]> de.git.xonotic.org Git - xonotic/netradiant.git/blobdiff - radiant/winding.cpp
it's better to close file and return on non-void function
[xonotic/netradiant.git] / radiant / winding.cpp
index bba895013c7da78c00069c69a7c9a29d4a77f305..d027f52dba2ab4a41ec968a655c4b27e39221a36 100644 (file)
@@ -1,23 +1,23 @@
 /*
-Copyright (C) 1999-2006 Id Software, Inc. and contributors.
-For a list of contributors, see the accompanying CONTRIBUTORS file.
+   Copyright (C) 1999-2006 Id Software, Inc. and contributors.
+   For a list of contributors, see the accompanying CONTRIBUTORS file.
 
-This file is part of GtkRadiant.
+   This file is part of GtkRadiant.
 
-GtkRadiant is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
+   GtkRadiant is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2 of the License, or
+   (at your option) any later version.
 
-GtkRadiant is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-GNU General Public License for more details.
+   GtkRadiant is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
 
-You should have received a copy of the GNU General Public License
-along with GtkRadiant; if not, write to the Free Software
-Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
-*/
+   You should have received a copy of the GNU General Public License
+   along with GtkRadiant; if not, write to the Free Software
+   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ */
 
 #include "winding.h"
 
@@ -26,177 +26,173 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 #include "math/line.h"
 
 
-inline double plane3_distance_to_point(const Plane3& plane, const DoubleVector3& point)
+inline double plane3_distance_to_point(const Plane3 &plane, const DoubleVector3 &point)
 {
-  return vector3_dot(point, plane.normal()) - plane.dist();
+    return vector3_dot(point, plane.normal()) - plane.dist();
 }
 
-inline double plane3_distance_to_point(const Plane3& plane, const Vector3& point)
+inline double plane3_distance_to_point(const Plane3 &plane, const Vector3 &point)
 {
-  return vector3_dot(point, plane.normal()) - plane.dist();
+    return vector3_dot(point, plane.normal()) - plane.dist();
 }
 
 /// \brief Returns the point at which \p line intersects \p plane, or an undefined value if there is no intersection.
-inline DoubleVector3 line_intersect_plane(const DoubleLine& line, const Plane3& plane)
+inline DoubleVector3 line_intersect_plane(const DoubleLine &line, const Plane3 &plane)
 {
-  return line.origin + vector3_scaled(
-    line.direction,
-    -plane3_distance_to_point(plane, line.origin)
-    / vector3_dot(line.direction, plane.normal())
-  );
+    return line.origin + vector3_scaled(
+            line.direction,
+            -plane3_distance_to_point(plane, line.origin)
+            / vector3_dot(line.direction, plane.normal())
+    );
 }
 
 inline bool float_is_largest_absolute(double axis, double other)
 {
-  return fabs(axis) > fabs(other);
+    return fabs(axis) > fabs(other);
 }
 
 /// \brief Returns the index of the component of \p v that has the largest absolute value.
-inline int vector3_largest_absolute_component_index(const DoubleVector3v)
+inline int vector3_largest_absolute_component_index(const DoubleVector3 &v)
 {
-  return (float_is_largest_absolute(v[1], v[0]))
-    ? (float_is_largest_absolute(v[1], v[2]))
-      ? 1
-      : 2
-    : (float_is_largest_absolute(v[0], v[2]))
-      ? 0
-      : 2;
+    return (float_is_largest_absolute(v[1], v[0]))
+           ? (float_is_largest_absolute(v[1], v[2]))
+             ? 1
+             : 2
+           : (float_is_largest_absolute(v[0], v[2]))
+             ? 0
+             : 2;
 }
 
 /// \brief Returns the infinite line that is the intersection of \p plane and \p other.
-inline DoubleLine plane3_intersect_plane3(const Plane3& plane, const Plane3& other)
+inline DoubleLine plane3_intersect_plane3(const Plane3 &plane, const Plane3 &other)
 {
-  DoubleLine line;
-  line.direction = vector3_cross(plane.normal(), other.normal());
-  switch(vector3_largest_absolute_component_index(line.direction))
-  {
-  case 0:
-    line.origin.x() = 0;
-    line.origin.y() = (-other.dist() * plane.normal().z() - -plane.dist() * other.normal().z()) / line.direction.x();
-    line.origin.z() = (-plane.dist() * other.normal().y() - -other.dist() * plane.normal().y()) / line.direction.x();
-    break;
-  case 1:
-    line.origin.x() = (-plane.dist() * other.normal().z() - -other.dist() * plane.normal().z()) / line.direction.y();
-    line.origin.y() = 0;
-    line.origin.z() = (-other.dist() * plane.normal().x() - -plane.dist() * other.normal().x()) / line.direction.y();
-    break;
-  case 2:
-    line.origin.x() = (-other.dist() * plane.normal().y() - -plane.dist() * other.normal().y()) / line.direction.z();
-    line.origin.y() = (-plane.dist() * other.normal().x() - -other.dist() * plane.normal().x()) / line.direction.z();
-    line.origin.z() = 0;
-    break;
-  default:
-    break;
-  }
-
-  return line;
+    DoubleLine line;
+    line.direction = vector3_cross(plane.normal(), other.normal());
+    switch (vector3_largest_absolute_component_index(line.direction)) {
+        case 0:
+            line.origin.x() = 0;
+            line.origin.y() =
+                    (-other.dist() * plane.normal().z() - -plane.dist() * other.normal().z()) / line.direction.x();
+            line.origin.z() =
+                    (-plane.dist() * other.normal().y() - -other.dist() * plane.normal().y()) / line.direction.x();
+            break;
+        case 1:
+            line.origin.x() =
+                    (-plane.dist() * other.normal().z() - -other.dist() * plane.normal().z()) / line.direction.y();
+            line.origin.y() = 0;
+            line.origin.z() =
+                    (-other.dist() * plane.normal().x() - -plane.dist() * other.normal().x()) / line.direction.y();
+            break;
+        case 2:
+            line.origin.x() =
+                    (-other.dist() * plane.normal().y() - -plane.dist() * other.normal().y()) / line.direction.z();
+            line.origin.y() =
+                    (-plane.dist() * other.normal().x() - -other.dist() * plane.normal().x()) / line.direction.z();
+            line.origin.z() = 0;
+            break;
+        default:
+            break;
+    }
+
+    return line;
 }
 
 
 /// \brief Keep the value of \p infinity as small as possible to improve precision in Winding_Clip.
-void Winding_createInfinite(FixedWinding& winding, const Plane3& plane, double infinity)
+void Winding_createInfinite(FixedWinding &winding, const Plane3 &plane, double infinity)
 {
-  double max = -infinity;
-  int x = -1;
-  for (int i=0 ; i<3; i++)
-  {
-    double d = fabs(plane.normal()[i]);
-    if (d > max)
-    {
-      x = i;
-      max = d;
+    double max = -infinity;
+    int x = -1;
+    for (int i = 0; i < 3; i++) {
+        double d = fabs(plane.normal()[i]);
+        if (d > max) {
+            x = i;
+            max = d;
+        }
     }
-  }
-  if(x == -1)
-  {
-    globalErrorStream() << "invalid plane\n";
-    return;
-  }
-    
-  DoubleVector3 vup = g_vector3_identity;  
-  switch (x)
-  {
-  case 0:
-  case 1:
-    vup[2] = 1;
-    break;    
-  case 2:
-    vup[0] = 1;
-    break;    
-  }
-
-
-  vector3_add(vup, vector3_scaled(plane.normal(), -vector3_dot(vup, plane.normal())));
-  vector3_normalise(vup);
-    
-  DoubleVector3 org = vector3_scaled(plane.normal(), plane.dist());
-  
-  DoubleVector3 vright = vector3_cross(vup, plane.normal());
-  
-  vector3_scale(vup, infinity);
-  vector3_scale(vright, infinity);
-
-  // project a really big  axis aligned box onto the plane
-  
-  DoubleLine r1, r2, r3, r4;
-  r1.origin = vector3_added(vector3_subtracted(org, vright), vup);
-  r1.direction = vector3_normalised(vright);
-  winding.push_back(FixedWindingVertex(r1.origin, r1, c_brush_maxFaces));
-  r2.origin = vector3_added(vector3_added(org, vright), vup);
-  r2.direction = vector3_normalised(vector3_negated(vup));
-  winding.push_back(FixedWindingVertex(r2.origin, r2, c_brush_maxFaces));
-  r3.origin = vector3_subtracted(vector3_added(org, vright), vup);
-  r3.direction = vector3_normalised(vector3_negated(vright));
-  winding.push_back(FixedWindingVertex(r3.origin, r3, c_brush_maxFaces));
-  r4.origin = vector3_subtracted(vector3_subtracted(org, vright), vup);
-  r4.direction = vector3_normalised(vup);
-  winding.push_back(FixedWindingVertex(r4.origin, r4, c_brush_maxFaces));
+    if (x == -1) {
+        globalErrorStream() << "invalid plane\n";
+        return;
+    }
+
+    DoubleVector3 vup = g_vector3_identity;
+    switch (x) {
+        case 0:
+        case 1:
+            vup[2] = 1;
+            break;
+        case 2:
+            vup[0] = 1;
+            break;
+    }
+
+
+    vector3_add(vup, vector3_scaled(plane.normal(), -vector3_dot(vup, plane.normal())));
+    vector3_normalise(vup);
+
+    DoubleVector3 org = vector3_scaled(plane.normal(), plane.dist());
+
+    DoubleVector3 vright = vector3_cross(vup, plane.normal());
+
+    vector3_scale(vup, infinity);
+    vector3_scale(vright, infinity);
+
+    // project a really big  axis aligned box onto the plane
+
+    DoubleLine r1, r2, r3, r4;
+    r1.origin = vector3_added(vector3_subtracted(org, vright), vup);
+    r1.direction = vector3_normalised(vright);
+    winding.push_back(FixedWindingVertex(r1.origin, r1, c_brush_maxFaces));
+    r2.origin = vector3_added(vector3_added(org, vright), vup);
+    r2.direction = vector3_normalised(vector3_negated(vup));
+    winding.push_back(FixedWindingVertex(r2.origin, r2, c_brush_maxFaces));
+    r3.origin = vector3_subtracted(vector3_added(org, vright), vup);
+    r3.direction = vector3_normalised(vector3_negated(vright));
+    winding.push_back(FixedWindingVertex(r3.origin, r3, c_brush_maxFaces));
+    r4.origin = vector3_subtracted(vector3_subtracted(org, vright), vup);
+    r4.direction = vector3_normalised(vup);
+    winding.push_back(FixedWindingVertex(r4.origin, r4, c_brush_maxFaces));
 }
 
 
 inline PlaneClassification Winding_ClassifyDistance(const double distance, const double epsilon)
 {
-  if(distance > epsilon)
-  {
-    return ePlaneFront;
-  }
-  if(distance < -epsilon)
-  {
-    return ePlaneBack;
-  }
-  return ePlaneOn;
+    if (distance > epsilon) {
+        return ePlaneFront;
+    }
+    if (distance < -epsilon) {
+        return ePlaneBack;
+    }
+    return ePlaneOn;
 }
 
 /// \brief Returns true if
 /// !flipped && winding is completely BACK or ON
 /// or flipped && winding is completely FRONT or ON
-bool Winding_TestPlane(const Winding& winding, const Plane3& plane, bool flipped) 
+bool Winding_TestPlane(const Winding &winding, const Plane3 &plane, bool flipped)
 {
-  const int test = (flipped) ? ePlaneBack : ePlaneFront;
-  for(Winding::const_iterator i = winding.begin(); i != winding.end(); ++i)
-  {
-    if(test == Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON))
-    {
-      return false;
+    const int test = (flipped) ? ePlaneBack : ePlaneFront;
+    for (Winding::const_iterator i = winding.begin(); i != winding.end(); ++i) {
+        if (test == Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON)) {
+            return false;
+        }
     }
-  }
-  return true;
+    return true;
 }
 
 /// \brief Returns true if any point in \p w1 is in front of plane2, or any point in \p w2 is in front of plane1
-bool Winding_PlanesConcave(const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2)
+bool Winding_PlanesConcave(const Winding &w1, const Winding &w2, const Plane3 &plane1, const Plane3 &plane2)
 {
-  return !Winding_TestPlane(w1, plane2, false) || !Winding_TestPlane(w2, plane1, false);
+    return !Winding_TestPlane(w1, plane2, false) || !Winding_TestPlane(w2, plane1, false);
 }
 
-brushsplit_t Winding_ClassifyPlane(const Winding& winding, const Plane3& plane) 
+brushsplit_t Winding_ClassifyPlane(const Winding &winding, const Plane3 &plane)
 {
-  brushsplit_t split;
-  for(Winding::const_iterator i = winding.begin(); i != winding.end(); ++i)
-  {
-    ++split.counts[Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON)];
-  }
-  return split;
+    brushsplit_t split;
+    for (Winding::const_iterator i = winding.begin(); i != winding.end(); ++i) {
+        ++split.counts[Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON)];
+    }
+    return split;
 }
 
 
@@ -206,141 +202,128 @@ const double DEBUG_EPSILON_SQUARED = DEBUG_EPSILON * DEBUG_EPSILON;
 #define WINDING_DEBUG 0
 
 /// \brief Clip \p winding which lies on \p plane by \p clipPlane, resulting in \p clipped.
-/// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding.  
-/// If \p winding is completely in back of the plane, \p clipped will be empty.  
+/// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding.
+/// If \p winding is completely in back of the plane, \p clipped will be empty.
 /// If \p winding intersects the plane, the edge of \p clipped which lies on \p clipPlane will store the value of \p adjacent.
-void Winding_Clip(const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped)
+void Winding_Clip(const FixedWinding &winding, const Plane3 &plane, const Plane3 &clipPlane, std::size_t adjacent,
+                  FixedWinding &clipped)
 {
-  PlaneClassification classification = Winding_ClassifyDistance(plane3_distance_to_point(clipPlane, winding.back().vertex), ON_EPSILON);
-  PlaneClassification nextClassification;
-  // for each edge
-  for(std::size_t next = 0, i = winding.size()-1; next != winding.size(); i = next, ++next, classification = nextClassification)
-  {
-    nextClassification = Winding_ClassifyDistance(plane3_distance_to_point(clipPlane, winding[next].vertex), ON_EPSILON);
-    const FixedWindingVertex& vertex = winding[i];
-
-    // if first vertex of edge is ON
-    if(classification == ePlaneOn)
-    {
-      // append first vertex to output winding
-      if(nextClassification == ePlaneBack)
-      {
-        // this edge lies on the clip plane
-        clipped.push_back(FixedWindingVertex(vertex.vertex, plane3_intersect_plane3(plane, clipPlane), adjacent));
-      }
-      else
-      {
-        clipped.push_back(vertex);
-      }
-      continue;
+    PlaneClassification classification = Winding_ClassifyDistance(
+            plane3_distance_to_point(clipPlane, winding.back().vertex), ON_EPSILON);
+    PlaneClassification nextClassification;
+    // for each edge
+    for (std::size_t next = 0, i = winding.size() - 1;
+         next != winding.size(); i = next, ++next, classification = nextClassification) {
+        nextClassification = Winding_ClassifyDistance(plane3_distance_to_point(clipPlane, winding[next].vertex),
+                                                      ON_EPSILON);
+        const FixedWindingVertex &vertex = winding[i];
+
+        // if first vertex of edge is ON
+        if (classification == ePlaneOn) {
+            // append first vertex to output winding
+            if (nextClassification == ePlaneBack) {
+                // this edge lies on the clip plane
+                clipped.push_back(
+                        FixedWindingVertex(vertex.vertex, plane3_intersect_plane3(plane, clipPlane), adjacent));
+            } else {
+                clipped.push_back(vertex);
+            }
+            continue;
+        }
+
+        // if first vertex of edge is FRONT
+        if (classification == ePlaneFront) {
+            // add first vertex to output winding
+            clipped.push_back(vertex);
+        }
+        // if second vertex of edge is ON
+        if (nextClassification == ePlaneOn) {
+            continue;
+        }
+            // else if second vertex of edge is same as first
+        else if (nextClassification == classification) {
+            continue;
+        }
+            // else if first vertex of edge is FRONT and there are only two edges
+        else if (classification == ePlaneFront && winding.size() == 2) {
+            continue;
+        }
+            // else first vertex is FRONT and second is BACK or vice versa
+        else {
+            // append intersection point of line and plane to output winding
+            DoubleVector3 mid(line_intersect_plane(vertex.edge, clipPlane));
+
+            if (classification == ePlaneFront) {
+                // this edge lies on the clip plane
+                clipped.push_back(FixedWindingVertex(mid, plane3_intersect_plane3(plane, clipPlane), adjacent));
+            } else {
+                clipped.push_back(FixedWindingVertex(mid, vertex.edge, vertex.adjacent));
+            }
+        }
     }
-  
-    // if first vertex of edge is FRONT
-    if(classification == ePlaneFront)
-    {
-      // add first vertex to output winding
-      clipped.push_back(vertex);
-    }
-    // if second vertex of edge is ON
-    if(nextClassification == ePlaneOn)
-    {
-      continue;
-    }
-    // else if second vertex of edge is same as first
-    else if(nextClassification == classification)
-    {
-      continue;
-    }
-    // else if first vertex of edge is FRONT and there are only two edges
-    else if(classification == ePlaneFront && winding.size() == 2)
-    {
-      continue;
-    }
-    // else first vertex is FRONT and second is BACK or vice versa
-    else
-    {
-      // append intersection point of line and plane to output winding
-      DoubleVector3 mid(line_intersect_plane(vertex.edge, clipPlane));
-
-      if(classification == ePlaneFront)
-      {
-        // this edge lies on the clip plane
-        clipped.push_back(FixedWindingVertex(mid, plane3_intersect_plane3(plane, clipPlane), adjacent));
-      }
-      else
-      {
-        clipped.push_back(FixedWindingVertex(mid, vertex.edge, vertex.adjacent));
-      }
-    }
-  }
 }
 
-std::size_t Winding_FindAdjacent(const Windingwinding, std::size_t face)
+std::size_t Winding_FindAdjacent(const Winding &winding, std::size_t face)
 {
-  for(std::size_t i=0; i<winding.numpoints; ++i)
-  {
-    ASSERT_MESSAGE(winding[i].adjacent != c_brush_maxFaces, "edge connectivity data is invalid");
-    if(winding[i].adjacent == face)
-    {
-      return i;
+    for (std::size_t i = 0; i < winding.numpoints; ++i) {
+        ASSERT_MESSAGE(winding[i].adjacent != c_brush_maxFaces, "edge connectivity data is invalid");
+        if (winding[i].adjacent == face) {
+            return i;
+        }
     }
-  }
-  return c_brush_maxFaces;
+    return c_brush_maxFaces;
 }
 
-std::size_t Winding_Opposite(const Windingwinding, const std::size_t index, const std::size_t other)
+std::size_t Winding_Opposite(const Winding &winding, const std::size_t index, const std::size_t other)
 {
-  ASSERT_MESSAGE(index < winding.numpoints && other < winding.numpoints, "Winding_Opposite: index out of range");
+    ASSERT_MESSAGE(index < winding.numpoints && other < winding.numpoints, "Winding_Opposite: index out of range");
 
-  double dist_best = 0;
-  std::size_t index_best = c_brush_maxFaces;
+    double dist_best = 0;
+    std::size_t index_best = c_brush_maxFaces;
 
-  Ray edge(ray_for_points(winding[index].vertex, winding[other].vertex));
+    Ray edge(ray_for_points(winding[index].vertex, winding[other].vertex));
 
-  for(std::size_t i=0; i<winding.numpoints; ++i)
-  {
-    if(i == index || i == other)
-    {
-      continue;
-    }
+    for (std::size_t i = 0; i < winding.numpoints; ++i) {
+        if (i == index || i == other) {
+            continue;
+        }
 
-    double dist_squared = ray_squared_distance_to_point(edge, winding[i].vertex);
+        double dist_squared = ray_squared_distance_to_point(edge, winding[i].vertex);
 
-    if(dist_squared > dist_best)
-    {
-      dist_best = dist_squared;
-      index_best = i;
+        if (dist_squared > dist_best) {
+            dist_best = dist_squared;
+            index_best = i;
+        }
     }
-  }
-  return index_best;
+    return index_best;
 }
 
-std::size_t Winding_Opposite(const Windingwinding, const std::size_t index)
+std::size_t Winding_Opposite(const Winding &winding, const std::size_t index)
 {
-  return Winding_Opposite(winding, index, Winding_next(winding, index));
+    return Winding_Opposite(winding, index, Winding_next(winding, index));
 }
 
 /// \brief Calculate the \p centroid of the polygon defined by \p winding which lies on plane \p plane.
-void Winding_Centroid(const Winding& winding, const Plane3& plane, Vector3& centroid)
+void Winding_Centroid(const Winding &winding, const Plane3 &plane, Vector3 &centroid)
 {
-  double area2 = 0, x_sum = 0, y_sum = 0;
-  const ProjectionAxis axis = projectionaxis_for_normal(plane.normal());
-  const indexremap_t remap = indexremap_for_projectionaxis(axis);
-  for(std::size_t i = winding.numpoints-1, j = 0; j < winding.numpoints; i = j, ++j)
-  {
-    const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] - winding[j].vertex[remap.x] * winding[i].vertex[remap.y];
-    area2 += ai;
-    x_sum += (winding[j].vertex[remap.x] + winding[i].vertex[remap.x]) * ai;
-    y_sum += (winding[j].vertex[remap.y] + winding[i].vertex[remap.y]) * ai;
-  }
-
-  centroid[remap.x] = static_cast<float>(x_sum / (3 * area2));
-  centroid[remap.y] = static_cast<float>(y_sum / (3 * area2));
-  {
-    Ray ray(Vector3(0, 0, 0), Vector3(0, 0, 0));
-    ray.origin[remap.x] = centroid[remap.x];
-    ray.origin[remap.y] = centroid[remap.y];
-    ray.direction[remap.z] = 1;
-    centroid[remap.z] = static_cast<float>(ray_distance_to_plane(ray, plane));
-  }
+    double area2 = 0, x_sum = 0, y_sum = 0;
+    const ProjectionAxis axis = projectionaxis_for_normal(plane.normal());
+    const indexremap_t remap = indexremap_for_projectionaxis(axis);
+    for (std::size_t i = winding.numpoints - 1, j = 0; j < winding.numpoints; i = j, ++j) {
+        const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] -
+                          winding[j].vertex[remap.x] * winding[i].vertex[remap.y];
+        area2 += ai;
+        x_sum += (winding[j].vertex[remap.x] + winding[i].vertex[remap.x]) * ai;
+        y_sum += (winding[j].vertex[remap.y] + winding[i].vertex[remap.y]) * ai;
+    }
+
+    centroid[remap.x] = static_cast<float>( x_sum / (3 * area2));
+    centroid[remap.y] = static_cast<float>( y_sum / (3 * area2));
+    {
+        Ray ray(Vector3(0, 0, 0), Vector3(0, 0, 0));
+        ray.origin[remap.x] = centroid[remap.x];
+        ray.origin[remap.y] = centroid[remap.y];
+        ray.direction[remap.z] = 1;
+        centroid[remap.z] = static_cast<float>( ray_distance_to_plane(ray, plane));
+    }
 }