]> de.git.xonotic.org Git - xonotic/xonotic-data.pk3dir.git/blobdiff - qcsrc/common/weapons/calculations.qc
Merge branch 'terencehill/eraseable_functions'
[xonotic/xonotic-data.pk3dir.git] / qcsrc / common / weapons / calculations.qc
index 97c1999f84299fc98642f2c2597b84891f215cef..513af5209d670cac485f046342922c5e003c0bf3 100644 (file)
@@ -1,3 +1,5 @@
+#include "calculations.qh"
+
 // =============================
 //  Explosion Force Calculation
 // =============================
@@ -88,15 +90,11 @@ vector solve_cubic_pq(float p, float q)
                // cos(a)
                // cos(a + 2pi/3)
                // cos(a + 4pi/3)
-               return
-                       u *
-                       (
-                               '1 0 0' * cos(a + 2.0/3.0*M_PI)
-                               +
-                               '0 1 0' * cos(a + 4.0/3.0*M_PI)
-                               +
-                               '0 0 1' * cos(a)
-                       );
+               return u * vec3(
+                       cos(a + 2.0/3.0*M_PI),
+                       cos(a + 4.0/3.0*M_PI),
+                       cos(a)
+               );
        }
        else if(D == 0)
        {
@@ -105,17 +103,15 @@ vector solve_cubic_pq(float p, float q)
                        return '0 0 0';
                u = 3*q/p;
                v = -u/2;
-               if(u >= v)
-                       return '1 1 0' * v + '0 0 1' * u;
-               else
-                       return '0 1 1' * v + '1 0 0' * u;
+               return (u >= v) ? vec3(v, v, u) : vec3(u, v, v);
        }
        else
        {
                // cardano
-               u = cbrt(-q/2.0 + sqrt(D));
-               v = cbrt(-q/2.0 - sqrt(D));
-               return '1 1 1' * (u + v);
+               //u = cbrt(-q/2.0 + sqrt(D));
+               //v = cbrt(-q/2.0 - sqrt(D));
+               a = cbrt(-q/2.0 + sqrt(D)) + cbrt(-q/2.0 - sqrt(D));
+               return vec3(a, a, a);
        }
 }
 vector solve_cubic_abcd(float a, float b, float c, float d)
@@ -135,130 +131,164 @@ vector solve_cubic_abcd(float a, float b, float c, float d)
 
 vector findperpendicular(vector v)
 {
-       vector p;
-       p.x = v.z;
-       p.y = -v.x;
-       p.z = v.y;
-       return normalize(cliptoplane(p, v));
+       return normalize(cliptoplane(vec3(v.z, -v.x, v.y), v));
 }
 
-int W_GetGunAlignment(entity player)
-{
 #ifdef SVQC
-       int gunalign = player.cvar_cl_gunalign;
+       int W_GunAlign(entity this, int preferred_align)
+       {
+               if(this.m_gunalign)
+                       return this.m_gunalign; // no adjustment needed
+
+               entity own = this.owner;
+
+               if(preferred_align < 1 || preferred_align > 4)
+                       preferred_align = 3; // default
+
+               for(int j = 4; j > 1; --j) // > 1 as 1 is just center again
+               {
+                       int taken = 0;
+                       for(int slot = 0; slot < MAX_WEAPONSLOTS; ++slot)
+                       {
+                               .entity weaponentity = weaponentities[slot];
+                               if(own.(weaponentity).m_gunalign == j) // we know it can't be ours thanks to the above check
+                                       taken |= BIT(j);
+                               if(own.(weaponentity).m_gunalign == preferred_align)
+                                       taken |= BIT(preferred_align);
+                       }
+
+                       if(!(taken & BIT(preferred_align)))
+                               return preferred_align; // prefer the recommended
+                       if(!(taken & BIT(j)))
+                               return j; // or fall back if it's not available
+               }
+
+               return preferred_align; // return it anyway
+       }
 #else
-       int gunalign = autocvar_cl_gunalign;
+       int W_GunAlign(entity this, int preferred_align)
+       {
+               return this.m_gunalign > 0 ? this.m_gunalign : preferred_align;
+       }
 #endif
+
+#if 0
+int W_GetGunAlignment(entity player)
+{
+       int gunalign = STAT(GUNALIGN, player);
        if(gunalign < 1 || gunalign > 4)
                gunalign = 3; // default value
        --gunalign;
 
        return gunalign;
 }
+#endif
 
 vector W_CalculateSpread(vector forward, float spread, float spreadfactor, float spreadstyle)
 {
        float sigma;
        vector v1 = '0 0 0', v2;
        float dx, dy, r;
-       float sstyle;
        spread *= spreadfactor; //g_weaponspreadfactor;
        if(spread <= 0)
                return forward;
-       sstyle = spreadstyle; //autocvar_g_projectiles_spread_style;
 
-       if(sstyle == 0)
+       switch(spreadstyle)
        {
-               // this is the baseline for the spread value!
-               // standard deviation: sqrt(2/5)
-               // density function: sqrt(1-r^2)
-               return forward + randomvec() * spread;
+               case 0:
+               {
+                       // this is the baseline for the spread value!
+                       // standard deviation: sqrt(2/5)
+                       // density function: sqrt(1-r^2)
+                       return forward + randomvec() * spread;
+               }
+               case 1:
+               {
+                       // same thing, basically
+                       return normalize(forward + cliptoplane(randomvec() * spread, forward));
+               }
+               case 2:
+               {
+                       // circle spread... has at sigma=1 a standard deviation of sqrt(1/2)
+                       sigma = spread * 0.89442719099991587855; // match baseline stddev
+                       v1 = findperpendicular(forward);
+                       v2 = cross(forward, v1);
+                       // random point on unit circle
+                       dx = random() * 2 * M_PI;
+                       dy = sin(dx);
+                       dx = cos(dx);
+                       // radius in our dist function
+                       r = random();
+                       r = sqrt(r);
+                       return normalize(forward + (v1 * dx + v2 * dy) * r * sigma);
+               }
+               case 3: // gauss 3d
+               {
+                       sigma = spread * 0.44721359549996; // match baseline stddev
+                       // note: 2D gaussian has sqrt(2) times the stddev of 1D, so this factor is right
+                       v1 = forward;
+                       v1_x += gsl_ran_gaussian(sigma);
+                       v1_y += gsl_ran_gaussian(sigma);
+                       v1_z += gsl_ran_gaussian(sigma);
+                       return v1;
+               }
+               case 4: // gauss 2d
+               {
+                       sigma = spread * 0.44721359549996; // match baseline stddev
+                       // note: 2D gaussian has sqrt(2) times the stddev of 1D, so this factor is right
+                       v1_x = gsl_ran_gaussian(sigma);
+                       v1_y = gsl_ran_gaussian(sigma);
+                       v1_z = gsl_ran_gaussian(sigma);
+                       return normalize(forward + cliptoplane(v1, forward));
+               }
+               case 5: // 1-r
+               {
+                       sigma = spread * 1.154700538379252; // match baseline stddev
+                       v1 = findperpendicular(forward);
+                       v2 = cross(forward, v1);
+                       // random point on unit circle
+                       dx = random() * 2 * M_PI;
+                       dy = sin(dx);
+                       dx = cos(dx);
+                       // radius in our dist function
+                       r = random();
+                       r = solve_cubic_abcd(-2, 3, 0, -r) * '0 1 0';
+                       return normalize(forward + (v1 * dx + v2 * dy) * r * sigma);
+               }
+               case 6: // 1-r^2
+               {
+                       sigma = spread * 1.095445115010332; // match baseline stddev
+                       v1 = findperpendicular(forward);
+                       v2 = cross(forward, v1);
+                       // random point on unit circle
+                       dx = random() * 2 * M_PI;
+                       dy = sin(dx);
+                       dx = cos(dx);
+                       // radius in our dist function
+                       r = random();
+                       r = sqrt(1 - r);
+                       r = sqrt(1 - r);
+                       return normalize(forward + (v1 * dx + v2 * dy) * r * sigma);
+               }
+               case 7: // (1-r) (2-r)
+               {
+                       sigma = spread * 1.224744871391589; // match baseline stddev
+                       v1 = findperpendicular(forward);
+                       v2 = cross(forward, v1);
+                       // random point on unit circle
+                       dx = random() * 2 * M_PI;
+                       dy = sin(dx);
+                       dx = cos(dx);
+                       // radius in our dist function
+                       r = random();
+                       r = 1 - sqrt(r);
+                       r = 1 - sqrt(r);
+                       return normalize(forward + (v1 * dx + v2 * dy) * r * sigma);
+               }
+               default:
+                       error("g_projectiles_spread_style must be 0 (sphere), 1 (flattened sphere), 2 (circle), 3 (gauss 3D), 4 (gauss plane), 5 (linear falloff), 6 (quadratic falloff), 7 (stronger falloff)!");
        }
-       else if(sstyle == 1)
-       {
-               // same thing, basically
-               return normalize(forward + cliptoplane(randomvec() * spread, forward));
-       }
-       else if(sstyle == 2)
-       {
-               // circle spread... has at sigma=1 a standard deviation of sqrt(1/2)
-               sigma = spread * 0.89442719099991587855; // match baseline stddev
-               v1 = findperpendicular(forward);
-               v2 = cross(forward, v1);
-               // random point on unit circle
-               dx = random() * 2 * M_PI;
-               dy = sin(dx);
-               dx = cos(dx);
-               // radius in our dist function
-               r = random();
-               r = sqrt(r);
-               return normalize(forward + (v1 * dx + v2 * dy) * r * sigma);
-       }
-       else if(sstyle == 3) // gauss 3d
-       {
-               sigma = spread * 0.44721359549996; // match baseline stddev
-               // note: 2D gaussian has sqrt(2) times the stddev of 1D, so this factor is right
-               v1 = forward;
-               v1_x += gsl_ran_gaussian(sigma);
-               v1_y += gsl_ran_gaussian(sigma);
-               v1_z += gsl_ran_gaussian(sigma);
-               return v1;
-       }
-       else if(sstyle == 4) // gauss 2d
-       {
-               sigma = spread * 0.44721359549996; // match baseline stddev
-               // note: 2D gaussian has sqrt(2) times the stddev of 1D, so this factor is right
-               v1_x = gsl_ran_gaussian(sigma);
-               v1_y = gsl_ran_gaussian(sigma);
-               v1_z = gsl_ran_gaussian(sigma);
-               return normalize(forward + cliptoplane(v1, forward));
-       }
-       else if(sstyle == 5) // 1-r
-       {
-               sigma = spread * 1.154700538379252; // match baseline stddev
-               v1 = findperpendicular(forward);
-               v2 = cross(forward, v1);
-               // random point on unit circle
-               dx = random() * 2 * M_PI;
-               dy = sin(dx);
-               dx = cos(dx);
-               // radius in our dist function
-               r = random();
-               r = solve_cubic_abcd(-2, 3, 0, -r) * '0 1 0';
-               return normalize(forward + (v1 * dx + v2 * dy) * r * sigma);
-       }
-       else if(sstyle == 6) // 1-r^2
-       {
-               sigma = spread * 1.095445115010332; // match baseline stddev
-               v1 = findperpendicular(forward);
-               v2 = cross(forward, v1);
-               // random point on unit circle
-               dx = random() * 2 * M_PI;
-               dy = sin(dx);
-               dx = cos(dx);
-               // radius in our dist function
-               r = random();
-               r = sqrt(1 - r);
-               r = sqrt(1 - r);
-               return normalize(forward + (v1 * dx + v2 * dy) * r * sigma);
-       }
-       else if(sstyle == 7) // (1-r) (2-r)
-       {
-               sigma = spread * 1.224744871391589; // match baseline stddev
-               v1 = findperpendicular(forward);
-               v2 = cross(forward, v1);
-               // random point on unit circle
-               dx = random() * 2 * M_PI;
-               dy = sin(dx);
-               dx = cos(dx);
-               // radius in our dist function
-               r = random();
-               r = 1 - sqrt(r);
-               r = 1 - sqrt(r);
-               return normalize(forward + (v1 * dx + v2 * dy) * r * sigma);
-       }
-       else
-               error("g_projectiles_spread_style must be 0 (sphere), 1 (flattened sphere), 2 (circle), 3 (gauss 3D), 4 (gauss plane), 5 (linear falloff), 6 (quadratic falloff), 7 (stronger falloff)!");
+
        return '0 0 0';
        /*
         * how to derive falloff functions: