]> de.git.xonotic.org Git - xonotic/xonotic-data.pk3dir.git/blob - qcsrc/common/physics.qc
Predict conveyors
[xonotic/xonotic-data.pk3dir.git] / qcsrc / common / physics.qc
1 .float race_penalty;
2
3 .float gravity;
4 .float swamp_slowdown;
5 .float lastflags;
6 .float lastground;
7 .float wasFlying;
8 .float spectatorspeed;
9
10 .vector movement_old;
11 .float buttons_old;
12 .vector v_angle_old;
13 .string lastclassname;
14
15 .float() PlayerPhysplug;
16 float AdjustAirAccelQW(float accelqw, float factor);
17
18 #ifdef CSQC
19
20 .float watertype;
21
22 #elif defined(SVQC)
23 .float stat_sv_airaccel_qw;
24 .float stat_sv_airstrafeaccel_qw;
25 .float stat_sv_airspeedlimit_nonqw;
26 .float stat_sv_maxspeed;
27 .float stat_movement_highspeed;
28
29 .float stat_doublejump;
30
31 .float stat_jumpspeedcap_min;
32 .float stat_jumpspeedcap_max;
33 .float stat_jumpspeedcap_disable_onramps;
34
35 .float stat_jetpack_accel_side;
36 .float stat_jetpack_accel_up;
37 .float stat_jetpack_antigravity;
38 .float stat_jetpack_fuel;
39 .float stat_jetpack_maxspeed_up;
40 .float stat_jetpack_maxspeed_side;
41
42 void Physics_AddStats()
43 {
44         // g_movementspeed hack
45         addstat(STAT_MOVEVARS_AIRSPEEDLIMIT_NONQW, AS_FLOAT, stat_sv_airspeedlimit_nonqw);
46         addstat(STAT_MOVEVARS_MAXSPEED, AS_FLOAT, stat_sv_maxspeed);
47         addstat(STAT_MOVEVARS_AIRACCEL_QW, AS_FLOAT, stat_sv_airaccel_qw);
48         addstat(STAT_MOVEVARS_AIRSTRAFEACCEL_QW, AS_FLOAT, stat_sv_airstrafeaccel_qw);
49         addstat(STAT_MOVEVARS_HIGHSPEED, AS_FLOAT, stat_movement_highspeed);
50
51         // jet pack
52         addstat(STAT_JETPACK_ACCEL_SIDE, AS_FLOAT, stat_jetpack_accel_side);
53         addstat(STAT_JETPACK_ACCEL_UP, AS_FLOAT, stat_jetpack_accel_up);
54         addstat(STAT_JETPACK_ANTIGRAVITY, AS_FLOAT, stat_jetpack_antigravity);
55         addstat(STAT_JETPACK_FUEL, AS_FLOAT, stat_jetpack_fuel);
56         addstat(STAT_JETPACK_MAXSPEED_UP, AS_FLOAT, stat_jetpack_maxspeed_up);
57         addstat(STAT_JETPACK_MAXSPEED_SIDE, AS_FLOAT, stat_jetpack_maxspeed_side);
58
59         // hack to fix track_canjump
60         addstat(STAT_MOVEVARS_TRACK_CANJUMP, AS_INT, cvar_cl_movement_track_canjump);
61
62         // double jump
63         addstat(STAT_DOUBLEJUMP, AS_INT, stat_doublejump);
64
65         // jump speed caps
66         addstat(STAT_MOVEVARS_JUMPSPEEDCAP_MIN, AS_FLOAT, stat_jumpspeedcap_min);
67         addstat(STAT_MOVEVARS_JUMPSPEEDCAP_MIN, AS_FLOAT, stat_jumpspeedcap_min);
68         addstat(STAT_MOVEVARS_JUMPSPEEDCAP_DISABLE_ONRAMPS, AS_INT, stat_jumpspeedcap_disable_onramps);
69 }
70
71 void Physics_UpdateStats(float maxspd_mod)
72 {
73         self.stat_sv_airaccel_qw = AdjustAirAccelQW(autocvar_sv_airaccel_qw, maxspd_mod);
74         if (autocvar_sv_airstrafeaccel_qw)
75                 self.stat_sv_airstrafeaccel_qw = AdjustAirAccelQW(autocvar_sv_airstrafeaccel_qw, maxspd_mod);
76         else
77                 self.stat_sv_airstrafeaccel_qw = 0;
78         self.stat_sv_airspeedlimit_nonqw = autocvar_sv_airspeedlimit_nonqw * maxspd_mod;
79         self.stat_sv_maxspeed = autocvar_sv_maxspeed * maxspd_mod; // also slow walking
80         self.stat_movement_highspeed = PHYS_HIGHSPEED; // TODO: remove this!
81
82         self.stat_doublejump = PHYS_DOUBLEJUMP;
83
84         self.stat_jetpack_antigravity = PHYS_JETPACK_ANTIGRAVITY;
85         self.stat_jetpack_accel_up = PHYS_JETPACK_ACCEL_UP;
86         self.stat_jetpack_accel_side = PHYS_JETPACK_ACCEL_SIDE;
87         self.stat_jetpack_maxspeed_side = PHYS_JETPACK_MAXSPEED_SIDE;
88         self.stat_jetpack_maxspeed_up = PHYS_JETPACK_MAXSPEED_UP;
89         self.stat_jetpack_fuel = PHYS_JETPACK_FUEL;
90
91         self.stat_jumpspeedcap_min = PHYS_JUMPSPEEDCAP_MIN;
92         self.stat_jumpspeedcap_max = PHYS_JUMPSPEEDCAP_MAX;
93         self.stat_jumpspeedcap_disable_onramps = PHYS_JUMPSPEEDCAP_DISABLE_ONRAMPS;
94 }
95 #endif
96
97 float IsMoveInDirection(vector mv, float angle) // key mix factor
98 {
99         if (mv_x == 0 && mv_y == 0)
100                 return 0; // avoid division by zero
101         angle -= RAD2DEG * atan2(mv_y, mv_x);
102         angle = remainder(angle, 360) / 45;
103         return angle > 1 ? 0 : angle < -1 ? 0 : 1 - fabs(angle);
104 }
105
106 float GeomLerp(float a, float lerp, float b)
107 {
108         return a == 0 ? (lerp < 1 ? 0 : b)
109                 : b == 0 ? (lerp > 0 ? 0 : a)
110                 : a * pow(fabs(b / a), lerp);
111 }
112
113 noref float pmove_waterjumptime;
114
115 const float unstick_count = 27;
116 vector unstick_offsets[unstick_count] =
117 {
118 // 1 no nudge (just return the original if this test passes)
119         '0.000   0.000  0.000',
120 // 6 simple nudges
121         ' 0.000  0.000  0.125', '0.000  0.000 -0.125',
122         '-0.125  0.000  0.000', '0.125  0.000  0.000',
123         ' 0.000 -0.125  0.000', '0.000  0.125  0.000',
124 // 4 diagonal flat nudges
125         '-0.125 -0.125  0.000', '0.125 -0.125  0.000',
126         '-0.125  0.125  0.000', '0.125  0.125  0.000',
127 // 8 diagonal upward nudges
128         '-0.125  0.000  0.125', '0.125  0.000  0.125',
129         ' 0.000 -0.125  0.125', '0.000  0.125  0.125',
130         '-0.125 -0.125  0.125', '0.125 -0.125  0.125',
131         '-0.125  0.125  0.125', '0.125  0.125  0.125',
132 // 8 diagonal downward nudges
133         '-0.125  0.000 -0.125', '0.125  0.000 -0.125',
134         ' 0.000 -0.125 -0.125', '0.000  0.125 -0.125',
135         '-0.125 -0.125 -0.125', '0.125 -0.125 -0.125',
136         '-0.125  0.125 -0.125', '0.125  0.125 -0.125',
137 };
138
139 void PM_ClientMovement_Unstick()
140 {
141         float i;
142         for (i = 0; i < unstick_count; i++)
143         {
144                 vector neworigin = unstick_offsets[i] + self.origin;
145                 tracebox(neworigin, PL_CROUCH_MIN, PL_CROUCH_MAX, neworigin, MOVE_NORMAL, self);
146                 if (!trace_startsolid)
147                 {
148                         self.origin = neworigin;
149                         return;// true;
150                 }
151         }
152 }
153
154 void PM_ClientMovement_UpdateStatus()
155 {
156         // make sure player is not stuck
157         PM_ClientMovement_Unstick();
158
159         // set crouched
160         if (PHYS_INPUT_BUTTON_CROUCH(self))
161         {
162                 // wants to crouch, this always works..
163                 if (!IS_DUCKED(self))
164                         SET_DUCKED(self);
165         }
166         else
167         {
168                 // wants to stand, if currently crouching we need to check for a
169                 // low ceiling first
170                 if (IS_DUCKED(self))
171                 {
172                         tracebox(self.origin, PL_MIN, PL_MAX, self.origin, MOVE_NORMAL, self);
173                         if (!trace_startsolid)
174                                 UNSET_DUCKED(self);
175                 }
176         }
177
178         // set onground
179         vector origin1 = self.origin + '0 0 1';
180         vector origin2 = self.origin - '0 0 1';
181
182         tracebox(origin1, self.mins, self.maxs, origin2, MOVE_NORMAL, self);
183         if (trace_fraction < 1 && trace_plane_normal_z > 0.7)
184         {
185                 SET_ONGROUND(self);
186
187                 // this code actually "predicts" an impact; so let's clip velocity first
188                 float f = self.velocity * trace_plane_normal;
189                 if (f < 0) // only if moving downwards actually
190                         self.velocity -= f * trace_plane_normal;
191         }
192         else
193                 UNSET_ONGROUND(self);
194
195         // set watertype/waterlevel
196         origin1 = self.origin;
197         origin1_z += self.mins_z + 1;
198         self.waterlevel = WATERLEVEL_NONE;
199
200         self.watertype = (pointcontents(origin1) == CONTENT_WATER);
201
202         if(self.watertype)
203         {
204                 self.waterlevel = WATERLEVEL_WETFEET;
205                 origin1_z = self.origin_z + (self.mins_z + self.maxs_z) * 0.5;
206                 if(pointcontents(origin1) == CONTENT_WATER)
207                 {
208                         self.waterlevel = WATERLEVEL_SWIMMING;
209                         origin1_z = self.origin_z + 22;
210                         if(pointcontents(origin1) == CONTENT_WATER)
211                                 self.waterlevel = WATERLEVEL_SUBMERGED;
212                 }
213         }
214
215         if(IS_ONGROUND(self) || self.velocity_z <= 0 || pmove_waterjumptime <= 0)
216                 pmove_waterjumptime = 0;
217 }
218
219 void PM_ClientMovement_Move()
220 {
221 #ifdef CSQC
222         float t = PHYS_INPUT_TIMELENGTH;
223         vector primalvelocity = self.velocity;
224         PM_ClientMovement_UpdateStatus();
225         float bump = 0;
226         for (bump = 0; bump < 8 && self.velocity * self.velocity > 0; bump++)
227         {
228                 vector neworigin = self.origin + t * self.velocity;
229                 tracebox(self.origin, self.mins, self.maxs, neworigin, MOVE_NORMAL, self);
230                 float old_trace1_fraction = trace_fraction;
231                 vector old_trace1_endpos = trace_endpos;
232                 vector old_trace1_plane_normal = trace_plane_normal;
233                 if (trace_fraction < 1 && trace_plane_normal_z == 0)
234                 {
235                         // may be a step or wall, try stepping up
236                         // first move forward at a higher level
237                         vector currentorigin2 = self.origin;
238                         currentorigin2_z += PHYS_STEPHEIGHT;
239                         vector neworigin2 = neworigin;
240                         neworigin2_z = self.origin_z + PHYS_STEPHEIGHT;
241                         tracebox(currentorigin2, self.mins, self.maxs, neworigin2, MOVE_NORMAL, self);
242                         if (!trace_startsolid)
243                         {
244                                 // then move down from there
245                                 currentorigin2 = trace_endpos;
246                                 neworigin2 = trace_endpos;
247                                 neworigin2_z = self.origin_z;
248                                 float old_trace2_fraction = trace_fraction;
249                                 vector old_trace2_plane_normal = trace_plane_normal;
250                                 tracebox(currentorigin2, self.mins, self.maxs, neworigin2, MOVE_NORMAL, self);
251                                 // accept the new trace if it made some progress
252                                 if (fabs(trace_endpos_x - old_trace1_endpos_x) >= 0.03125 || fabs(trace_endpos_y - old_trace1_endpos_y) >= 0.03125)
253                                 {
254                                         trace_fraction = old_trace2_fraction;
255                                         trace_endpos = trace_endpos;
256                                         trace_plane_normal = old_trace2_plane_normal;
257                                 }
258                                 else
259                                 {
260                                         trace_fraction = old_trace1_fraction;
261                                         trace_endpos = old_trace1_endpos;
262                                         trace_plane_normal = old_trace1_plane_normal;
263                                 }
264                         }
265                 }
266
267                 // check if it moved at all
268                 if (trace_fraction >= 0.001)
269                         self.origin = trace_endpos;
270
271                 // check if it moved all the way
272                 if (trace_fraction == 1)
273                         break;
274
275                 // this is only really needed for nogravityonground combined with gravityunaffectedbyticrate
276                 // <LordHavoc> I'm pretty sure I commented it out solely because it seemed redundant
277                 // this got commented out in a change that supposedly makes the code match QW better
278                 // so if this is broken, maybe put it in an if (cls.protocol != PROTOCOL_QUAKEWORLD) block
279                 if (trace_plane_normal_z > 0.7)
280                         SET_ONGROUND(self);
281
282                 t -= t * trace_fraction;
283
284                 float f = self.velocity * trace_plane_normal;
285                 self.velocity -= f * trace_plane_normal;
286         }
287         if (pmove_waterjumptime > 0)
288                 self.velocity = primalvelocity;
289 #endif
290 }
291
292 void CPM_PM_Aircontrol(vector wishdir, float wishspeed)
293 {
294         float k = 32 * (2 * IsMoveInDirection(PHYS_INPUT_MOVEVALUES(self), 0) - 1);
295         if (k <= 0)
296                 return;
297
298         k *= bound(0, wishspeed / PHYS_MAXAIRSPEED, 1);
299
300         float zspeed = self.velocity_z;
301         self.velocity_z = 0;
302         float xyspeed = vlen(self.velocity);
303         self.velocity = normalize(self.velocity);
304
305         float dot = self.velocity * wishdir;
306
307         if (dot > 0) // we can't change direction while slowing down
308         {
309                 k *= pow(dot, PHYS_AIRCONTROL_POWER)*PHYS_INPUT_TIMELENGTH;
310                 xyspeed = max(0, xyspeed - PHYS_AIRCONTROL_PENALTY * sqrt(max(0, 1 - dot*dot)) * k/32);
311                 k *= PHYS_AIRCONTROL;
312                 self.velocity = normalize(self.velocity * xyspeed + wishdir * k);
313         }
314
315         self.velocity = self.velocity * xyspeed;
316         self.velocity_z = zspeed;
317 }
318
319 float AdjustAirAccelQW(float accelqw, float factor)
320 {
321         return copysign(bound(0.000001, 1 - (1 - fabs(accelqw)) * factor, 1), accelqw);
322 }
323
324 // example config for alternate speed clamping:
325 //   sv_airaccel_qw 0.8
326 //   sv_airaccel_sideways_friction 0
327 //   prvm_globalset server speedclamp_mode 1
328 //     (or 2)
329 void PM_Accelerate(vector wishdir, float wishspeed, float wishspeed0, float accel, float accelqw, float stretchfactor, float sidefric, float speedlimit)
330 {
331         float speedclamp = stretchfactor > 0 ? stretchfactor
332         : accelqw < 0 ? 1 // full clamping, no stretch
333         : -1; // no clamping
334
335         accelqw = fabs(accelqw);
336
337         if (GAMEPLAYFIX_Q2AIRACCELERATE)
338                 wishspeed0 = wishspeed; // don't need to emulate this Q1 bug
339
340         float vel_straight = self.velocity * wishdir;
341         float vel_z = self.velocity_z;
342         vector vel_xy = vec2(self.velocity);
343         vector vel_perpend = vel_xy - vel_straight * wishdir;
344
345         float step = accel * PHYS_INPUT_TIMELENGTH * wishspeed0;
346
347         float vel_xy_current  = vlen(vel_xy);
348         if (speedlimit)
349                 accelqw = AdjustAirAccelQW(accelqw, (speedlimit - bound(wishspeed, vel_xy_current, speedlimit)) / max(1, speedlimit - wishspeed));
350         float vel_xy_forward =  vel_xy_current  + bound(0, wishspeed - vel_xy_current, step) * accelqw + step * (1 - accelqw);
351         float vel_xy_backward = vel_xy_current  - bound(0, wishspeed + vel_xy_current, step) * accelqw - step * (1 - accelqw);
352         vel_xy_backward = max(0, vel_xy_backward); // not that it REALLY occurs that this would cause wrong behaviour afterwards
353         vel_straight =          vel_straight    + bound(0, wishspeed - vel_straight,   step) * accelqw + step * (1 - accelqw);
354
355         if (sidefric < 0 && (vel_perpend*vel_perpend))
356                 // negative: only apply so much sideways friction to stay below the speed you could get by "braking"
357         {
358                 float f = max(0, 1 + PHYS_INPUT_TIMELENGTH * wishspeed * sidefric);
359                 float fmin = (vel_xy_backward * vel_xy_backward - vel_straight * vel_straight) / (vel_perpend * vel_perpend);
360                 // assume: fmin > 1
361                 // vel_xy_backward*vel_xy_backward - vel_straight*vel_straight > vel_perpend*vel_perpend
362                 // vel_xy_backward*vel_xy_backward > vel_straight*vel_straight + vel_perpend*vel_perpend
363                 // vel_xy_backward*vel_xy_backward > vel_xy * vel_xy
364                 // obviously, this cannot be
365                 if (fmin <= 0)
366                         vel_perpend *= f;
367                 else
368                 {
369                         fmin = sqrt(fmin);
370                         vel_perpend *= max(fmin, f);
371                 }
372         }
373         else
374                 vel_perpend *= max(0, 1 - PHYS_INPUT_TIMELENGTH * wishspeed * sidefric);
375
376         vel_xy = vel_straight * wishdir + vel_perpend;
377
378         if (speedclamp >= 0)
379         {
380                 float vel_xy_preclamp;
381                 vel_xy_preclamp = vlen(vel_xy);
382                 if (vel_xy_preclamp > 0) // prevent division by zero
383                 {
384                         vel_xy_current += (vel_xy_forward - vel_xy_current) * speedclamp;
385                         if (vel_xy_current < vel_xy_preclamp)
386                                 vel_xy *= (vel_xy_current / vel_xy_preclamp);
387                 }
388         }
389
390         self.velocity = vel_xy + vel_z * '0 0 1';
391 }
392
393 void PM_AirAccelerate(vector wishdir, float wishspeed)
394 {
395         if (wishspeed == 0)
396                 return;
397
398         vector curvel = self.velocity;
399         curvel_z = 0;
400         float curspeed = vlen(curvel);
401
402         if (wishspeed > curspeed * 1.01)
403                 wishspeed = min(wishspeed, curspeed + PHYS_WARSOWBUNNY_AIRFORWARDACCEL * PHYS_MAXSPEED(self) * PHYS_INPUT_TIMELENGTH);
404         else
405         {
406                 float f = max(0, (PHYS_WARSOWBUNNY_TOPSPEED - curspeed) / (PHYS_WARSOWBUNNY_TOPSPEED - PHYS_MAXSPEED(self)));
407                 wishspeed = max(curspeed, PHYS_MAXSPEED(self)) + PHYS_WARSOWBUNNY_ACCEL * f * PHYS_MAXSPEED(self) * PHYS_INPUT_TIMELENGTH;
408         }
409         vector wishvel = wishdir * wishspeed;
410         vector acceldir = wishvel - curvel;
411         float addspeed = vlen(acceldir);
412         acceldir = normalize(acceldir);
413
414         float accelspeed = min(addspeed, PHYS_WARSOWBUNNY_TURNACCEL * PHYS_MAXSPEED(self) * PHYS_INPUT_TIMELENGTH);
415
416         if (PHYS_WARSOWBUNNY_BACKTOSIDERATIO < 1)
417         {
418                 vector curdir = normalize(curvel);
419                 float dot = acceldir * curdir;
420                 if (dot < 0)
421                         acceldir -= (1 - PHYS_WARSOWBUNNY_BACKTOSIDERATIO) * dot * curdir;
422         }
423
424         self.velocity += accelspeed * acceldir;
425 }
426
427
428 /*
429 =============
430 PlayerJump
431
432 When you press the jump key
433 returns TRUE if handled
434 =============
435 */
436 float PlayerJump (void)
437 {
438         if (PHYS_FROZEN(self))
439                 return TRUE; // no jumping in freezetag when frozen
440
441 #ifdef SVQC
442         if (self.player_blocked)
443                 return TRUE; // no jumping while blocked
444 #endif
445
446         float doublejump = FALSE;
447         float mjumpheight = PHYS_JUMPVELOCITY;
448
449         player_multijump = doublejump;
450         player_jumpheight = mjumpheight;
451 #ifdef SVQC
452         if (MUTATOR_CALLHOOK(PlayerJump))
453 #elif defined(CSQC)
454         if(PM_multijump_checkjump())
455 #endif
456                 return TRUE;
457
458         doublejump = player_multijump;
459         mjumpheight = player_jumpheight;
460
461         if (PHYS_DOUBLEJUMP)
462         {
463                 tracebox(self.origin + '0 0 0.01', self.mins, self.maxs, self.origin - '0 0 0.01', MOVE_NORMAL, self);
464                 if (trace_fraction < 1 && trace_plane_normal_z > 0.7)
465                 {
466                         doublejump = TRUE;
467
468                         // we MUST clip velocity here!
469                         float f;
470                         f = self.velocity * trace_plane_normal;
471                         if (f < 0)
472                                 self.velocity -= f * trace_plane_normal;
473                 }
474         }
475
476         if (self.waterlevel >= WATERLEVEL_SWIMMING)
477         {
478                 self.velocity_z = PHYS_MAXSPEED(self) * 0.7;
479                 return TRUE;
480         }
481
482         if (!doublejump)
483                 if (!IS_ONGROUND(self))
484                         return IS_JUMP_HELD(self);
485
486         if (PHYS_TRACK_CANJUMP(self))
487                 if (IS_JUMP_HELD(self))
488                         return TRUE;
489
490         // sv_jumpspeedcap_min/sv_jumpspeedcap_max act as baseline
491         // velocity bounds.  Final velocity is bound between (jumpheight *
492         // min + jumpheight) and (jumpheight * max + jumpheight);
493
494         if(PHYS_JUMPSPEEDCAP_MIN)
495         {
496                 float minjumpspeed = mjumpheight * PHYS_JUMPSPEEDCAP_MIN;
497
498                 if (self.velocity_z < minjumpspeed)
499                         mjumpheight += minjumpspeed - self.velocity_z;
500         }
501
502         if(PHYS_JUMPSPEEDCAP_MAX)
503         {
504                 // don't do jump speedcaps on ramps to preserve old xonotic ramjump style
505                 tracebox(self.origin + '0 0 0.01', self.mins, self.maxs, self.origin - '0 0 0.01', MOVE_NORMAL, self);
506
507                 if (!(trace_fraction < 1 && trace_plane_normal_z < 0.98 && PHYS_JUMPSPEEDCAP_DISABLE_ONRAMPS))
508                 {
509                         float maxjumpspeed = mjumpheight * PHYS_JUMPSPEEDCAP_MAX;
510
511                         if (self.velocity_z > maxjumpspeed)
512                                 mjumpheight -= self.velocity_z - maxjumpspeed;
513                 }
514         }
515
516         if (!WAS_ONGROUND(self))
517         {
518                 if(autocvar_speedmeter)
519                         dprint(strcat("landing velocity: ", vtos(self.velocity), " (abs: ", ftos(vlen(self.velocity)), ")\n"));
520                 if(self.lastground < time - 0.3)
521                 {
522                         self.velocity_x *= (1 - PHYS_FRICTION_ONLAND);
523                         self.velocity_y *= (1 - PHYS_FRICTION_ONLAND);
524                 }
525                 if(self.jumppadcount > 1)
526                         dprint(strcat(ftos(self.jumppadcount), "x jumppad combo\n"));
527                 self.jumppadcount = 0;
528         }
529
530         self.velocity_z += mjumpheight;
531
532         UNSET_ONGROUND(self);
533         SET_JUMP_HELD(self);
534
535 #ifdef SVQC
536
537         self.oldvelocity_z = self.velocity_z;
538
539         animdecide_setaction(self, ANIMACTION_JUMP, TRUE);
540
541         if (autocvar_g_jump_grunt)
542                 PlayerSound(playersound_jump, CH_PLAYER, VOICETYPE_PLAYERSOUND);
543 #endif
544         return TRUE;
545 }
546
547 void CheckWaterJump()
548 {
549 // check for a jump-out-of-water
550         makevectors(PHYS_INPUT_ANGLES(self));
551         vector start = self.origin;
552         start_z += 8;
553         v_forward_z = 0;
554         normalize(v_forward);
555         vector end = start + v_forward*24;
556         traceline (start, end, TRUE, self);
557         if (trace_fraction < 1)
558         {       // solid at waist
559                 start_z = start_z + self.maxs_z - 8;
560                 end = start + v_forward*24;
561                 self.movedir = trace_plane_normal * -50;
562                 traceline(start, end, TRUE, self);
563                 if (trace_fraction == 1)
564                 {       // open at eye level
565                         self.velocity_z = 225;
566 #ifdef SVQC
567                         self.flags |= FL_WATERJUMP;
568                         SET_JUMP_HELD(self);
569                         self.teleport_time = time + 2;  // safety net
570 #endif
571                 }
572         }
573 }
574
575
576 #ifdef SVQC
577         #define JETPACK_JUMP(s) s.cvar_cl_jetpack_jump
578 #elif defined(CSQC)
579         float autocvar_cl_jetpack_jump;
580         #define JETPACK_JUMP(s) autocvar_cl_jetpack_jump
581 #endif
582 .float jetpack_stopped;
583 // Hack: shouldn't need to know about this
584 .float multijump_count;
585 void CheckPlayerJump()
586 {
587 #ifdef SVQC
588         float was_flying = ITEMS(self) & IT_USING_JETPACK;
589 #endif
590         if (JETPACK_JUMP(self) < 2)
591 #ifdef SVQC
592                 ITEMS(self) &= ~IT_USING_JETPACK;
593 #endif
594
595         if(PHYS_INPUT_BUTTON_JUMP(self) || PHYS_INPUT_BUTTON_JETPACK(self))
596         {
597 #ifdef SVQC
598                 float air_jump = !PlayerJump() || self.multijump_count > 0; // PlayerJump() has important side effects
599                 float activate = JETPACK_JUMP(self) && air_jump && PHYS_INPUT_BUTTON_JUMP(self) || PHYS_INPUT_BUTTON_JETPACK(self);
600                 float has_fuel = !autocvar_g_jetpack_fuel || self.ammo_fuel || ITEMS(self) & IT_UNLIMITED_WEAPON_AMMO;
601 #else
602                 PlayerJump(); // Client only
603                 float has_fuel = TRUE; // TODO
604 #endif
605                 if (!(ITEMS(self) & IT_JETPACK)) { }
606                 else if (self.jetpack_stopped) { }
607                 else if (!has_fuel)
608                 {
609 #ifdef SVQC
610                         if (was_flying) // TODO: ran out of fuel message
611                                 Send_Notification(NOTIF_ONE, self, MSG_INFO, INFO_JETPACK_NOFUEL);
612                         else if (activate)
613                                 Send_Notification(NOTIF_ONE, self, MSG_INFO, INFO_JETPACK_NOFUEL);
614 #endif
615                         self.jetpack_stopped = TRUE;
616 #ifdef SVQC
617                         ITEMS(self) &= ~IT_USING_JETPACK;
618 #endif
619                 }
620 #ifdef SVQC
621                 else if (activate && !PHYS_FROZEN(self))
622                         ITEMS(self) |= IT_USING_JETPACK;
623 #endif
624         }
625         else
626         {
627                 self.jetpack_stopped = FALSE;
628 #ifdef SVQC
629                 ITEMS(self) &= ~IT_USING_JETPACK;
630 #endif
631         }
632         if (!PHYS_INPUT_BUTTON_JUMP(self))
633                 UNSET_JUMP_HELD(self);
634
635         if (self.waterlevel == WATERLEVEL_SWIMMING)
636                 CheckWaterJump();
637 }
638
639 float racecar_angle(float forward, float down)
640 {
641         if (forward < 0)
642         {
643                 forward = -forward;
644                 down = -down;
645         }
646
647         float ret = vectoyaw('0 1 0' * down + '1 0 0' * forward);
648
649         float angle_mult = forward / (800 + forward);
650
651         if (ret > 180)
652                 return ret * angle_mult + 360 * (1 - angle_mult);
653         else
654                 return ret * angle_mult;
655 }
656
657 void RaceCarPhysics()
658 {
659 #ifdef SVQC
660         // using this move type for "big rigs"
661         // the engine does not push the entity!
662
663         vector rigvel;
664
665         vector angles_save = self.angles;
666         float accel = bound(-1, PHYS_INPUT_MOVEVALUES(self).x / PHYS_MAXSPEED(self), 1);
667         float steer = bound(-1, PHYS_INPUT_MOVEVALUES(self).y / PHYS_MAXSPEED(self), 1);
668
669         if (g_bugrigs_reverse_speeding)
670         {
671                 if (accel < 0)
672                 {
673                         // back accel is DIGITAL
674                         // to prevent speedhack
675                         if (accel < -0.5)
676                                 accel = -1;
677                         else
678                                 accel = 0;
679                 }
680         }
681
682         self.angles_x = 0;
683         self.angles_z = 0;
684         makevectors(self.angles); // new forward direction!
685
686         if (IS_ONGROUND(self) || g_bugrigs_air_steering)
687         {
688                 float myspeed = self.velocity * v_forward;
689                 float upspeed = self.velocity * v_up;
690
691                 // responsiveness factor for steering and acceleration
692                 float f = 1 / (1 + pow(max(-myspeed, myspeed) / g_bugrigs_speed_ref, g_bugrigs_speed_pow));
693                 //MAXIMA: f(v) := 1 / (1 + (v / g_bugrigs_speed_ref) ^ g_bugrigs_speed_pow);
694
695                 float steerfactor;
696                 if (myspeed < 0 && g_bugrigs_reverse_spinning)
697                         steerfactor = -myspeed * g_bugrigs_steer;
698                 else
699                         steerfactor = -myspeed * f * g_bugrigs_steer;
700
701                 float accelfactor;
702                 if (myspeed < 0 && g_bugrigs_reverse_speeding)
703                         accelfactor = g_bugrigs_accel;
704                 else
705                         accelfactor = f * g_bugrigs_accel;
706                 //MAXIMA: accel(v) := f(v) * g_bugrigs_accel;
707
708                 if (accel < 0)
709                 {
710                         if (myspeed > 0)
711                         {
712                                 myspeed = max(0, myspeed - PHYS_INPUT_TIMELENGTH * (g_bugrigs_friction_floor - g_bugrigs_friction_brake * accel));
713                         }
714                         else
715                         {
716                                 if (!g_bugrigs_reverse_speeding)
717                                         myspeed = min(0, myspeed + PHYS_INPUT_TIMELENGTH * g_bugrigs_friction_floor);
718                         }
719                 }
720                 else
721                 {
722                         if (myspeed >= 0)
723                         {
724                                 myspeed = max(0, myspeed - PHYS_INPUT_TIMELENGTH * g_bugrigs_friction_floor);
725                         }
726                         else
727                         {
728                                 if (g_bugrigs_reverse_stopping)
729                                         myspeed = 0;
730                                 else
731                                         myspeed = min(0, myspeed + PHYS_INPUT_TIMELENGTH * (g_bugrigs_friction_floor + g_bugrigs_friction_brake * accel));
732                         }
733                 }
734                 // terminal velocity = velocity at which 50 == accelfactor, that is, 1549 units/sec
735                 //MAXIMA: friction(v) := g_bugrigs_friction_floor;
736
737                 self.angles_y += steer * PHYS_INPUT_TIMELENGTH * steerfactor; // apply steering
738                 makevectors(self.angles); // new forward direction!
739
740                 myspeed += accel * accelfactor * PHYS_INPUT_TIMELENGTH;
741
742                 rigvel = myspeed * v_forward + '0 0 1' * upspeed;
743         }
744         else
745         {
746                 float myspeed = vlen(self.velocity);
747
748                 // responsiveness factor for steering and acceleration
749                 float f = 1 / (1 + pow(max(0, myspeed / g_bugrigs_speed_ref), g_bugrigs_speed_pow));
750                 float steerfactor = -myspeed * f;
751                 self.angles_y += steer * PHYS_INPUT_TIMELENGTH * steerfactor; // apply steering
752
753                 rigvel = self.velocity;
754                 makevectors(self.angles); // new forward direction!
755         }
756
757         rigvel *= max(0, 1 - vlen(rigvel) * g_bugrigs_friction_air * PHYS_INPUT_TIMELENGTH);
758         //MAXIMA: airfriction(v) := v * v * g_bugrigs_friction_air;
759         //MAXIMA: total_acceleration(v) := accel(v) - friction(v) - airfriction(v);
760         //MAXIMA: solve(total_acceleration(v) = 0, v);
761
762         if (g_bugrigs_planar_movement)
763         {
764                 vector rigvel_xy, neworigin, up;
765                 float mt;
766
767                 rigvel_z -= PHYS_INPUT_TIMELENGTH * PHYS_GRAVITY; // 4x gravity plays better
768                 rigvel_xy = vec2(rigvel);
769
770                 if (g_bugrigs_planar_movement_car_jumping)
771                         mt = MOVE_NORMAL;
772                 else
773                         mt = MOVE_NOMONSTERS;
774
775                 tracebox(self.origin, self.mins, self.maxs, self.origin + '0 0 1024', mt, self);
776                 up = trace_endpos - self.origin;
777
778                 // BUG RIGS: align the move to the surface instead of doing collision testing
779                 // can we move?
780                 tracebox(trace_endpos, self.mins, self.maxs, trace_endpos + rigvel_xy * PHYS_INPUT_TIMELENGTH, mt, self);
781
782                 // align to surface
783                 tracebox(trace_endpos, self.mins, self.maxs, trace_endpos - up + '0 0 1' * rigvel_z * PHYS_INPUT_TIMELENGTH, mt, self);
784
785                 if (trace_fraction < 0.5)
786                 {
787                         trace_fraction = 1;
788                         neworigin = self.origin;
789                 }
790                 else
791                         neworigin = trace_endpos;
792
793                 if (trace_fraction < 1)
794                 {
795                         // now set angles_x so that the car points parallel to the surface
796                         self.angles = vectoangles(
797                                         '1 0 0' * v_forward_x * trace_plane_normal_z
798                                         +
799                                         '0 1 0' * v_forward_y * trace_plane_normal_z
800                                         +
801                                         '0 0 1' * -(v_forward_x * trace_plane_normal_x + v_forward_y * trace_plane_normal_y)
802                                         );
803                         SET_ONGROUND(self);
804                 }
805                 else
806                 {
807                         // now set angles_x so that the car points forward, but is tilted in velocity direction
808                         UNSET_ONGROUND(self);
809                 }
810
811                 self.velocity = (neworigin - self.origin) * (1.0 / PHYS_INPUT_TIMELENGTH);
812                 self.movetype = MOVETYPE_NOCLIP;
813         }
814         else
815         {
816                 rigvel_z -= PHYS_INPUT_TIMELENGTH * PHYS_GRAVITY; // 4x gravity plays better
817                 self.velocity = rigvel;
818                 self.movetype = MOVETYPE_FLY;
819         }
820
821         trace_fraction = 1;
822         tracebox(self.origin, self.mins, self.maxs, self.origin - '0 0 4', MOVE_NORMAL, self);
823         if (trace_fraction != 1)
824         {
825                 self.angles = vectoangles2(
826                                 '1 0 0' * v_forward_x * trace_plane_normal_z
827                                 +
828                                 '0 1 0' * v_forward_y * trace_plane_normal_z
829                                 +
830                                 '0 0 1' * -(v_forward_x * trace_plane_normal_x + v_forward_y * trace_plane_normal_y),
831                                 trace_plane_normal
832                                 );
833         }
834         else
835         {
836                 vector vel_local;
837
838                 vel_local_x = v_forward * self.velocity;
839                 vel_local_y = v_right * self.velocity;
840                 vel_local_z = v_up * self.velocity;
841
842                 self.angles_x = racecar_angle(vel_local_x, vel_local_z);
843                 self.angles_z = racecar_angle(-vel_local_y, vel_local_z);
844         }
845
846         // smooth the angles
847         vector vf1, vu1, smoothangles;
848         makevectors(self.angles);
849         float f = bound(0, PHYS_INPUT_TIMELENGTH * g_bugrigs_angle_smoothing, 1);
850         if (f == 0)
851                 f = 1;
852         vf1 = v_forward * f;
853         vu1 = v_up * f;
854         makevectors(angles_save);
855         vf1 = vf1 + v_forward * (1 - f);
856         vu1 = vu1 + v_up * (1 - f);
857         smoothangles = vectoangles2(vf1, vu1);
858         self.angles_x = -smoothangles_x;
859         self.angles_z =  smoothangles_z;
860 #endif
861 }
862
863 string specialcommand = "xwxwxsxsxaxdxaxdx1x ";
864 .float specialcommand_pos;
865 void SpecialCommand()
866 {
867 #ifdef SVQC
868 #ifdef TETRIS
869         TetrisImpulse();
870 #else
871         if (!CheatImpulse(99))
872                 print("A hollow voice says \"Plugh\".\n");
873 #endif
874 #endif
875 }
876
877 #ifdef SVQC
878 float speedaward_speed;
879 string speedaward_holder;
880 string speedaward_uid;
881 #endif
882 void race_send_speedaward(float msg)
883 {
884 #ifdef SVQC
885         // send the best speed of the round
886         WriteByte(msg, SVC_TEMPENTITY);
887         WriteByte(msg, TE_CSQC_RACE);
888         WriteByte(msg, RACE_NET_SPEED_AWARD);
889         WriteInt24_t(msg, floor(speedaward_speed+0.5));
890         WriteString(msg, speedaward_holder);
891 #endif
892 }
893
894 #ifdef SVQC
895 float speedaward_alltimebest;
896 string speedaward_alltimebest_holder;
897 string speedaward_alltimebest_uid;
898 #endif
899 void race_send_speedaward_alltimebest(float msg)
900 {
901 #ifdef SVQC
902         // send the best speed
903         WriteByte(msg, SVC_TEMPENTITY);
904         WriteByte(msg, TE_CSQC_RACE);
905         WriteByte(msg, RACE_NET_SPEED_AWARD_BEST);
906         WriteInt24_t(msg, floor(speedaward_alltimebest+0.5));
907         WriteString(msg, speedaward_alltimebest_holder);
908 #endif
909 }
910
911 float PM_check_keepaway(void)
912 {
913 #ifdef SVQC
914         return (self.ballcarried && g_keepaway) ? autocvar_g_keepaway_ballcarrier_highspeed : 1;
915 #else
916         return 1;
917 #endif
918 }
919
920 void PM_check_race_movetime(void)
921 {
922 #ifdef SVQC
923         self.race_movetime_frac += PHYS_INPUT_TIMELENGTH;
924         float f = floor(self.race_movetime_frac);
925         self.race_movetime_frac -= f;
926         self.race_movetime_count += f;
927         self.race_movetime = self.race_movetime_frac + self.race_movetime_count;
928 #endif
929 }
930
931 float PM_check_specialcommand(float buttons)
932 {
933 #ifdef SVQC
934         string c;
935         if (!buttons)
936                 c = "x";
937         else if (buttons == 1)
938                 c = "1";
939         else if (buttons == 2)
940                 c = " ";
941         else if (buttons == 128)
942                 c = "s";
943         else if (buttons == 256)
944                 c = "w";
945         else if (buttons == 512)
946                 c = "a";
947         else if (buttons == 1024)
948                 c = "d";
949         else
950                 c = "?";
951
952         if (c == substring(specialcommand, self.specialcommand_pos, 1))
953         {
954                 self.specialcommand_pos += 1;
955                 if (self.specialcommand_pos >= strlen(specialcommand))
956                 {
957                         self.specialcommand_pos = 0;
958                         SpecialCommand();
959                         return TRUE;
960                 }
961         }
962         else if (self.specialcommand_pos && (c != substring(specialcommand, self.specialcommand_pos - 1, 1)))
963                 self.specialcommand_pos = 0;
964 #endif
965         return FALSE;
966 }
967
968 void PM_check_nickspam(void)
969 {
970 #ifdef SVQC
971         if (time >= self.nickspamtime)
972                 return;
973         if (self.nickspamcount >= autocvar_g_nick_flood_penalty_yellow)
974         {
975                 // slight annoyance for nick change scripts
976                 PHYS_INPUT_MOVEVALUES(self) = -1 * PHYS_INPUT_MOVEVALUES(self);
977                 self.BUTTON_ATCK = self.BUTTON_JUMP = self.BUTTON_ATCK2 = self.BUTTON_ZOOM = self.BUTTON_CROUCH = self.BUTTON_HOOK = self.BUTTON_USE = 0;
978
979                 if (self.nickspamcount >= autocvar_g_nick_flood_penalty_red) // if you are persistent and the slight annoyance above does not stop you, I'll show you!
980                 {
981                         PHYS_INPUT_ANGLES(self)_x = random() * 360;
982                         PHYS_INPUT_ANGLES(self)_y = random() * 360;
983                         // at least I'm not forcing retardedview by also assigning to angles_z
984                         self.fixangle = TRUE;
985                 }
986         }
987 #endif
988 }
989
990 void PM_check_punch()
991 {
992 #ifdef SVQC
993         if (self.punchangle != '0 0 0')
994         {
995                 float f = vlen(self.punchangle) - 10 * PHYS_INPUT_TIMELENGTH;
996                 if (f > 0)
997                         self.punchangle = normalize(self.punchangle) * f;
998                 else
999                         self.punchangle = '0 0 0';
1000         }
1001
1002         if (self.punchvector != '0 0 0')
1003         {
1004                 float f = vlen(self.punchvector) - 30 * PHYS_INPUT_TIMELENGTH;
1005                 if (f > 0)
1006                         self.punchvector = normalize(self.punchvector) * f;
1007                 else
1008                         self.punchvector = '0 0 0';
1009         }
1010 #endif
1011 }
1012
1013 void PM_check_spider(void)
1014 {
1015 #ifdef SVQC
1016         if (time >= self.spider_slowness)
1017                 return;
1018         PHYS_MAXSPEED(self) *= 0.5; // half speed while slow from spider
1019         self.stat_sv_airspeedlimit_nonqw *= 0.5;
1020 #endif
1021 }
1022
1023 // predict frozen movement, as frozen players CAN move in some cases
1024 void PM_check_frozen(void)
1025 {
1026         if (!PHYS_FROZEN(self))
1027                 return;
1028         if (PHYS_DODGING_FROZEN
1029 #ifdef SVQC
1030         && IS_REAL_CLIENT(self)
1031 #endif
1032         )
1033         {
1034                 PHYS_INPUT_MOVEVALUES(self)_x = bound(-5, PHYS_INPUT_MOVEVALUES(self).x, 5);
1035                 PHYS_INPUT_MOVEVALUES(self)_y = bound(-5, PHYS_INPUT_MOVEVALUES(self).y, 5);
1036                 PHYS_INPUT_MOVEVALUES(self)_z = bound(-5, PHYS_INPUT_MOVEVALUES(self).z, 5);
1037         }
1038         else
1039                 PHYS_INPUT_MOVEVALUES(self) = '0 0 0';
1040
1041         vector midpoint = ((self.absmin + self.absmax) * 0.5);
1042         if (pointcontents(midpoint) == CONTENT_WATER)
1043         {
1044                 self.velocity = self.velocity * 0.5;
1045
1046                 if (pointcontents(midpoint + '0 0 16') == CONTENT_WATER)
1047                         self.velocity_z = 200;
1048         }
1049 }
1050
1051 void PM_check_blocked(void)
1052 {
1053 #ifdef SVQC
1054         if (!self.player_blocked)
1055                 return;
1056         PHYS_INPUT_MOVEVALUES(self) = '0 0 0';
1057         self.disableclientprediction = 1;
1058 #endif
1059 }
1060
1061 #ifdef SVQC
1062 float speedaward_lastsent;
1063 float speedaward_lastupdate;
1064 string GetMapname(void);
1065 #endif
1066 void PM_check_race(void)
1067 {
1068 #ifdef SVQC
1069         if not(g_cts || g_race)
1070                 return;
1071         if (vlen(self.velocity - self.velocity_z * '0 0 1') > speedaward_speed)
1072         {
1073                 speedaward_speed = vlen(self.velocity - self.velocity_z * '0 0 1');
1074                 speedaward_holder = self.netname;
1075                 speedaward_uid = self.crypto_idfp;
1076                 speedaward_lastupdate = time;
1077         }
1078         if (speedaward_speed > speedaward_lastsent && time - speedaward_lastupdate > 1)
1079         {
1080                 string rr = (g_cts) ? CTS_RECORD : RACE_RECORD;
1081                 race_send_speedaward(MSG_ALL);
1082                 speedaward_lastsent = speedaward_speed;
1083                 if (speedaward_speed > speedaward_alltimebest && speedaward_uid != "")
1084                 {
1085                         speedaward_alltimebest = speedaward_speed;
1086                         speedaward_alltimebest_holder = speedaward_holder;
1087                         speedaward_alltimebest_uid = speedaward_uid;
1088                         db_put(ServerProgsDB, strcat(GetMapname(), rr, "speed/speed"), ftos(speedaward_alltimebest));
1089                         db_put(ServerProgsDB, strcat(GetMapname(), rr, "speed/crypto_idfp"), speedaward_alltimebest_uid);
1090                         race_send_speedaward_alltimebest(MSG_ALL);
1091                 }
1092         }
1093 #endif
1094 }
1095
1096 void PM_check_vortex(void)
1097 {
1098 #ifdef SVQC
1099         // WEAPONTODO
1100         float xyspeed = vlen(vec2(self.velocity));
1101         if (self.weapon == WEP_VORTEX && WEP_CVAR(vortex, charge) && WEP_CVAR(vortex, charge_velocity_rate) && xyspeed > WEP_CVAR(vortex, charge_minspeed))
1102         {
1103                 // add a maximum of charge_velocity_rate when going fast (f = 1), gradually increasing from minspeed (f = 0) to maxspeed
1104                 xyspeed = min(xyspeed, WEP_CVAR(vortex, charge_maxspeed));
1105                 float f = (xyspeed - WEP_CVAR(vortex, charge_minspeed)) / (WEP_CVAR(vortex, charge_maxspeed) - WEP_CVAR(vortex, charge_minspeed));
1106                 // add the extra charge
1107                 self.vortex_charge = min(1, self.vortex_charge + WEP_CVAR(vortex, charge_velocity_rate) * f * PHYS_INPUT_TIMELENGTH);
1108         }
1109 #endif
1110 }
1111
1112 void PM_fly(float maxspd_mod)
1113 {
1114         // noclipping or flying
1115         UNSET_ONGROUND(self);
1116
1117         self.velocity = self.velocity * (1 - PHYS_INPUT_TIMELENGTH * PHYS_FRICTION);
1118         makevectors(PHYS_INPUT_ANGLES(self));
1119         //wishvel = v_forward * PHYS_INPUT_MOVEVALUES(self).x + v_right * PHYS_INPUT_MOVEVALUES(self).y + v_up * PHYS_INPUT_MOVEVALUES(self).z;
1120         vector wishvel = v_forward * PHYS_INPUT_MOVEVALUES(self).x
1121                                         + v_right * PHYS_INPUT_MOVEVALUES(self).y
1122                                         + '0 0 1' * PHYS_INPUT_MOVEVALUES(self).z;
1123         // acceleration
1124         vector wishdir = normalize(wishvel);
1125         float wishspeed = min(vlen(wishvel), PHYS_MAXSPEED(self) * maxspd_mod);
1126         if (time >= self.teleport_time)
1127                 PM_Accelerate(wishdir, wishspeed, wishspeed, PHYS_ACCELERATE * maxspd_mod, 1, 0, 0, 0);
1128 }
1129
1130 void PM_swim(float maxspd_mod)
1131 {
1132         // swimming
1133         UNSET_ONGROUND(self);
1134
1135         float jump = PHYS_INPUT_BUTTON_JUMP(self);
1136         // water jump only in certain situations
1137         // this mimics quakeworld code
1138         if (jump && self.waterlevel == WATERLEVEL_SWIMMING && self.velocity_z >= -180)
1139         {
1140                 vector yawangles = '0 1 0' * PHYS_INPUT_ANGLES(self).y;
1141                 makevectors(yawangles);
1142                 vector forward = v_forward;
1143                 vector spot = self.origin + 24 * forward;
1144                 spot_z += 8;
1145                 traceline(spot, spot, MOVE_NOMONSTERS, self);
1146                 if (trace_startsolid)
1147                 {
1148                         spot_z += 24;
1149                         traceline(spot, spot, MOVE_NOMONSTERS, self);
1150                         if (!trace_startsolid)
1151                         {
1152                                 self.velocity = forward * 50;
1153                                 self.velocity_z = 310;
1154                                 pmove_waterjumptime = 2;
1155                                 UNSET_ONGROUND(self);
1156                                 SET_JUMP_HELD(self);
1157                         }
1158                 }
1159         }
1160         makevectors(PHYS_INPUT_ANGLES(self));
1161         //wishvel = v_forward * PHYS_INPUT_MOVEVALUES(self).x + v_right * PHYS_INPUT_MOVEVALUES(self).y + v_up * PHYS_INPUT_MOVEVALUES(self).z;
1162         vector wishvel = v_forward * PHYS_INPUT_MOVEVALUES(self).x
1163                                         + v_right * PHYS_INPUT_MOVEVALUES(self).y
1164                                         + '0 0 1' * PHYS_INPUT_MOVEVALUES(self).z;
1165         if (wishvel == '0 0 0')
1166                 wishvel = '0 0 -60'; // drift towards bottom
1167
1168         vector wishdir = normalize(wishvel);
1169         float wishspeed = min(vlen(wishvel), PHYS_MAXSPEED(self) * maxspd_mod) * 0.7;
1170
1171         if (IS_DUCKED(self))
1172         wishspeed *= 0.5;
1173
1174 //      if (pmove_waterjumptime <= 0) // TODO: use
1175     {
1176                 // water friction
1177                 float f = 1 - PHYS_INPUT_TIMELENGTH * PHYS_FRICTION;
1178                 f = min(max(0, f), 1);
1179                 self.velocity *= f;
1180
1181                 f = wishspeed - self.velocity * wishdir;
1182                 if (f > 0)
1183                 {
1184                         float accelspeed = min(PHYS_ACCELERATE * PHYS_INPUT_TIMELENGTH * wishspeed, f);
1185                         self.velocity += accelspeed * wishdir;
1186                 }
1187
1188                 // holding jump button swims upward slowly
1189                 if (jump)
1190                 {
1191 #if 0
1192                         if (self.watertype & CONTENT_LAVA)
1193                                 self.velocity_z =  50;
1194                         else if (self.watertype & CONTENT_SLIME)
1195                                 self.velocity_z =  80;
1196                         else
1197                         {
1198                                 if (IS_NEXUIZ_DERIVED(gamemode))
1199 #endif
1200                                         self.velocity_z = 200;
1201 #if 0
1202                                 else
1203                                         self.velocity_z = 100;
1204                         }
1205 #endif
1206                 }
1207         }
1208         PM_ClientMovement_Move();
1209         // water acceleration
1210         PM_Accelerate(wishdir, wishspeed, wishspeed, PHYS_ACCELERATE * maxspd_mod, 1, 0, 0, 0);
1211 }
1212
1213 void PM_ladder(float maxspd_mod)
1214 {
1215         // on a spawnfunc_func_ladder or swimming in spawnfunc_func_water
1216         UNSET_ONGROUND(self);
1217
1218         float g;
1219         g = PHYS_GRAVITY * PHYS_INPUT_TIMELENGTH;
1220         if (PHYS_ENTGRAVITY(self))
1221                 g *= PHYS_ENTGRAVITY(self);
1222         if (GAMEPLAYFIX_GRAVITYUNAFFECTEDBYTICRATE)
1223         {
1224                 g *= 0.5;
1225                 self.velocity_z += g;
1226         }
1227
1228         self.velocity = self.velocity * (1 - PHYS_INPUT_TIMELENGTH * PHYS_FRICTION);
1229         makevectors(PHYS_INPUT_ANGLES(self));
1230         //wishvel = v_forward * PHYS_INPUT_MOVEVALUES(self).x + v_right * PHYS_INPUT_MOVEVALUES(self).y + v_up * PHYS_INPUT_MOVEVALUES(self).z;
1231         vector wishvel = v_forward * PHYS_INPUT_MOVEVALUES(self)_x
1232                                         + v_right * PHYS_INPUT_MOVEVALUES(self)_y
1233                                         + '0 0 1' * PHYS_INPUT_MOVEVALUES(self)_z;
1234         self.velocity_z += g;
1235         if (self.ladder_entity.classname == "func_water")
1236         {
1237                 float f = vlen(wishvel);
1238                 if (f > self.ladder_entity.speed)
1239                         wishvel *= (self.ladder_entity.speed / f);
1240
1241                 self.watertype = self.ladder_entity.skin;
1242                 f = self.ladder_entity.origin_z + self.ladder_entity.maxs_z;
1243                 if ((self.origin_z + self.view_ofs_z) < f)
1244                         self.waterlevel = WATERLEVEL_SUBMERGED;
1245                 else if ((self.origin_z + (self.mins_z + self.maxs_z) * 0.5) < f)
1246                         self.waterlevel = WATERLEVEL_SWIMMING;
1247                 else if ((self.origin_z + self.mins_z + 1) < f)
1248                         self.waterlevel = WATERLEVEL_WETFEET;
1249                 else
1250                 {
1251                         self.waterlevel = WATERLEVEL_NONE;
1252                         self.watertype = CONTENT_EMPTY;
1253                 }
1254         }
1255         // acceleration
1256         vector wishdir = normalize(wishvel);
1257         float wishspeed = min(vlen(wishvel), PHYS_MAXSPEED(self) * maxspd_mod);
1258         PM_ClientMovement_Move();
1259 #ifdef SVQC
1260         if (time >= self.teleport_time)
1261 #endif
1262                 // water acceleration
1263                 PM_Accelerate(wishdir, wishspeed, wishspeed, PHYS_ACCELERATE*maxspd_mod, 1, 0, 0, 0);
1264 }
1265
1266 void PM_check_jumppad()
1267 {
1268 #ifdef CSQC
1269         entity oldself = self;
1270
1271         for(self = world; (self = find(self, classname, "jumppad")); )
1272                 trigger_push_draw();
1273
1274         self = oldself;
1275 #endif
1276 }
1277
1278 void PM_jetpack(float maxspd_mod)
1279 {
1280         //makevectors(PHYS_INPUT_ANGLES(self).y * '0 1 0');
1281         makevectors(PHYS_INPUT_ANGLES(self));
1282         vector wishvel = v_forward * PHYS_INPUT_MOVEVALUES(self)_x
1283                                         + v_right * PHYS_INPUT_MOVEVALUES(self)_y;
1284         // add remaining speed as Z component
1285         float maxairspd = PHYS_MAXAIRSPEED * max(1, maxspd_mod);
1286         // fix speedhacks :P
1287         wishvel = normalize(wishvel) * min(1, vlen(wishvel) / maxairspd);
1288         // add the unused velocity as up component
1289         wishvel_z = 0;
1290
1291         // if (self.BUTTON_JUMP)
1292                 wishvel_z = sqrt(max(0, 1 - wishvel * wishvel));
1293
1294         // it is now normalized, so...
1295         float a_side = PHYS_JETPACK_ACCEL_SIDE;
1296         float a_up = PHYS_JETPACK_ACCEL_UP;
1297         float a_add = PHYS_JETPACK_ANTIGRAVITY * PHYS_GRAVITY;
1298
1299         wishvel_x *= a_side;
1300         wishvel_y *= a_side;
1301         wishvel_z *= a_up;
1302         wishvel_z += a_add;
1303
1304         float best = 0;
1305         //////////////////////////////////////////////////////////////////////////////////////
1306         // finding the maximum over all vectors of above form
1307         // with wishvel having an absolute value of 1
1308         //////////////////////////////////////////////////////////////////////////////////////
1309         // we're finding the maximum over
1310         //   f(a_side, a_up, a_add, z) := a_side * (1 - z^2) + (a_add + a_up * z)^2;
1311         // for z in the range from -1 to 1
1312         //////////////////////////////////////////////////////////////////////////////////////
1313         // maximum is EITHER attained at the single extreme point:
1314         float a_diff = a_side * a_side - a_up * a_up;
1315         float f;
1316         if (a_diff != 0)
1317         {
1318                 f = a_add * a_up / a_diff; // this is the zero of diff(f(a_side, a_up, a_add, z), z)
1319                 if (f > -1 && f < 1) // can it be attained?
1320                 {
1321                         best = (a_diff + a_add * a_add) * (a_diff + a_up * a_up) / a_diff;
1322                         //print("middle\n");
1323                 }
1324         }
1325         // OR attained at z = 1:
1326         f = (a_up + a_add) * (a_up + a_add);
1327         if (f > best)
1328         {
1329                 best = f;
1330                 //print("top\n");
1331         }
1332         // OR attained at z = -1:
1333         f = (a_up - a_add) * (a_up - a_add);
1334         if (f > best)
1335         {
1336                 best = f;
1337                 //print("bottom\n");
1338         }
1339         best = sqrt(best);
1340         //////////////////////////////////////////////////////////////////////////////////////
1341
1342         //print("best possible acceleration: ", ftos(best), "\n");
1343
1344         float fxy, fz;
1345         fxy = bound(0, 1 - (self.velocity * normalize(wishvel_x * '1 0 0' + wishvel_y * '0 1 0')) / PHYS_JETPACK_MAXSPEED_SIDE, 1);
1346         if (wishvel_z - PHYS_GRAVITY > 0)
1347                 fz = bound(0, 1 - self.velocity_z / PHYS_JETPACK_MAXSPEED_UP, 1);
1348         else
1349                 fz = bound(0, 1 + self.velocity_z / PHYS_JETPACK_MAXSPEED_UP, 1);
1350
1351         float fvel;
1352         fvel = vlen(wishvel);
1353         wishvel_x *= fxy;
1354         wishvel_y *= fxy;
1355         wishvel_z = (wishvel_z - PHYS_GRAVITY) * fz + PHYS_GRAVITY;
1356
1357         fvel = min(1, vlen(wishvel) / best);
1358         if (PHYS_JETPACK_FUEL && !(ITEMS(self) & IT_UNLIMITED_WEAPON_AMMO))
1359                 f = min(1, PHYS_AMMO_FUEL(self) / (PHYS_JETPACK_FUEL * PHYS_INPUT_TIMELENGTH * fvel));
1360         else
1361                 f = 1;
1362
1363         //print("this acceleration: ", ftos(vlen(wishvel) * f), "\n");
1364
1365         if (f > 0 && wishvel != '0 0 0')
1366         {
1367                 self.velocity = self.velocity + wishvel * f * PHYS_INPUT_TIMELENGTH;
1368                 UNSET_ONGROUND(self);
1369
1370 #ifdef SVQC
1371                 if (!(ITEMS(self) & IT_UNLIMITED_WEAPON_AMMO))
1372                         self.ammo_fuel -= PHYS_JETPACK_FUEL * PHYS_INPUT_TIMELENGTH * fvel * f;
1373
1374                 ITEMS(self) |= IT_USING_JETPACK;
1375
1376                 // jetpack also inhibits health regeneration, but only for 1 second
1377                 self.pauseregen_finished = max(self.pauseregen_finished, time + autocvar_g_balance_pause_fuel_regen);
1378 #endif
1379         }
1380
1381 #ifdef CSQC
1382         float g = PHYS_GRAVITY * PHYS_ENTGRAVITY(self) * PHYS_INPUT_TIMELENGTH;
1383         if (GAMEPLAYFIX_GRAVITYUNAFFECTEDBYTICRATE)
1384                 self.velocity_z -= g * 0.5;
1385         else
1386                 self.velocity_z -= g;
1387         PM_ClientMovement_Move();
1388         if (!IS_ONGROUND(self) || !(GAMEPLAYFIX_NOGRAVITYONGROUND))
1389                 if (GAMEPLAYFIX_GRAVITYUNAFFECTEDBYTICRATE)
1390                         self.velocity_z -= g * 0.5;
1391 #endif
1392 }
1393 #ifdef SVQC
1394 void SV_WalkMove ()
1395 {
1396         // if PHYS_INPUT_TIMELENGTH is 0 (due to client sending the same timestamp twice),
1397         // don't move
1398         if (PHYS_INPUT_TIMELENGTH <= 0)
1399                 return;
1400
1401 //      if (autocvar_sv_gameplayfix_unstickplayers)
1402 //              SV_CheckStuck (self);
1403
1404 //      applygravity = !SV_CheckWater(self) && self.movetype == MOVETYPE_WALK && !(self.flags & FL_WATERJUMP);
1405
1406 //      hitsupercontentsmask = SV_GenericHitSuperContentsMask(self);
1407
1408 //      SV_CheckVelocity(self);
1409
1410         // do a regular slide move unless it looks like you ran into a step
1411 //      float oldonground = self.flags & FL_ONGROUND;
1412
1413         vector start_origin = self.origin;
1414         vector start_velocity = self.velocity;
1415
1416         float clip = 0;
1417 //      clip = SV_FlyMove (self, PHYS_INPUT_TIMELENGTH, applygravity, NULL, hitsupercontentsmask, sv_gameplayfix_stepmultipletimes.integer ? sv_stepheight.value : 0);
1418
1419 //      if(sv_gameplayfix_downtracesupportsongroundflag.integer)
1420 //      if(!(clip & 1))
1421         {
1422                 // only try this if there was no floor in the way in the trace (no,
1423                 // this check seems to be not REALLY necessary, because if clip & 1,
1424                 // our trace will hit that thing too)
1425                 vector upmove = self.origin;
1426                 upmove_z++;
1427                 vector downmove = self.origin;
1428                 upmove_z--;
1429                 float type;
1430                 if (self.movetype == MOVETYPE_FLYMISSILE)
1431                         type = MOVE_MISSILE;
1432                 else if (self.movetype == MOVETYPE_FLY_WORLDONLY)
1433                         type = MOVE_WORLDONLY;
1434                 else if (self.solid == SOLID_TRIGGER || self.solid == SOLID_NOT)
1435                         type = MOVE_NOMONSTERS; // only clip against bmodels
1436                 else
1437                         type = MOVE_NORMAL;
1438                 vector entmins = self.mins;
1439                 vector entmaxs = self.maxs;
1440                 tracebox(upmove, entmins, entmaxs, downmove, type, self);
1441                 if(trace_fraction < 1 && trace_plane_normal_z > 0.7)
1442                         clip |= 1; // but we HAVE found a floor
1443         }
1444
1445         // if the move did not hit the ground at any point, we're not on ground
1446 //      if(!(clip & 1))
1447 //              self.flags = self.flags & ~FL_ONGROUND;
1448
1449 //      SV_CheckVelocity(self);
1450 //      SV_LinkEdict(self);
1451 //      SV_LinkEdict_TouchAreaGrid(self);
1452
1453         if(clip & 8) // teleport
1454                 return;
1455
1456         if (self.flags & FL_WATERJUMP)
1457                 return;
1458
1459 //      if (autocvar_sv_nostep)
1460 //              return;
1461
1462         vector originalmove_origin = self.origin;
1463         vector originalmove_velocity = self.velocity;
1464         float originalmove_flags = self.flags;
1465         entity originalmove_groundentity = self.groundentity;
1466
1467         // if move didn't block on a step, return
1468         if (clip & 2)
1469         {
1470                 // if move was not trying to move into the step, return
1471                 if (fabs(start_velocity_x) < 0.03125 && fabs(start_velocity_y) < 0.03125)
1472                         return;
1473
1474                 if (self.movetype != MOVETYPE_FLY)
1475                 {
1476                         // return if gibbed by a trigger
1477                         if (self.movetype != MOVETYPE_WALK)
1478                                 return;
1479
1480                         // return if attempting to jump while airborn (unless sv_jumpstep)
1481 //                      if (!autocvar_sv_jumpstep)
1482 //                              if (!oldonground && PRVM_serveredictfloat(self, waterlevel) == 0)
1483 //                                      return;
1484                 }
1485
1486                 // try moving up and forward to go up a step
1487                 // back to start pos
1488                 self.origin = start_origin;
1489                 self.velocity = start_velocity;
1490
1491                 // move up
1492                 vector upmove = '0 0 0';
1493                 upmove_z = autocvar_sv_stepheight;
1494 //              if(!SV_PushEntity(&trace, self, upmove, true))
1495 //              {
1496 //                      // we got teleported when upstepping... must abort the move
1497 //                      return;
1498 //              }
1499
1500                 // move forward
1501                 self.velocity_z = 0;
1502 //              clip = SV_FlyMove (self, PHYS_INPUT_TIMELENGTH, applygravity, stepnormal, hitsupercontentsmask, 0);
1503                 self.velocity_z += start_velocity_z;
1504 //              if(clip & 8)
1505 //              {
1506 //                      // we got teleported when upstepping... must abort the move
1507 //                      // note that z velocity handling may not be what QC expects here, but we cannot help it
1508 //                      return;
1509 //              }
1510
1511 //              SV_CheckVelocity(self);
1512 //              SV_LinkEdict(self);
1513 //              SV_LinkEdict_TouchAreaGrid(self);
1514
1515                 // check for stuckness, possibly due to the limited precision of floats
1516                 // in the clipping hulls
1517                 if (clip
1518                  && fabs(originalmove_origin_y - self.origin_y < 0.03125)
1519                  && fabs(originalmove_origin_x - self.origin_x < 0.03125))
1520                 {
1521                         //Con_Printf("wall\n");
1522                         // stepping up didn't make any progress, revert to original move
1523                         self.origin = originalmove_origin;
1524                         self.velocity = originalmove_velocity;
1525                         self.flags = originalmove_flags;
1526                         self.groundentity = originalmove_groundentity;
1527                         return;
1528                 }
1529
1530                 //Con_Printf("step - ");
1531
1532                 // extra friction based on view angle
1533 //              if (clip & 2 && sv_wallfriction.integer)
1534 //                      SV_WallFriction (self, stepnormal);
1535         }
1536         // don't do the down move if stepdown is disabled, moving upward, not in water, or the move started offground or ended onground
1537 //      else if (!autocvar_sv_gameplayfix_stepdown || self.waterlevel >= 3 || start_velocity_z >= (1.0 / 32.0) || !oldonground || (self.flags & FL_ONGROUND))
1538 //              return;
1539
1540         // move down
1541         vector downmove = '0 0 0';
1542         downmove_z = -autocvar_sv_stepheight + start_velocity_z*PHYS_INPUT_TIMELENGTH;
1543 //      if(!SV_PushEntity (&downtrace, self, downmove, true))
1544 //      {
1545 //              // we got teleported when downstepping... must abort the move
1546 //              return;
1547 //      }
1548
1549         if (trace_fraction < 1 && trace_plane_normal_z > 0.7)
1550         {
1551                 // this has been disabled so that you can't jump when you are stepping
1552                 // up while already jumping (also known as the Quake2 double jump bug)
1553         }
1554         else
1555         {
1556                 //Con_Printf("slope\n");
1557                 // if the push down didn't end up on good ground, use the move without
1558                 // the step up.  This happens near wall / slope combinations, and can
1559                 // cause the player to hop up higher on a slope too steep to climb
1560                 self.origin = originalmove_origin;
1561                 self.velocity = originalmove_velocity;
1562                 self.flags = originalmove_flags;
1563                 self.groundentity = originalmove_groundentity;
1564         }
1565
1566 //      SV_CheckVelocity(self);
1567 //      SV_LinkEdict(self);
1568 //      SV_LinkEdict_TouchAreaGrid(self);
1569 }
1570 #endif
1571 void PM_walk(float buttons_prev, float maxspd_mod)
1572 {
1573         if (!WAS_ONGROUND(self))
1574         {
1575                 if (autocvar_speedmeter)
1576                         dprint(strcat("landing velocity: ", vtos(self.velocity), " (abs: ", ftos(vlen(self.velocity)), ")\n"));
1577                 if (self.lastground < time - 0.3)
1578                         self.velocity *= (1 - PHYS_FRICTION_ONLAND);
1579                 if (self.jumppadcount > 1)
1580                         dprint(strcat(ftos(self.jumppadcount), "x jumppad combo\n"));
1581                 self.jumppadcount = 0;
1582         }
1583         // walking
1584         makevectors(PHYS_INPUT_ANGLES(self).y * '0 1 0');
1585         vector wishvel = v_forward * PHYS_INPUT_MOVEVALUES(self).x
1586                                         + v_right * PHYS_INPUT_MOVEVALUES(self).y;
1587         // acceleration
1588         vector wishdir = normalize(wishvel);
1589         float wishspeed = vlen(wishvel);
1590
1591         wishspeed = min(wishspeed, PHYS_MAXSPEED(self) * maxspd_mod);
1592         if (IS_DUCKED(self))
1593                 wishspeed *= 0.5;
1594
1595         // apply edge friction
1596         float f = vlen(vec2(self.velocity));
1597         if (f > 0)
1598         {
1599                 // TODO: apply edge friction
1600                 // apply ground friction
1601                 f = 1 - PHYS_INPUT_TIMELENGTH * PHYS_FRICTION * ((f < PHYS_STOPSPEED) ? (PHYS_STOPSPEED / f) : 1);
1602                 f = max(0, f);
1603                 self.velocity *= f;
1604                 /*
1605                    Mathematical analysis time!
1606
1607                    Our goal is to invert this mess.
1608
1609                    For the two cases we get:
1610                         v = v0 * (1 - PHYS_INPUT_TIMELENGTH * (PHYS_STOPSPEED / v0) * PHYS_FRICTION)
1611                           = v0 - PHYS_INPUT_TIMELENGTH * PHYS_STOPSPEED * PHYS_FRICTION
1612                         v0 = v + PHYS_INPUT_TIMELENGTH * PHYS_STOPSPEED * PHYS_FRICTION
1613                    and
1614                         v = v0 * (1 - PHYS_INPUT_TIMELENGTH * PHYS_FRICTION)
1615                         v0 = v / (1 - PHYS_INPUT_TIMELENGTH * PHYS_FRICTION)
1616
1617                    These cases would be chosen ONLY if:
1618                         v0 < PHYS_STOPSPEED
1619                         v + PHYS_INPUT_TIMELENGTH * PHYS_STOPSPEED * PHYS_FRICTION < PHYS_STOPSPEED
1620                         v < PHYS_STOPSPEED * (1 - PHYS_INPUT_TIMELENGTH * PHYS_FRICTION)
1621                    and, respectively:
1622                         v0 >= PHYS_STOPSPEED
1623                         v / (1 - PHYS_INPUT_TIMELENGTH * PHYS_FRICTION) >= PHYS_STOPSPEED
1624                         v >= PHYS_STOPSPEED * (1 - PHYS_INPUT_TIMELENGTH * PHYS_FRICTION)
1625                  */
1626         }
1627         float addspeed = wishspeed - self.velocity * wishdir;
1628         if (addspeed > 0)
1629         {
1630                 float accelspeed = min(PHYS_ACCELERATE * PHYS_INPUT_TIMELENGTH * wishspeed, addspeed);
1631                 self.velocity += accelspeed * wishdir;
1632         }
1633         float g = PHYS_GRAVITY * PHYS_ENTGRAVITY(self) * PHYS_INPUT_TIMELENGTH;
1634         if (!(GAMEPLAYFIX_NOGRAVITYONGROUND))
1635                 self.velocity_z -= g * (GAMEPLAYFIX_GRAVITYUNAFFECTEDBYTICRATE ? 0.5 : 1);
1636         if (self.velocity * self.velocity)
1637                 PM_ClientMovement_Move();
1638         if (GAMEPLAYFIX_GRAVITYUNAFFECTEDBYTICRATE)
1639                 if (!IS_ONGROUND(self) || !GAMEPLAYFIX_NOGRAVITYONGROUND)
1640                         self.velocity_z -= g * 0.5;
1641 }
1642
1643 void PM_air(float buttons_prev, float maxspd_mod)
1644 {
1645         makevectors(PHYS_INPUT_ANGLES(self).y * '0 1 0');
1646         vector wishvel = v_forward * PHYS_INPUT_MOVEVALUES(self).x
1647                                         + v_right * PHYS_INPUT_MOVEVALUES(self).y;
1648         // acceleration
1649         vector wishdir = normalize(wishvel);
1650         float wishspeed = vlen(wishvel);
1651
1652 #ifdef SVQC
1653         if (time >= self.teleport_time)
1654 #else
1655         if (pmove_waterjumptime <= 0)
1656 #endif
1657         {
1658                 float maxairspd = PHYS_MAXAIRSPEED * min(maxspd_mod, 1);
1659
1660                 // apply air speed limit
1661                 float airaccelqw = PHYS_AIRACCEL_QW(self);
1662                 float wishspeed0 = wishspeed;
1663                 wishspeed = min(wishspeed, maxairspd);
1664                 if (IS_DUCKED(self))
1665                         wishspeed *= 0.5;
1666                 float airaccel = PHYS_AIRACCELERATE * min(maxspd_mod, 1);
1667
1668                 float accelerating = (self.velocity * wishdir > 0);
1669                 float wishspeed2 = wishspeed;
1670
1671                 // CPM: air control
1672                 if (PHYS_AIRSTOPACCELERATE)
1673                 {
1674                         vector curdir = normalize(vec2(self.velocity));
1675                         airaccel += (PHYS_AIRSTOPACCELERATE*maxspd_mod - airaccel) * max(0, -(curdir * wishdir));
1676                 }
1677                 // note that for straight forward jumping:
1678                 // step = accel * PHYS_INPUT_TIMELENGTH * wishspeed0;
1679                 // accel  = bound(0, wishspeed - vel_xy_current, step) * accelqw + step * (1 - accelqw);
1680                 // -->
1681                 // dv/dt = accel * maxspeed (when slow)
1682                 // dv/dt = accel * maxspeed * (1 - accelqw) (when fast)
1683                 // log dv/dt = logaccel + logmaxspeed (when slow)
1684                 // log dv/dt = logaccel + logmaxspeed + log(1 - accelqw) (when fast)
1685                 float strafity = IsMoveInDirection(PHYS_INPUT_MOVEVALUES(self), -90) + IsMoveInDirection(PHYS_INPUT_MOVEVALUES(self), +90); // if one is nonzero, other is always zero
1686                 if (PHYS_MAXAIRSTRAFESPEED)
1687                         wishspeed = min(wishspeed, GeomLerp(PHYS_MAXAIRSPEED*maxspd_mod, strafity, PHYS_MAXAIRSTRAFESPEED*maxspd_mod));
1688                 if (PHYS_AIRSTRAFEACCELERATE)
1689                         airaccel = GeomLerp(airaccel, strafity, PHYS_AIRSTRAFEACCELERATE*maxspd_mod);
1690                 if (PHYS_AIRSTRAFEACCEL_QW(self))
1691                         airaccelqw =
1692                 (((strafity > 0.5 ? PHYS_AIRSTRAFEACCEL_QW(self) : PHYS_AIRACCEL_QW(self)) >= 0) ? +1 : -1)
1693                 *
1694                 (1 - GeomLerp(1 - fabs(PHYS_AIRACCEL_QW(self)), strafity, 1 - fabs(PHYS_AIRSTRAFEACCEL_QW(self))));
1695                 // !CPM
1696
1697                 if (PHYS_WARSOWBUNNY_TURNACCEL && accelerating && PHYS_INPUT_MOVEVALUES(self).y == 0 && PHYS_INPUT_MOVEVALUES(self).x != 0)
1698                         PM_AirAccelerate(wishdir, wishspeed2);
1699                 else
1700                         PM_Accelerate(wishdir, wishspeed, wishspeed0, airaccel, airaccelqw, PHYS_AIRACCEL_QW_STRETCHFACTOR(self), PHYS_AIRACCEL_SIDEWAYS_FRICTION / maxairspd, PHYS_AIRSPEEDLIMIT_NONQW(self));
1701
1702                 if (PHYS_AIRCONTROL)
1703                         CPM_PM_Aircontrol(wishdir, wishspeed2);
1704         }
1705         float g = PHYS_GRAVITY * PHYS_ENTGRAVITY(self) * PHYS_INPUT_TIMELENGTH;
1706         if (GAMEPLAYFIX_GRAVITYUNAFFECTEDBYTICRATE)
1707                 self.velocity_z -= g * 0.5;
1708         else
1709                 self.velocity_z -= g;
1710         PM_ClientMovement_Move();
1711         if (!IS_ONGROUND(self) || !(GAMEPLAYFIX_NOGRAVITYONGROUND))
1712                 if (GAMEPLAYFIX_GRAVITYUNAFFECTEDBYTICRATE)
1713                         self.velocity_z -= g * 0.5;
1714 }
1715
1716 // used for calculating airshots
1717 float PM_is_flying()
1718 {
1719         if (IS_ONGROUND(self))
1720                 return 0;
1721         if (self.waterlevel >= WATERLEVEL_SWIMMING)
1722                 return 0;
1723         traceline(self.origin, self.origin - '0 0 48', MOVE_NORMAL, self);
1724         return trace_fraction >= 1;
1725 }
1726
1727 void PM_Main()
1728 {
1729         float buttons = PHYS_INPUT_BUTTON_MASK(self);
1730 #ifdef CSQC
1731         self.team = myteam + 1; // is this correct?
1732         if (!(PHYS_INPUT_BUTTON_JUMP(self))) // !jump
1733                 UNSET_JUMP_HELD(self); // canjump = true
1734         pmove_waterjumptime -= PHYS_INPUT_TIMELENGTH;
1735 #endif
1736         PM_ClientMovement_UpdateStatus();
1737
1738 #ifdef SVQC
1739         WarpZone_PlayerPhysics_FixVAngle();
1740 #endif
1741         float maxspeed_mod = 1;
1742         maxspeed_mod *= PM_check_keepaway();
1743         maxspeed_mod *= PHYS_HIGHSPEED;
1744
1745 #ifdef SVQC
1746         Physics_UpdateStats(maxspeed_mod);
1747
1748         if (self.PlayerPhysplug)
1749                 if (self.PlayerPhysplug())
1750                         return;
1751 #endif
1752
1753         PM_check_race_movetime();
1754 #ifdef SVQC
1755         anticheat_physics();
1756 #endif
1757
1758         if (PM_check_specialcommand(buttons))
1759                 return;
1760 #ifdef SVQC
1761         if (sv_maxidle > 0)
1762         {
1763                 if (buttons != self.buttons_old || PHYS_INPUT_MOVEVALUES(self) != self.movement_old || PHYS_INPUT_ANGLES(self) != self.v_angle_old)
1764                         self.parm_idlesince = time;
1765         }
1766 #endif
1767         float buttons_prev = self.buttons_old;
1768         self.buttons_old = buttons;
1769         self.movement_old = PHYS_INPUT_MOVEVALUES(self);
1770         self.v_angle_old = PHYS_INPUT_ANGLES(self);
1771
1772         PM_check_nickspam();
1773
1774         PM_check_punch();
1775 #ifdef SVQC
1776         if (IS_BOT_CLIENT(self))
1777         {
1778                 if (playerdemo_read())
1779                         return;
1780                 bot_think();
1781         }
1782
1783         if (IS_PLAYER(self))
1784 #endif
1785         {
1786 #ifdef SVQC
1787                 if (self.race_penalty)
1788                         if (time > self.race_penalty)
1789                                 self.race_penalty = 0;
1790 #endif
1791
1792                 float not_allowed_to_move = 0;
1793 #ifdef SVQC
1794                 if (self.race_penalty)
1795                         not_allowed_to_move = 1;
1796 #endif
1797 #ifdef SVQC
1798                 if (!autocvar_sv_ready_restart_after_countdown)
1799                         if (time < game_starttime)
1800                                 not_allowed_to_move = 1;
1801 #endif
1802
1803                 if (not_allowed_to_move)
1804                 {
1805                         self.velocity = '0 0 0';
1806                         self.movetype = MOVETYPE_NONE;
1807 #ifdef SVQC
1808                         self.disableclientprediction = 2;
1809 #endif
1810                 }
1811 #ifdef SVQC
1812                 else if (self.disableclientprediction == 2)
1813                 {
1814                         if (self.movetype == MOVETYPE_NONE)
1815                                 self.movetype = MOVETYPE_WALK;
1816                         self.disableclientprediction = 0;
1817                 }
1818 #endif
1819         }
1820
1821 #ifdef SVQC
1822         if (self.movetype == MOVETYPE_NONE)
1823                 return;
1824
1825         // when we get here, disableclientprediction cannot be 2
1826         self.disableclientprediction = 0;
1827 #endif
1828
1829         PM_check_spider();
1830
1831         PM_check_frozen();
1832
1833         PM_check_blocked();
1834
1835         maxspeed_mod = 1;
1836
1837 #ifdef SVQC
1838         if (self.in_swamp) {
1839                 maxspeed_mod *= self.swamp_slowdown; //cvar("g_balance_swamp_moverate");
1840         }
1841 #endif
1842
1843         // conveyors: first fix velocity
1844         if (self.conveyor.state)
1845                 self.velocity -= self.conveyor.movedir;
1846
1847 #ifdef SVQC
1848         MUTATOR_CALLHOOK(PlayerPhysics);
1849 #endif
1850 #ifdef CSQC
1851         PM_multijump();
1852 #endif
1853
1854 //      float forcedodge = 1;
1855 //      if(forcedodge) {
1856 //#ifdef CSQC
1857 //              PM_dodging_checkpressedkeys();
1858 //#endif
1859 //              PM_dodging();
1860 //              PM_ClientMovement_Move();
1861 //              return;
1862 //      }
1863
1864 #ifdef SVQC
1865         if (!IS_PLAYER(self))
1866         {
1867                 maxspeed_mod *= autocvar_sv_spectator_speed_multiplier;
1868                 if (!self.spectatorspeed)
1869                         self.spectatorspeed = maxspeed_mod;
1870                 if (self.impulse && self.impulse <= 19 || (self.impulse >= 200 && self.impulse <= 209) || (self.impulse >= 220 && self.impulse <= 229))
1871                 {
1872                         if (self.lastclassname != "player")
1873                         {
1874                                 if (self.impulse == 10 || self.impulse == 15 || self.impulse == 18 || (self.impulse >= 200 && self.impulse <= 209))
1875                                         self.spectatorspeed = bound(1, self.spectatorspeed + 0.5, 5);
1876                                 else if (self.impulse == 11)
1877                                         self.spectatorspeed = maxspeed_mod;
1878                                 else if (self.impulse == 12 || self.impulse == 16  || self.impulse == 19 || (self.impulse >= 220 && self.impulse <= 229))
1879                                         self.spectatorspeed = bound(1, self.spectatorspeed - 0.5, 5);
1880                                 else if (self.impulse >= 1 && self.impulse <= 9)
1881                                         self.spectatorspeed = 1 + 0.5 * (self.impulse - 1);
1882                         } // otherwise just clear
1883                         self.impulse = 0;
1884                 }
1885                 maxspeed_mod *= self.spectatorspeed;
1886         }
1887 #endif
1888
1889 #ifdef SVQC
1890         // if dead, behave differently
1891         // in CSQC, physics don't handle dead player
1892         if (self.deadflag)
1893                 goto end;
1894 #endif
1895
1896 #ifdef SVQC
1897         if (!self.fixangle && !g_bugrigs)
1898                 self.angles = '0 1 0' * PHYS_INPUT_ANGLES(self).y;
1899 #endif
1900
1901 #ifdef SVQC
1902         if (IS_ONGROUND(self))
1903         if (IS_PLAYER(self)) // no fall sounds for observers thank you very much
1904         if (self.wasFlying)
1905         {
1906                 self.wasFlying = 0;
1907                 if (self.waterlevel < WATERLEVEL_SWIMMING)
1908                 if (time >= self.ladder_time)
1909                 if (!self.hook)
1910                 {
1911                         self.nextstep = time + 0.3 + random() * 0.1;
1912                         trace_dphitq3surfaceflags = 0;
1913                         tracebox(self.origin, self.mins, self.maxs, self.origin - '0 0 1', MOVE_NOMONSTERS, self);
1914                         if (!(trace_dphitq3surfaceflags & Q3SURFACEFLAG_NOSTEPS))
1915                         {
1916                                 if (trace_dphitq3surfaceflags & Q3SURFACEFLAG_METALSTEPS)
1917                                         GlobalSound(globalsound_metalfall, CH_PLAYER, VOICETYPE_PLAYERSOUND);
1918                                 else
1919                                         GlobalSound(globalsound_fall, CH_PLAYER, VOICETYPE_PLAYERSOUND);
1920                         }
1921                 }
1922         }
1923 #endif
1924
1925         if (PM_is_flying())
1926                 self.wasFlying = 1;
1927
1928 #ifdef SVQC
1929         if (IS_PLAYER(self))
1930 #endif
1931                 CheckPlayerJump();
1932
1933         PM_check_jumppad();
1934
1935         if (self.flags & /* FL_WATERJUMP */ 2048)
1936         {
1937                 self.velocity_x = self.movedir_x;
1938                 self.velocity_y = self.movedir_y;
1939                 if (time > self.teleport_time || self.waterlevel == WATERLEVEL_NONE)
1940                 {
1941                         self.flags &= ~/* FL_WATERJUMP */ 2048;
1942                         self.teleport_time = 0;
1943                 }
1944         }
1945
1946 #ifdef SVQC
1947         else if (g_bugrigs && IS_PLAYER(self))
1948                 RaceCarPhysics();
1949 #endif
1950
1951         else if (self.movetype == MOVETYPE_NOCLIP || self.movetype == MOVETYPE_FLY || self.movetype == MOVETYPE_FLY_WORLDONLY)
1952                 PM_fly(maxspeed_mod);
1953
1954         else if (self.waterlevel >= WATERLEVEL_SWIMMING)
1955                 PM_swim(maxspeed_mod);
1956
1957         else if (time < self.ladder_time)
1958                 PM_ladder(maxspeed_mod);
1959
1960         else if (ITEMS(self) & IT_USING_JETPACK)
1961                 PM_jetpack(maxspeed_mod);
1962
1963         else
1964         {
1965                 if (IS_ONGROUND(self))
1966                         PM_walk(buttons_prev, maxspeed_mod);
1967                 else
1968                         PM_air(buttons_prev, maxspeed_mod);
1969         }
1970
1971 #ifdef SVQC
1972         if (!IS_OBSERVER(self))
1973                 PM_check_race();
1974 #endif
1975         PM_check_vortex();
1976
1977 :end
1978         if (IS_ONGROUND(self))
1979                 self.lastground = time;
1980
1981         // conveyors: then break velocity again
1982         if (self.conveyor.state)
1983                 self.velocity += self.conveyor.movedir;
1984
1985 #ifdef SVQC
1986         self.lastflags = self.flags;
1987 #elif defined(CSQC)
1988         self.lastflags = self.pmove_flags;
1989 #endif
1990         
1991         self.lastclassname = self.classname;
1992 }
1993
1994 #ifdef SVQC
1995 void SV_PlayerPhysics(void)
1996 #elif defined(CSQC)
1997 void CSQC_ClientMovement_PlayerMove_Frame(void)
1998 #endif
1999 {
2000         PM_Main();
2001 }