]> de.git.xonotic.org Git - xonotic/darkplaces.git/blob - gl_models.c
engine mostly converted to use R_MeshQueue functions instead of true transparent...
[xonotic/darkplaces.git] / gl_models.c
1
2 #include "quakedef.h"
3
4 cvar_t r_quickmodels = {0, "r_quickmodels", "1"};
5
6 typedef struct
7 {
8         float m[3][4];
9 } zymbonematrix;
10
11 // LordHavoc: vertex arrays
12
13 float *aliasvertbuf;
14 float *aliasvertcolorbuf;
15 float *aliasvert; // this may point at aliasvertbuf or at vertex arrays in the mesh backend
16 float *aliasvertcolor; // this may point at aliasvertcolorbuf or at vertex arrays in the mesh backend
17
18 float *aliasvertcolor2;
19 float *aliasvertnorm;
20 int *aliasvertusage;
21 zymbonematrix *zymbonepose;
22
23 mempool_t *gl_models_mempool;
24
25 void gl_models_start(void)
26 {
27         // allocate vertex processing arrays
28         gl_models_mempool = Mem_AllocPool("GL_Models");
29         aliasvert = aliasvertbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
30         aliasvertcolor = aliasvertcolorbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4]));
31         aliasvertnorm = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][3]));
32         aliasvertcolor2 = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); // used temporarily for tinted coloring
33         zymbonepose = Mem_Alloc(gl_models_mempool, sizeof(zymbonematrix[256]));
34         aliasvertusage = Mem_Alloc(gl_models_mempool, sizeof(int[MD2MAX_VERTS]));
35 }
36
37 void gl_models_shutdown(void)
38 {
39         Mem_FreePool(&gl_models_mempool);
40 }
41
42 void gl_models_newmap(void)
43 {
44 }
45
46 void GL_Models_Init(void)
47 {
48         Cvar_RegisterVariable(&r_quickmodels);
49
50         R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap);
51 }
52
53 void R_AliasTransformVerts(int vertcount)
54 {
55         vec3_t point;
56         float *av;
57         av = aliasvert;
58         while (vertcount >= 4)
59         {
60                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
61                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
62                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
63                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
64                 vertcount -= 4;
65         }
66         while(vertcount > 0)
67         {
68                 VectorCopy(av, point);softwaretransform(point, av);av += 4;
69                 vertcount--;
70         }
71 }
72
73 void R_AliasLerpVerts(int vertcount,
74                 float lerp1, trivertx_t *verts1, vec3_t fscale1, vec3_t translate1,
75                 float lerp2, trivertx_t *verts2, vec3_t fscale2, vec3_t translate2,
76                 float lerp3, trivertx_t *verts3, vec3_t fscale3, vec3_t translate3,
77                 float lerp4, trivertx_t *verts4, vec3_t fscale4, vec3_t translate4)
78 {
79         int i;
80         vec3_t scale1, scale2, scale3, scale4, translate;
81         float *n1, *n2, *n3, *n4;
82         float *av, *avn;
83         av = aliasvert;
84         avn = aliasvertnorm;
85         VectorScale(fscale1, lerp1, scale1);
86         if (lerp2)
87         {
88                 VectorScale(fscale2, lerp2, scale2);
89                 if (lerp3)
90                 {
91                         VectorScale(fscale3, lerp3, scale3);
92                         if (lerp4)
93                         {
94                                 VectorScale(fscale4, lerp4, scale4);
95                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3 + translate4[0] * lerp4;
96                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3 + translate4[1] * lerp4;
97                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3 + translate4[2] * lerp4;
98                                 // generate vertices
99                                 for (i = 0;i < vertcount;i++)
100                                 {
101                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + verts4->v[0] * scale4[0] + translate[0];
102                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + verts4->v[1] * scale4[1] + translate[1];
103                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + verts4->v[2] * scale4[2] + translate[2];
104                                         n1 = m_bytenormals[verts1->lightnormalindex];
105                                         n2 = m_bytenormals[verts2->lightnormalindex];
106                                         n3 = m_bytenormals[verts3->lightnormalindex];
107                                         n4 = m_bytenormals[verts4->lightnormalindex];
108                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3 + n4[0] * lerp4;
109                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3 + n4[1] * lerp4;
110                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3 + n4[2] * lerp4;
111                                         av += 4;
112                                         avn += 3;
113                                         verts1++;verts2++;verts3++;verts4++;
114                                 }
115                         }
116                         else
117                         {
118                                 translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3;
119                                 translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3;
120                                 translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3;
121                                 // generate vertices
122                                 for (i = 0;i < vertcount;i++)
123                                 {
124                                         av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + translate[0];
125                                         av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + translate[1];
126                                         av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + translate[2];
127                                         n1 = m_bytenormals[verts1->lightnormalindex];
128                                         n2 = m_bytenormals[verts2->lightnormalindex];
129                                         n3 = m_bytenormals[verts3->lightnormalindex];
130                                         avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3;
131                                         avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3;
132                                         avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3;
133                                         av += 4;
134                                         avn += 3;
135                                         verts1++;verts2++;verts3++;
136                                 }
137                         }
138                 }
139                 else
140                 {
141                         translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2;
142                         translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2;
143                         translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2;
144                         // generate vertices
145                         for (i = 0;i < vertcount;i++)
146                         {
147                                 av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + translate[0];
148                                 av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + translate[1];
149                                 av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + translate[2];
150                                 n1 = m_bytenormals[verts1->lightnormalindex];
151                                 n2 = m_bytenormals[verts2->lightnormalindex];
152                                 avn[0] = n1[0] * lerp1 + n2[0] * lerp2;
153                                 avn[1] = n1[1] * lerp1 + n2[1] * lerp2;
154                                 avn[2] = n1[2] * lerp1 + n2[2] * lerp2;
155                                 av += 4;
156                                 avn += 3;
157                                 verts1++;verts2++;
158                         }
159                 }
160         }
161         else
162         {
163                 translate[0] = translate1[0] * lerp1;
164                 translate[1] = translate1[1] * lerp1;
165                 translate[2] = translate1[2] * lerp1;
166                 // generate vertices
167                 if (lerp1 != 1)
168                 {
169                         // general but almost never used case
170                         for (i = 0;i < vertcount;i++)
171                         {
172                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
173                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
174                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
175                                 n1 = m_bytenormals[verts1->lightnormalindex];
176                                 avn[0] = n1[0] * lerp1;
177                                 avn[1] = n1[1] * lerp1;
178                                 avn[2] = n1[2] * lerp1;
179                                 av += 4;
180                                 avn += 3;
181                                 verts1++;
182                         }
183                 }
184                 else
185                 {
186                         // fast normal case
187                         for (i = 0;i < vertcount;i++)
188                         {
189                                 av[0] = verts1->v[0] * scale1[0] + translate[0];
190                                 av[1] = verts1->v[1] * scale1[1] + translate[1];
191                                 av[2] = verts1->v[2] * scale1[2] + translate[2];
192                                 VectorCopy(m_bytenormals[verts1->lightnormalindex], avn);
193                                 av += 4;
194                                 avn += 3;
195                                 verts1++;
196                         }
197                 }
198         }
199 }
200
201 skinframe_t *R_FetchSkinFrame(entity_render_t *ent)
202 {
203         model_t *model = ent->model;
204         if (model->skinscenes[ent->skinnum].framecount > 1)
205                 return &model->skinframes[model->skinscenes[ent->skinnum].firstframe + (int) (cl.time * 10) % model->skinscenes[ent->skinnum].framecount];
206         else
207                 return &model->skinframes[model->skinscenes[ent->skinnum].firstframe];
208 }
209
210 void R_SetupMDLMD2Frames(entity_render_t *ent, float colorr, float colorg, float colorb)
211 {
212         md2frame_t *frame1, *frame2, *frame3, *frame4;
213         trivertx_t *frame1verts, *frame2verts, *frame3verts, *frame4verts;
214         model_t *model;
215         model = ent->model;
216
217         frame1 = &model->mdlmd2data_frames[ent->frameblend[0].frame];
218         frame2 = &model->mdlmd2data_frames[ent->frameblend[1].frame];
219         frame3 = &model->mdlmd2data_frames[ent->frameblend[2].frame];
220         frame4 = &model->mdlmd2data_frames[ent->frameblend[3].frame];
221         frame1verts = &model->mdlmd2data_pose[ent->frameblend[0].frame * model->numverts];
222         frame2verts = &model->mdlmd2data_pose[ent->frameblend[1].frame * model->numverts];
223         frame3verts = &model->mdlmd2data_pose[ent->frameblend[2].frame * model->numverts];
224         frame4verts = &model->mdlmd2data_pose[ent->frameblend[3].frame * model->numverts];
225         R_AliasLerpVerts(model->numverts,
226                 ent->frameblend[0].lerp, frame1verts, frame1->scale, frame1->translate,
227                 ent->frameblend[1].lerp, frame2verts, frame2->scale, frame2->translate,
228                 ent->frameblend[2].lerp, frame3verts, frame3->scale, frame3->translate,
229                 ent->frameblend[3].lerp, frame4verts, frame4->scale, frame4->translate);
230
231         R_LightModel(ent, model->numverts, colorr, colorg, colorb, false);
232
233         R_AliasTransformVerts(model->numverts);
234 }
235
236 void R_DrawQ1Q2AliasModelCallback (void *calldata1, int calldata2)
237 {
238         int c, pantsfullbright, shirtfullbright, colormapped;
239         float pantscolor[3], shirtcolor[3];
240         float fog;
241         vec3_t diff;
242         qbyte *bcolor;
243         rmeshbufferinfo_t m;
244         model_t *model;
245         skinframe_t *skinframe;
246         entity_render_t *ent;
247
248         ent = calldata1;
249         softwaretransformforentity(ent);
250
251         fog = 0;
252         if (fogenabled)
253         {
254                 VectorSubtract(ent->origin, r_origin, diff);
255                 fog = DotProduct(diff,diff);
256                 if (fog < 0.01f)
257                         fog = 0.01f;
258                 fog = exp(fogdensity/fog);
259                 if (fog > 1)
260                         fog = 1;
261                 if (fog < 0.01f)
262                         fog = 0;
263                 // fog method: darken, additive fog
264                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
265                 // 2. render fog as additive
266         }
267
268         model = ent->model;
269
270         skinframe = R_FetchSkinFrame(ent);
271
272         colormapped = !skinframe->merged || (ent->colormap >= 0 && skinframe->base && (skinframe->pants || skinframe->shirt));
273         if (!colormapped && !fog && !skinframe->glow && !skinframe->fog)
274         {
275                 // fastpath for the normal situation (one texture)
276                 memset(&m, 0, sizeof(m));
277                 if (ent->effects & EF_ADDITIVE)
278                 {
279                         m.transparent = true;
280                         m.blendfunc1 = GL_SRC_ALPHA;
281                         m.blendfunc2 = GL_ONE;
282                 }
283                 else if (ent->alpha != 1.0 || skinframe->fog != NULL)
284                 {
285                         m.transparent = true;
286                         m.blendfunc1 = GL_SRC_ALPHA;
287                         m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
288                 }
289                 else
290                 {
291                         m.transparent = false;
292                         m.blendfunc1 = GL_ONE;
293                         m.blendfunc2 = GL_ZERO;
294                 }
295                 m.numtriangles = model->numtris;
296                 m.numverts = model->numverts;
297                 m.tex[0] = R_GetTexture(skinframe->merged);
298
299                 c_alias_polys += m.numtriangles;
300                 if (R_Mesh_Draw_GetBuffer(&m, true))
301                 {
302                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
303                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
304
305                         aliasvert = m.vertex;
306                         aliasvertcolor = m.color;
307                         R_SetupMDLMD2Frames(ent, m.colorscale * (1 - fog), m.colorscale * (1 - fog), m.colorscale * (1 - fog));
308                         aliasvert = aliasvertbuf;
309                         aliasvertcolor = aliasvertcolorbuf;
310
311                         R_Mesh_Render();
312                 }
313                 return;
314         }
315
316         R_SetupMDLMD2Frames(ent, 1 - fog, 1 - fog, 1 - fog);
317
318         if (colormapped)
319         {
320                 // 128-224 are backwards ranges
321                 c = (ent->colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12;
322                 bcolor = (qbyte *) (&d_8to24table[c]);
323                 pantsfullbright = c >= 224;
324                 VectorScale(bcolor, (1.0f / 255.0f), pantscolor);
325                 c = (ent->colormap & 0xF0);c += (c >= 128 && c < 224) ? 4 : 12;
326                 bcolor = (qbyte *) (&d_8to24table[c]);
327                 shirtfullbright = c >= 224;
328                 VectorScale(bcolor, (1.0f / 255.0f), shirtcolor);
329         }
330         else
331         {
332                 pantscolor[0] = pantscolor[1] = pantscolor[2] = shirtcolor[0] = shirtcolor[1] = shirtcolor[2] = 1;
333                 pantsfullbright = shirtfullbright = false;
334         }
335
336         memset(&m, 0, sizeof(m));
337         if (ent->effects & EF_ADDITIVE)
338         {
339                 m.transparent = true;
340                 m.blendfunc1 = GL_SRC_ALPHA;
341                 m.blendfunc2 = GL_ONE;
342         }
343         else if (ent->alpha != 1.0 || skinframe->fog != NULL)
344         {
345                 m.transparent = true;
346                 m.blendfunc1 = GL_SRC_ALPHA;
347                 m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
348         }
349         else
350         {
351                 m.transparent = false;
352                 m.blendfunc1 = GL_ONE;
353                 m.blendfunc2 = GL_ZERO;
354         }
355         m.numtriangles = model->numtris;
356         m.numverts = model->numverts;
357         m.tex[0] = colormapped ? R_GetTexture(skinframe->base) : R_GetTexture(skinframe->merged);
358         if (R_Mesh_Draw_GetBuffer(&m, true))
359         {
360                 c_alias_polys += m.numtriangles;
361                 R_ModulateColors(aliasvertcolor, m.color, m.numverts, m.colorscale, m.colorscale, m.colorscale);
362                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
363                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
364                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
365                 R_Mesh_Render();
366         }
367
368         if (colormapped)
369         {
370                 if (skinframe->pants)
371                 {
372                         memset(&m, 0, sizeof(m));
373                         m.transparent = ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || skinframe->fog != NULL;
374                         m.blendfunc1 = GL_SRC_ALPHA;
375                         m.blendfunc2 = GL_ONE;
376                         m.numtriangles = model->numtris;
377                         m.numverts = model->numverts;
378                         m.tex[0] = R_GetTexture(skinframe->pants);
379                         if (R_Mesh_Draw_GetBuffer(&m, true))
380                         {
381                                 c_alias_polys += m.numtriangles;
382                                 if (pantsfullbright)
383                                         R_FillColors(m.color, m.numverts, pantscolor[0] * m.colorscale, pantscolor[1] * m.colorscale, pantscolor[2] * m.colorscale, ent->alpha);
384                                 else
385                                         R_ModulateColors(aliasvertcolor, m.color, m.numverts, pantscolor[0] * m.colorscale, pantscolor[1] * m.colorscale, pantscolor[2] * m.colorscale);
386                                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
387                                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
388                                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
389                                 R_Mesh_Render();
390                         }
391                 }
392                 if (skinframe->shirt)
393                 {
394                         memset(&m, 0, sizeof(m));
395                         m.transparent = ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || skinframe->fog != NULL;
396                         m.blendfunc1 = GL_SRC_ALPHA;
397                         m.blendfunc2 = GL_ONE;
398                         m.numtriangles = model->numtris;
399                         m.numverts = model->numverts;
400                         m.tex[0] = R_GetTexture(skinframe->shirt);
401                         if (R_Mesh_Draw_GetBuffer(&m, true))
402                         {
403                                 c_alias_polys += m.numtriangles;
404                                 if (shirtfullbright)
405                                         R_FillColors(m.color, m.numverts, shirtcolor[0] * m.colorscale, shirtcolor[1] * m.colorscale, shirtcolor[2] * m.colorscale, ent->alpha);
406                                 else
407                                         R_ModulateColors(aliasvertcolor, m.color, m.numverts, shirtcolor[0] * m.colorscale, shirtcolor[1] * m.colorscale, shirtcolor[2] * m.colorscale);
408                                 memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
409                                 memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
410                                 memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
411                                 R_Mesh_Render();
412                         }
413                 }
414         }
415         if (skinframe->glow)
416         {
417                 memset(&m, 0, sizeof(m));
418                 m.transparent = ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || skinframe->fog != NULL;
419                 m.blendfunc1 = GL_SRC_ALPHA;
420                 m.blendfunc2 = GL_ONE;
421                 m.numtriangles = model->numtris;
422                 m.numverts = model->numverts;
423                 m.tex[0] = R_GetTexture(skinframe->glow);
424                 if (R_Mesh_Draw_GetBuffer(&m, true))
425                 {
426                         c_alias_polys += m.numtriangles;
427                         R_FillColors(m.color, m.numverts, (1 - fog) * m.colorscale, (1 - fog) * m.colorscale, (1 - fog) * m.colorscale, ent->alpha);
428                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
429                         memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
430                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
431                         R_Mesh_Render();
432                 }
433         }
434         if (fog)
435         {
436                 memset(&m, 0, sizeof(m));
437                 m.transparent = ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || skinframe->fog != NULL;
438                 m.blendfunc1 = GL_SRC_ALPHA;
439                 m.blendfunc2 = GL_ONE;
440                 m.numtriangles = model->numtris;
441                 m.numverts = model->numverts;
442                 m.tex[0] = R_GetTexture(skinframe->fog);
443                 if (R_Mesh_Draw_GetBuffer(&m, false))
444                 {
445                         c_alias_polys += m.numtriangles;
446                         R_FillColors(m.color, m.numverts, fog * m.colorscale, fog * m.colorscale, fog * m.colorscale, ent->alpha);
447                         memcpy(m.index, model->mdlmd2data_indices, m.numtriangles * sizeof(int[3]));
448                         memcpy(m.vertex, aliasvert, m.numverts * sizeof(float[4]));
449                         memcpy(m.texcoords[0], model->mdlmd2data_texcoords, m.numverts * sizeof(float[2]));
450                         R_Mesh_Render();
451                 }
452         }
453 }
454
455 int ZymoticLerpBones(int count, zymbonematrix *bonebase, frameblend_t *blend, zymbone_t *bone)
456 {
457         int i;
458         float lerp1, lerp2, lerp3, lerp4;
459         zymbonematrix *out, rootmatrix, m, *bone1, *bone2, *bone3, *bone4;
460
461         // LordHavoc: combine transform from zym coordinate space to quake coordinate space with model to world transform matrix
462         rootmatrix.m[0][0] = softwaretransform_matrix[0][1];
463         rootmatrix.m[0][1] = -softwaretransform_matrix[0][0];
464         rootmatrix.m[0][2] = softwaretransform_matrix[0][2];
465         rootmatrix.m[0][3] = softwaretransform_matrix[0][3];
466         rootmatrix.m[1][0] = softwaretransform_matrix[1][1];
467         rootmatrix.m[1][1] = -softwaretransform_matrix[1][0];
468         rootmatrix.m[1][2] = softwaretransform_matrix[1][2];
469         rootmatrix.m[1][3] = softwaretransform_matrix[1][3];
470         rootmatrix.m[2][0] = softwaretransform_matrix[2][1];
471         rootmatrix.m[2][1] = -softwaretransform_matrix[2][0];
472         rootmatrix.m[2][2] = softwaretransform_matrix[2][2];
473         rootmatrix.m[2][3] = softwaretransform_matrix[2][3];
474
475         bone1 = bonebase + blend[0].frame * count;
476         lerp1 = blend[0].lerp;
477         if (blend[1].lerp)
478         {
479                 bone2 = bonebase + blend[1].frame * count;
480                 lerp2 = blend[1].lerp;
481                 if (blend[2].lerp)
482                 {
483                         bone3 = bonebase + blend[2].frame * count;
484                         lerp3 = blend[2].lerp;
485                         if (blend[3].lerp)
486                         {
487                                 // 4 poses
488                                 bone4 = bonebase + blend[3].frame * count;
489                                 lerp4 = blend[3].lerp;
490                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
491                                 {
492                                         // interpolate matrices
493                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4;
494                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4;
495                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4;
496                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4;
497                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4;
498                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4;
499                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4;
500                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4;
501                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4;
502                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4;
503                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4;
504                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4;
505                                         if (bone->parent >= 0)
506                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
507                                         else
508                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
509                                         bone1++;
510                                         bone2++;
511                                         bone3++;
512                                         bone4++;
513                                         bone++;
514                                 }
515                         }
516                         else
517                         {
518                                 // 3 poses
519                                 for (i = 0, out = zymbonepose;i < count;i++, out++)
520                                 {
521                                         // interpolate matrices
522                                         m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3;
523                                         m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3;
524                                         m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3;
525                                         m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3;
526                                         m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3;
527                                         m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3;
528                                         m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3;
529                                         m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3;
530                                         m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3;
531                                         m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3;
532                                         m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3;
533                                         m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3;
534                                         if (bone->parent >= 0)
535                                                 R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
536                                         else
537                                                 R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
538                                         bone1++;
539                                         bone2++;
540                                         bone3++;
541                                         bone++;
542                                 }
543                         }
544                 }
545                 else
546                 {
547                         // 2 poses
548                         for (i = 0, out = zymbonepose;i < count;i++, out++)
549                         {
550                                 // interpolate matrices
551                                 m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2;
552                                 m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2;
553                                 m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2;
554                                 m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2;
555                                 m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2;
556                                 m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2;
557                                 m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2;
558                                 m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2;
559                                 m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2;
560                                 m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2;
561                                 m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2;
562                                 m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2;
563                                 if (bone->parent >= 0)
564                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
565                                 else
566                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
567                                 bone1++;
568                                 bone2++;
569                                 bone++;
570                         }
571                 }
572         }
573         else
574         {
575                 // 1 pose
576                 if (lerp1 != 1)
577                 {
578                         // lerp != 1.0
579                         for (i = 0, out = zymbonepose;i < count;i++, out++)
580                         {
581                                 // interpolate matrices
582                                 m.m[0][0] = bone1->m[0][0] * lerp1;
583                                 m.m[0][1] = bone1->m[0][1] * lerp1;
584                                 m.m[0][2] = bone1->m[0][2] * lerp1;
585                                 m.m[0][3] = bone1->m[0][3] * lerp1;
586                                 m.m[1][0] = bone1->m[1][0] * lerp1;
587                                 m.m[1][1] = bone1->m[1][1] * lerp1;
588                                 m.m[1][2] = bone1->m[1][2] * lerp1;
589                                 m.m[1][3] = bone1->m[1][3] * lerp1;
590                                 m.m[2][0] = bone1->m[2][0] * lerp1;
591                                 m.m[2][1] = bone1->m[2][1] * lerp1;
592                                 m.m[2][2] = bone1->m[2][2] * lerp1;
593                                 m.m[2][3] = bone1->m[2][3] * lerp1;
594                                 if (bone->parent >= 0)
595                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]);
596                                 else
597                                         R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]);
598                                 bone1++;
599                                 bone++;
600                         }
601                 }
602                 else
603                 {
604                         // lerp == 1.0
605                         for (i = 0, out = zymbonepose;i < count;i++, out++)
606                         {
607                                 if (bone->parent >= 0)
608                                         R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &bone1->m[0][0], &out->m[0][0]);
609                                 else
610                                         R_ConcatTransforms(&rootmatrix.m[0][0], &bone1->m[0][0], &out->m[0][0]);
611                                 bone1++;
612                                 bone++;
613                         }
614                 }
615         }
616         return true;
617 }
618
619 void ZymoticTransformVerts(int vertcount, int *bonecounts, zymvertex_t *vert)
620 {
621         int c;
622         float *out = aliasvert;
623         zymbonematrix *matrix;
624         while(vertcount--)
625         {
626                 c = *bonecounts++;
627                 // FIXME: validate bonecounts at load time (must be >= 1)
628                 // FIXME: need 4th component in origin, for how much of the translate to blend in
629                 if (c == 1)
630                 {
631                         matrix = &zymbonepose[vert->bonenum];
632                         out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
633                         out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
634                         out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
635                         vert++;
636                 }
637                 else
638                 {
639                         VectorClear(out);
640                         while(c--)
641                         {
642                                 matrix = &zymbonepose[vert->bonenum];
643                                 out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3];
644                                 out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3];
645                                 out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3];
646                                 vert++;
647                         }
648                 }
649                 out += 4;
650         }
651 }
652
653 void ZymoticCalcNormals(int vertcount, int shadercount, int *renderlist)
654 {
655         int a, b, c, d;
656         float *out, v1[3], v2[3], normal[3], s;
657         int *u;
658         // clear normals
659         memset(aliasvertnorm, 0, sizeof(float) * vertcount * 3);
660         memset(aliasvertusage, 0, sizeof(int) * vertcount);
661         // parse render list and accumulate surface normals
662         while(shadercount--)
663         {
664                 d = *renderlist++;
665                 while (d--)
666                 {
667                         a = renderlist[0]*4;
668                         b = renderlist[1]*4;
669                         c = renderlist[2]*4;
670                         v1[0] = aliasvert[a+0] - aliasvert[b+0];
671                         v1[1] = aliasvert[a+1] - aliasvert[b+1];
672                         v1[2] = aliasvert[a+2] - aliasvert[b+2];
673                         v2[0] = aliasvert[c+0] - aliasvert[b+0];
674                         v2[1] = aliasvert[c+1] - aliasvert[b+1];
675                         v2[2] = aliasvert[c+2] - aliasvert[b+2];
676                         CrossProduct(v1, v2, normal);
677                         VectorNormalizeFast(normal);
678                         // add surface normal to vertices
679                         a = renderlist[0] * 3;
680                         aliasvertnorm[a+0] += normal[0];
681                         aliasvertnorm[a+1] += normal[1];
682                         aliasvertnorm[a+2] += normal[2];
683                         aliasvertusage[renderlist[0]]++;
684                         a = renderlist[1] * 3;
685                         aliasvertnorm[a+0] += normal[0];
686                         aliasvertnorm[a+1] += normal[1];
687                         aliasvertnorm[a+2] += normal[2];
688                         aliasvertusage[renderlist[1]]++;
689                         a = renderlist[2] * 3;
690                         aliasvertnorm[a+0] += normal[0];
691                         aliasvertnorm[a+1] += normal[1];
692                         aliasvertnorm[a+2] += normal[2];
693                         aliasvertusage[renderlist[2]]++;
694                         renderlist += 3;
695                 }
696         }
697         // FIXME: precalc this
698         // average surface normals
699         out = aliasvertnorm;
700         u = aliasvertusage;
701         while(vertcount--)
702         {
703                 if (*u > 1)
704                 {
705                         s = ixtable[*u];
706                         out[0] *= s;
707                         out[1] *= s;
708                         out[2] *= s;
709                 }
710                 u++;
711                 out += 3;
712         }
713 }
714
715 void R_DrawZymoticModelMeshCallback (void *calldata1, int calldata2)
716 {
717         float fog;
718         vec3_t diff;
719         int i, *renderlist;
720         zymtype1header_t *m;
721         rtexture_t *texture;
722         rmeshbufferinfo_t mbuf;
723         entity_render_t *ent;
724         int shadernum;
725
726         ent = calldata1;
727         shadernum = calldata2;
728
729         // find the vertex index list and texture
730         m = ent->model->zymdata_header;
731         renderlist = (int *)(m->lump_render.start + (int) m);
732         for (i = 0;i < shadernum;i++)
733                 renderlist += renderlist[0] * 3 + 1;
734         texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[shadernum];
735
736         fog = 0;
737         if (fogenabled)
738         {
739                 VectorSubtract(ent->origin, r_origin, diff);
740                 fog = DotProduct(diff,diff);
741                 if (fog < 0.01f)
742                         fog = 0.01f;
743                 fog = exp(fogdensity/fog);
744                 if (fog > 1)
745                         fog = 1;
746                 if (fog < 0.01f)
747                         fog = 0;
748                 // fog method: darken, additive fog
749                 // 1. render model as normal, scaled by inverse of fog alpha (darkens it)
750                 // 2. render fog as additive
751         }
752
753         softwaretransformforentity(ent);
754         ZymoticLerpBones(m->numbones, (zymbonematrix *)(m->lump_poses.start + (int) m), ent->frameblend, (zymbone_t *)(m->lump_bones.start + (int) m));
755         ZymoticTransformVerts(m->numverts, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m));
756         ZymoticCalcNormals(m->numverts, m->numshaders, (int *)(m->lump_render.start + (int) m));
757
758         R_LightModel(ent, m->numverts, 1 - fog, 1 - fog, 1 - fog, true);
759
760         memset(&mbuf, 0, sizeof(mbuf));
761         mbuf.numverts = m->numverts;
762         mbuf.numtriangles = renderlist[0];
763         mbuf.transparent = false;
764         if (ent->effects & EF_ADDITIVE)
765         {
766                 mbuf.blendfunc1 = GL_SRC_ALPHA;
767                 mbuf.blendfunc2 = GL_ONE;
768         }
769         else if (ent->alpha != 1.0 || R_TextureHasAlpha(texture))
770         {
771                 mbuf.blendfunc1 = GL_SRC_ALPHA;
772                 mbuf.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
773         }
774         else
775         {
776                 mbuf.blendfunc1 = GL_ONE;
777                 mbuf.blendfunc2 = GL_ZERO;
778         }
779         mbuf.tex[0] = R_GetTexture(texture);
780         if (R_Mesh_Draw_GetBuffer(&mbuf, true))
781         {
782                 c_alias_polys += mbuf.numtriangles;
783                 memcpy(mbuf.index, renderlist + 1, mbuf.numtriangles * sizeof(int[3]));
784                 memcpy(mbuf.vertex, aliasvert, mbuf.numverts * sizeof(float[4]));
785                 R_ModulateColors(aliasvertcolor, mbuf.color, mbuf.numverts, mbuf.colorscale, mbuf.colorscale, mbuf.colorscale);
786                 //memcpy(mbuf.color, aliasvertcolor, mbuf.numverts * sizeof(float[4]));
787                 memcpy(mbuf.texcoords[0], (float *)(m->lump_texcoords.start + (int) m), mbuf.numverts * sizeof(float[2]));
788                 R_Mesh_Render();
789         }
790
791         if (fog)
792         {
793                 memset(&mbuf, 0, sizeof(mbuf));
794                 mbuf.numverts = m->numverts;
795                 mbuf.numtriangles = renderlist[0];
796                 mbuf.transparent = false;
797                 mbuf.blendfunc1 = GL_SRC_ALPHA;
798                 mbuf.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
799                 // FIXME: need alpha mask for fogging...
800                 //mbuf.tex[0] = R_GetTexture(texture);
801                 if (R_Mesh_Draw_GetBuffer(&mbuf, false))
802                 {
803                         c_alias_polys += mbuf.numtriangles;
804                         memcpy(mbuf.index, renderlist + 1, mbuf.numtriangles * sizeof(int[3]));
805                         memcpy(mbuf.vertex, aliasvert, mbuf.numverts * sizeof(float[4]));
806                         R_FillColors(mbuf.color, mbuf.numverts, fogcolor[0] * mbuf.colorscale, fogcolor[1] * mbuf.colorscale, fogcolor[2] * mbuf.colorscale, ent->alpha * fog);
807                         //memcpy(mbuf.texcoords[0], (float *)(m->lump_texcoords.start + (int) m), mbuf.numverts * sizeof(float[2]));
808                         R_Mesh_Render();
809                 }
810         }
811 }
812
813 void R_DrawZymoticModel (entity_render_t *ent)
814 {
815         int i;
816         zymtype1header_t *m;
817         rtexture_t *texture;
818
819         if (ent->alpha < (1.0f / 64.0f))
820                 return; // basically completely transparent
821
822         c_models++;
823
824         m = ent->model->zymdata_header;
825         for (i = 0;i < m->numshaders;i++)
826         {
827                 texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[i];
828                 if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_TextureHasAlpha(texture))
829                         R_MeshQueue_AddTransparent(ent->origin, R_DrawZymoticModelMeshCallback, ent, i);
830                 else
831                         R_MeshQueue_Add(R_DrawZymoticModelMeshCallback, ent, i);
832         }
833 }
834
835 void R_DrawQ1Q2AliasModel(entity_render_t *ent)
836 {
837         if (ent->alpha < (1.0f / 64.0f))
838                 return; // basically completely transparent
839
840         c_models++;
841
842         if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_FetchSkinFrame(ent)->fog != NULL)
843                 R_MeshQueue_AddTransparent(ent->origin, R_DrawQ1Q2AliasModelCallback, ent, 0);
844         else
845                 R_MeshQueue_Add(R_DrawQ1Q2AliasModelCallback, ent, 0);
846 }
847