]> de.git.xonotic.org Git - xonotic/xonotic-data.pk3dir.git/blob - qcsrc/client/particles.qc
Experiment with beam_traileffect and add comment for beam_hitlight /
[xonotic/xonotic-data.pk3dir.git] / qcsrc / client / particles.qc
1 .float dphitcontentsmask;
2
3 .float cnt; // effect number
4 .vector velocity; // particle velocity
5 .float waterlevel; // direction jitter
6 .float count; // count multiplier
7 .float impulse; // density
8 .string noise; // sound
9 .float atten;
10 .float volume;
11 .float absolute; // 1 = count per second is absolute, 2 = only spawn at toggle
12 .vector movedir; // trace direction
13
14 void Draw_PointParticles()
15 {
16         float n, i, fail;
17         vector p;
18         vector sz;
19         vector o;
20         o = self.origin;
21         sz = self.maxs - self.mins;
22         n = BGMScript(self);
23         if(self.absolute == 2)
24         {
25                 if(n >= 0)
26                         n = self.just_toggled ? self.impulse : 0;
27                 else
28                         n = self.impulse * drawframetime;
29         }
30         else
31         {
32                 n *= self.impulse * drawframetime;
33                 if(self.just_toggled)
34                         if(n < 1)
35                                 n = 1;
36         }
37         if(n == 0)
38                 return;
39         fail = 0;
40         for(i = random(); i <= n && fail <= 64*n; ++i)
41         {
42                 p = o + self.mins;
43                 p_x += random() * sz_x;
44                 p_y += random() * sz_y;
45                 p_z += random() * sz_z;
46                 if(WarpZoneLib_BoxTouchesBrush(p, p, self, world))
47                 {
48                         if(self.movedir != '0 0 0')
49                         {
50                                 traceline(p, p + normalize(self.movedir) * 4096, 0, world);
51                                 p = trace_endpos;
52                                 pointparticles(self.cnt, p, trace_plane_normal * vlen(self.movedir) + self.velocity + randomvec() * self.waterlevel, self.count);
53                         }
54                         else
55                         {
56                                 pointparticles(self.cnt, p, self.velocity + randomvec() * self.waterlevel, self.count);
57                         }
58                         if(self.noise != "")
59                         {
60                                 setorigin(self, p);
61                                 sound(self, CH_AMBIENT, self.noise, VOL_BASE * self.volume, self.atten);
62                         }
63                         self.just_toggled = 0;
64                 }
65                 else if(self.absolute)
66                 {
67                         ++fail;
68                         --i;
69                 }
70         }
71         setorigin(self, o);
72 }
73
74 void Ent_PointParticles_Remove()
75 {
76         if(self.noise)
77                 strunzone(self.noise);
78         self.noise = string_null;
79         if(self.bgmscript)
80                 strunzone(self.bgmscript);
81         self.bgmscript = string_null;
82 }
83
84 void Ent_PointParticles()
85 {
86         float f, i;
87         vector v;
88         f = ReadByte();
89         if(f & 2)
90         {
91                 i = ReadCoord(); // density (<0: point, >0: volume)
92                 if(i && !self.impulse && self.cnt) // self.cnt check is so it only happens if the ent already existed
93                         self.just_toggled = 1;
94                 self.impulse = i;
95         }
96         if(f & 4)
97         {
98                 self.origin_x = ReadCoord();
99                 self.origin_y = ReadCoord();
100                 self.origin_z = ReadCoord();
101         }
102         if(f & 1)
103         {
104                 self.modelindex = ReadShort();
105                 if(f & 0x80)
106                 {
107                         if(self.modelindex)
108                         {
109                                 self.mins_x = ReadCoord();
110                                 self.mins_y = ReadCoord();
111                                 self.mins_z = ReadCoord();
112                                 self.maxs_x = ReadCoord();
113                                 self.maxs_y = ReadCoord();
114                                 self.maxs_z = ReadCoord();
115                         }
116                         else
117                         {
118                                 self.mins    = '0 0 0';
119                                 self.maxs_x = ReadCoord();
120                                 self.maxs_y = ReadCoord();
121                                 self.maxs_z = ReadCoord();
122                         }
123                 }
124                 else
125                 {
126                         self.mins = self.maxs = '0 0 0';
127                 }
128
129                 self.cnt = ReadShort(); // effect number
130
131                 if(f & 0x20)
132                 {
133                         self.velocity = decompressShortVector(ReadShort());
134                         self.movedir = decompressShortVector(ReadShort());
135                 }
136                 else
137                 {
138                         self.velocity = self.movedir = '0 0 0';
139                 }
140                 if(f & 0x40)
141                 {
142                         self.waterlevel = ReadShort() / 16.0;
143                         self.count = ReadByte() / 16.0;
144                 }
145                 else
146                 {
147                         self.waterlevel = 0;
148                         self.count = 1;
149                 }
150                 if(self.noise)
151                         strunzone(self.noise);
152                 if(self.bgmscript)
153                         strunzone(self.bgmscript);
154                 self.noise = strzone(ReadString());
155                 if(self.noise != "")
156                 {
157                         self.atten = ReadByte() / 64.0;
158                         self.volume = ReadByte() / 255.0;
159                 }
160                 self.bgmscript = strzone(ReadString());
161                 if(self.bgmscript != "")
162                 {
163                         self.bgmscriptattack = ReadByte() / 64.0;
164                         self.bgmscriptdecay = ReadByte() / 64.0;
165                         self.bgmscriptsustain = ReadByte() / 255.0;
166                         self.bgmscriptrelease = ReadByte() / 64.0;
167                 }
168                 BGMScript_InitEntity(self);
169         }
170
171         if(f & 2)
172         {
173                 self.absolute = (self.impulse >= 0);
174                 if(!self.absolute)
175                 {
176                         v = self.maxs - self.mins;
177                         self.impulse *= -v_x * v_y * v_z / 262144; // relative: particles per 64^3 cube
178                 }
179         }
180
181         if(f & 0x10)
182                 self.absolute = 2;
183
184         setorigin(self, self.origin);
185         setsize(self, self.mins, self.maxs);
186         self.solid = SOLID_NOT;
187         self.draw = Draw_PointParticles;
188         self.entremove = Ent_PointParticles_Remove;
189 }
190
191 .float glow_color; // palette index
192 void Draw_Rain()
193 {
194     te_particlerain(self.origin + self.mins, self.origin + self.maxs, self.velocity, floor(self.count * drawframetime + random()), self.glow_color);
195 }
196
197 void Draw_Snow()
198 {
199     te_particlesnow(self.origin + self.mins, self.origin + self.maxs, self.velocity, floor(self.count * drawframetime + random()), self.glow_color);
200 }
201
202 void Ent_RainOrSnow()
203 {
204         self.impulse = ReadByte(); // Rain, Snow, or Whatever
205         self.origin_x = ReadCoord();
206         self.origin_y = ReadCoord();
207         self.origin_z = ReadCoord();
208         self.maxs_x = ReadCoord();
209         self.maxs_y = ReadCoord();
210         self.maxs_z = ReadCoord();
211         self.velocity = decompressShortVector(ReadShort());
212         self.count = ReadShort() * 10;
213         self.glow_color = ReadByte(); // color
214
215         self.mins    = -0.5 * self.maxs;
216         self.maxs    =  0.5 * self.maxs;
217         self.origin  = self.origin - self.mins;
218
219         setorigin(self, self.origin);
220         setsize(self, self.mins, self.maxs);
221         self.solid = SOLID_NOT;
222         if(self.impulse)
223                 self.draw = Draw_Rain;
224         else
225                 self.draw = Draw_Snow;
226 }
227
228 void Net_ReadVortexBeamParticle()
229 {
230         vector shotorg, endpos;
231         float charge;
232         shotorg_x = ReadCoord(); shotorg_y = ReadCoord(); shotorg_z = ReadCoord();
233         endpos_x = ReadCoord(); endpos_y = ReadCoord(); endpos_z = ReadCoord();
234         charge = ReadByte() / 255.0;
235
236         pointparticles(particleeffectnum("nex_muzzleflash"), shotorg, normalize(endpos - shotorg) * 1000, 1);
237
238         //draw either the old v2.3 beam or the new beam
239         charge = sqrt(charge); // divide evenly among trail spacing and alpha
240         particles_alphamin = particles_alphamax = particles_fade = charge;
241
242         if (autocvar_cl_particles_oldnexbeam && (getstati(STAT_ALLOW_OLDNEXBEAM) || isdemo()))
243                 WarpZone_TrailParticles_WithMultiplier(world, particleeffectnum("TE_TEI_G3"), shotorg, endpos, 1, PARTICLES_USEALPHA | PARTICLES_USEFADE);
244         else
245                 WarpZone_TrailParticles_WithMultiplier(world, particleeffectnum("nex_beam"), shotorg, endpos, 1, PARTICLES_USEALPHA | PARTICLES_USEFADE);
246 }
247
248 .vector sw_shotorg;
249 .vector sw_endpos;
250 .float sw_spread_max;
251 .float sw_spread_min;
252 .float sw_time;
253
254 void Draw_Shockwave()
255 {
256         float a = bound(0, (0.5 - ((time - self.sw_time) / 0.4)), 0.5);
257
258         if(!a) { remove(self); }
259         
260         vector deviation, angle;
261
262         vector sw_color = getcsqcplayercolor(self.sv_entnum); // GetTeamRGB(GetPlayerColor(self.sv_entnum));
263
264         vector first_min_end = '0 0 0', prev_min_end = '0 0 0', new_min_end = '0 0 0';
265         vector first_max_end = '0 0 0', prev_max_end = '0 0 0', new_max_end = '0 0 0';
266
267         float new_max_dist, new_min_dist;
268         
269         vector shotdir = normalize(self.sw_endpos - self.sw_shotorg);
270         vectorvectors(shotdir);
271         vector right = v_right;
272         vector up = v_up;
273         
274         float counter, dist_before_normal = 200, shots = 20;
275         
276         vector min_end = ((self.sw_shotorg + (shotdir * dist_before_normal)) + (up * self.sw_spread_min));
277         vector max_end = (self.sw_endpos + (up * self.sw_spread_max));
278         
279         float spread_to_min = vlen(normalize(min_end - self.sw_shotorg) - shotdir);
280         float spread_to_max = vlen(normalize(max_end - min_end) - shotdir);
281         
282         for(counter = 0; counter < shots; ++counter)
283         {
284                 // perfect circle effect lines
285                 angle = '0 0 0';
286                 makevectors('0 360 0' * (0.75 + (counter - 0.5) / shots));
287                 angle_y = v_forward_x;
288                 angle_z = v_forward_y;
289
290                 // first do the spread_to_min effect
291                 deviation = angle * spread_to_min;
292                 deviation = ((shotdir + (right * deviation_y) + (up * deviation_z)));
293                 new_min_dist = dist_before_normal;
294                 new_min_end = (self.sw_shotorg + (deviation * new_min_dist));
295                 //te_lightning2(world, new_min_end, self.sw_shotorg);
296
297                 // then calculate spread_to_max effect
298                 deviation = angle * spread_to_max;
299                 deviation = ((shotdir + (right * deviation_y) + (up * deviation_z)));
300                 new_max_dist = vlen(new_min_end - self.sw_endpos);
301                 new_max_end = (new_min_end + (deviation * new_max_dist));
302                 //te_lightning2(world, new_end, prev_min_end);
303                 
304
305                 if(counter == 0)
306                 {
307                         first_min_end = new_min_end;
308                         first_max_end = new_max_end;
309                 }
310
311                 if(counter >= 1)
312                 {
313                         R_BeginPolygon("", DRAWFLAG_NORMAL);
314                         R_PolygonVertex(prev_min_end, '0 0 0', sw_color, a);
315                         R_PolygonVertex(new_min_end, '0 0 0', sw_color, a);
316                         R_PolygonVertex(self.sw_shotorg, '0 0 0', sw_color, a);
317                         R_EndPolygon();
318
319                         R_BeginPolygon("", DRAWFLAG_NORMAL);
320                         R_PolygonVertex(new_min_end, '0 0 0', sw_color, a);
321                         R_PolygonVertex(prev_min_end, '0 0 0', sw_color, a);
322                         R_PolygonVertex(prev_max_end, '0 0 0', sw_color, a);
323                         R_PolygonVertex(new_max_end, '0 0 0', sw_color, a);
324                         R_EndPolygon();
325                 }
326
327                 prev_min_end = new_min_end;
328                 prev_max_end = new_max_end;
329
330                 if((counter + 1) == shots)
331                 {
332                         R_BeginPolygon("", DRAWFLAG_NORMAL);
333                         R_PolygonVertex(prev_min_end, '0 0 0', sw_color, a);
334                         R_PolygonVertex(first_min_end, '0 0 0', sw_color, a);
335                         R_PolygonVertex(self.sw_shotorg, '0 0 0', sw_color, a);
336                         R_EndPolygon();
337
338                         R_BeginPolygon("", DRAWFLAG_NORMAL);
339                         R_PolygonVertex(first_min_end, '0 0 0', sw_color, a);
340                         R_PolygonVertex(prev_min_end, '0 0 0', sw_color, a);
341                         R_PolygonVertex(prev_max_end, '0 0 0', sw_color, a);
342                         R_PolygonVertex(first_max_end, '0 0 0', sw_color, a);
343                         R_EndPolygon();
344                 }
345         }
346 }
347
348 void Net_ReadShockwaveParticle()
349 {
350         entity shockwave;
351         shockwave = spawn();
352         shockwave.draw = Draw_Shockwave;
353         
354         shockwave.sw_shotorg_x = ReadCoord(); shockwave.sw_shotorg_y = ReadCoord(); shockwave.sw_shotorg_z = ReadCoord();
355         shockwave.sw_endpos_x  = ReadCoord(); shockwave.sw_endpos_y  = ReadCoord(); shockwave.sw_endpos_z  = ReadCoord();
356         
357         shockwave.sw_spread_max = ReadByte();
358         shockwave.sw_spread_min = ReadByte();
359
360         shockwave.sv_entnum = ReadByte();
361
362         shockwave.sw_time = time;
363 }
364
365 .vector beam_color;
366 .float beam_alpha;
367 .float beam_thickness;
368 .float beam_traileffect;
369 .float beam_hiteffect;
370 .float beam_muzzleflash;
371 .string beam_image;
372
373 // WEAPONTODO: Add beam_hitlight and beam_muzzlelight which uses direct real time light control
374
375 .entity beam_muzzleentity;
376
377 .float beam_usevieworigin;
378 .float beam_initialized;
379 .float beam_maxangle;
380 .float beam_range;
381 .float beam_returnspeed;
382 .float beam_tightness;
383 .vector beam_shotorigin;
384 .vector beam_dir;
385 void Draw_ArcBeam()
386 {
387         InterpolateOrigin_Do();
388
389         // origin = beam starting origin
390         // v_angle = wanted/aim direction
391         // angles = current direction of beam
392
393         vector start_pos;
394         vector wantdir; //= view_forward;
395         vector beamdir; //= self.beam_dir;
396
397         float segments;
398         if(self.beam_usevieworigin)
399         {
400                 // WEAPONTODO:
401                 // Currently we have to replicate nearly the same method of figuring
402                 // out the shotdir that the server does... Ideally in the future we
403                 // should be able to acquire this from a generalized function built
404                 // into a weapon system for client code. 
405
406                 // find where we are aiming
407                 makevectors(view_angles);
408
409                 // decide upon start position
410                 if(self.beam_usevieworigin == 2)
411                         { start_pos = view_origin; }
412                 else
413                         { start_pos = self.origin; }
414
415                 // trace forward with an estimation
416                 WarpZone_TraceLine(start_pos, start_pos + view_forward * self.beam_range, MOVE_NOMONSTERS, self);
417
418                 // untransform in case our trace went through a warpzone
419                 vector vf, vr, vu;
420                 vf = view_forward;
421                 vr = view_right;
422                 vu = view_up;
423                 vector shothitpos = WarpZone_UnTransformOrigin(WarpZone_trace_transform, trace_endpos); // warpzone support
424                 view_forward = vf;
425                 view_right = vr;
426                 view_up = vu;
427
428                 // un-adjust trueaim if shotend is too close
429                 if(vlen(shothitpos - view_origin) < g_trueaim_minrange)
430                         shothitpos = view_origin + (view_forward * g_trueaim_minrange);
431
432                 // move shot origin to the actual gun muzzle origin
433                 vector origin_offset = view_forward * self.beam_shotorigin_x + view_right * -self.beam_shotorigin_y + view_up * self.beam_shotorigin_z;
434                 start_pos = start_pos + origin_offset;
435
436                 // calculate the aim direction now
437                 wantdir = normalize(shothitpos - start_pos);
438
439                 if(!self.beam_initialized)
440                 {
441                         self.beam_dir = wantdir;
442                         self.beam_initialized = TRUE;
443                 }
444
445                 // WEAPONTODO: Calculate segments dyanmically similarly to the server code
446                 segments = 20;
447                 if(self.beam_dir != wantdir)
448                 {
449                         float angle = ceil(vlen(wantdir - self.beam_dir) * RAD2DEG);
450                         float anglelimit;
451                         if(angle && (angle > self.beam_maxangle))
452                         {
453                                 // if the angle is greater than maxangle, force the blendfactor to make this the maximum factor
454                                 anglelimit = min(self.beam_maxangle / angle, 1);
455                         }
456                         else
457                         {
458                                 // the radius is not too far yet, no worries :D
459                                 anglelimit = 1;
460                         }
461
462                         // calculate how much we're going to move the end of the beam to the want position
463                         float blendfactor = bound(0, anglelimit * (1 - (self.beam_returnspeed * frametime)), 1);
464                         self.beam_dir = normalize((wantdir * (1 - blendfactor)) + (self.beam_dir * blendfactor));
465
466                         // WEAPONTODO (server and client):
467                         // blendfactor never actually becomes 0 in this situation, which is a problem
468                         // regarding precision... this means that self.beam_dir and w_shotdir approach
469                         // eachother, however they never actually become the same value with this method.
470
471                         // Perhaps we should do some form of rounding/snapping?
472
473                         // printf("blendfactor = %f\n", blendfactor);
474
475                         #if 0
476                         // calculate how many segments are needed
477                         float max_allowed_segments;
478
479                         if(WEP_CVAR(arc, beam_distancepersegment))
480                                 max_allowed_segments = min(ARC_MAX_SEGMENTS, 1 + (vlen(w_shotdir / WEP_CVAR(arc, beam_distancepersegment))));
481                         else
482                                 max_allowed_segments = ARC_MAX_SEGMENTS;
483
484                         if(WEP_CVAR(arc, beam_degreespersegment))
485                         {
486                                 segments = min( max(1, ( min(angle, WEP_CVAR(arc, beam_maxangle)) / WEP_CVAR(arc, beam_degreespersegment) ) ), max_allowed_segments );
487                         }
488                         else
489                         {
490                                 segments = 1;
491                         }
492                         #endif
493                 }
494                 #if 0
495                 else
496                 {
497                         segments = 1;
498                 }
499                 #endif
500
501                 // set the beam direction which the rest of the code will refer to
502                 beamdir = self.beam_dir;
503
504                 // finally, set self.angles to the proper direction so that muzzle attachment points in proper direction
505                 self.angles = fixedvectoangles2(view_forward, view_up);
506         }
507         else
508         {
509                 // set the values from the provided info from the networked entity
510                 start_pos = self.origin;
511                 wantdir = self.v_angle;
512                 beamdir = self.angles;
513
514                 // WEAPONTODO: Calculate segments dyanmically similarly to the server code
515                 segments = 20;
516                 #if 0
517                 if(beamdir != wantdir)
518                 {
519                         // calculate how many segments are needed
520                         float max_allowed_segments;
521
522                         if(WEP_CVAR(arc, beam_distancepersegment))
523                                 max_allowed_segments = min(ARC_MAX_SEGMENTS, 1 + (vlen(w_shotdir / WEP_CVAR(arc, beam_distancepersegment))));
524                         else
525                                 max_allowed_segments = ARC_MAX_SEGMENTS;
526
527                         if(WEP_CVAR(arc, beam_degreespersegment))
528                         {
529                                 segments = min( max(1, ( min(angle, WEP_CVAR(arc, beam_maxangle)) / WEP_CVAR(arc, beam_degreespersegment) ) ), max_allowed_segments );
530                         }
531                         else
532                         {
533                                 segments = 1;
534                         }
535                 }
536                 else
537                 {
538                         segments = 1;
539                 }
540                 #endif
541         }
542
543         setorigin(self, start_pos);
544         self.beam_muzzleentity.angles_z = random() * 360; // WEAPONTODO: use avelocity instead?
545
546         vector beam_endpos_estimate = (start_pos + (beamdir * self.beam_range));
547
548         float maxthickness = self.beam_thickness;
549
550         vector thickdir = normalize(cross(beamdir, view_origin - start_pos));
551
552         vector last_origin = start_pos;
553
554         float lastthickness = 0;
555
556         vector last_top = start_pos + (thickdir * lastthickness);
557         vector last_bottom = start_pos - (thickdir * lastthickness);
558
559         vector hitorigin = start_pos;
560
561         float i;
562         for(i = 1; i <= segments; ++i)
563         {
564                 // WEAPONTODO (server and client):
565                 // Segment blend and distance should probably really be calculated in a better way,
566                 // however I am not sure how to do it properly. There are a few things I have tried,
567                 // but most of them do not work properly due to my lack of understanding regarding
568                 // the mathematics behind them.
569
570                 // Ideally, we should calculate the positions along a perfect curve
571                 // between wantdir and self.beam_dir with an option for depth of arc
572
573                 // Another issue is that (on the client code) we must separate the
574                 // curve into multiple rendered curves when handling warpzones.
575                 
576                 // I can handle this by detecting it for each segment, however that
577                 // is a fairly inefficient method in comparison to having a curved line
578                 // drawing function similar to Draw_CylindricLine that accepts
579                 // top and bottom origins as input, this way there would be no
580                 // overlapping edges when connecting the curved pieces.
581
582                 // WEAPONTODO (client):
583                 // In order to do nice fading and pointing on the starting segment, we must always
584                 // have that drawn as a separate triangle... However, that is difficult to do when
585                 // keeping in mind the above problems and also optimizing the amount of segments
586                 // drawn on screen at any given time. (Automatic beam quality scaling, essentially)
587
588                 // calculate this on every segment to ensure that we always reach the full length of the attack
589                 float segmentblend = bound(0, (i/segments) + self.beam_tightness, 1);
590                 float segmentdist = vlen(beam_endpos_estimate - last_origin) * (i/segments);
591
592                 vector new_dir = normalize( (wantdir * (1 - segmentblend)) + (normalize(beam_endpos_estimate - last_origin) * segmentblend) );
593                 vector new_origin = last_origin + (new_dir * segmentdist);
594
595                 WarpZone_TraceLine(
596                         last_origin,
597                         new_origin,
598                         MOVE_NORMAL,
599                         self
600                 );
601
602                 // draw segment
603                 if(trace_fraction != 1)
604                 {
605                         // calculate our own hit origin as trace_endpos tends to jump around annoyingly (to player origin?)
606                         hitorigin = last_origin + (new_dir * segmentdist * trace_fraction);
607                 }
608                 else
609                 {
610                         hitorigin = new_origin;
611                 }
612
613                 #if 0
614                 float falloff = ExponentialFalloff(
615                         WEP_CVAR(arc, beam_falloff_mindist),
616                         WEP_CVAR(arc, beam_falloff_maxdist),
617                         WEP_CVAR(arc, beam_falloff_halflifedist),
618                         vlen(WarpZone_UnTransformOrigin(WarpZone_trace_transform, hitorigin) - start_pos)
619                 );
620                 #else
621                 //float falloff = 1;
622                 #endif
623
624                 // draw primary beam render
625                 vector top    = hitorigin + (thickdir * self.beam_thickness);
626                 vector bottom = hitorigin - (thickdir * self.beam_thickness);
627
628                 R_BeginPolygon(self.beam_image, DRAWFLAG_NORMAL); // DRAWFLAG_ADDITIVE
629                 R_PolygonVertex(top,          '0 0.5 0' + ('0 0.5 0' * (self.beam_thickness / maxthickness)),  self.beam_color,  self.beam_alpha);
630                 R_PolygonVertex(last_top,     '0 0.5 0' + ('0 0.5 0' * (lastthickness / maxthickness)),        self.beam_color,  self.beam_alpha);
631                 R_PolygonVertex(last_bottom,  '0 0.5 0' * (1 - (lastthickness / maxthickness)),                self.beam_color,  self.beam_alpha);
632                 R_PolygonVertex(bottom,       '0 0.5 0' * (1 - (self.beam_thickness / maxthickness)),          self.beam_color,  self.beam_alpha);
633                 R_EndPolygon();
634
635                 // draw trailing particles
636                 // NOTES:
637                 //  - Don't use spammy particle counts here, use a FEW small particles around the beam
638                 //  - We're not using WarpZone_TrailParticles here because we will handle warpzones ourselves.
639                 if(self.beam_traileffect)
640                 {
641                         trailparticles(self, self.beam_traileffect, last_origin, hitorigin);
642                 }
643
644                 // check if we're going to proceed with drawing
645                 if(trace_fraction != 1)
646                 {
647                         // we're done with drawing this frame
648                         break;
649                 }
650                 else
651                 {
652                         // continue onto the next segment
653                         last_origin = new_origin;
654                         last_top = top;
655                         last_bottom = bottom;
656                         lastthickness = self.beam_thickness;
657                 }
658         }
659
660         if(self.beam_hiteffect)
661         {
662                 pointparticles(self.beam_hiteffect, hitorigin, beamdir * -1, frametime * 2);
663         }
664         if(self.beam_muzzleflash)
665         {
666                 pointparticles(self.beam_muzzleflash, start_pos + wantdir * 20, wantdir * 1000, frametime * 0.1);
667         }
668 }
669
670 void Remove_ArcBeam(void)
671 {
672         remove(self.beam_muzzleentity);
673         sound(self, CH_SHOTS_SINGLE, "misc/null.wav", VOL_BASE, ATTEN_NORM);
674 }
675
676 void Ent_ReadArcBeam(float isnew)
677 {
678         float sf = ReadByte();
679         entity flash;
680
681         // self.iflags = IFLAG_ORIGIN | IFLAG_ANGLES | IFLAG_V_ANGLE; // why doesn't this work?
682         self.iflags = IFLAG_ORIGIN;
683
684         InterpolateOrigin_Undo();
685
686         if(isnew)
687         {
688                 // calculate shot origin offset from gun alignment
689                 float gunalign = autocvar_cl_gunalign;
690                 if(gunalign != 1 && gunalign != 2 && gunalign != 4)
691                         gunalign = 3; // default value
692                 --gunalign;
693
694                 self.beam_shotorigin = arc_shotorigin[gunalign];
695
696                 // set other main attributes of the beam
697                 self.draw = Draw_ArcBeam;
698                 self.entremove = Remove_ArcBeam;
699                 sound(self, CH_SHOTS_SINGLE, "weapons/lgbeam_fly.wav", VOL_BASE, ATTEN_NORM);
700
701                 flash = spawn();
702                 flash.owner = self;
703                 flash.effects = EF_ADDITIVE | EF_FULLBRIGHT;
704                 flash.drawmask = MASK_NORMAL;
705                 flash.solid = SOLID_NOT;
706                 setattachment(flash, self, "");
707                 setorigin(flash, '0 0 0');
708
709                 self.beam_muzzleentity = flash;
710         }
711         else
712         {
713                 flash = self.beam_muzzleentity;
714         }
715
716         if(sf & 1) // settings information
717         {
718                 self.beam_maxangle = ReadShort();
719                 self.beam_range = ReadCoord();
720                 self.beam_returnspeed = ReadShort();
721                 self.beam_tightness = (ReadByte() / 10);
722
723                 if(ReadByte())
724                 {
725                         if(autocvar_chase_active)
726                                 { self.beam_usevieworigin = 1; }
727                         else // use view origin
728                                 { self.beam_usevieworigin = 2; }
729                 }
730                 else
731                 {
732                         self.beam_usevieworigin = 0;
733                 }
734         }
735
736         if(sf & 2) // starting location
737         {
738                 self.origin_x = ReadCoord();
739                 self.origin_y = ReadCoord();
740                 self.origin_z = ReadCoord();
741         }
742         else if(self.beam_usevieworigin) // infer the location from player location
743         {
744                 if(self.beam_usevieworigin == 2)
745                 {
746                         // use view origin
747                         self.origin = view_origin;
748                 }
749                 else
750                 {
751                         // use player origin so that third person display still works
752                         self.origin = getplayerorigin(player_localnum) + ('0 0 1' * getstati(STAT_VIEWHEIGHT));
753                 }
754         }
755
756         setorigin(self, self.origin);
757
758         if(sf & 4) // want/aim direction
759         {
760                 self.v_angle_x = ReadCoord();
761                 self.v_angle_y = ReadCoord();
762                 self.v_angle_z = ReadCoord();
763         }
764
765         if(sf & 8) // beam direction
766         {
767                 self.angles_x = ReadCoord();
768                 self.angles_y = ReadCoord();
769                 self.angles_z = ReadCoord();
770         }
771
772         if(sf & 16) // beam type
773         {
774                 self.beam_type = ReadByte();
775                 switch(self.beam_type)
776                 {
777                         case ARC_BT_MISS:
778                         {
779                                 self.beam_color = '-1 -1 1';
780                                 self.beam_alpha = 0.5;
781                                 self.beam_thickness = 8;
782                                 self.beam_traileffect = FALSE;
783                                 self.beam_hiteffect = particleeffectnum("electro_lightning");
784                                 self.beam_muzzleflash = FALSE; //particleeffectnum("nex_muzzleflash");
785                                 self.beam_image = "particles/lgbeam";
786                                 setmodel(flash, "models/flash.md3");
787                                 flash.alpha = self.beam_alpha;
788                                 flash.colormod = self.beam_color;
789                                 flash.scale = 0.5;
790                                 break;
791                         }
792                         case ARC_BT_WALL: // grenadelauncher_muzzleflash healray_muzzleflash
793                         {
794                                 self.beam_color = '0.5 0.5 1';
795                                 self.beam_alpha = 0.5;
796                                 self.beam_thickness = 8;
797                                 self.beam_traileffect = FALSE;
798                                 self.beam_hiteffect = particleeffectnum("electro_lightning"); 
799                                 self.beam_muzzleflash = FALSE; // particleeffectnum("grenadelauncher_muzzleflash");
800                                 self.beam_image = "particles/lgbeam";
801                                 setmodel(flash, "models/flash.md3");
802                                 flash.alpha = self.beam_alpha;
803                                 flash.colormod = self.beam_color;
804                                 flash.scale = 0.5;
805                                 break;
806                         }
807                         case ARC_BT_HEAL:
808                         {
809                                 self.beam_color = '0 1 0';
810                                 self.beam_alpha = 0.5;
811                                 self.beam_thickness = 8;
812                                 self.beam_traileffect = FALSE;
813                                 self.beam_hiteffect = particleeffectnum("healray_impact"); 
814                                 self.beam_muzzleflash = FALSE; //particleeffectnum("nex_muzzleflash");
815                                 self.beam_image = "particles/lgbeam";
816                                 setmodel(flash, "models/flash.md3");
817                                 flash.alpha = self.beam_alpha;
818                                 flash.colormod = self.beam_color;
819                                 flash.scale = 0.5;
820                                 break;
821                         }
822                         case ARC_BT_HIT:
823                         {
824                                 self.beam_color = '1 0 1';
825                                 self.beam_alpha = 0.5;
826                                 self.beam_thickness = 8;
827                                 self.beam_traileffect = particleeffectnum("nex_beam");
828                                 self.beam_hiteffect = particleeffectnum("electro_lightning"); 
829                                 self.beam_muzzleflash = FALSE; //particleeffectnum("nex_muzzleflash");
830                                 self.beam_image = "particles/lgbeam";
831                                 setmodel(flash, "models/flash.md3");
832                                 flash.alpha = self.beam_alpha;
833                                 flash.colormod = self.beam_color;
834                                 flash.scale = 0.5;
835                                 break;
836                         }
837                         case ARC_BT_BURST_MISS:
838                         {
839                                 self.beam_color = '-1 -1 1';
840                                 self.beam_alpha = 0.5;
841                                 self.beam_thickness = 14;
842                                 self.beam_traileffect = FALSE;
843                                 self.beam_hiteffect = particleeffectnum("electro_lightning"); 
844                                 self.beam_muzzleflash = FALSE; //particleeffectnum("nex_muzzleflash");
845                                 self.beam_image = "particles/lgbeam";
846                                 setmodel(flash, "models/flash.md3");
847                                 flash.alpha = self.beam_alpha;
848                                 flash.colormod = self.beam_color;
849                                 flash.scale = 0.5;
850                                 break;
851                         }
852                         case ARC_BT_BURST_WALL:
853                         {
854                                 self.beam_color = '0.5 0.5 1';
855                                 self.beam_alpha = 0.5;
856                                 self.beam_thickness = 14;
857                                 self.beam_traileffect = FALSE;
858                                 self.beam_hiteffect = particleeffectnum("electro_lightning"); 
859                                 self.beam_muzzleflash = FALSE; //particleeffectnum("nex_muzzleflash");
860                                 self.beam_image = "particles/lgbeam";
861                                 setmodel(flash, "models/flash.md3");
862                                 flash.alpha = self.beam_alpha;
863                                 flash.colormod = self.beam_color;
864                                 flash.scale = 0.5;
865                                 break;
866                         }
867                         case ARC_BT_BURST_HEAL:
868                         {
869                                 self.beam_color = '0 1 0';
870                                 self.beam_alpha = 0.5;
871                                 self.beam_thickness = 14;
872                                 self.beam_traileffect = FALSE;
873                                 self.beam_hiteffect = particleeffectnum("electro_lightning"); 
874                                 self.beam_muzzleflash = FALSE; //particleeffectnum("nex_muzzleflash");
875                                 self.beam_image = "particles/lgbeam";
876                                 setmodel(flash, "models/flash.md3");
877                                 flash.alpha = self.beam_alpha;
878                                 flash.colormod = self.beam_color;
879                                 flash.scale = 0.5;
880                                 break;
881                         }
882                         case ARC_BT_BURST_HIT:
883                         {
884                                 self.beam_color = '1 0 1';
885                                 self.beam_alpha = 0.5;
886                                 self.beam_thickness = 14;
887                                 self.beam_traileffect = FALSE;
888                                 self.beam_hiteffect = particleeffectnum("electro_lightning"); 
889                                 self.beam_muzzleflash = FALSE; //particleeffectnum("nex_muzzleflash");
890                                 self.beam_image = "particles/lgbeam";
891                                 setmodel(flash, "models/flash.md3");
892                                 flash.alpha = self.beam_alpha;
893                                 flash.colormod = self.beam_color;
894                                 flash.scale = 0.5;
895                                 break;
896                         }
897
898                         // shouldn't be possible, but lets make it colorful if it does :D
899                         default:
900                         {
901                                 self.beam_color = randomvec();
902                                 self.beam_alpha = 1;
903                                 self.beam_thickness = 8;
904                                 self.beam_traileffect = FALSE;
905                                 self.beam_hiteffect = FALSE; 
906                                 self.beam_muzzleflash = FALSE; //particleeffectnum("nex_muzzleflash");
907                                 self.beam_image = "particles/lgbeam";
908                                 setmodel(flash, "models/flash.md3");
909                                 flash.alpha = self.beam_alpha;
910                                 flash.colormod = self.beam_color;
911                                 flash.scale = 0.5;
912                                 break;
913                         }
914                 }
915         }
916
917         InterpolateOrigin_Note();
918
919         #if 0
920         printf(
921                 "Ent_ReadArcBeam(%d): sf = %d, start = %s, want = %s, dir = %s, type = %d\n",
922                 isnew,
923                 sf,
924                 vtos(self.beam_start),
925                 vtos(self.v_angle),
926                 vtos(self.angles),
927                 self.beam_type
928         );
929         #endif
930 }
931