]> de.git.xonotic.org Git - xonotic/netradiant.git/blobdiff - radiant/winding.cpp
more eol-style
[xonotic/netradiant.git] / radiant / winding.cpp
index 65393ce908dbd31f1ec6dd4fe682726284562b9b..6fc608ca19ff38ec7df7136db1a806a3076eb05e 100644 (file)
-/*\r
-Copyright (C) 1999-2007 id Software, Inc. and contributors.\r
-For a list of contributors, see the accompanying CONTRIBUTORS file.\r
-\r
-This file is part of GtkRadiant.\r
-\r
-GtkRadiant is free software; you can redistribute it and/or modify\r
-it under the terms of the GNU General Public License as published by\r
-the Free Software Foundation; either version 2 of the License, or\r
-(at your option) any later version.\r
-\r
-GtkRadiant is distributed in the hope that it will be useful,\r
-but WITHOUT ANY WARRANTY; without even the implied warranty of\r
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the\r
-GNU General Public License for more details.\r
-\r
-You should have received a copy of the GNU General Public License\r
-along with GtkRadiant; if not, write to the Free Software\r
-Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA\r
-*/\r
-\r
-\r
-\r
-#include "stdafx.h"\r
-#include <assert.h>\r
-#include "winding.h"\r
-\r
-#define BOGUS_RANGE (g_MaxWorldCoord+1)\r
-\r
-/*\r
-=============\r
-Plane_Equal\r
-=============\r
-*/\r
-#define        NORMAL_EPSILON  0.0001\r
-#define        DIST_EPSILON    0.02\r
-\r
-int Plane_Equal(plane_t *a, plane_t *b, int flip)\r
-{\r
-       vec3_t normal;\r
-       float dist;\r
-\r
-       if (flip) {\r
-               normal[0] = - b->normal[0];\r
-               normal[1] = - b->normal[1];\r
-               normal[2] = - b->normal[2];\r
-               dist = - b->dist;\r
-       }\r
-       else {\r
-               normal[0] = b->normal[0];\r
-               normal[1] = b->normal[1];\r
-               normal[2] = b->normal[2];\r
-               dist = b->dist;\r
-       }\r
-       if (\r
-          fabs(a->normal[0] - normal[0]) < NORMAL_EPSILON\r
-       && fabs(a->normal[1] - normal[1]) < NORMAL_EPSILON\r
-       && fabs(a->normal[2] - normal[2]) < NORMAL_EPSILON\r
-       && fabs(a->dist - dist) < DIST_EPSILON )\r
-               return true;\r
-       return false;\r
-}\r
-\r
-/*\r
-============\r
-Plane_FromPoints\r
-============\r
-*/\r
-int Plane_FromPoints(vec3_t p1, vec3_t p2, vec3_t p3, plane_t *plane)\r
-{\r
-       vec3_t v1, v2;\r
-\r
-       VectorSubtract(p2, p1, v1);\r
-       VectorSubtract(p3, p1, v2);\r
-       //CrossProduct(v2, v1, plane->normal);\r
-       CrossProduct(v1, v2, plane->normal);\r
-       if (VectorNormalize(plane->normal, plane->normal) < 0.1) return false;\r
-       plane->dist = DotProduct(p1, plane->normal);\r
-       return true;\r
-}\r
-\r
-/*\r
-=================\r
-Point_Equal\r
-=================\r
-*/\r
-int Point_Equal(vec3_t p1, vec3_t p2, float epsilon)\r
-{\r
-       int i;\r
-\r
-       for (i = 0; i < 3; i++)\r
-       {\r
-               if (fabs(p1[i] - p2[i]) > epsilon) return false;\r
-       }\r
-       return true;\r
-}\r
-\r
-\r
-/*\r
-=================\r
-Winding_BaseForPlane\r
-=================\r
-*/\r
-//#define DBG_WNDG\r
-winding_t *Winding_BaseForPlane (plane_t *p)\r
-{\r
-       int             i, x;\r
-       vec_t   max, v;\r
-       vec3_t  org, vright, vup;\r
-       winding_t       *w;\r
-       \r
-       // find the major axis\r
-#ifdef DBG_WNDG\r
-  Sys_Printf("Winding_BaseForPlane %p\n",p);\r
-#endif\r
-\r
-  max = -BOGUS_RANGE;\r
-       x = -1;\r
-       for (i=0 ; i<3; i++)\r
-       {\r
-               v = fabs(p->normal[i]);\r
-               if (v > max)\r
-               {\r
-                       x = i;\r
-                       max = v;\r
-               }\r
-       }\r
-       if (x==-1)\r
-               Error ("Winding_BaseForPlane: no axis found");\r
-               \r
-       VectorCopy (vec3_origin, vup);  \r
-       switch (x)\r
-       {\r
-       case 0:\r
-       case 1:\r
-               vup[2] = 1;\r
-               break;          \r
-       case 2:\r
-               vup[0] = 1;\r
-               break;          \r
-       }\r
-\r
-\r
-       v = DotProduct (vup, p->normal);\r
-       VectorMA (vup, -v, p->normal, vup);\r
-       VectorNormalize (vup, vup);\r
-               \r
-       VectorScale (p->normal, p->dist, org);\r
-       \r
-       CrossProduct (vup, p->normal, vright);\r
-       \r
-       VectorScale (vup, BOGUS_RANGE, vup);\r
-       VectorScale (vright, BOGUS_RANGE, vright);\r
-\r
-  // project a really big      axis aligned box onto the plane\r
-       w = Winding_Alloc (4);\r
-       \r
-       VectorSubtract (org, vright, w->points[0]);\r
-       VectorAdd (w->points[0], vup, w->points[0]);\r
-       \r
-       VectorAdd (org, vright, w->points[1]);\r
-       VectorAdd (w->points[1], vup, w->points[1]);\r
-       \r
-       VectorAdd (org, vright, w->points[2]);\r
-       VectorSubtract (w->points[2], vup, w->points[2]);\r
-       \r
-       VectorSubtract (org, vright, w->points[3]);\r
-       VectorSubtract (w->points[3], vup, w->points[3]);\r
-       \r
-       w->numpoints = 4;\r
-\r
-       return w;       \r
-}\r
-\r
-// macro to compute winding size\r
-#define WINDING_SIZE(pt) (sizeof(int)*2+sizeof(float)*5*(pt))\r
-\r
-/*\r
-==================\r
-Winding_Alloc\r
-==================\r
-*/\r
-winding_t *Winding_Alloc (int points)\r
-{\r
-       winding_t       *w;\r
-       int                     size;\r
-       \r
-       if (points > MAX_POINTS_ON_WINDING)\r
-               Error ("Winding_Alloc: %i points", points);\r
-       \r
-//     size = (int)((winding_t *)0)->points[points];\r
-  size = WINDING_SIZE(points);\r
-       w = (winding_t*) malloc (size);\r
-       memset (w, 0, size);\r
-       w->maxpoints = points;\r
-       \r
-       return w;\r
-}\r
-\r
-void Winding_Free (winding_t *w)\r
-{\r
-       free(w);\r
-}\r
-\r
-/*\r
-==================\r
-Winding_Clone\r
-==================\r
-*/\r
-winding_t *Winding_Clone(winding_t *w)\r
-{\r
-       int                     size;\r
-       winding_t       *c;\r
-       \r
-//     size = (int)((winding_t *)0)->points[w->numpoints];\r
-  size = WINDING_SIZE(w->numpoints);\r
-       c = (winding_t*)qmalloc (size);\r
-       memcpy (c, w, size);\r
-       return c;\r
-}\r
-\r
-/*\r
-==================\r
-ReverseWinding\r
-==================\r
-*/\r
-winding_t *Winding_Reverse(winding_t *w)\r
-{\r
-       int                     i;\r
-       winding_t       *c;\r
-\r
-       c = Winding_Alloc(w->numpoints);\r
-       for (i = 0; i < w->numpoints; i++)\r
-       {\r
-               VectorCopy (w->points[w->numpoints-1-i], c->points[i]);\r
-       }\r
-       c->numpoints = w->numpoints;\r
-       return c;\r
-}\r
-\r
-/*\r
-==============\r
-Winding_RemovePoint\r
-==============\r
-*/\r
-void Winding_RemovePoint(winding_t *w, int point)\r
-{\r
-       if (point < 0 || point >= w->numpoints)\r
-               Error("Winding_RemovePoint: point out of range");\r
-\r
-       if (point < w->numpoints-1)\r
-       {\r
-               memmove(&w->points[point], &w->points[point+1], (int)((winding_t *)0)->points[w->numpoints - point - 1]);\r
-       }\r
-       w->numpoints--;\r
-}\r
-\r
-/*\r
-=============\r
-Winding_InsertPoint\r
-=============\r
-*/\r
-winding_t *Winding_InsertPoint(winding_t *w, vec3_t point, int spot)\r
-{\r
-       int i, j;\r
-       winding_t *neww;\r
-\r
-       if (spot > w->numpoints)\r
-       {\r
-               Error("Winding_InsertPoint: spot > w->numpoints");\r
-       } //end if\r
-       if (spot < 0)\r
-       {\r
-               Error("Winding_InsertPoint: spot < 0");\r
-       } //end if\r
-       neww = Winding_Alloc(w->numpoints + 1);\r
-       neww->numpoints = w->numpoints + 1;\r
-       for (i = 0, j = 0; i < neww->numpoints; i++)\r
-       {\r
-               if (i == spot)\r
-               {\r
-                       VectorCopy(point, neww->points[i]);\r
-               }\r
-               else\r
-               {\r
-                       VectorCopy(w->points[j], neww->points[i]);\r
-                       j++;\r
-               }\r
-       }\r
-       return neww;\r
-}\r
-\r
-/*\r
-==============\r
-Winding_IsTiny\r
-==============\r
-*/\r
-#define        EDGE_LENGTH     0.2\r
-\r
-int Winding_IsTiny (winding_t *w)\r
-{\r
-       int             i, j;\r
-       vec_t   len;\r
-       vec3_t  delta;\r
-       int             edges;\r
-\r
-       edges = 0;\r
-       for (i=0 ; i<w->numpoints ; i++)\r
-       {\r
-               j = i == w->numpoints - 1 ? 0 : i+1;\r
-               VectorSubtract (w->points[j], w->points[i], delta);\r
-               len = VectorLength (delta);\r
-               if (len > EDGE_LENGTH)\r
-               {\r
-                       if (++edges == 3)\r
-                               return false;\r
-               }\r
-       }\r
-       return true;\r
-}\r
-\r
-/*\r
-==============\r
-Winding_IsHuge\r
-==============\r
-*/\r
-int Winding_IsHuge(winding_t *w)\r
-{\r
-       int             i, j;\r
-\r
-       for (i=0 ; i<w->numpoints ; i++)\r
-       {\r
-               for (j=0 ; j<3 ; j++)\r
-                       if (w->points[i][j] < -BOGUS_RANGE+1 || w->points[i][j] > BOGUS_RANGE-1)\r
-                               return true;\r
-       }\r
-       return false;\r
-}\r
-\r
-/*\r
-=============\r
-Winding_PlanesConcave\r
-=============\r
-*/\r
-#define WCONVEX_EPSILON                0.2\r
-\r
-int Winding_PlanesConcave(winding_t *w1, winding_t *w2,\r
-                                                        vec3_t normal1, vec3_t normal2,\r
-                                                        float dist1, float dist2)\r
-{\r
-       int i;\r
-\r
-       if (!w1 || !w2) return false;\r
-\r
-       // check if one of the points of winding 1 is at the back of the plane of winding 2\r
-       for (i = 0; i < w1->numpoints; i++)\r
-       {\r
-               if (DotProduct(normal2, w1->points[i]) - dist2 > WCONVEX_EPSILON) return true;\r
-       }\r
-       // check if one of the points of winding 2 is at the back of the plane of winding 1\r
-       for (i = 0; i < w2->numpoints; i++)\r
-       {\r
-               if (DotProduct(normal1, w2->points[i]) - dist1 > WCONVEX_EPSILON) return true;\r
-       }\r
-\r
-       return false;\r
-}\r
-\r
-/*\r
-==================\r
-Winding_Clip\r
-\r
-Clips the winding to the plane, returning the new winding on the positive side\r
-Frees the input winding.\r
-If keepon is true, an exactly on-plane winding will be saved, otherwise\r
-it will be clipped away.\r
-==================\r
-*/\r
-winding_t *Winding_Clip (winding_t *in, plane_t *split, qboolean keepon)\r
-{\r
-       vec_t   dists[MAX_POINTS_ON_WINDING];\r
-       int             sides[MAX_POINTS_ON_WINDING];\r
-       int             counts[3];\r
-       vec_t   dot;\r
-       int             i, j;\r
-       vec_t   *p1, *p2;\r
-       vec3_t  mid;\r
-       winding_t       *neww;\r
-       int             maxpts;\r
-       \r
-       counts[0] = counts[1] = counts[2] = 0;\r
-\r
-       // determine sides for each point\r
-       for (i=0 ; i<in->numpoints ; i++)\r
-       {\r
-               dot = DotProduct (in->points[i], split->normal);\r
-               dot -= split->dist;\r
-               dists[i] = dot;\r
-               if (dot > ON_EPSILON)\r
-                       sides[i] = SIDE_FRONT;\r
-               else if (dot < -ON_EPSILON)\r
-                       sides[i] = SIDE_BACK;\r
-               else\r
-               {\r
-                       sides[i] = SIDE_ON;\r
-               }\r
-               counts[sides[i]]++;\r
-       }\r
-       sides[i] = sides[0];\r
-       dists[i] = dists[0];\r
-       \r
-       if (keepon && !counts[0] && !counts[1])\r
-               return in;\r
-               \r
-       if (!counts[0])\r
-       {\r
-               Winding_Free (in);\r
-               return NULL;\r
-       }\r
-       if (!counts[1])\r
-               return in;\r
-       \r
-       maxpts = in->numpoints+4;       // can't use counts[0]+2 because\r
-                                                               // of fp grouping errors\r
-       neww = Winding_Alloc (maxpts);\r
-               \r
-       for (i=0 ; i<in->numpoints ; i++)\r
-       {\r
-               p1 = in->points[i];\r
-               \r
-               if (sides[i] == SIDE_ON)\r
-               {\r
-                       VectorCopy (p1, neww->points[neww->numpoints]);\r
-                       neww->numpoints++;\r
-                       continue;\r
-               }\r
-       \r
-               if (sides[i] == SIDE_FRONT)\r
-               {\r
-                       VectorCopy (p1, neww->points[neww->numpoints]);\r
-                       neww->numpoints++;\r
-               }\r
-               \r
-               if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])\r
-                       continue;\r
-                       \r
-               // generate a split point\r
-               p2 = in->points[(i+1)%in->numpoints];\r
-               \r
-               dot = dists[i] / (dists[i]-dists[i+1]);\r
-               for (j=0 ; j<3 ; j++)\r
-               {       // avoid round off error when possible\r
-                       if (split->normal[j] == 1)\r
-                               mid[j] = split->dist;\r
-                       else if (split->normal[j] == -1)\r
-                               mid[j] = -split->dist;\r
-                       else\r
-                               mid[j] = p1[j] + dot*(p2[j]-p1[j]);\r
-               }\r
-                       \r
-               VectorCopy (mid, neww->points[neww->numpoints]);\r
-               neww->numpoints++;\r
-       }\r
-       \r
-       if (neww->numpoints > maxpts)\r
-               Error ("Winding_Clip: points exceeded estimate");\r
-               \r
-       // free the original winding\r
-       Winding_Free (in);\r
-       \r
-       return neww;\r
-}\r
-\r
-/*\r
-=============\r
-Winding_SplitEpsilon\r
-\r
-  split the input winding with the plane\r
-  the input winding stays untouched\r
-=============\r
-*/\r
-void Winding_SplitEpsilon (winding_t *in, vec3_t normal, double dist, \r
-                               vec_t epsilon, winding_t **front, winding_t **back)\r
-{\r
-       vec_t   dists[MAX_POINTS_ON_WINDING+4];\r
-       int             sides[MAX_POINTS_ON_WINDING+4];\r
-       int             counts[3];\r
-       vec_t   dot;\r
-       int             i, j;\r
-       vec_t   *p1, *p2;\r
-       vec3_t  mid;\r
-       winding_t       *f, *b;\r
-       int             maxpts;\r
-       \r
-       counts[0] = counts[1] = counts[2] = 0;\r
-\r
-       // determine sides for each point\r
-       for (i = 0; i < in->numpoints; i++)\r
-       {\r
-               dot = DotProduct (in->points[i], normal);\r
-               dot -= dist;\r
-               dists[i] = dot;\r
-               if (dot > epsilon)\r
-                       sides[i] = SIDE_FRONT;\r
-               else if (dot < -epsilon)\r
-                       sides[i] = SIDE_BACK;\r
-               else\r
-               {\r
-                       sides[i] = SIDE_ON;\r
-               }\r
-               counts[sides[i]]++;\r
-       }\r
-       sides[i] = sides[0];\r
-       dists[i] = dists[0];\r
-       \r
-       *front = *back = NULL;\r
-\r
-       if (!counts[0])\r
-       {\r
-               *back = Winding_Clone(in);\r
-               return;\r
-       }\r
-       if (!counts[1])\r
-       {\r
-               *front = Winding_Clone(in);\r
-               return;\r
-       }\r
-\r
-       maxpts = in->numpoints+4;       // cant use counts[0]+2 because\r
-                                                               // of fp grouping errors\r
-\r
-       *front = f = Winding_Alloc (maxpts);\r
-       *back = b = Winding_Alloc (maxpts);\r
-               \r
-       for (i = 0; i < in->numpoints; i++)\r
-       {\r
-               p1 = in->points[i];\r
-               \r
-               if (sides[i] == SIDE_ON)\r
-               {\r
-                       VectorCopy (p1, f->points[f->numpoints]);\r
-                       f->numpoints++;\r
-                       VectorCopy (p1, b->points[b->numpoints]);\r
-                       b->numpoints++;\r
-                       continue;\r
-               }\r
-       \r
-               if (sides[i] == SIDE_FRONT)\r
-               {\r
-                       VectorCopy (p1, f->points[f->numpoints]);\r
-                       f->numpoints++;\r
-               }\r
-               if (sides[i] == SIDE_BACK)\r
-               {\r
-                       VectorCopy (p1, b->points[b->numpoints]);\r
-                       b->numpoints++;\r
-               }\r
-\r
-               if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])\r
-                       continue;\r
-                       \r
-               // generate a split point\r
-               p2 = in->points[(i+1)%in->numpoints];\r
-               \r
-               dot = dists[i] / (dists[i]-dists[i+1]);\r
-               for (j = 0; j < 3; j++)\r
-               {\r
-                       // avoid round off error when possible\r
-                       if (normal[j] == 1)\r
-                               mid[j] = dist;\r
-                       else if (normal[j] == -1)\r
-                               mid[j] = -dist;\r
-                       else\r
-                               mid[j] = p1[j] + dot*(p2[j]-p1[j]);\r
-               }\r
-                       \r
-               VectorCopy (mid, f->points[f->numpoints]);\r
-               f->numpoints++;\r
-               VectorCopy (mid, b->points[b->numpoints]);\r
-               b->numpoints++;\r
-       }\r
-       \r
-       if (f->numpoints > maxpts || b->numpoints > maxpts)\r
-               Error ("Winding_Clip: points exceeded estimate");\r
-       if (f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING)\r
-               Error ("Winding_Clip: MAX_POINTS_ON_WINDING");\r
-}\r
-\r
-/*\r
-=============\r
-Winding_TryMerge\r
-\r
-If two windings share a common edge and the edges that meet at the\r
-common points are both inside the other polygons, merge them\r
-\r
-Returns NULL if the windings couldn't be merged, or the new winding.\r
-The originals will NOT be freed.\r
-\r
-if keep is true no points are ever removed\r
-=============\r
-*/\r
-#define        CONTINUOUS_EPSILON      0.005\r
-\r
-winding_t *Winding_TryMerge(winding_t *f1, winding_t *f2, vec3_t planenormal, int keep)\r
-{\r
-       vec_t           *p1, *p2, *p3, *p4, *back;\r
-       winding_t       *newf;\r
-       int                     i, j, k, l;\r
-       vec3_t          normal, delta;\r
-       vec_t           dot;\r
-       qboolean        keep1, keep2;\r
-       \r
-\r
-       //\r
-       // find a common edge\r
-       //      \r
-       p1 = p2 = NULL; // stop compiler warning\r
-       j = 0;                  // \r
-       \r
-       for (i = 0; i < f1->numpoints; i++)\r
-       {\r
-               p1 = f1->points[i];\r
-               p2 = f1->points[(i+1) % f1->numpoints];\r
-               for (j = 0; j < f2->numpoints; j++)\r
-               {\r
-                       p3 = f2->points[j];\r
-                       p4 = f2->points[(j+1) % f2->numpoints];\r
-                       for (k = 0; k < 3; k++)\r
-                       {\r
-                               if (fabs(p1[k] - p4[k]) > 0.1)//EQUAL_EPSILON) //ME\r
-                                       break;\r
-                               if (fabs(p2[k] - p3[k]) > 0.1)//EQUAL_EPSILON) //ME\r
-                                       break;\r
-                       } //end for\r
-                       if (k==3)\r
-                               break;\r
-               } //end for\r
-               if (j < f2->numpoints)\r
-                       break;\r
-       } //end for\r
-       \r
-       if (i == f1->numpoints)\r
-               return NULL;                    // no matching edges\r
-\r
-       //\r
-       // check slope of connected lines\r
-       // if the slopes are colinear, the point can be removed\r
-       //\r
-       back = f1->points[(i+f1->numpoints-1)%f1->numpoints];\r
-       VectorSubtract (p1, back, delta);\r
-       CrossProduct (planenormal, delta, normal);\r
-       VectorNormalize (normal, normal);\r
-       \r
-       back = f2->points[(j+2)%f2->numpoints];\r
-       VectorSubtract (back, p1, delta);\r
-       dot = DotProduct (delta, normal);\r
-       if (dot > CONTINUOUS_EPSILON)\r
-               return NULL;                    // not a convex polygon\r
-       keep1 = (qboolean)(dot < -CONTINUOUS_EPSILON);\r
-       \r
-       back = f1->points[(i+2)%f1->numpoints];\r
-       VectorSubtract (back, p2, delta);\r
-       CrossProduct (planenormal, delta, normal);\r
-       VectorNormalize (normal, normal);\r
-\r
-       back = f2->points[(j+f2->numpoints-1)%f2->numpoints];\r
-       VectorSubtract (back, p2, delta);\r
-       dot = DotProduct (delta, normal);\r
-       if (dot > CONTINUOUS_EPSILON)\r
-               return NULL;                    // not a convex polygon\r
-       keep2 = (qboolean)(dot < -CONTINUOUS_EPSILON);\r
-\r
-       //\r
-       // build the new polygon\r
-       //\r
-       newf = Winding_Alloc (f1->numpoints + f2->numpoints);\r
-       \r
-       // copy first polygon\r
-       for (k=(i+1)%f1->numpoints ; k != i ; k=(k+1)%f1->numpoints)\r
-       {\r
-               if (!keep && k==(i+1)%f1->numpoints && !keep2)\r
-                       continue;\r
-               \r
-               VectorCopy (f1->points[k], newf->points[newf->numpoints]);\r
-               newf->numpoints++;\r
-       }\r
-       \r
-       // copy second polygon\r
-       for (l= (j+1)%f2->numpoints ; l != j ; l=(l+1)%f2->numpoints)\r
-       {\r
-               if (!keep && l==(j+1)%f2->numpoints && !keep1)\r
-                       continue;\r
-               VectorCopy (f2->points[l], newf->points[newf->numpoints]);\r
-               newf->numpoints++;\r
-       }\r
-\r
-       return newf;\r
-}\r
-\r
-/*\r
-============\r
-Winding_Plane\r
-============\r
-*/\r
-void Winding_Plane (winding_t *w, vec3_t normal, double *dist)\r
-{\r
-       vec3_t v1, v2;\r
-       int i;\r
-\r
-       //find two vectors each longer than 0.5 units\r
-       for (i = 0; i < w->numpoints; i++)\r
-       {\r
-               VectorSubtract(w->points[(i+1) % w->numpoints], w->points[i], v1);\r
-               VectorSubtract(w->points[(i+2) % w->numpoints], w->points[i], v2);\r
-               if (VectorLength(v1) > 0.5 && VectorLength(v2) > 0.5) break;\r
-       }\r
-       CrossProduct(v2, v1, normal);\r
-       VectorNormalize(normal, normal);\r
-       *dist = DotProduct(w->points[0], normal);\r
-}\r
-\r
-/*\r
-=============\r
-Winding_Area\r
-=============\r
-*/\r
-float Winding_Area (winding_t *w)\r
-{\r
-       int             i;\r
-       vec3_t  d1, d2, cross;\r
-       float   total;\r
-\r
-       total = 0;\r
-       for (i=2 ; i<w->numpoints ; i++)\r
-       {\r
-               VectorSubtract (w->points[i-1], w->points[0], d1);\r
-               VectorSubtract (w->points[i], w->points[0], d2);\r
-               CrossProduct (d1, d2, cross);\r
-               total += 0.5 * VectorLength ( cross );\r
-       }\r
-       return total;\r
-}\r
-\r
-/*\r
-=============\r
-Winding_Bounds\r
-=============\r
-*/\r
-void Winding_Bounds (winding_t *w, vec3_t mins, vec3_t maxs)\r
-{\r
-       vec_t   v;\r
-       int             i,j;\r
-\r
-       mins[0] = mins[1] = mins[2] = 99999;\r
-       maxs[0] = maxs[1] = maxs[2] = -99999;\r
-\r
-       for (i=0 ; i<w->numpoints ; i++)\r
-       {\r
-               for (j=0 ; j<3 ; j++)\r
-               {\r
-                       v = w->points[i][j];\r
-                       if (v < mins[j])\r
-                               mins[j] = v;\r
-                       if (v > maxs[j])\r
-                               maxs[j] = v;\r
-               }\r
-       }\r
-}\r
-\r
-\r
-/*\r
-=================\r
-Winding_PointInside\r
-=================\r
-*/\r
-int Winding_PointInside(winding_t *w, plane_t *plane, vec3_t point, float epsilon)\r
-{\r
-       int i;\r
-       vec3_t dir, normal, pointvec;\r
-\r
-       for (i = 0; i < w->numpoints; i++)\r
-       {\r
-               VectorSubtract(w->points[(i+1) % w->numpoints], w->points[i], dir);\r
-               VectorSubtract(point, w->points[i], pointvec);\r
-               //\r
-               CrossProduct(dir, plane->normal, normal);\r
-               //\r
-               if (DotProduct(pointvec, normal) < -epsilon) return false;\r
-       }\r
-       return true;\r
-}\r
-\r
-/*\r
-=================\r
-Winding_VectorIntersect\r
-=================\r
-*/\r
-int Winding_VectorIntersect(winding_t *w, plane_t *plane, vec3_t p1, vec3_t p2, float epsilon)\r
-{\r
-       float front, back, frac;\r
-       vec3_t mid;\r
-\r
-       front = DotProduct(p1, plane->normal) - plane->dist;\r
-       back = DotProduct(p2, plane->normal) - plane->dist;\r
-       //if both points at the same side of the plane\r
-       if (front < -epsilon && back < -epsilon) return false;\r
-       if (front > epsilon && back > epsilon) return false;\r
-       //get point of intersection with winding plane\r
-       if (fabs(front-back) < 0.001)\r
-       {\r
-               VectorCopy(p2, mid);\r
-       }\r
-       else\r
-       {\r
-               frac = front/(front-back);\r
-               mid[0] = p1[0] + (p2[0] - p1[0]) * frac;\r
-               mid[1] = p1[1] + (p2[1] - p1[1]) * frac;\r
-               mid[2] = p1[2] + (p2[2] - p1[2]) * frac;\r
-       }\r
-       return Winding_PointInside(w, plane, mid, epsilon);\r
-}\r
-\r
+/*
+Copyright (C) 1999-2007 id Software, Inc. and contributors.
+For a list of contributors, see the accompanying CONTRIBUTORS file.
+
+This file is part of GtkRadiant.
+
+GtkRadiant is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+GtkRadiant is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GtkRadiant; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+*/
+
+
+
+#include "stdafx.h"
+#include <assert.h>
+#include "winding.h"
+
+#define BOGUS_RANGE (g_MaxWorldCoord+1)
+
+/*
+=============
+Plane_Equal
+=============
+*/
+#define        NORMAL_EPSILON  0.0001
+#define        DIST_EPSILON    0.02
+
+int Plane_Equal(plane_t *a, plane_t *b, int flip)
+{
+       vec3_t normal;
+       float dist;
+
+       if (flip) {
+               normal[0] = - b->normal[0];
+               normal[1] = - b->normal[1];
+               normal[2] = - b->normal[2];
+               dist = - b->dist;
+       }
+       else {
+               normal[0] = b->normal[0];
+               normal[1] = b->normal[1];
+               normal[2] = b->normal[2];
+               dist = b->dist;
+       }
+       if (
+          fabs(a->normal[0] - normal[0]) < NORMAL_EPSILON
+       && fabs(a->normal[1] - normal[1]) < NORMAL_EPSILON
+       && fabs(a->normal[2] - normal[2]) < NORMAL_EPSILON
+       && fabs(a->dist - dist) < DIST_EPSILON )
+               return true;
+       return false;
+}
+
+/*
+============
+Plane_FromPoints
+============
+*/
+int Plane_FromPoints(vec3_t p1, vec3_t p2, vec3_t p3, plane_t *plane)
+{
+       vec3_t v1, v2;
+
+       VectorSubtract(p2, p1, v1);
+       VectorSubtract(p3, p1, v2);
+       //CrossProduct(v2, v1, plane->normal);
+       CrossProduct(v1, v2, plane->normal);
+       if (VectorNormalize(plane->normal, plane->normal) < 0.1) return false;
+       plane->dist = DotProduct(p1, plane->normal);
+       return true;
+}
+
+/*
+=================
+Point_Equal
+=================
+*/
+int Point_Equal(vec3_t p1, vec3_t p2, float epsilon)
+{
+       int i;
+
+       for (i = 0; i < 3; i++)
+       {
+               if (fabs(p1[i] - p2[i]) > epsilon) return false;
+       }
+       return true;
+}
+
+
+/*
+=================
+Winding_BaseForPlane
+=================
+*/
+//#define DBG_WNDG
+winding_t *Winding_BaseForPlane (plane_t *p)
+{
+       int             i, x;
+       vec_t   max, v;
+       vec3_t  org, vright, vup;
+       winding_t       *w;
+       
+       // find the major axis
+#ifdef DBG_WNDG
+  Sys_Printf("Winding_BaseForPlane %p\n",p);
+#endif
+
+  max = -BOGUS_RANGE;
+       x = -1;
+       for (i=0 ; i<3; i++)
+       {
+               v = fabs(p->normal[i]);
+               if (v > max)
+               {
+                       x = i;
+                       max = v;
+               }
+       }
+       if (x==-1)
+               Error ("Winding_BaseForPlane: no axis found");
+               
+       VectorCopy (vec3_origin, vup);  
+       switch (x)
+       {
+       case 0:
+       case 1:
+               vup[2] = 1;
+               break;          
+       case 2:
+               vup[0] = 1;
+               break;          
+       }
+
+
+       v = DotProduct (vup, p->normal);
+       VectorMA (vup, -v, p->normal, vup);
+       VectorNormalize (vup, vup);
+               
+       VectorScale (p->normal, p->dist, org);
+       
+       CrossProduct (vup, p->normal, vright);
+       
+       VectorScale (vup, BOGUS_RANGE, vup);
+       VectorScale (vright, BOGUS_RANGE, vright);
+
+  // project a really big      axis aligned box onto the plane
+       w = Winding_Alloc (4);
+       
+       VectorSubtract (org, vright, w->points[0]);
+       VectorAdd (w->points[0], vup, w->points[0]);
+       
+       VectorAdd (org, vright, w->points[1]);
+       VectorAdd (w->points[1], vup, w->points[1]);
+       
+       VectorAdd (org, vright, w->points[2]);
+       VectorSubtract (w->points[2], vup, w->points[2]);
+       
+       VectorSubtract (org, vright, w->points[3]);
+       VectorSubtract (w->points[3], vup, w->points[3]);
+       
+       w->numpoints = 4;
+
+       return w;       
+}
+
+// macro to compute winding size
+#define WINDING_SIZE(pt) (sizeof(int)*2+sizeof(float)*5*(pt))
+
+/*
+==================
+Winding_Alloc
+==================
+*/
+winding_t *Winding_Alloc (int points)
+{
+       winding_t       *w;
+       int                     size;
+       
+       if (points > MAX_POINTS_ON_WINDING)
+               Error ("Winding_Alloc: %i points", points);
+       
+//     size = (int)((winding_t *)0)->points[points];
+  size = WINDING_SIZE(points);
+       w = (winding_t*) malloc (size);
+       memset (w, 0, size);
+       w->maxpoints = points;
+       
+       return w;
+}
+
+void Winding_Free (winding_t *w)
+{
+       free(w);
+}
+
+/*
+==================
+Winding_Clone
+==================
+*/
+winding_t *Winding_Clone(winding_t *w)
+{
+       int                     size;
+       winding_t       *c;
+       
+//     size = (int)((winding_t *)0)->points[w->numpoints];
+  size = WINDING_SIZE(w->numpoints);
+       c = (winding_t*)qmalloc (size);
+       memcpy (c, w, size);
+       return c;
+}
+
+/*
+==================
+ReverseWinding
+==================
+*/
+winding_t *Winding_Reverse(winding_t *w)
+{
+       int                     i;
+       winding_t       *c;
+
+       c = Winding_Alloc(w->numpoints);
+       for (i = 0; i < w->numpoints; i++)
+       {
+               VectorCopy (w->points[w->numpoints-1-i], c->points[i]);
+       }
+       c->numpoints = w->numpoints;
+       return c;
+}
+
+/*
+==============
+Winding_RemovePoint
+==============
+*/
+void Winding_RemovePoint(winding_t *w, int point)
+{
+       if (point < 0 || point >= w->numpoints)
+               Error("Winding_RemovePoint: point out of range");
+
+       if (point < w->numpoints-1)
+       {
+               memmove(&w->points[point], &w->points[point+1], (int)((winding_t *)0)->points[w->numpoints - point - 1]);
+       }
+       w->numpoints--;
+}
+
+/*
+=============
+Winding_InsertPoint
+=============
+*/
+winding_t *Winding_InsertPoint(winding_t *w, vec3_t point, int spot)
+{
+       int i, j;
+       winding_t *neww;
+
+       if (spot > w->numpoints)
+       {
+               Error("Winding_InsertPoint: spot > w->numpoints");
+       } //end if
+       if (spot < 0)
+       {
+               Error("Winding_InsertPoint: spot < 0");
+       } //end if
+       neww = Winding_Alloc(w->numpoints + 1);
+       neww->numpoints = w->numpoints + 1;
+       for (i = 0, j = 0; i < neww->numpoints; i++)
+       {
+               if (i == spot)
+               {
+                       VectorCopy(point, neww->points[i]);
+               }
+               else
+               {
+                       VectorCopy(w->points[j], neww->points[i]);
+                       j++;
+               }
+       }
+       return neww;
+}
+
+/*
+==============
+Winding_IsTiny
+==============
+*/
+#define        EDGE_LENGTH     0.2
+
+int Winding_IsTiny (winding_t *w)
+{
+       int             i, j;
+       vec_t   len;
+       vec3_t  delta;
+       int             edges;
+
+       edges = 0;
+       for (i=0 ; i<w->numpoints ; i++)
+       {
+               j = i == w->numpoints - 1 ? 0 : i+1;
+               VectorSubtract (w->points[j], w->points[i], delta);
+               len = VectorLength (delta);
+               if (len > EDGE_LENGTH)
+               {
+                       if (++edges == 3)
+                               return false;
+               }
+       }
+       return true;
+}
+
+/*
+==============
+Winding_IsHuge
+==============
+*/
+int Winding_IsHuge(winding_t *w)
+{
+       int             i, j;
+
+       for (i=0 ; i<w->numpoints ; i++)
+       {
+               for (j=0 ; j<3 ; j++)
+                       if (w->points[i][j] < -BOGUS_RANGE+1 || w->points[i][j] > BOGUS_RANGE-1)
+                               return true;
+       }
+       return false;
+}
+
+/*
+=============
+Winding_PlanesConcave
+=============
+*/
+#define WCONVEX_EPSILON                0.2
+
+int Winding_PlanesConcave(winding_t *w1, winding_t *w2,
+                                                        vec3_t normal1, vec3_t normal2,
+                                                        float dist1, float dist2)
+{
+       int i;
+
+       if (!w1 || !w2) return false;
+
+       // check if one of the points of winding 1 is at the back of the plane of winding 2
+       for (i = 0; i < w1->numpoints; i++)
+       {
+               if (DotProduct(normal2, w1->points[i]) - dist2 > WCONVEX_EPSILON) return true;
+       }
+       // check if one of the points of winding 2 is at the back of the plane of winding 1
+       for (i = 0; i < w2->numpoints; i++)
+       {
+               if (DotProduct(normal1, w2->points[i]) - dist1 > WCONVEX_EPSILON) return true;
+       }
+
+       return false;
+}
+
+/*
+==================
+Winding_Clip
+
+Clips the winding to the plane, returning the new winding on the positive side
+Frees the input winding.
+If keepon is true, an exactly on-plane winding will be saved, otherwise
+it will be clipped away.
+==================
+*/
+winding_t *Winding_Clip (winding_t *in, plane_t *split, qboolean keepon)
+{
+       vec_t   dists[MAX_POINTS_ON_WINDING];
+       int             sides[MAX_POINTS_ON_WINDING];
+       int             counts[3];
+       vec_t   dot;
+       int             i, j;
+       vec_t   *p1, *p2;
+       vec3_t  mid;
+       winding_t       *neww;
+       int             maxpts;
+       
+       counts[0] = counts[1] = counts[2] = 0;
+
+       // determine sides for each point
+       for (i=0 ; i<in->numpoints ; i++)
+       {
+               dot = DotProduct (in->points[i], split->normal);
+               dot -= split->dist;
+               dists[i] = dot;
+               if (dot > ON_EPSILON)
+                       sides[i] = SIDE_FRONT;
+               else if (dot < -ON_EPSILON)
+                       sides[i] = SIDE_BACK;
+               else
+               {
+                       sides[i] = SIDE_ON;
+               }
+               counts[sides[i]]++;
+       }
+       sides[i] = sides[0];
+       dists[i] = dists[0];
+       
+       if (keepon && !counts[0] && !counts[1])
+               return in;
+               
+       if (!counts[0])
+       {
+               Winding_Free (in);
+               return NULL;
+       }
+       if (!counts[1])
+               return in;
+       
+       maxpts = in->numpoints+4;       // can't use counts[0]+2 because
+                                                               // of fp grouping errors
+       neww = Winding_Alloc (maxpts);
+               
+       for (i=0 ; i<in->numpoints ; i++)
+       {
+               p1 = in->points[i];
+               
+               if (sides[i] == SIDE_ON)
+               {
+                       VectorCopy (p1, neww->points[neww->numpoints]);
+                       neww->numpoints++;
+                       continue;
+               }
+       
+               if (sides[i] == SIDE_FRONT)
+               {
+                       VectorCopy (p1, neww->points[neww->numpoints]);
+                       neww->numpoints++;
+               }
+               
+               if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
+                       continue;
+                       
+               // generate a split point
+               p2 = in->points[(i+1)%in->numpoints];
+               
+               dot = dists[i] / (dists[i]-dists[i+1]);
+               for (j=0 ; j<3 ; j++)
+               {       // avoid round off error when possible
+                       if (split->normal[j] == 1)
+                               mid[j] = split->dist;
+                       else if (split->normal[j] == -1)
+                               mid[j] = -split->dist;
+                       else
+                               mid[j] = p1[j] + dot*(p2[j]-p1[j]);
+               }
+                       
+               VectorCopy (mid, neww->points[neww->numpoints]);
+               neww->numpoints++;
+       }
+       
+       if (neww->numpoints > maxpts)
+               Error ("Winding_Clip: points exceeded estimate");
+               
+       // free the original winding
+       Winding_Free (in);
+       
+       return neww;
+}
+
+/*
+=============
+Winding_SplitEpsilon
+
+  split the input winding with the plane
+  the input winding stays untouched
+=============
+*/
+void Winding_SplitEpsilon (winding_t *in, vec3_t normal, double dist, 
+                               vec_t epsilon, winding_t **front, winding_t **back)
+{
+       vec_t   dists[MAX_POINTS_ON_WINDING+4];
+       int             sides[MAX_POINTS_ON_WINDING+4];
+       int             counts[3];
+       vec_t   dot;
+       int             i, j;
+       vec_t   *p1, *p2;
+       vec3_t  mid;
+       winding_t       *f, *b;
+       int             maxpts;
+       
+       counts[0] = counts[1] = counts[2] = 0;
+
+       // determine sides for each point
+       for (i = 0; i < in->numpoints; i++)
+       {
+               dot = DotProduct (in->points[i], normal);
+               dot -= dist;
+               dists[i] = dot;
+               if (dot > epsilon)
+                       sides[i] = SIDE_FRONT;
+               else if (dot < -epsilon)
+                       sides[i] = SIDE_BACK;
+               else
+               {
+                       sides[i] = SIDE_ON;
+               }
+               counts[sides[i]]++;
+       }
+       sides[i] = sides[0];
+       dists[i] = dists[0];
+       
+       *front = *back = NULL;
+
+       if (!counts[0])
+       {
+               *back = Winding_Clone(in);
+               return;
+       }
+       if (!counts[1])
+       {
+               *front = Winding_Clone(in);
+               return;
+       }
+
+       maxpts = in->numpoints+4;       // cant use counts[0]+2 because
+                                                               // of fp grouping errors
+
+       *front = f = Winding_Alloc (maxpts);
+       *back = b = Winding_Alloc (maxpts);
+               
+       for (i = 0; i < in->numpoints; i++)
+       {
+               p1 = in->points[i];
+               
+               if (sides[i] == SIDE_ON)
+               {
+                       VectorCopy (p1, f->points[f->numpoints]);
+                       f->numpoints++;
+                       VectorCopy (p1, b->points[b->numpoints]);
+                       b->numpoints++;
+                       continue;
+               }
+       
+               if (sides[i] == SIDE_FRONT)
+               {
+                       VectorCopy (p1, f->points[f->numpoints]);
+                       f->numpoints++;
+               }
+               if (sides[i] == SIDE_BACK)
+               {
+                       VectorCopy (p1, b->points[b->numpoints]);
+                       b->numpoints++;
+               }
+
+               if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
+                       continue;
+                       
+               // generate a split point
+               p2 = in->points[(i+1)%in->numpoints];
+               
+               dot = dists[i] / (dists[i]-dists[i+1]);
+               for (j = 0; j < 3; j++)
+               {
+                       // avoid round off error when possible
+                       if (normal[j] == 1)
+                               mid[j] = dist;
+                       else if (normal[j] == -1)
+                               mid[j] = -dist;
+                       else
+                               mid[j] = p1[j] + dot*(p2[j]-p1[j]);
+               }
+                       
+               VectorCopy (mid, f->points[f->numpoints]);
+               f->numpoints++;
+               VectorCopy (mid, b->points[b->numpoints]);
+               b->numpoints++;
+       }
+       
+       if (f->numpoints > maxpts || b->numpoints > maxpts)
+               Error ("Winding_Clip: points exceeded estimate");
+       if (f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING)
+               Error ("Winding_Clip: MAX_POINTS_ON_WINDING");
+}
+
+/*
+=============
+Winding_TryMerge
+
+If two windings share a common edge and the edges that meet at the
+common points are both inside the other polygons, merge them
+
+Returns NULL if the windings couldn't be merged, or the new winding.
+The originals will NOT be freed.
+
+if keep is true no points are ever removed
+=============
+*/
+#define        CONTINUOUS_EPSILON      0.005
+
+winding_t *Winding_TryMerge(winding_t *f1, winding_t *f2, vec3_t planenormal, int keep)
+{
+       vec_t           *p1, *p2, *p3, *p4, *back;
+       winding_t       *newf;
+       int                     i, j, k, l;
+       vec3_t          normal, delta;
+       vec_t           dot;
+       qboolean        keep1, keep2;
+       
+
+       //
+       // find a common edge
+       //      
+       p1 = p2 = NULL; // stop compiler warning
+       j = 0;                  // 
+       
+       for (i = 0; i < f1->numpoints; i++)
+       {
+               p1 = f1->points[i];
+               p2 = f1->points[(i+1) % f1->numpoints];
+               for (j = 0; j < f2->numpoints; j++)
+               {
+                       p3 = f2->points[j];
+                       p4 = f2->points[(j+1) % f2->numpoints];
+                       for (k = 0; k < 3; k++)
+                       {
+                               if (fabs(p1[k] - p4[k]) > 0.1)//EQUAL_EPSILON) //ME
+                                       break;
+                               if (fabs(p2[k] - p3[k]) > 0.1)//EQUAL_EPSILON) //ME
+                                       break;
+                       } //end for
+                       if (k==3)
+                               break;
+               } //end for
+               if (j < f2->numpoints)
+                       break;
+       } //end for
+       
+       if (i == f1->numpoints)
+               return NULL;                    // no matching edges
+
+       //
+       // check slope of connected lines
+       // if the slopes are colinear, the point can be removed
+       //
+       back = f1->points[(i+f1->numpoints-1)%f1->numpoints];
+       VectorSubtract (p1, back, delta);
+       CrossProduct (planenormal, delta, normal);
+       VectorNormalize (normal, normal);
+       
+       back = f2->points[(j+2)%f2->numpoints];
+       VectorSubtract (back, p1, delta);
+       dot = DotProduct (delta, normal);
+       if (dot > CONTINUOUS_EPSILON)
+               return NULL;                    // not a convex polygon
+       keep1 = (qboolean)(dot < -CONTINUOUS_EPSILON);
+       
+       back = f1->points[(i+2)%f1->numpoints];
+       VectorSubtract (back, p2, delta);
+       CrossProduct (planenormal, delta, normal);
+       VectorNormalize (normal, normal);
+
+       back = f2->points[(j+f2->numpoints-1)%f2->numpoints];
+       VectorSubtract (back, p2, delta);
+       dot = DotProduct (delta, normal);
+       if (dot > CONTINUOUS_EPSILON)
+               return NULL;                    // not a convex polygon
+       keep2 = (qboolean)(dot < -CONTINUOUS_EPSILON);
+
+       //
+       // build the new polygon
+       //
+       newf = Winding_Alloc (f1->numpoints + f2->numpoints);
+       
+       // copy first polygon
+       for (k=(i+1)%f1->numpoints ; k != i ; k=(k+1)%f1->numpoints)
+       {
+               if (!keep && k==(i+1)%f1->numpoints && !keep2)
+                       continue;
+               
+               VectorCopy (f1->points[k], newf->points[newf->numpoints]);
+               newf->numpoints++;
+       }
+       
+       // copy second polygon
+       for (l= (j+1)%f2->numpoints ; l != j ; l=(l+1)%f2->numpoints)
+       {
+               if (!keep && l==(j+1)%f2->numpoints && !keep1)
+                       continue;
+               VectorCopy (f2->points[l], newf->points[newf->numpoints]);
+               newf->numpoints++;
+       }
+
+       return newf;
+}
+
+/*
+============
+Winding_Plane
+============
+*/
+void Winding_Plane (winding_t *w, vec3_t normal, double *dist)
+{
+       vec3_t v1, v2;
+       int i;
+
+       //find two vectors each longer than 0.5 units
+       for (i = 0; i < w->numpoints; i++)
+       {
+               VectorSubtract(w->points[(i+1) % w->numpoints], w->points[i], v1);
+               VectorSubtract(w->points[(i+2) % w->numpoints], w->points[i], v2);
+               if (VectorLength(v1) > 0.5 && VectorLength(v2) > 0.5) break;
+       }
+       CrossProduct(v2, v1, normal);
+       VectorNormalize(normal, normal);
+       *dist = DotProduct(w->points[0], normal);
+}
+
+/*
+=============
+Winding_Area
+=============
+*/
+float Winding_Area (winding_t *w)
+{
+       int             i;
+       vec3_t  d1, d2, cross;
+       float   total;
+
+       total = 0;
+       for (i=2 ; i<w->numpoints ; i++)
+       {
+               VectorSubtract (w->points[i-1], w->points[0], d1);
+               VectorSubtract (w->points[i], w->points[0], d2);
+               CrossProduct (d1, d2, cross);
+               total += 0.5 * VectorLength ( cross );
+       }
+       return total;
+}
+
+/*
+=============
+Winding_Bounds
+=============
+*/
+void Winding_Bounds (winding_t *w, vec3_t mins, vec3_t maxs)
+{
+       vec_t   v;
+       int             i,j;
+
+       mins[0] = mins[1] = mins[2] = 99999;
+       maxs[0] = maxs[1] = maxs[2] = -99999;
+
+       for (i=0 ; i<w->numpoints ; i++)
+       {
+               for (j=0 ; j<3 ; j++)
+               {
+                       v = w->points[i][j];
+                       if (v < mins[j])
+                               mins[j] = v;
+                       if (v > maxs[j])
+                               maxs[j] = v;
+               }
+       }
+}
+
+
+/*
+=================
+Winding_PointInside
+=================
+*/
+int Winding_PointInside(winding_t *w, plane_t *plane, vec3_t point, float epsilon)
+{
+       int i;
+       vec3_t dir, normal, pointvec;
+
+       for (i = 0; i < w->numpoints; i++)
+       {
+               VectorSubtract(w->points[(i+1) % w->numpoints], w->points[i], dir);
+               VectorSubtract(point, w->points[i], pointvec);
+               //
+               CrossProduct(dir, plane->normal, normal);
+               //
+               if (DotProduct(pointvec, normal) < -epsilon) return false;
+       }
+       return true;
+}
+
+/*
+=================
+Winding_VectorIntersect
+=================
+*/
+int Winding_VectorIntersect(winding_t *w, plane_t *plane, vec3_t p1, vec3_t p2, float epsilon)
+{
+       float front, back, frac;
+       vec3_t mid;
+
+       front = DotProduct(p1, plane->normal) - plane->dist;
+       back = DotProduct(p2, plane->normal) - plane->dist;
+       //if both points at the same side of the plane
+       if (front < -epsilon && back < -epsilon) return false;
+       if (front > epsilon && back > epsilon) return false;
+       //get point of intersection with winding plane
+       if (fabs(front-back) < 0.001)
+       {
+               VectorCopy(p2, mid);
+       }
+       else
+       {
+               frac = front/(front-back);
+               mid[0] = p1[0] + (p2[0] - p1[0]) * frac;
+               mid[1] = p1[1] + (p2[1] - p1[1]) * frac;
+               mid[2] = p1[2] + (p2[2] - p1[2]) * frac;
+       }
+       return Winding_PointInside(w, plane, mid, epsilon);
+}
+