]> de.git.xonotic.org Git - xonotic/xonotic-data.pk3dir.git/blobdiff - qcsrc/common/physics.qc
Decouple bugrigs from the main code base
[xonotic/xonotic-data.pk3dir.git] / qcsrc / common / physics.qc
index f42d06ed2f3230df4605d7625f23f97cdc4fc273..299a0570e273526e2de5792155f35b8788c9730f 100644 (file)
@@ -747,212 +747,6 @@ float racecar_angle(float forward, float down)
                return ret * angle_mult;
 }
 
-void RaceCarPhysics()
-{SELFPARAM();
-#ifdef SVQC
-       // using this move type for "big rigs"
-       // the engine does not push the entity!
-
-       vector rigvel;
-
-       vector angles_save = self.angles;
-       float accel = bound(-1, self.movement.x / PHYS_MAXSPEED(self), 1);
-       float steer = bound(-1, self.movement.y / PHYS_MAXSPEED(self), 1);
-
-       if (g_bugrigs_reverse_speeding)
-       {
-               if (accel < 0)
-               {
-                       // back accel is DIGITAL
-                       // to prevent speedhack
-                       if (accel < -0.5)
-                               accel = -1;
-                       else
-                               accel = 0;
-               }
-       }
-
-       self.angles_x = 0;
-       self.angles_z = 0;
-       makevectors(self.angles); // new forward direction!
-
-       if (IS_ONGROUND(self) || g_bugrigs_air_steering)
-       {
-               float myspeed = self.velocity * v_forward;
-               float upspeed = self.velocity * v_up;
-
-               // responsiveness factor for steering and acceleration
-               float f = 1 / (1 + pow(max(-myspeed, myspeed) / g_bugrigs_speed_ref, g_bugrigs_speed_pow));
-               //MAXIMA: f(v) := 1 / (1 + (v / g_bugrigs_speed_ref) ^ g_bugrigs_speed_pow);
-
-               float steerfactor;
-               if (myspeed < 0 && g_bugrigs_reverse_spinning)
-                       steerfactor = -myspeed * g_bugrigs_steer;
-               else
-                       steerfactor = -myspeed * f * g_bugrigs_steer;
-
-               float accelfactor;
-               if (myspeed < 0 && g_bugrigs_reverse_speeding)
-                       accelfactor = g_bugrigs_accel;
-               else
-                       accelfactor = f * g_bugrigs_accel;
-               //MAXIMA: accel(v) := f(v) * g_bugrigs_accel;
-
-               if (accel < 0)
-               {
-                       if (myspeed > 0)
-                       {
-                               myspeed = max(0, myspeed - PHYS_INPUT_TIMELENGTH * (g_bugrigs_friction_floor - g_bugrigs_friction_brake * accel));
-                       }
-                       else
-                       {
-                               if (!g_bugrigs_reverse_speeding)
-                                       myspeed = min(0, myspeed + PHYS_INPUT_TIMELENGTH * g_bugrigs_friction_floor);
-                       }
-               }
-               else
-               {
-                       if (myspeed >= 0)
-                       {
-                               myspeed = max(0, myspeed - PHYS_INPUT_TIMELENGTH * g_bugrigs_friction_floor);
-                       }
-                       else
-                       {
-                               if (g_bugrigs_reverse_stopping)
-                                       myspeed = 0;
-                               else
-                                       myspeed = min(0, myspeed + PHYS_INPUT_TIMELENGTH * (g_bugrigs_friction_floor + g_bugrigs_friction_brake * accel));
-                       }
-               }
-               // terminal velocity = velocity at which 50 == accelfactor, that is, 1549 units/sec
-               //MAXIMA: friction(v) := g_bugrigs_friction_floor;
-
-               self.angles_y += steer * PHYS_INPUT_TIMELENGTH * steerfactor; // apply steering
-               makevectors(self.angles); // new forward direction!
-
-               myspeed += accel * accelfactor * PHYS_INPUT_TIMELENGTH;
-
-               rigvel = myspeed * v_forward + '0 0 1' * upspeed;
-       }
-       else
-       {
-               float myspeed = vlen(self.velocity);
-
-               // responsiveness factor for steering and acceleration
-               float f = 1 / (1 + pow(max(0, myspeed / g_bugrigs_speed_ref), g_bugrigs_speed_pow));
-               float steerfactor = -myspeed * f;
-               self.angles_y += steer * PHYS_INPUT_TIMELENGTH * steerfactor; // apply steering
-
-               rigvel = self.velocity;
-               makevectors(self.angles); // new forward direction!
-       }
-
-       rigvel *= max(0, 1 - vlen(rigvel) * g_bugrigs_friction_air * PHYS_INPUT_TIMELENGTH);
-       //MAXIMA: airfriction(v) := v * v * g_bugrigs_friction_air;
-       //MAXIMA: total_acceleration(v) := accel(v) - friction(v) - airfriction(v);
-       //MAXIMA: solve(total_acceleration(v) = 0, v);
-
-       if (g_bugrigs_planar_movement)
-       {
-               vector rigvel_xy, neworigin, up;
-               float mt;
-
-               rigvel_z -= PHYS_INPUT_TIMELENGTH * PHYS_GRAVITY; // 4x gravity plays better
-               rigvel_xy = vec2(rigvel);
-
-               if (g_bugrigs_planar_movement_car_jumping)
-                       mt = MOVE_NORMAL;
-               else
-                       mt = MOVE_NOMONSTERS;
-
-               tracebox(self.origin, self.mins, self.maxs, self.origin + '0 0 1024', mt, self);
-               up = trace_endpos - self.origin;
-
-               // BUG RIGS: align the move to the surface instead of doing collision testing
-               // can we move?
-               tracebox(trace_endpos, self.mins, self.maxs, trace_endpos + rigvel_xy * PHYS_INPUT_TIMELENGTH, mt, self);
-
-               // align to surface
-               tracebox(trace_endpos, self.mins, self.maxs, trace_endpos - up + '0 0 1' * rigvel_z * PHYS_INPUT_TIMELENGTH, mt, self);
-
-               if (trace_fraction < 0.5)
-               {
-                       trace_fraction = 1;
-                       neworigin = self.origin;
-               }
-               else
-                       neworigin = trace_endpos;
-
-               if (trace_fraction < 1)
-               {
-                       // now set angles_x so that the car points parallel to the surface
-                       self.angles = vectoangles(
-                                       '1 0 0' * v_forward_x * trace_plane_normal_z
-                                       +
-                                       '0 1 0' * v_forward_y * trace_plane_normal_z
-                                       +
-                                       '0 0 1' * -(v_forward_x * trace_plane_normal_x + v_forward_y * trace_plane_normal_y)
-                                       );
-                       SET_ONGROUND(self);
-               }
-               else
-               {
-                       // now set angles_x so that the car points forward, but is tilted in velocity direction
-                       UNSET_ONGROUND(self);
-               }
-
-               self.velocity = (neworigin - self.origin) * (1.0 / PHYS_INPUT_TIMELENGTH);
-               self.movetype = MOVETYPE_NOCLIP;
-       }
-       else
-       {
-               rigvel_z -= PHYS_INPUT_TIMELENGTH * PHYS_GRAVITY; // 4x gravity plays better
-               self.velocity = rigvel;
-               self.movetype = MOVETYPE_FLY;
-       }
-
-       trace_fraction = 1;
-       tracebox(self.origin, self.mins, self.maxs, self.origin - '0 0 4', MOVE_NORMAL, self);
-       if (trace_fraction != 1)
-       {
-               self.angles = vectoangles2(
-                               '1 0 0' * v_forward_x * trace_plane_normal_z
-                               +
-                               '0 1 0' * v_forward_y * trace_plane_normal_z
-                               +
-                               '0 0 1' * -(v_forward_x * trace_plane_normal_x + v_forward_y * trace_plane_normal_y),
-                               trace_plane_normal
-                               );
-       }
-       else
-       {
-               vector vel_local;
-
-               vel_local_x = v_forward * self.velocity;
-               vel_local_y = v_right * self.velocity;
-               vel_local_z = v_up * self.velocity;
-
-               self.angles_x = racecar_angle(vel_local_x, vel_local_z);
-               self.angles_z = racecar_angle(-vel_local_y, vel_local_z);
-       }
-
-       // smooth the angles
-       vector vf1, vu1, smoothangles;
-       makevectors(self.angles);
-       float f = bound(0, PHYS_INPUT_TIMELENGTH * g_bugrigs_angle_smoothing, 1);
-       if (f == 0)
-               f = 1;
-       vf1 = v_forward * f;
-       vu1 = v_up * f;
-       makevectors(angles_save);
-       vf1 = vf1 + v_forward * (1 - f);
-       vu1 = vu1 + v_up * (1 - f);
-       smoothangles = vectoangles2(vf1, vu1);
-       self.angles_x = -smoothangles_x;
-       self.angles_z =  smoothangles_z;
-#endif
-}
-
 string specialcommand = "xwxwxsxsxaxdxaxdx1x ";
 .float specialcommand_pos;
 void SpecialCommand()
@@ -1750,7 +1544,7 @@ void PM_Main(entity this)
        }
 
 #ifdef SVQC
-       if (!this.fixangle && !g_bugrigs)
+       if (!this.fixangle)
                this.angles = '0 1 0' * this.v_angle.y;
 #endif
 
@@ -1773,10 +1567,8 @@ void PM_Main(entity this)
                }
        }
 
-#ifdef SVQC
-       else if (g_bugrigs && IS_PLAYER(this))
-               RaceCarPhysics();
-#endif
+       else if (MUTATOR_CALLHOOK(PM_Physics, maxspeed_mod))
+               { }
 
        else if (this.movetype == MOVETYPE_NOCLIP || this.movetype == MOVETYPE_FLY || this.movetype == MOVETYPE_FLY_WORLDONLY || MUTATOR_CALLHOOK(IsFlying, this))
                PM_fly(maxspeed_mod);