i < vec_size(self->params); ++i)
2877     {
2878         ir_value *param;
2879         ast_expression *expr = self->params[i];
2880
2881         cgen = expr->expression.codegen;
2882         if (!(*cgen)(expr, func, false, &param))
2883             goto error;
2884         if (!param)
2885             goto error;
2886         vec_push(params, param);
2887     }
2888
2889     callinstr = ir_block_create_call(func->curblock, ast_ctx(self),
2890                                      ast_function_label(func, "call"),
2891                                      funval, !!(self->func->expression.flags & AST_FLAG_NORETURN));
2892     if (!callinstr)
2893         goto error;
2894
2895     for (i = 0; i < vec_size(params); ++i) {
2896         ir_call_param(callinstr, params[i]);
2897     }
2898
2899     *out = ir_call_value(callinstr);
2900     self->expression.outr = *out;
2901
2902     codegen_output_type(self, *out);
2903
2904     vec_free(params);
2905     return true;
2906 error:
2907     vec_free(params);
2908     return false;
2909 }